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SYSTEM, METHOD, AND SERVICE FOR 
PROVIDING A GENERIC RAID ENGINE AND 

OPTIMIZER 

FIELD OF THE INVENTION 

0001. The present invention generally relates to data stor 
age. More specifically, the present invention relates to pro 
viding fault tolerance for a storage system comprising RAID 
coded storage Volumes. 

BACKGROUND OF THE INVENTION 

0002 Conventional applications requiring reliable data 
storage typically use commonly available RAID (redundant 
array of independent disks) levels to protect against data loss 
due to media or disk failures. Although conventional RAID 
technology has proven to be useful, it would be desirable to 
present additional improvements. With a marked rise in the 
quantity of stored data and no commensurate improvement in 
disk reliability, a variety of RAID codes are becoming essen 
tial to containing data management costs. However, rolling 
out new RAID codes is challenging as well as cost prohibitive 
since the new RAID codes require significant development, 
testing, and tuning efforts. 
0003. Until recently, protecting customer data from loss 
due to media failure and/or device failures meant storing the 
using one of a basic set of RAID codes representing various 
levels of data protection and storage performance. To handle 
higher performance and reliability needs of customers, stor 
age vendors deployed additional codes (e.g., RAID 51) as 
variations on that basic set. These additional codes were 
primarily offered as a result of juggling the inherent risk 
reward trade-off from a software engineering standpoint as 
opposed to improving storage efficiency or performance. 
These additional codes can be composed by reusing (e.g., 
hierarchically) the basic RAID set, thus minimizing the 
amount of additional Source code introduced. Consequently, 
product-marketing needs were satisfied with a low testing 
expense. 
0004. Only a few RAID codes were supported in tradi 
tional RAID implementations (firmware) for a variety of rea 
sons: firmware complexity, Software maintainability, and 
field upgrade difficulty. Firmware complexity, as measured 
by the number of paths that need to be tested, grows with 
every Supported RAID code. Increased complexity increases 
development and test costs. The firmware becomes a collec 
tion of special cases making it hard to perform path length 
optimizations. In addition, performance tuning becomes dif 
ficult, if not prohibitively expensive. 
0005 From a software maintainability standpoint, a col 
lection of "if... then... else... code blocks makes firmware 
readability harder, making the firmware more prone to bugs. 
Each rollout of a RAID code requires field upgrades. Upgrad 
ing firmware and drivers is not a task that a storage adminis 
trator relishes, given the propensity of upgrades to trigger 
other problems. 
0006 Since deploying firmware changes is painful, there 

is a general mindset to avoid it all costs. However, recent 
trends in storage-technology and customer focus are forcing 
a re-evaluation of this status quo because of a need for Sup 
porting a variety of RAID codes in a system, growth in ref 
erence data, a growing popularity of modular systems, and a 
growing use of low cost serial disks to build high performance 
systems. 
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0007 No single RAID code satisfies all aspects of data 
storage. In a world where the Volume of customer data is 
rising due to various reasons from business transformation to 
regulatory requirements, it is becoming increasing important 
to store data at levels of reliability, performance and effi 
ciency that are proportional to the “business' value of the 
data. Information life-cycle management (ILM) is becoming 
crucial to cost containment. Supporting a variety of RAID 
codes thus becomes integral to effective information life 
cycle management. 
0008. The additive nature of reference data in organiza 
tions implies that the same storage manages a wide variety of 
scales of data sets from gigabytes to petabytes at the same 
reliability level. Using a single RAID code in this application 
is challenging. These data sets typically span many disks, 
indicating a relatively high probability of simultaneous fail 
ures. Furthermore, while disk capacities are increasing, the 
hard error rate (HER) due to media deterioration, channel 
errors, etc., has remains relatively constant. Combined, these 
trends raise the frequency of data loss events as data sets grow 
unless RAID codes with a higher fault tolerance are used. 
0009. The use of modular (or brick) systems to build stor 
age systems that scale capacity, reliability and performance 
simultaneously is a trend that is gaining popularity. Many of 
these systems embrace deferred maintenance to reduce the 
cost of managing Such systems. In a “fail in place' service 
strategy, software isolates failed components and rebuilds 
stored data on Surviving bricks. As long as there is sufficient 
spare capacity, replacement of failed components can be 
deferred to bi-annual or multi-year cycles. 
0010. A further trend is the growing use of low cost serial 
ATA (SATA) disks to build high performance systems. SATA 
disks have hard error rates that are 10 times higher than 
comparable SCSI disks while costing about 35-55% less. 
Consequently, providing various data reliability levels using 
cheaper but less reliable disks requires a greater variety of 
RAID codes. 
0011. One conventional approach, RAIDframe, focuses 
on providing firmware environments that permit rapid proto 
typing and evaluation of redundant disk array architectures. 
Although this approach has proven to be useful, it would be 
desirable to present additional improvements. This approach 
modularizes the basic functions that differentiate RAID 
architectures: mapping, encoding, and caching. This modu 
larization allows each aspect to be modified independently, 
creating new designs. In RAIDframe, array operations are 
modeled as directed acyclic graphs (DAGs) that specify the 
architectural dependencies (and execution) between primi 
tives. RAIDframe provides no simplification or automation 
of error handling. Furthermore, RAIDframe has no ability to 
automatically tune performance. 
0012. Other conventional approaches utilize a RAID sys 
tem-on-a-chip (SOC) product. Although these approaches 
have proven to be useful, it would be desirable to present 
additional improvements. For example, one such approach 
contains an embedded processor, DMA/XOR engines, and 
host and disk interface logic (FC and SATA). Since the pro 
cessor is programmable, it is conceivable that this approach 
may support a variety of RAID codes. However, all error 
paths are specified as callbacks written by the developer. 
Further, tuning of this performance approach is only mini 
mally automatic, if at all. 
0013 What is therefore needed is a solution to provide a 
variety of RAID codes without compromising the quality, 
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performance, and maintainability of the firmware. Such a 
method allows for adding new RAID codes without bloating 
the firmware. Many RAID codes have been proposed such as, 
for example, EVENODD, generalized EVENODD, X-code, 
RDP, and WEAVER. A common trend in these RAID codes is 
to focus on XOR-based RAID codes since they can be effi 
ciently implemented in hardware or software. Non-XOR 
codes such as LDPC and Reed-Solomon have been devel 
oped, but these have not become popular since they offer no 
special advantage over XOR based codes. 
0014. A solution is required to automatically handle any 
RAID code related error. An example of such an error pathis, 
on a read, encountering a read error due to a failed sector or 
disk. Since error handling is a large fraction of a firmware, the 
solution should unify fault-free and fault-ridden cases into 
common code paths. 
0015 The solution is further required to simplify nested 
error paths inherent in firmware. An example of a nested error 
path is when, in the process of reconstructing a lost block due 
to a previous failure, a new sector or disk failure is discovered. 
If the RAID code encounters such nested error paths, the 
Solution is required to automatically determine how to recon 
struct the lost block. 
0016 Furthermore, the solution is required to automati 
cally tune performance for every I/O operation performed by 
leveraging dynamic State such as currently cached pages. 
0017 What is therefore needed is a system, a service, a 
computer program product, and an associated method for 
providing a generic RAID engine and optimizer. Such a sys 
tem should work for any XOR-based erasure (RAID) code 
and under any combination of sector or disk failures. The 
need for Such a solution has heretofore remained unsatisfied. 

SUMMARY OF THE INVENTION 

0018. The present invention satisfies this need, and pre 
sents a system, a service, a computer program product, and an 
associated method (collectively referred to herein as “the 
system’ or “the present system') for providing a generic 
RAID engine and optimizer. 
0019. The present system accepts an access request, 
accepts a metadata input comprising a layout description and, 
optionally, a plurality of resource optimization objectives, 
accepts a dynamic input comprising a dynamic state of an I/O 
stack comprising the generic RAID engine and a fault con 
figuration of a plurality of storage devices in the I/O Stack, and 
accepts RAID code input comprising information about the 
RAID code used by the I/O stack. The present system utilizes 
the metadata input the dynamic input, and the RAID code 
input to transform the access request into individual device 
reads and individual device writes such that RAID code rela 
tionships for the storage devices are maintained at all times. 
An optional optimizer module of the present system selects 
strategies that meet the resource optimization objectives. 
0020. The layout description comprises a description of a 
rotation, a stripe size, and an element size of each of a plu 
rality of disks in the storage devices. 
0021. The resource optimization objectives comprise 
minimizing disk I/O and minimizing memory bus bandwidth 
for the access request. 
0022. The dynamic input comprises a description of a data 
cache of the I/O stack regarding a description of clean pages 
in the data cache, a description of dirty pages in the data 
cache, the clean pages and the dirty pages being in a W-neigh 
borhood of a page to be any of read and written. 
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0023 The fault configuration comprises a description of 
known sector failures and a plurality of known disk failures. 
0024 Transforming a write request comprises construct 
ing a plurality of affected parity vectors, preparing a failure 
vector appropriate to the degraded layout, computing a plu 
rality of inverse matrices, and generating a plurality of Sub 
plans by combining individual vectors. Transforming a write 
request further comprises reblocking (according to the gen 
erator matrix for the RAID code) the read and write vectors 
and generating a write I/O plan comprising the matrices for 
performing individual device read and writes. 
0025 Transforming a read request comprises determining 
if any faults exist in the disks of the storage system that 
prevent a Successful read, if faults exist, the present system 
Zeroes column components in the generator matrix corre 
sponding to the failed elements and computes its pseudo 
inverse, translates this matrix for consideration to device 
reads, reblocks (as in the generator matrix for the RAID code) 
and generates a read I/O plan for performing individual 
device reads. 
0026. Transforming the access request further comprises 
any of executing a scrub, executing a rebuild, and executing a 
migrate. 
0027. The present system may be embodied in a utility 
program Such as a generic RAID engine utility program. The 
present system also provides a method for the user to speci 
fying input comprising metadata input, RAID code input, and 
dynamic input and then invoking the generic RAID code 
engine utility to execute read requests and write requests. The 
metadata input comprises disk layout information Such as 
rotation, stripe size, element size, etc. The metadata input 
optionally comprises optimization criteria Such as, for 
example, minimizing disk I/O or minimizing bus bandwidth. 
The dynamic input comprises information regarding a data 
cache Such as a description of dean pages and dirty pages in a 
W-neighborhood of pages to be read or written. The dynamic 
input further comprises a current fault configuration compris 
ing a description of known sector failures and disk failures. 
The RAID code input comprises a concise description of the 
RAID code. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0028. The various features of the present invention and the 
manner of attaining them will be described in greater detail 
with reference to the following description, claims, and draw 
ings, wherein reference numerals are reused, where appropri 
ate, to indicate a correspondence between the referenced 
items, and wherein: 
0029 FIG. 1 is a schematic illustration of an exemplary 
operating environment in which a generic RAID engine sys 
tem of the present invention can be used; 
0030 FIG. 2 is a block diagram of the high-level architec 
ture of the generic RAID engine system of FIG. 1; 
0031 FIG. 3 is comprised of FIGS. 3A, 3B, and 3C and 
represents a diagram illustrating possible strategies the 
generic RAID engine system of FIGS. 1 and 2 to perform an 
exemplary Hush operation; 
0032 FIG. 4 is comprised of FIGS. 4A and 4B and repre 
sents a diagram illustrating an exemplary stripe of a device 
utilizing an EVENODD code and a corresponding generator 
matrix of the stripe generated by of the generic RAID engine 
system of FIGS. 1 and 2: 
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0033 FIG.5 is a process flow chart illustrating a method of 
operation of the generic RAID engine system of FIGS. 1 and 
2: 
0034 FIG. 6 is a process flow chart illustrating a method of 
operation of a generic read module of the generic RAID 
engine system of FIGS. 1 and 2: 
0035 FIG. 7 is a process flow chart illustrating a method of 
operation of a generic write module of the generic RAID 
engine system of FIGS. 1 and 2: 
0036 FIG. 8 is a process flow chart illustrating a method of 
operation of an optional optimizer module of the generic 
RAID engine system of FIGS. 1 and 2: 
0037 FIG.9 is a process flow chart illustrating a method of 
operation of the generic RAID engine system of FIGS. 1 and 
2 in generating a Sub-plan; and 
0038 FIG. 10 is a process flow chart illustrating a method 
of an execution engine of the generic RAID engine system of 
FIGS. 1 and 2. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0039. The following definitions and explanations provide 
background information pertaining to the technical field of 
the present invention, and are intended to facilitate the under 
standing of the present invention without limiting its scope: 
0040 Element (interchangeably referenced as a page): 
fixed-size chunks of bits. An element typically comprises one 
or more consecutive pages on a disk and comprises data pages 
or parity pages but not both parity pages and data pages. 
0041 Page (interchangeably referenced as an element): 
fixed-size chunks of bits. 
0042 RAID (Redundant Array of Independent Disks): 
Any of a family of codes using XOR codes to achieve a virtual 
erasure coded storage volume. Examples of RAID codes 
comprise RAID 5, EVENODD, generalized EVENODD, 
X-code, RDP, and WEAVER. 
0043 Strategy: a sub-plan used by the present invention to 
develop an I/O plan based on metadata input, RAID code 
input, dynamic input, and one or more read requests or one or 
more write requests. 
0044 Stripe: the set of data elements and ail related parity 
elements. The number of elements that a stripe comprises 
depends on the number of disks in the storage system and the 
coding scheme. 
0045 FIG. 1 portrays an exemplary overall environment 
in which a system, a service, a computer program product, 
and an associated method (the generic RAID engine system 
10 or the “system 10') for providing a generic RAID engine 
and optimizer according to the present invention may be used. 
System 10 comprises a Software programming code or a 
computer program product that is typically embedded within, 
or installed on an I/O stack 15. Alternatively, system 10 can be 
saved on a Suitable storage medium such as a diskette, a CD, 
a hard drive, or like devices. 
0046) System 10 can take the form of an entirely hardware 
embodiment, an entirely software embodiment or an embodi 
ment containing both hardware and Software elements. In a 
preferred embodiment, system 10 is implemented in soft 
ware, which includes but is not limited to firmware, resident 
Software, microcode, etc. 
0047. Furthermore, system 10 can take the form of a com 
puter program product accessible from a computer-usable or 
computer-readable medium providing program code for use 
by or in connection with a computer or any instruction execu 
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tion system. The computer program product comprises the 
instructions that implement a method of system 10. For the 
purposes of this description, a computer-usable or computer 
readable medium can be any apparatus that can contain, Store, 
communicate, propagate, or transport the program for use by 
or in connection with the instruction execution system, appa 
ratus, or device. 
0048. The medium can be an electronic, magnetic, optical, 
electromagnetic, Infrared, or semiconductor System (or appa 
ratus or device) or a propagation medium. Examples of a 
computer-readable medium comprise a semiconductor or 
Solid-state memory, magnetic tape, a removable computer 
diskette, a random access memory (RAM), a read-only 
memory (ROM), a rigid magnetic disk, and an optical disk. 
Current examples of optical disks comprise compact disk 
read only memory (CD-ROM), compact disk-read/write 
(CD-R/W), and DVD. 
0049. A data processing system suitable for storing and/or 
executing program code comprises at least one processor 
coupled directly or indirectly to memory elements through a 
system bus. The memory elements comprise local memory 
employed during actual execution of the program code, bulk 
storage, and cache memories that provide temporary storage 
of at least some program code to reduce the number of times 
code is retrieved from bulk storage during execution. 
0050 Input/output or I/O devices (including but not lim 
ited to keyboards, displays, pointing devices, etc.) can be 
coupled to the system either directly or through intervening 
I/O controllers. 
0051 Network adapters may also be coupled to the system 
to enable the data processing system to become coupled to 
other data processing systems or remote printers or storage 
devices through intervening private or public networks. 
Modems, cable modems, and Ethernet cards are just a few of 
the currently available types of network adapters. 
0.052 FIG. 1 illustrates a high-level diagram of a typical 
deployment of system 10 within the I/O stack 15. One or more 
applications 20 generate an access request comprising read or 
write calls (interchangeably referenced herein as read 
requests or reads and write requests or writes) to a RAID 
coded storage Volume such as a storage system 25. While 
described for illustration purposes only as read requests and 
write requests, the applications 20 may also generate for 
consideration by system 10 a file read request, a file write 
request, a block read request a block write request, etc. 
0053. The storage system 25 comprises, for example, a 
storage device 1, 30, a storage device 2,35, through a storage 
device H, 40 (collectively referenced as storage devices 45). 
A device driver operates each of the storage devices 45. For 
example, a device driver 1, 50, operates the storage device 1, 
30. A device driver 2, 55, operates the storage device 2,35. A 
device driver N, 40, operates the storage device N, 40. The 
device driver 1,50, the device driver 2,55, through the device 
driver N, 60, are collectively referenced as device drivers 65. 
0054 The read and write requests are initially served by a 
data cache 70. System 10 is invoked if a read miss occurs or 
a page needs to be flushed. System 10 provides generic Sup 
port of any RAID code under any set of sector or disk failures. 
System 10 generates disk reads and writes by considering the 
current (dynamic) state of the data cache 70. 
0055 System 10 is invoked by the data cache 70 when 
reading or writing data to a virtualized erasure coded storage 
volume such as, for example, RAID 5, EVENODD, etc. 
Applications 20 generate read and write requests to the I/O 
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stack 15. The read and write requests are serviced by the data 
cache 70 that manages cached data in pages. With write-back 
caching, application writes are copied to pages in the data 
cache 70 and marked dirty. At a later time, as determined by 
the page replacement policy of the I/O Stack 15, dirty pages 
are flushed (written out) to the storage devices 45. With read 
caching, application reads are served out of the data cache 70 
when possible. Otherwise, on a read miss, the data cache 70 
has to fetch the data from the storage devices 45 and then 
return this data to the applications 20. In one embodiment, the 
data cache 70 dynamically partitions pages into a write-back 
portion and a read portion to handle a wide variety of appli 
cation workloads. 

0056. While FIG. 1 illustrates a deployment of system in 
which locally running applications 20 submit I/Os, is should 
be clear that system 10 is applicable to a variety of deploy 
ments. For example, applications 20 may operate on hosts 
connected to the I/O stack 15 via a network, such as, for 
example, a storage area network, the internet, etc., to a (block 
or file) controller. The data cache 70 and system 10 are 
deployed within this controller. In many controllers the write 
back cache is battery backed to protect content of dirty pages 
from loss due to unexpected power failure. Other controllers 
employ a fire-hose dump to a reserved disk. 
0057 FIG. 2 illustrates a high-level hierarchy of system 
10. System 10 comprises a generic raid engine module 205, 
an optional optimizer module 210, and an execution engine 
215. The generic raid engine module 205 comprises a generic 
read module 220, a generic write module 225, a generic scrub 
module 230, a generic rebuild module 235, and a generic 
migrate module 240. Input to system 10 comprises a metadata 
input 245, a RAID code input 250, a dynamic input 255, and 
one or more read/write requests 260 (further referenced 
herein as access requests 260). The access requests 260 com 
prises any request for access to the storage devices 25 Such as, 
for example, a read request, a write request, a file read request, 
a file write request, a block read request, a block write request, 
etc. System 10 generates as output one or more I/O plans 265. 
The I/O plans 265 are provided to the execution engine 215 
for execution. 

0058. The I/O plan 265 comprises a set of pages that are 
read from the storage system 25, a set of pages that must be 
XORed, and a set of pages that are written to the storage 
system 25. Depending on the operation and associated argu 
ments, some of sets of pages in the I/O plan 265 can be empty. 
The execution engine 215 generates and manages error han 
dling during execution of the I/O plan 265. If the execution 
engine 215 encounters any errors, the execution engine 215 
aborts the I/O plan 265, modifies a fault configuration vector, 
and re-submits the operations of the I/O plan 265 to the 
generic RAID engine module 205. The optimizer module 210 
selects strategies that meet one or more resource optimization 
objective(s). 
0059. The metadata input 245 comprises a description of 
the physical arrangement of blocks in the RAID code called 
the layout, available from the meta-data for the storage 
devices 45. Layout of the storage devices 45 comprises, for 
example, rotation, stripe size, element size, etc. The metadata 
input 245 optionally comprises any resource optimization 
objectives for use by the optimizer module 210. The resource 
optimization objectives comprise optimization criteria Such 
as minimizing disk I/O or minimizing memory bus band 
width. This input guides the optimizer module 210 in select 
ing I/O strategies for a given read or write. 
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0060. The optimizer module 210 has few options for fault 
free reads where the only reasonable option is to read the 
required page directly from the appropriate disk in the storage 
devices 45. The optimizer module 210 has many options for 
writes. Each of these options can require a different number of 
disk reads and/or XOR operations. In Such cases, the opti 
mizer module 210 uses the input resource optimization objec 
tives to guide selection of the desired I/O plan. 
0061 The dynamic input 255 comprises information 
regarding the data cache 70 such as, for example, a descrip 
tion of clean pages and dirty pages in the data cache 70 that are 
in a W-neighborhood of the page(s) to be read or written. This 
description is available from a directory of the data cache 70, 
the data cache directory. The clean pages are designated as cv. 
The dirty pages are designated as dv. The dynamic input 255 
further comprises information regarding the storage devices 
45 Such as, for example, a current fault configuration. The 
current fault configuration (designated as f) comprises a 
description of known sector failures and disk failures. 
0062. The RAID code input 250 comprises a concise 
description of the RAID code, available from the meta-data 
for the storage devices 45. 
0063. The read/write requests 260 comprise the type of 
operation (read or write) and arguments associated with the 
operation. The arguments comprise a block address of the 
page(s), a starting virtual block address, and a number of 
bytes to be read or written. 
0064. Scenarios under which the data cache 70 invokes 
system 10 comprise a read on a miss, a flush of a dirty page, 
a rebuild of a lost page, a scrub of every stripe, and a migrate 
of a page. 
0065. The generic read module 220 responds to the “read 
on a miss’ scenario. The generic read module 220 translates 
a virtualized block address of the requested page(s) to a 
corresponding physical block address within an identified 
disk. In the fault-free case, one or more disk read(s) are 
issued. If the identified disk (or particular sectors within the 
identified disk) has failed, system 10 performs a reconstruc 
tion by reading related blocks as directed by the RAID code. 
If reconstruction fails, a read error is returned. 
0066. The generic write module 225 responds to the flush 
of a dirty page scenario. When the cache replacement policy 
has selected a victim (dirty) page for writing to an identified 
disk, the generic write module 225 translates the virtual block 
address of the victim page to a corresponding physical block 
address within the identified disk. The generic write module 
225 identifies one or more dependent (parity) block(s) as 
determined by the RAID code. The generic write module 225 
determines how to update the dependent (parity) blocks and 
issues that determination with a write I/O plan. 
0067. The generic rebuild module 235 responds to the 
“rebuild a lost page' scenario. The “rebuild a lost page' 
scenario is generated by an internal housekeeping routine to 
repair lost data due to sector or disk failure. The generic 
rebuild module 235 reconstructs the lost page using the 
redundant information within the RAID code and then writes 
the lost page to a new location. The rebuild process of the 
generic rebuild module 235 can be viewed as a composition: 
reconstruct read followed by write. 
0068. The generic migrate module 240 responds to the 
“migrate a page' scenario. Triggered by an administrative 
action, migration is invoked to change the RAID code of a 
page. Changes comprise varying the span (rank) of disks. For 
example, the span may be changed from an 8-disk RAID 5 to 
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a 5-disk RAID 5. Changes further comprise changing the 
RAID code. For example, the RAID code may be changed 
from RAID 5 to EVENODD. The migration process of the 
migration module 240 can be viewed as a composition: read, 
using the old code, followed by write, using the new code. 
0069. The generic RAID engine module 205 transforms 
the input into the I/O plan 235 that comprises a set of blocks 
to be read, a set of blocks, to be XORed, and a set of blocks to 
be written. The I/O plan 265 is input to the execution engine 
215 that issues the necessary disk reads and writes and moni 
tors or computes XOR operations. 
0070. The execution engine 215 executes the I/O plan 265 
in the following phases: disk reads are submitted, the XOR 
operations are performed, and the disk writes are submitted. 
Serialization mechanisms such as, for example, stripe lock 
ing, are localized to the execution engine 215. One aspect of 
the execution engine 215 comprises error handling, specifi 
cally when encountering new failed sectors or disks during 
execution. The execution engine 215 modifies the fault con 
figuration based on this new information and re-submits the 
operation to the generic RAID engine module 205. The 
generic RAID engine module 205 computes a new I/O plan 
265 that is handed to the execution engine 215. Thus, system 
10 unifies the error path with the main path. Consequently, the 
recovery code is no different from the main path. 
0071. By incorporating the RAID code information, the 
physical arrangement of the storage system 25, the current 
fault configuration, and the dynamic State of the data cache 
70, system 10 determines an optimum way to perform a given 
read or write. The fault-free and fault-ridden code paths uti 
lized by system 10 provide a simplification for nested error 
handling and recovery that plagues many RAID implemen 
tations. 

0072 FIG.3 (FIGS.3A, 3B,3C) illustrates the options for 
the I/O plans 265 generated by system 10 and the cost of the 
different I/O plans 265 with respect to the number of XORs 
required and the number of disk reads and writes. The 
example of FIG. 3 applies to a write request with a left 
symmetric RAID 5 code. 
0073 FIG. 3A illustrates a stripe 305 for a disk 1 (D1), 
310, a disk 2 (D2), 315, a disk 3 (D3),320, a disk 4 (D4),325, 
and a disk 5 (D5) 330. Stripe 305 comprises a parity element 
1 (P1), 335, a parity element 2 (P2), 340, and a parity element 
3 (P3), 345. The dirty pages within a one-stripe neighborhood 
of a victim page (V350) are shaded as indicated by element 
355. The shaded pages are flushed in one operation. 
0074 FIG. 3B and FIG. 3C illustrate possible strategies 
for performing the flush operation. FIG. 3B shows stripe 305 
as a block of pages 360 with pages to be read indicated with 
left diagonal shading as illustrated by a page 365. FIG. 3B 
further shows stripe 306 as a block of pages 370 with pages to 
be written indicated with a right diagonal shading as illus 
trated by a page 370. The strategy illustrated by FIG. 3B 
requires 4 read I/Os. 6 write I/Os, and 14 pages of memory bus 
usage for XOR. A strategy is a Sub-plan that system 10 uses to 
develop the I/O plan 265. 
0075 FIG. 3C shows stripe 305 as a block of pages 380 
with pages to read indicated with a left diagonal shading as 
illustrated by page 375. FIG.3C further shows stripe 305 as a 
block of pages 385 with pages to be written indicated by a 
right diagonal shading as illustrated by page 375. The strategy 
illustrated by FIG. 3C requires 3 read I/Os. 6 write I/Os, and 
15 pages of memory bus usage. 

Jul. 31, 2008 

0076 System 10 can select a strategy based on the input 
resource optimization objectives. For example, system 10 
selects the strategy illustrated by FIG. 3B if memory bus 
usage is to be minimized. Otherwise, system 10 selects the 
strategy illustrated by FIG.3C if disk I/O is to be minimized. 
The strategies shown in FIG. 3B and FIG. 3C are from a 
possible eight strategies available for the write request illus 
trated by FIG.3A. 
0077. In XOR-based erasure codes (i.e., RAID codes) any 
redundant bit is an XOR of a number of data bits. For effi 
ciency, this relationship is applied to fixed-size chunks of bits 
called elements. An element typically comprises one or more 
consecutive pages on disk. An element can have either data or 
parity pages but not a mix of the two. A stripe is the set of data 
elements and all related parity elements. A parity element in 
a stripe is a XOR of some subset of data elements within that 
stripe. The parity element depends on those data elements. 
The number of elements that a stripe comprises depends both 
on the number of disks in the storage system 25 (called the 
rank) and the coding scheme. 
(0078 For example, FIG. 4 (FIGS. 4A, 4B) illustrates an 
exemplary stripe 405 of a device utilizing an EVENODD 
code and a corresponding generator matrix 410 of stripe 405 
generated by system 10. The stripe 405 comprises 10 ele 
ments for a 2-fault tolerant EVENODD code over 5 devices. 
The devices comprise a disk 1 (D1), 415, a disk 2 (D2), 420, 
a disk.3 (D3), 425, a disk 4 (D4), 430, and a disk 5 (D5), 435. 
Within each stripe 405, e consecutive elements are arranged 
contiguously on each of the storage devices 25, forming a 
strip. The elements comprise data elements and parity ele 
ments. The data elements comprise an E1,440, an E2, 445, an 
E3, 450, an E4, 455, an E5, 460, and an E6, 465. The parity 
elements comprise a P1, 470, a P2, 475, a Q1, 480, and a Q2. 
485. 

(0079 FIG. 4B illustrates a matrix representation of the 
stripe 405, the generator matrix 410. A matrix representation 
of a RAID code is obtained by expressing the XOR relation 
ships between data elements and parity elements as a system 
of equations. The matrix from Such an organization is called 
its generator matrix, G. The generator matrix is an NXM 
binary matrix, where N is the number of data elements in a 
stripe and M is the combined number of data and parity 
elements in a stripe. A column of G corresponds to an (data or 
parity) element in the stripe. A column component of G 
corresponding to a data element typically comprises a single 
1. For aparity element, the corresponding column component 
has additional 1s, one for each data element to which the 
corresponding parity element relates. 
0080. If each element comprises k pages, then G can be 
rewritten in terms of pages instead of elements by replacing 
each element entry by an identity matrix of size k. For exem 
plary purposes only, each element is assumed to correspond 
to a single page. The terms element and page are used inter 
changeably. 
I0081 Layout is the physical (on disk) arrangement of data 
parity pages within a stripe. Besides configuration parameters 
Such as the size of each page, much of the layout can be 
discerned from the generator matrix G for the RAID code and 
e, the number of pages per strip. As illustrated by FIG. 4B and 
described previously, G can be visualized as blocks of e 
columns, each block corresponding to physical arrangement 
of a strip on the disk. When parity pages are interspersed with 
data pages, the layout is interleaved. 
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0082. The location of parity pages within a stripe is sum 
marized in a vector of column indices corresponding to parity 
pages in G. This vectoris referred to as the parity arrangement 
vector, denoted by parity of dimension 1 x(M-N). 
0083. To allow for even distribution of load across all 
disks, many layouts are cyclically shifted; i.e., columns of the 
basic code word are rotated, distributing the parity elements 
evenly on ail disks. This shifting can be represented by a 
signed numbers that defines the cyclical shift of strips per 
stripe. The sign encodes the shift direction: negative for left 
symmetric and positive for right symmetric. 
0084. The failure state of a page can he derived from a 
failure state of the disks and a bad sector table. The bad sector 
table is a persistent data structure that is updated whenever a 
read error is encountered by a read operation. 
0085 System 10 encodes the failure state of a set of n 
pages as the fault configuration vector f of dimension 1Xn, 
where an entry for page i is marked 1 if that page has failed, 
otherwise 0. 
I0086) System 10 modifies the fault configuration vectorf 
as new errors are discovered in the process of executing the 
I/O plan 265. 
I0087 FIG. 5 illustrates a method 500 of system 10 in 
generating I/O plans for execution by the execution engine 
215. The generic RAID engine 205 receives the metadata 
input 245, the dynamic input 255, and the read/write requests 
260 (step 505). The generic raid engine 205 receives the 
RAID code input 250 (step 510). 
I0088. The generic read module 220 executes a read 
(method 600, further illustrated in FIG. 6) (step 600). The 
generic read module 220 outputs one or more read I/O plans 
(step 515). The generic write module 225 executes a write 
(method 700, further illustrated in FIG. 7) (step 700). The 
generic write module 225 outputs one or more write I/O plans 
(step 525). 
0089. The generic scrub module 230 executes a scrub (step 
530) and outputs one or more scrub. I/O plans (step 535). The 
generic rebuild module 235 executes a rebuild (step 540) and 
outputs one or more rebuild I/O plans (step 545). The generic 
migrate module 249 executes a migrate (step 550) and outputs 
one or more migrate I/O plans (step 550). The optimizer 
module 210 optionally executes an optimization (method 
800, further illustrated in FIG. 8) to select an optimum I/O 
plan 265 (step 800). System 10 provides the output I/O plan 
(s) 265 to the execution engine 215 (step 560). 
0090. In the data cache 70, a victim (dirty) page is deter 
mined by the replacement policy for the victim page. While 
flushing the victim, it is efficient to collectively flush dirty 
pages that belong to the same stripe as the victim. System 10 
defines a W-neighborhood for a victim page, as illustrated by 
the shaded blocks in FIG.3A. The W-neighborhood is defined 
as the set of all pages, clean or dirty, in the data cache 70 that 
are in a 2W+1 stripe window centered around the stripe of the 
victim. By choosing W>0, system 10 can batch the flush 
requests of one or more pages that are presumably physically 
close, thereby improving the throughput of the disks. 
0091. The set of pages in the W-neighborhood of a victim 
page can be partitioned into clean and dirty page sets. Each set 
can be encoded as a binary vector, with a 1 in an entry 
denoting whether the page is in cache. The clean data vector 
is denoted cv and the dirty data vector is denoted dv. 
0092. The I/O plan 265 is a 3-tuple (r. X, w). The vector r 

is a vector encoding of the set of disk read operations required 
by the I/O plan 265. A non-zero entry denotes that the corre 
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sponding page is to be read. Similarly, w is a vector encoding 
of the set of disk write operations required by the I/O plan 
265. The vector X is the set of XOR operations, each of which 
is a list of pages to be XORed yielding a resultant data or 
parity page. The vector X can be encoded as a square matrix 
of dimension MXM where a column component i describes 
the set of pages to be XORed to compute page i of the stripe. 
0093. If the requested pages can be read from good disk(s), 
then it is trivial to set r to the corresponding pages on the 
disk(s). In this scenario, both X and w are zero. 
0094. The challenging case for the generic read module 
220 is when reconstruction is required due to sector or disk 
failures. From the generator matrix G, a modified matrix G is 
derived as follows. For every failed sector, the entries corre 
sponding to that row in Gare Zeroed. Forevery failed disk, the 
columns corresponding to pages on disk are Zeroed. Formally, 
G is computed as follows: 

where I is the identity matrix of size M, and diag(f) is the 
matrix derived by applying the fault configuration vector fas 
the diagonal of the MXM matrix. 
0.095 Next, using a variant of Gaussian elimination, a 
pseudo-inverse R(G) is computed. R is of dimension MXN 
where the column component i corresponds to a description 
of the set of Surviving pages (data or parity) that are required 
to be read and XORed to reconstruct data page i. 
0096. If the RAID code allows, the pseudo-inverse tech 
nique finds a reconstruction scheme using only the Surviving 
pages. From linear algebra, since G describes an over-speci 
fied system of equations, its inverse R is not unique (hence the 
name pseudo-inverse). Each pseudo-inverse, R., of G defines 
a read strategy. Given resource optimization objectives, the 
optimizer module 210 picks a suitable strategy and the rel 
evant pseudo-inverse R. The columns of R that correspond to 
the lost and required pages are extracted to r and X. Since 
Some of the required pages may already he in cache, r is 
logically ANDed with the clean cache vector cv to yield the 
set of pages that the execution engine 215 is required to read 
from disk. In the case of reconstruct reads, w is Zero. 
(0097 FIG. 6 illustrates a method 600 of the generic read 
module 220 in executing the read. System 10 receives input 
comprising a read request (step 605). The generic read mod 
ule 220 examines received metadata input, dynamic input, 
and RAID code input (step 610). The generic read module 
220 determines if any data elements required by the read 
reside on known failed disks or sectors (decision step 615). If 
yes, the generic read module 220 sets to zero the columns of 
the known lost data elements in G (step 620). 
0098. The generic read module 220 computes a pseudo 
inverse of the generator matrix R (step 625). The generic read 
module 220 copies a column component of R corresponding 
to lost and required data elements into the read vector (step 
630). The generic read module 220 copies a column compo 
nent corresponding to lost and required data elements in XOR 
vector (step 635). The generic read module 220 sets non 
failed but required data elements in read vector to 1 (step 
640). The generic read module 220 forms an I/O plan using 
read and XOR vectors (step 645). System 10 submits the I/O 
plan to the execution engine 215 (step 650. 
0099. If, at decision step 615, no data elements required by 
the read reside on known failed sectors or disks, the generic 
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read module 220 sets required data elements in read vector to 
1 (step 655). Processing proceeds to step 645 and step 650, 
previously described. 
0100. In case of error, a read may be resubmitted by the 
execution engine 215 (step 660), with processing proceeding 
from step 620 to step 650, as previously described. 
0101 FIG. 7 illustrates a method of the generic write 
module 225 executing a write. System 10 receives input com 
prising a write request (step 705). The generic write module 
225 examines received metadata input, dynamic input, and 
RAID code input (step 710). The generic write module 225 
computes a list of parity elements affected by the write (fur 
ther referred to herein as affected parity elements) (step 715). 
The generic write module 225 selects a strategy for updating 
affected parity elements (step 720). The optimizer module 
210 optionally optimizes the selected strategy (step 800, fur 
ther described by method 800, FIG. 8). 
0102 The generic write module 225 determines if any 
additional affected parity elements exist (decision step 725). 
If yes, the generic write module 225 selects an affected parity 
element (step 730). The generic write module 225 computes 
a sub-plan from the corresponding read, write, and XOR 
vectors for the selected affected parity element (step 900, 
further described by method 300 of FIG.9). The generic write 
module 225 repeats steps 725,730, and 900 until no addi 
tional affected parity elements remain for processing. 
0103) If, at decision step 725, no additional affected parity 
elements remain for processing or if no affected parity ele 
ments corresponded to the write request, the generic write 
module 225 element-wise ORs read vectors to generate an I/O 
plan read vector (step 735). The generic write module 225 
element-wise ORs write vectors to generate an I/O plan write 
vector (step 740). The generic write module combines sub 
plans into an I/O plan by summing XOR vectors for the I/O 
plan XOR vector (step 745). System 10 submits the I/O plan 
to the execution engine (step 750). The execution engine 215 
resubmits a write in case of error (step 755) and processing 
proceeds at step 720. 
0104. The generic write module 225 constructs affected 
parity vectors (step 715). Recollect that the victim page to be 
written out is expanded to include the W-neighborhood of 
dirty pages. The dirty data vector dv is then the set of pages to 
be written out; dv includes the victim. In any RAID code, the 
changed content of data pages is reflected to corresponding 
dependent parity pages. Consequently, the generic write 
module 225 identifies all dependent parity pages. This can be 
determined by logically ANDing the dirty data vector with 
each column component of a parity page in G. Every resultant 
non-Zero vector implies that that Surviving parity page 
requires updating as part of writing dv. Parity pages with a 
resulting Zero column imply that either the parity page is 
unaffected or that the parity page cannot be written to due a 
sector or disk failure. 

0105. The generic write module 225 encodes the list of 
affected parity pages as a binary vector where an entry for a 
parity page is set to 1 if that page is affected, 0 otherwise. This 
binary vector is referenced as the affected parity vector. 
0106 The generic write module 225 determines whether 
the layout is degraded (decision step 904). If no, the generic 
write module 225 computes inverse matrix (step 924). When 
computing the inverse matrix in step 924, the write module 
determines how each affected parity page is updated. With 
erasure-coded data, any parity element can be updated using 
parity increment or parity compute. Parity increment is 

Jul. 31, 2008 

referred to as read-modify-write in RAID 5 firmware. In 
parity increment, on-disk versions of the modified data and 
parity pages are initially read and a parity difference (referred 
to as delta parity) between the new and old version of the data 
page is computed. The delta parity is applied to the old ver 
sion of the parity to derive the new parity. Parity compute is 
referred to as full-stripe-write in RAID 5 firmware. In parity 
compute, all unmodified data pages on which a parity page 
depends are read from disk. The unmodified data pages are 
XORed with the dirty pages to compute the updated parity 
page. 
0107 For a fault-free write, as indicated by a no response 
to decision any correct update of dirty pages in any erasure 
coded stripe is some combination of parity increment or par 
ity compute for each of the affected parity pages. Updates that 
reuse results from one parity update (delta parity) for another 
can be re-written as if each parity page were updated sepa 
rately. Each instantiation of a parity increment or parity com 
pute for non-zero entries in the affected parity vector is a write 
Strategy. 
0.108 For any write, if p parity pages are affected there are 
2 write strategies for selection by system 10. Since each 
write strategy translates to a different I/O plan, system 10 can 
select a write strategy that meets the resource optimization 
objectives. 
0109. It at decision step 615, the layout is degraded, the 
generic write module 225 prepares failure vectors. In the 
presence of sector or disk failures, the generic write module 
225 reconstructs the pages needed for parity increment or 
parity compute before updating the parity page itself. In case 
of parity increment, the on-disk version of the modified data 
is reconstructed, if lost. For parity compute, the on-disk Ver 
sion of the unmodified data is reconstructed, if lost. The 
inverse matrix is then computed as before (step 924). 
0110 Given a write strategy, for each affected parity page, 
the generic write module 225 can compute the pages to be 
read, XOR-ed and written independently. The generic write 
module 225 calculates each sub-plan, the I/O plan corre 
sponding to each affected parity page, using column compo 
nents from the pseudo-inverse to translate the write strategy 
(parity increment or parity compute) into reads, XORs, and 
writes. In computing the read set, the dean page vector cV is 
used to cull out pages that can be readily served from 745 the 
read cache. 
0111. The generic write module 225 generates one or 
more sub-plans by combining individual r, W, X vectors 
(step). If the sub-plan for affected parity page k is denoted by 
(r. X, w), the generic write module 225 derives the com 
bined I/O plan by summing the individual sub-plans. 

keparity 

keparity 

The generic write module 225 adjusts for physical layout 
(step 735). The generic write module 225 generates the write 
I/O plan(s) comprising the R, W, X matrices (step 750). 
0112 An example for write, assuming a fault-free con 
figuration of the EVENODD code with a rank of 5 disks, is 
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described as follows. A sketch of the physical arrangement is 
illustrated by stripe 405 in FIG. 4A; the generator matrix 410 
for this code is shown in FIG. 4B. This code has two pages per 
strip (e=2), 6 data pages (N=6) and a total of 10 pages per 
stripe (M-10). The physical arrangement of parity pages is 
parity=(7,8,9, 10). 
0113. In this example, there are no clean pages available 
for this stripe. Being fault-free, f-0. Hence, 

0114 For the purposes of this example, pages D1 and D3 
are dirty. Then, 

1 

O 

1 
dy = 

O 

O 

O 

0115 The generic write module 225 computes the set of 
affected parity pages by ANDing the dirty page vector with G 
for each parity page 715. Below is a tabulation of this calcu 
lation for each parity page in the stripe. 

P1 P2 Q1 Q2 

0116. In this example, P2 is unaffected as is seen by a 
corresponding Zero column. 
0117 The generic write module 225 generates a write I/O 
plan 720. For example, the generic write module 225 selects, 
as a strategy for the write I/O plan, strategy: 

P1 parity compute 
P2 

icii Strategy O1 parity compute 

O2 parity increment 

0118. The generic write module 225 generates sub-plans 
for each affected parity page. The sub-plan for P1 is: 

Pl Wp. 

Jul. 31, 2008 

0119) The sub-plan for Q1 is: 

O 1 1 

O O O 

O O O 

1 1 O 

1 1 O 

rol = Xo1 = | Q1 - 0 
O O O 

O O O 

O O 1 

O O O 

I0120) The sub-plan for Q2 is: 

O O O 

O O O 

O 2 1 

1 O O 

O O O 

ro2=o XO2 = | "O2 
O O O 

O O O 

O O O 

1 1 1 

I0121 The generic write module 225 combines the sub 
plans to generate the write I/O plan (step 745): 

7 9 10 
O 2 

1 1 O 
O O 

0 0 O 
1 2 

1 O 2 
1 O 

O 1 O 
2 O 

; X = 1 1 0 ; w = 
1 O 

O 1 O 
O 1 

0 0 O 
O O 

0 0 O 
O 1 

0 0 O 
1 1 

0 0 1 

0.122 For brevity, only the non-zero columns of X are 
shown. The number atop the horizontal line in X denotes the 
column index. 
(0123. The generic rebuild module 235 performs rebuild 
(step 535, FIG. 5). Rebuild is the operation of reconstructing 
failed pages within a stripe and writing the reconstructed 
pages to new disk locations. The rate at which rebuild is 
performed primarily determines the data availability. The 
generic rebuild module 235 makes rebuild generic to the 
RAID code. 
0.124. The generic rebuild module 235 performs rebuild 
when there is a sector failure or a disk failure. In the former 
case, rebuild is typically performed for the affected stripe. 
This affected stripe can be scattered over a storage volume. In 
the case of a disk failure, the generic rebuild module 235 
batches rebuilds. Within each batch, one or more stripes are 
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rebuilt simultaneously since rebuilding stripes translates to 
sequential disk reads and writes. 
0.125 To perform a rebuild for a set of lost pages within a 
stripe, the generic rebuild module 235 executes a read for the 
set of lost pages. The generic rebuild module 235 selects an 
optimal I/O read plan for reconstructing the failed pages. The 
execution engine 215 executes the resultant I/O plan 265. The 
generic rebuild module 235 submits to the execution engine 
215 a rebuild I/O plan with the vector w set to the recon 
structed pages. The vectors rand X of the submitted rebuild 
I/O plan are Zero. 
0126. In one embodiment, the generic rebuild module 235 
directs the execution engine 215 to read and write out the 
entire stripe instead of just the minimum pages required for 
reconstruction. This is done to detect any lurking sector fail 
U.S. 

0127. In some layouts, spare space for rebuild is inter 
leaved within the stripe. Such information is captured in the 
layout input of the metadata input 245. 
0128 Most RAID implementations also support RAID 
migration, a process performed by the generic migrate mod 
ule 240. The migration process re-lays data that was stored in 
one layout in another layout. Migration comprises changing 
stripe size or stripe rank; i.e., re-layout a 5-disk RAID 5 code 
to a 7-disk RAID 5 code. Migration further comprises chang 
ing the RAID code itself; i.e., re-layout a 5-disk 1-fault tol 
erant RAID 5 code into a 5-disk 2-fault tolerant EVENODD 
code, or a combination of the two. 
0129. In RAID migration, a volume written in a source 
layout is re-written in a target layout. Typically, for space 
efficiency, this migration is performed in-place; i.e., the same 
set of sectors and disks in the source layout are reused for the 
target layout. Migration proceeds in some multiples of 
stripes. 
0130 Typically, this multiple is either determined by the 
least common multiple of stripe sizes of the source and target 
layouts, or by the stripe size target layout alone. A staging 
area on disk may be used to store temporary results if cache 
memory is limited. 
0131 The generic migrate module 240 directs the reading 
of all data pages from the Source layout using read. System 10 
performs any reconstructions, if needed, during this process. 
The generic migrate module 240 inputs to write the list of data 
pages for the target layout as if all the parity pages were lost. 
0.132. In one embodiment, the generic migrate module 240 
reads all pages (data and parity) in the source layout. If 
possible, the generic migrate module 240 reuses parity pages 
from this layout as partial results for computing parity pages 
of the target page. Reusing parity pages from the Source 
layout can reduce the memory bandwidth needed for the 
migration. 
0133) System 10 performs initialization. Initialization is 
layout independent in that all regions of a Volume are Zeroed. 
Initialization is typically performed in batches by writing 
sufficiently large writes with Zeroes. 
0134. The generic scrub module 230 performs scrubbing 
as a periodic scan of every stripe to check for latent hard 
errors. The generic scrub module 230 implements scrubbing 
by using a “parity check matrix” H for a RAID code that is 
computed from its generator matrix G. H is a Mx(M-N) 
matrix where each column component corresponds to a parity 
page in the RAID code. If all pages with entry 1 in that column 
are XORed, the result is a Zero page. A resultant non-Zero 
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page implies an inconsistent parity. Overwriting the errone 
ous parity page with the correct value rectifies this inconsis 
tent parity. 
0.135 H is derived from G by rearranging column blocks 
of G into row blocks in H and including an identity matrix 
(corresponding to the parity pages). An exemplary parity 
check matrix for the 5-disk 2-fault tolerant EVENODD code 
is as follows: 

P1 P2 Q1 O2 

0 1 0 1 

1 O O 1 

O 1 1 1 

H = 1 0 1 0 

O 1 1 O 

1 O O O 

O 1 O O 

0 0 1 0 

O O O 1 

0.136 The optimizer module 210 selects one strategy over 
another as guided by specified resource optimization objec 
tives. To translate the resource optimization objectives into 
optimization metrics that can be used by the optimizer mod 
ule 210 to improve strategy selection, the optimizer module 
210 uses optimization metrics comprising the number of dis 
tinct disk read and write commands needed to execute an I/O 
plan and the number of cache pages input to and output from 
XOR operations in executing an I/O plan. 
0.137 The number of distinct disk read and write com 
mands needed to execute an I/O plan measures disk overhead; 
i.e., distinct seeks and/or rotations. In a simple cost model, 
this metric assumes that disk seeks are equal cost. Minimizing 
distinct disk read and write commands leads to lower disk 
overhead in service requests, effectively improving the 
throughput of the disk. 
0.138. The number of cache pages input to and output from 
XOR operations in executing an I/O plan measures the 
memory overhead incurred. Minimizing XOR leads to lower 
memory bandwidth usage. 
0.139. In one embodiment, the optimization module 210 
utilizes second order optimization metrics such as, for 
example, variance in the number of distinct read and write 
commands among all disks. Additional optimization metrics 
can be defined that allow for variable seeks. Further optimi 
zation metrics can relate to CPU costs. Furthermore, optimi 
Zation metrics can comprise customization's based on archi 
tecture. 

(O140 FIG. 8 illustrates a method 800 of the optimizer 
module 210, given optimization metrics for an I/O plan, 
selecting among competing strategies by costing I/O plans. 
The optimizer module 210 selects a strategy to update 
affected parity elements (step 805). The optimizer module 
210 generates an I/O sub-plan (step 900, further described by 
method 900 of FIG.9). 
0.141. The optimizer module 210 determines a cost of the 
selected strategy (step 810). The optimizer module 210 deter 
mines whether a determined cost meets predetermined crite 
ria (decision step 815). If no, the optimizer module 210 
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returns to step 806 to select another strategy, if yes, the opti 
mizer module 210 designates the selected strategy as the I/O 
plan (step 820). 
0142. To compute the number of distinct read and write 
commands needed to execute an I/O plan, the optimizer 210 
restructures both rand w into matrices of the shape of G. The 
optimization module 210 turns runs of e entries into columns. 
The optimization module 210 exchanges columns based on 
the parity arrangement vector parity. The optimization mod 
ule 210 rotates the columns by the cyclical shifts. In the 
resulting matrices (one for reads and one for writes) the 
optimization module 210 counts the number of vertical runs 
of non-zero entries to compute the number of distinct read and 
write commands needed to execute the I/O plan. A run of 
non-Zero entries in either matrix represents sequential I/Os. 
0143 To compute XOR for an I/O plan, the optimization 
module 210 sums the entries in X. 

0144) Given a set of metrics and a definition of the space of 
all possible strategies, the optimization module 210 can use 
any search technique to find an I/O plan that Suits the resource 
optimization objectives. 
0145 For reconstruct reads, each pseudo-inverse matrix, 
R, leads to a strategy. Each strategy can be measured by the 
number of distinct read and write commands needed to 
execute the I/O plan or XOR. 
0146 For writes, an exhaustive enumeration of all strate 
gies can be CPU intensive especially for higher fault tolerant 
codes and larger W-neighborhoods. Consequently, heuristics 
are used to reduce CPU load. Exemplary heuristics used by 
the optimization module 210 comprise BASELINE and 
GRADIENT. BASELINE is a heuristic taken from existing 
(where possible) RAID implementations. GRADIENT is a 
greedy heuristic. 
0147 The optimization module 210 employs a simple 
majority rule to determine whether to perform parity incre 
ment or parity compute. If a majority of pages for a stripe are 
clean or dirty then the optimization module 210 selects parity 
compute. Otherwise, the optimization module selects parity 
increment. Under degraded mode, the optimization module 
210 uses parity increment The complexity of the BASELINE 
heuristic is O(p), where p is the number of affected parity 
elements. BASELINE uses a window size of 1; i.e., a 0-neigh 
borhood where only pages in the victim stripe are considered. 
0148. The GRADIENT heuristic selects a write strategy 
by incrementally assigning parity increment or parity com 
pute to each non-Zero entry in the affected parity vector. As 
each affected parity is assigned, the GRADIENT heuristic 
favors the assignment that results in a lower cost (based on the 
number of distinct read and write commands needed or 
XOR), 
0149 GRADIENT improves on BASELINE since the 
optimization module 210 selects a strategy for the next 
affected parity page based on the assignments to previously 
assigned parity pages. The complexity of the GRADIENT 
heuristic is O(p), where p is the number of affected parity 
elements. 

0150. The execution engine 215 executes an I/O plan from 
a read or write. Reads are submitted and completed. XORs are 
calculated. Writes are submitted. Prior to submission and 
completion of reads, the execution engine 215 transforms r 
and w in the I/O plan 265 to a matrix in the shape of G, in a 
manner similar to that previously described. The resultant 
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read and write matrices are used by the execution engine 215 
to coalesce runs of non-Zero entries into single sequential I/O 
commands. 
0151. The execution engine 215 is responsible for the fol 
lowing: 

0152 Ensuring that phases of the I/O plan 265 are 
executed as part of a single transaction; i.e., there are no 
interleaving of two concurrently executing 10 plans that 
overlap on pages on disk. Either all or none of the reads, 
XORs, and writes of the I/O plan 265 are performed. 

0153. Retrying operations in case of timeouts from 
disks or during XOR operations. 

0154 Updating the fault configuration vector f if any 
new sector or disk failures are discovered while execut 
ing a plan. In such an event, the I/O plan 265 is aborted 
and the I/O resubmitted to the RAID engine (with the 
updated fault configuration vectorf). 

(O155 Ensuring that the phases of the I/O plan 265 are 
executed as part of a single transaction ensures that if one or 
more I/O plans 265 have overlapping pages, the execution 
engine 215 ensures (some) consistent ordering. Any robust 
Solution to this problem employs use of an on-disk log or 
reliance on persistent memory (NVRAM). The latter 
approach is common among commercial RAID controllers 
since most commercial RAID controllers perform write-back 
caching that requires persistent memory. In these implemen 
tations, a stripe lock table, kept in persistent memory, main 
tains the lock state of stripes being touched by concurrent I/O 
plans. The execution engine 215 acquires all locks for stripes 
in the W-neighborhood before beginning execution. 
0156 The execution engine 215 requires resources neces 
sary to complete the I/O plan 265 either in advance of the 
execution or in a pre-ordered sequence. This is necessary to 
avoid deadlocks. The execution engine 215 is responsible for 
simple retries such as, for example, re-submitting timed out 
disk reads and writes and/or any errors during XORs. 
0157 System 10 unifies the error path with the main path 
through parameterization of the fault configuration vectorf. If 
the execution engine 215 discovers any new failures (sector or 
disk) during execution of the I/O plan 265, the execution 
engine 215 updates the fault configuration vectorf, aborts the 
I/O plan 265, and resubmits the I/O plan 265 the generic 
RAID engine module 205. The generic RAID engine module 
205 computes a new I/O plan 265 based on the updated fault 
State. 

0158 Traditional RAID controllers comprise hardware 
support for XOR. An XOR engine, typically built into the 
memory controller, allows the embedded processor to offload 
XOR calculations. The processor submits a scatter-gather list 
of memory addresses that form the inputs to the operation and 
an address to store the result to the XOR engine. Once this 
task is submitted, the processor is free to work on other I/Os 
until the XOR engine signals completion. The XOR engine 
uses direct memory access (DMA) to fetch the operands and 
store the result. 
0159. The approach to computing XOR the cost metric 
used by system 10 reflects the presence of an XOR engine. 
XOR engines are expensive since they require Support in the 
memory controller. A recent trend to reduce this cost utilizes 
a commodity processor to perform the XOR as well as I/O 
handling. This change allows system 10 to take advantage of 
the 12 caches in these processors by combining one or more 
memory fetches for a set of XOR operations with overlapping 
inputs into a single fetch (for each) of the operands. Chunks of 
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operand pages are fetched into the L2 cache and the resultant 
pages are stored info the L2 cache. 
0160. In one embodiment, system 10 is adapted to this 
XOR architecture. While computing the total XOR cost for an 
I/O plan, system 10 counts the number of non-zero entries in 
X in lieu of Summing up all entries in X. This change in 
costing reflects memory bandwidth used when the processor 
calculates XOR. 

0161 Hierarchical RAID schemes are structured in layers 
where one RAID code is used at the top level and another at 
the lower level. Such layering can boost fault-tolerance at the 
cost of reduced storage efficiency. Currently, commercial 
RAID controllers support-RAID 51, a hierarchical scheme 
that layers a RAID 5 layout over a RAID 1 layout. 
0162. Of greater relevance to future RAID systems are 
infra-disk redundancy schemes. The goal of Such schemes 
(called SPIDRE) is to build intra-disk redundancy aimed at 
reducing hard error rates in presence of correlated failures. 
0163. In one embodiment, system 10 is adapted to handle 

this hierarchy in a RAID scheme. System 10 computes the 
composite generator matrix of such a scheme by multiplying 
generator matrices. An exemplary combined generator matrix 
G' for a system using EVENODD over disks, that infernally 
use SPIDRE is: 

- GGEVENODDXGSPIDRE 

0164 Working off G', system 10 can generate I/O plans for 
the hierarchical RAID scheme. Any hierarchical RAID 
scheme increases the number of affected parity pages for a 
given read or write, underlying the need for an efficient heu 
ristic for strategy selection. 
0.165 An emerging trend in storage architectures is the 
rise of clustered storage systems, etc. In these systems, data is 
striped across nodes, each of which has a network connection, 
a processor (and memory), and a group of disks. Layouts span 
across nodes instead of disks as in traditional RAID systems. 
Such architectures can allow for Scaling of capacity, reliabil 
ity and performance at a low cost. 
0166 In one embodiment, system 10 is adapted for such 
distributed architectures. This adaptation is limited to 
changes to the execution engine 215. Access and updates to 
data striped using distributed RAID comprise some serializa 
tion and recovery protocol to handle (a) access to data from 
one or more clients, (b) transient errors from the network 
and/or nodes, and (c) untrusted nodes. Any suitable protocol 
can be implemented within the execution engine 215 of sys 
tem 10. The unification of the main path with the error path in 
system 10 allows for simplifying implementation of schemes 
that rely on retries for detecting out of order execution 
between one or more clients. 
0167 System 10 is generic in that it works for any XOR 
based erasure (RAID) code and under any combination of 
sector or disk failures. In a typical deployment, the data cache 
70 invokes system 10 to read, write, scrub, rebuild, or migrate 
data stored on one or more disks using a RAID code. Using a 
matrix representation of the RAID code and its physical 
arrangement on disks, system 10 can systematically deduce a 
reconstruction strategy when an application requests blocks 
that are lost due to failure oran update strategy when the data 
cache flushes dirty blocks. Furthermore, the optimizer mod 
ule 210 can select a least coststrategy from the set of possible 
reconstruction or update strategies for every read or write, 
respectively. The optimizer module 210 can be configured to 
minimize, for example, disk I/O or memory bus usage. 
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Another aspect of system 10 is unification of fault-free and 
fault-ridden code paths. By eliminating nested error code 
paths, system 10 qualitatively simplifies the RAID imple 
mentation. 

(0168 FIG. 9 illustrates a method 900 of system 10 in 
generating a sub-plan. System 10 receives an affected parity 
element (step 902). System 10 determines whether the 
affected parity element exists on failed sectors or disks (deci 
sion step 904). If no, system 10 determines which strategy has 
been selected, parity compute (PC) or parity increment (PI) 
(decision step 906). If parity increment, system 10 determines 
if any dirty data elements exist on failed sectors or disks 
(decision step 908). If not, system 10 sets dirty elements and 
parity in the read vector to 1 (step 910). System 10 sets dirty 
data elements and parity in the write vector to 1 (step 912). 
System 10 sets dirty data elements in the XOR vector to 2 
(step 914). System 10 sets the parity element in the XOR 
vector to 2 (step 916). System 10 forms a sub-plan for the 
affected parity elements using the read, write, and XOR vec 
tors (step 918). 
(0169 Ifat decision step 908 dirty elements exist on failed 
sectors or disks, system 10 Zeros columns in G corresponding 
to known lost data and parity elements (step 922). System 10 
determines whether a pseudo inverse can be computed (deci 
sion step 924). If, at decision step 922 a pseudo-inverse R 
cannot be computed, the operation fails and system 10 returns 
(step 926). If yes at decision step 924, system 10 copies into 
the read vector column components in R corresponding to the 
failed data elements (step 928). System 10 copies dirty data 
and parity elements into the write vector (step 930). System 
10 copies column components in R corresponding to failed 
data and (non-failed) parity elements into the XOR vector 
(step 932). System 10 adds dirty data and parity elements into 
the XOR vector (step 934). System 10 proceeds to step 918 
and forms a Sub-plan for the affected parity elements using 
the read, write, and XOR vectors. 
0170 If, at decision step 906, system 10 determines that 
the selected Strategy is parity compute, system 10 determines 
whether any dirty data elements exist on failed sectors or 
disks (decision step 935). If yes, system 10 proceeds to step 
922 and performs step 922 through 934 and step 918 as 
previously described. If no, system 10 sets the clean elements 
in the read vector to 1 (step 938). System 10 sets dirty data 
elements and parity in the write vector to 1 (step 940). System 
10 sets clean and dirty data elements in the XOR vector to 1 
(step 945). System 10 proceeds to step 918 and forms a 
Sub-plan for the affected parity elements using the read, write, 
and XOR vectors, 
(0171 FIG. 10 illustrates a method 1000 of the execution 
engine 215. The execution engine 215 receives an I/O plan 
(step 1005). The execution engine 215 acquires any page 
locks, or stripe locks, if needed (step 1010). The execution 
engine submits one or more read(s) (step 1015). The execu 
tion engine 215 determines if any new sector or disk failures 
have been discovered (decision step 1020). If yes, the execu 
tion engine 215updates known failures (step 1025), aborts the 
operation (step 1030), and resubmits the operation to system 
10 (step 1035). 
0172 Ifat decision step 1020 no new sector or disk fail 
ures have been discovered, the execution engine 215 submits 
XORs (step 1040). The execution engine 215 determines if 
any new sector or disk failures have been discovered (decision 
step 1045). If yes, the execution engine 215 performs steps 
1025 through 1035, as previously described. 
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0173 The execution engine 215 submits writes (step 
1050). The execution engine 215 determines if any new sector 
or disk failures have been discovered (decision step 1055). If 
yes, the execution engine 215 performs steps 1025 through 
1035, as previously described. The execution engine 215 
releases any page locks or stripe locks, if needed (step 1060). 
At this point, the operation has been Successfully executed by 
the execution engine 215. 
0.174. It is to be understood that the specific embodiments 
of the invention that have been described are merely illustra 
tive of certain applications of the principle of the present 
invention. Numerous modifications may be made to the sys 
tem, method, and service for providing a generic RAID 
engine and optimizer described herein without departing 
from the spirit and scope of the present invention. Moreover, 
while the present invention is described for illustration pur 
pose only in relation to RAID, it should be clear that the 
invention is applicable as well to, for example, any linear code 
or XOR based code used to achieve a virtual erasure coded 
storage Volume. 

1. A method of providing a RAID engine in an I/O stack 
that comprises a data cache and a storage system having a 
plurality of storage devices, the method comprising: 

accepting an access request directed towards performing 
I/O operations affecting selected pages of the plurality 
of storage devices, the access request comprising any of 
the following I/O operations: 
a read request, 
a write request, 
a file read request, 
a file write request, 
a block read request, 
a block write request, 
a stripe rebuild request, 
a stripe scrub request, 
and a stripe migrate request; 

accepting a metadata input comprising a layout description 
and, optionally, a plurality of resource optimization 
objectives: the layout description further comprising a 
description of a rotation, a stripe size, and an element 
size of each of the plurality of storage devices: each 
resource optimization objective further comprising for 
the access request the objective of minimizing the I/O 
operations for each of the plurality of storage devices 
and the objective of minimizing memory bus bandwidth: 

accepting a dynamic input comprising 
a dynamic state of the I/O stack containing the RAID 

engine, 
a fault configuration of the plurality of storage devices, 

the fault configuration further comprising a descrip 
tion of all known sector failures and a description of 
all known storage device failures, and 

a description of the data cache that includes a description 
of clean pages in the data cache and a description of 
dirty pages in the data cache, the clean pages and the 
dirty pages being in a W-neighborhood of at least one 
of the selected pages; 
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accepting a RAID code generator matrix input comprising 
information about a RAID code used by the I/O opera 
tions; 

transforming the access request into a plurality of indi 
vidual operations, each individual operation selected 
from an operations group consisting of an individual 
device read request, an XOR calculation, an individual 
device write request, a RAID scrub request, a rebuild 
request, and a RAID migrate request, each Such trans 
formation of the access request being performed through 
and being dependent upon the metadata input, the 
dynamic input, and the RAID code generator matrix 
input while maintaining for each individual operation a 
plurality of RAID code relationships for the storage 
devices; 
the transforming of the access request into the individual 

device read request comprising the steps of 
determining if at least one fault exists in the plurality 

of storage devices that prevent a Successful read: 
if the at least one fault exists, then performing further 

the following steps for each fault: 
computing a pseudo-inverse matrix of the genera 

tor matrix for the RAID code, 
translating the pseudo-inverse for consideration to 

device reads, and XORs, and 
generating a read I/O plan for performing indi 

vidual device reads and XORs: 
the transforming of the access request into the indi 

vidual device write request comprising the follow 
ing steps: 
constructing a plurality of affected party vectors, 

preparing a plurality of failure vectors as 
required by a degraded layout, 

computing a plurality of inverse matrices, 
generating a plurality of Sub-plans by combining 

individual vectors, 
reblocking the vectors as per the physical layout, 

and generating a write I/O plan comprising the 
matrices for performing individual device reads, 
XORs and writes: 

the transforming of the access request into the RAID 
Scrub request comprises generating a party check 
matrix based on the generator matrix for the RAID 
code; and 

the transforming of the access request into the RAID 
migration request comprises employing different 
generator matrices for each of a source target RAID 
layout and a target RAID layout; 

utilizing the party check matrix to ensure that all ele 
ments in the RAID code maintain the necessary RAID 
relationship at all times; and 

providing an optimizer for optimizing I/O plans for 
available hardware resources; 

wherein the RAID engine automatically optimizes indi 
vidual read, individual write, and XOR operations 
necessary to complete the read, write, rebuild, Scrub, 
and migrate operations. 

2-20. (canceled) 


