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METHOD AND APPARATUS FOR MACHINE-VISION
BACKGROUND OF THE INVENTION
Field of the Invention

This disclosure relates to the field of machine vision, which may
be useful in robotics, inspection or modeling.

Description of the Related Art

Increasingly more manufacturing operations are performed with
the aid of industrial robots. Robots that had traditionally been used as blind
motion playback machines are now benefiting from intelligent sensor-based
software to adapt to changes in their surroundings. In particular, the use of
machine vision has been on the rise in industrial robotics. A typical vision
guided robotic system analyzes image(s) from one or more cameras to arrive at
such information as the position and orientation of a workpiece upon which the
robotic tool is to operate.

Early implementations of vision guided robots have provided only
limited part pose information, primarily in the two-dimensional space whereby
the movement of a given part is constrained to a planar surface. For example
see United States patent no. 4,437,114 LaRussa. However, many robotic
applications require the robot to locate and manipulate the target workpiece in
three dimensions. This need has sparked many attempts at providing various
three-dimensional guidance capabilities. In many past cases, this has involved
using two or more cameras that view overlapping regions of the object of
interest in what is known as a stereo configuration. The overlapping images or
fields-of-view contain many of the same object features viewed from two or
more vantage points. The difference amongst the apparent position of
corresponding features in each of the images i.e., the parallax, is exploited by
these methods to calculate the three dimensional coordinates of such features.
For examples see United States patent no. 4,146,924 Birk et al., and United
States patent no. 5,959,425 Bieman et al.

Many drawbacks exist that render stereo based systems
impractical for industrial applications. The measurement error in such systems
increases rapidly in response to image feature detection errors; these systems
also require exactly known geometrical relationships between camera pairs.
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Furthermore stereo methods require the use of at least double the number of
cameras which drives up the cost, complexity and the need for calibration.
Other attempts at locating objects with multiple cameras in the

_past have taken advantage of video cameras in combination with laser light

projectors that project various stationary or moving patterns such as stripes,
cross-hairs and the like upon the object of interest. These systems typically
involve a combination of lasers and cameras that must be calibrated relative to
a common coordinate system and rely on specific assumptions about the
geometry of the object of interest to work. For example see United States
patent no. 5,160,977 Utsumi.

Drawbacks of such attempts include the need for expensive
specialized sensors as opposed to use of standard off-the-shelf hardware, the
need for knowledge of exact geometric relationships between all elements of
the system including cameras and lasers, susceptibility to damage or
misalignment when operating in industrial environments as well as posing of a
potential safety hazard when laser light sources are deployed in proximity of
human operators.

Based on the above considerations it is desirable to devise a
three-dimensional robot guidance system that eliminates the need for stereo
camera pairs and the need for the use of structured light and specialized
sensors. Such a system would increase accuracy, simplify setup and
maintenance and reduce hardware costs.

' Prior methods have been developed that utilize a single camera to
view each region/feature of the object in order to calculate the 3D pose of the
object. For example see United States patent no. 4,942,539 McGee, and
European Patent No. 0911603B1 Ersu. However these and similar methods
require the calibration of all cameras relative to a common coordinate frame
such as a robot. In practice such a requirement is cumbersome and time-
consuming to fulfill and difficult to automate. These methods also require a
priori knowledge of the geometrical relationships between all object features
used. One source for such data is object Computer Aided Design (CAD)
models; however, such data files are often not readily available. In the absence
of CAD data, past systems have relied on direct object measurement using a
coordinate measurement machine or a robot equipped with a pointing device.
This process is difficult and error prone especially in the case of large objects
with features that are scattered in different regions.
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It is therefore highly desirable to develop a three-dimensional
robot guidance system that in addition to eliminating the need for stereo
cameras and lasers, also eliminates the need for inter-camera calibration and
the need for a priori knowledge of geometrical relationships between all object
features.

BRIEF SUMMARY OF INVENTION

In one aspect, a method useful in machine-vision of objects
comprises acquiring a number of images of a first view of a training object from
a number of cameras; identifying a number of features of the training object in
the acquired at least one image of the first view; employing at least one of a
consistency of physical relationships between some of the identified features to
set up a system of equations, where a number of unknowns is not greater than
a number of equations .in the system of equations; and automatically
computationally solving the system of equations. The method may further
determine a number of additional views to be obtained based at least in part on
the number of image sensors, the number of features identified, the number of
features having an invariant physical relationship associated thereto, and a type
of the invariant physical relationship associated with the features, sufficient to
provide a system of equations and unknowns where the number of unknowns is
not greater than the number of equations. Where the invariant physical
relationships are distances, the number of views may, for example, be
determined by computationally solving the equation m > (f - f - 2k - 2r + 6(c-
ck))/(f - 3f)-1, where m is the number of views, f the number of features, k the
number of known distances between pairs of the features, r is the number of
rays with a known distance between a feature and an image sensor, c is the
number of image sensors and ck is the number of known transformation
between an imager sensor reference frame and a common reference frame.

In another aspect, a machine-vision system comprises at least
one image sensor operable to acquire images of a training object and of target
objects; processor-readable medium storing instructions for facilitating
machine-vision for objects having invariant physical relationships between a
number of features on the objects, by: acquiring a number of images of a first
view of a training object from a number of cameras; identifying a number of
features of the training object in the acquired at least one image of the first
view; employing at least one of a consistency of physical relationships between
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some of the identified features to set up a system of equations, where a number
of unknowns is not greater than a number of equations in the system of
equations; and automatically computationally solving the system of equations;
and a processor coupled to receive acquired images from the at least one
image sensor and operable to execute the instructions stored in the processor-
readable medium.

In still another aspect, a processor readable medium stores
instructions for causing a processor to facilitate machine-vision for objects
having invariant physical relationships between a number of features on the
objects: by acquiring a number of images of a first view of a training object from
a number of cameras; identifying a number of features of the training object in
the acquired at least one image of the first view; employing at least one of a
consistency of physical relationships between some of the identified features to
set up a system of equations, where a number of unknowns is not greater than
a number of equations in the system of equations; and automatically
computationally solving the system of equations.

In a yet another aspect, a method useful in machine-vision of
objects comprises acquiring a number of images of a first view of a training
object from a number of cameras; identifying a number of features of the
training object in the acquired at least one image of the first view; associating
parameters to less than all of the identified features which parameters define an
invariant physical relationship between either the feature and at least one other
feature, the feature and the at least one camera, or between the at least one
camera and at least another camera where an invariant physical relationship
between each one of the features and at least one other feature is not known
when associating the parameters before a runtime; determining a humber of
additional views to be obtained based at least in part on the number of
cameras, the number of features identified, and the number of features having
parameters associated thereto, sufficient to provide a system of equations and
unknowns where the number of unknowns is not greater than the number of
equations; and acquiring at least one image of each of the number of additional
views of the training object by the at least one camera; identifying at least some
of the number of features of the training object in the acquired at least one
image of the number of additional views of the training object.

In even another aspect, a method useful in machine-vision for
objects having invariant physical relationships between a number of features on
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the objects comprises in a pre-runtime environment: acquiring at-least one
image of a first view of a training object by at least one image sensor;
identifying a number of features of the training object in the acquired at least
one image of the first view; and associating a number of parameters to less
than all of the identified features which define an invariant physical relationship
between the either the feature and at least one other feature or between the
feature and the at least one image sensor; determining a number of additional
views to be obtained based at least in part on the number of image sensors
acquiring at least one image, the number of features of the training object
identified, the number of features having parameters associated therewith, and
a type of invariant physical relationship associated with each of the parameter;
acquiring at least one image of a second view of the training object by the at
least one image sensor; and identifying at least some of the number of features
of the training object in the acquired at least one image of the second view; and
in at least one of a pre-run time environment or a runtime environment,
computationally determining a local model using the identified features in each
of a number of respective image sensor coordinate frames.

In still another aspect, a machine-vision system comprises at least
one image sensor operable to acquire images of a training object and of target
objects; processor-readable medium storing instructions for facilitating pose
estimation for objects having invariant physical relationships between a humber
of features on the objects, by: in a pre-runtime environment: acquiring at least
one image of a first view of a training object by at least one image sensor;
identifying a number of features of the training object in the acquired at least
one image of the first view; and associating a number of parameters to less
than all of the identified features which define an invariant physical relationship
between the either the feature and at least one other feature or between the
feature and the at least one image sensor; determining a number of additional
views to be obtained based at least in part on the number of image sensors
acquiring at least one image, the number of features of the training object
identified, the number of features having parameters associated therewith, and
a type of invariant physical relationship associated with each of the parameter;
acquiring at least one image of a second view of the training object by the at
least one image sensor; and identifying at least some of the number of features
of the training object in the acquired at least one image of the second view; and
in at least one of a pre-run time environment or a runtime environment,
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computationally determining a local model using the identified features in each
of a number of respective image sensor coordinate frames; and a processor
coupled to receive acquired images from the at least one image sensor and
operable to execute the instructions stored in the processor-readable medium.

in a further aspect, a processor readable medium stores
instructions for causing a processor to facilitate machine-vision for objects
having invariant physical relationships between a number of features on the
objects, by: in a pre-runtime environment: acquiring at least one image of a first
view of a training object by at least one image sensor; identifying a number of
features of the training object in the acquired at least one image of the first
view; and associating parameters to less than all of the identified features which
define a physical relationship between the either the feature and at least one
other feature or between the feature and the at least one image sensor; and
determining a number of additional views to be obtained based at least in part
on the number of image sensors acquiring at least one image and the number
of features of the training object identified; acquiring at least one image of a
second view of the training object by the at least one image sensor; and
identifying at least some of the number of features of the training object in the
acquired at least one image of the second view; and in at least one of a pre-run
time environment or a runtime environment, computationally determining a local
model using the identified features in each of a number of respective image
sensor coordinate frames.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar
elements or acts. The sizes and relative positions of elements in the drawings
are not necessarily drawn to scale. For example, the shapes of various
elements and angles are not drawn to scale, and some of these elements are
arbitrarily enlarged and positioned to improve drawing legibility. Further, the
particular shapes of the elements as drawn, are not intended to convey any
information regarding the actual shape of the particular elements, and have
been solely selected for ease of recognition in the drawings.

Figure 1 is a. schematic view of a machine-vision system
interacting with a target object according to one illustrated embodiment, the
machine-vision system including a computing system, an imaging system and a
robot.
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Figure 2A is a schematic view of the machine-vision system of
Figure 1 interacting with a training object located at a first position, according to
one illustrated embodiment

Figure 2B is a schematic view of the machine-vision system of
Figure 1 interacting with the training object of Figure 2A located at a second
position, according to one illustrated embodiment.

Figure 3A is an representation of an image acquired by a first
image sensor of the training object in the first position.

Figure 3B is an representation of an image acquired by the first
image sensor of the training object in the second position.

Figure 4 is a flow diagram showing a high level method of
facilitating machine-vision which may include pose estimation, according to one
illustrated embodiment. '

Figure 5 is a flow diagram showing a method of calibrating image
sensors, according to one illustrated embodiment.

Figure 6 is a flow diagram showing a method of training object
features on the machine-vision system, according to one illustrated
embodiment.

Figure 7 is a flow diagram showing a method of extracting
features from captured  or acquired images, according to one illustrated
embodiment. -

Figures 8A and 8B are a flow diagram showing a method of
computing three-dimensional positions of the features in the respective
coordinate reference frames associated with each image sensor, according to
one illustrated embodiment.

Figure 9 is a flow diagram showing a method of computing a
three-dimensional pose of the target object, according to one illustrated
embodiment.

Figure 10 is a flow diagram showing a method of computing a
three-dimensional pose of the target object, according to another illustrated
embodiment.

Figure 11 is a flow diagram showing a method of computing a
three-dimensional pose of the target object, according to still another illustrated
embodiment.
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DETAILED DESCRIPTION

In the following description, certain specific details are set forth in
order to provide a thorough understanding of various disclosed embodiments.
However, one skilled in the relevant art will recognize that embodiments may be
practiced without one or more of these specific details, or with other methods,
components, materials, etc. In other instances, well-known structures
associated with robotic systems, robots, computing systems, processors and/or
image sensors have not been shown or described in detail to avoid
unnecessarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the
specification and claims which follow, the word “comprise” and variations
thereof, such as, “comprises” and “comprising” are to be construed in an open,
inclusive sense, that is as “inciuding, but not limited to.”

Reference throughout this specification to “one embodiment” or
“an embodiment” means that a particular feature, structure or characteristic
described in connection with the embodiment is included in ai least one
embodiment. Thus, the appearances of the phrases “in one embodiment” or “in
an embodiment” in various places throughout this specification are not
necessarily all referring to the same embodiment. Further more, the particular
features, structures, or characteristics may be combined in any suitable manner
in one or more embodiments.

The headings provided herein are for convenience only and do
not interpret the scope or meaning of the embodiments.

Disclosed herein is a machine-vision system and method, which
in some embodiments may be used automatically or semi-automaticaliy
determining the position and orientation of a target object in three-dimensional
space (“3D Pose”). The determination of the 3D Pose of the target object in an
external coordinate system such as a robot related coordinate reference frame
is performed using one or more images sensors such as cameras to locate
object features or landmarks. Each image sensor may observe a different
region of the target object containing one or more features, allowing the
machine-vision system to be very robust with respect to partiai occlusions and
loss of image from individual image sensors. The apparent locations of the
features are used to determine the image feature positions or local models,
which in turn are processed together with sparse model information in order to
find the rotation and translation of the target object relative to a robot coordinate
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reference frame. The calculated object 3D Pose may be used to transform a
robot path of operation so that this path aligns with the current position of the
target object.

in at least one embodiment, the machine-vision system may
implement some or all of the following method. Calibrating the image sensors
by: calculating the intrinsic parameters for each image sensor; and calculating
the pose of at least one image sensor (the “Reference Camera”) relative to an
external coordinate system. Training the object features by: capturing or
acquiring images of a training object using each image sensor pointed at a
specific region of the training object while the training object is placed in the first
‘imaging position’; the collection of images taken in the first imaging position is
described as the first view or view 1; selecting visible geometric features
present in the images e.g., lines, contours, circles, etc.; and inputting the sparse
model information; in other words the geometric physical relationships (e.g.,
distances, areas, volumes, etc) between some of the selected features.
Training the object by acquiring more views by: based on the number of
selected features and the degree of sparse model information provided,
compute the number of additional views; move the training object and/or image
sensors as a system, keeping at least two of the features in the field-of-view;
acquire image of additional view; and repeatedly moving the training object and
acquisition of images for each of the determined number of additional views.
Computing 3D object position by: extracting the trained features from images of
all views, computing 3D feature positions in respective image sensor coordinate
frames by solving a system of equations; calculating object 3D pose using
results from solving the system of equations.

As used herein model-based pose determination refers to a class
of algorithms for determining the 3D pose of an object using one or more
images of the object captured or acquired using one or more image sensors
from one or more imaging positions whereby the apparent location of object
features and information about the relationship between object features is
exploited along with the assumption of rigidity of said features i.e., constant
physical relationships. A camera generally refers to a device that comprises a
lightproof chamber with an aperture fitted with a lens and a shutter through
which the image of an object is projected onto a surface for translation into
electrical impulses. An object generally refers to an item having distinct
features (i.e., object features). An image refers to a physical or simulated
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representation of an object of interest captured or acquired from a given
physical or virtual vantage point. An imaging position is one relative position of
object and image sensors whereby the relationship between the former and the
latter remains constant for the duration of image capture or acquisition by all
image sensors. |[f the object is moving this effect can be accomplished using
high-speed imaging and lighting techniques. A view generally refers to a
collection of images taken at a given imaging position. An object feature or
feature generally refers to a visible property of an object in an image. For
example, an arc outlining a hole on the object or the visible edges outlining an
artificial marker attached to the object or virtual properties generated from the
visible properties e.g., mathematically or the result of interaction of a light
source such as a Laser light source with features on the object. A ray refers to
the line that passes through a center of an image sensor and an image feature,
and corresponding object feature.

Figure 1 shows a machine-vision system 10 and a work piece or
object 12. The machine-vision system 10 includes at least one robot 14, at
least a portion of which may be selectively positioned with respect to the object
12. The machine-vision system 10 also includes a control system 16 which
may include a computing system 18, that provides control signals by a signal
path 20 to controf the robot 14. The signal path 20 may take the form of any
wired and/or wireless communications mediums, suitable for either parallel or
serial communications The control system 16 may also include an image
acquisition system 22, which include one or more image sensors 24a, 24b, 24c
each having a respective field-of-view (broken lines) 26a, 26b, 26¢ positioned to
acquire images of portions of the object 12.

The computing system 18 may include a computer 28 including
one or more processors, memories, and buses. The computing system 18 may
also include one or more input/output devices, for example a display 30,
keyboard 32 and pointing devices such as a mouse 34. The memory may for
example, include one or more read only memories (ROMs), random access
memories (RAM), hard disks 36 (shown externally located from the computer
28 for ease of illustration), one or more removable memories 38, for example
floppy disks, CR-ROMSs, optical disks, Winchester drives or the like. The
memories statically or dynamically store instructions and data for operation of
the processor, as explained in detail below.

10
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The image sensors 24a, 24b, 24c may take any of a variety of
forms capable of capturing or acquiring a two-dimensional image of the object
12. In typical applications the image sensors 24a, 24b, 24c will take the form a
video cameras or digital still cameras. The image sensors 24a, 24b, 24c are
coupled by one or more signal paths 40a, 40b, 40c to supply image data to the
computer 28. The signal paths 40a, 40b, 40c may take the form of any wired
and/or wireless communications mediums.

In particular, the image sensors 24a, 24b, 24c¢ are positioned to
acquire images of various features on the object 12. Thus, for example, a first
image sensor 24a acquires images of features 42a, 42b, 42c, while a second
image sensor 24 b acquires images of features 42d, 42e, 42f, and the third
image sensor 24c acquires images of features 42g, 42h, 42i. In most
applications, the image sensors 24a, 24b, 24c will acquire images that include
at least some of the same features 42a-42i. The field-of-view of each image
sensor 24a-24c¢ is selected such that an adequate number of part features are
visible in each view. The features 42a-42i may be visually distinctive features
inherent in the object 12, for example slots, holes, or other apertures, lines, -
and/or edges. Additionally, or alternatively, the features 42a-42i may be
visually distinctive features placed, located, etched or inscribed on the object
12, for example decals, stickers, or slots, holes or other apertures, provided on
the object 12 solely for recognition by the machine-vision system 10 .

in the illustrated, the robot 14 has a movable arm 44 which may
be selectively positioned with respect to the object 12. Alternatively, in some
embodiments multiple portions of the robot 14 or the entire robot 14 may be -
selectively positioned with respect to the object. For example, where the entire
robot 14 is selectively positionable, the object 12 may take the form of an
environment in which the robot 14 is contained, such as the walls forming a
room. In such an embodiment, the features 42a-42i may be some common
element that has fairly standard dimensions, for example electrical outlet
covers. Alternatively, markings may be applied to the environment solely for
recognition by the machine-vision system 10.

Figure 2A shows a training object 12a at a first pose (i.e., position
and/or orientation) with respect to the imager sensors 24a, 24b, 24c, such that
the image sensors 24a, 24b, 24c¢ are able to acquire respective images
corresponding to a first view of a training object 12a. The training object 12a

11
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should be similar or identical in appearance to the actual or “target” objects that
the robot 14 will be manipulating or otherwise interacting with.

Figure 3A shows one of the images 46a of the first view (Figure
2A), acquired by the first image sensor 24a. A number of features 42a-42c are
visible in the image 46a. While the few features 24a-24c explicitly called out in
Figure 2A are slots or holes, the image 46a may include other features, such as
the edges and/or corner of the training object 12a.

Figure 2B shows the training object 12a at a second pose (i.e.,
position and/or orientation) with respect to the imager sensors 24a, 24b, 24c,
such that the image sensors 24a, 24b, 24c are able to acquire respective
images corresponding to a second view of the fraining object 12a.

Figure 3B shows one of the images 46b of the second view
(Figure 2B), acquired by the first image sensor 24a. At least some of the
features 42a-42c visible in the image 46a are also visible in the image 46b. As
discussed in detail below, the machine-vision system 10 may acquire at least
one image by at least one image sensor 24a, 24b, 24c of the training object 12a
at various poses to advantageously produce images of multiple views of the
training object 12a.

Figure 4 shows a high level method 100 useful in facilitating pose
estimation, according to -one illustrated embodiment. The method 100, or
portions thereof, may be éxecuted by a processor, for example based on
instructions stored on a processor-readable medium 36, 38 (Figure 1).

At 102, the image sensors 24a-24b are calibrated. Calibration
occurs during setup, prior to a runtime. At 104, the machine-vision system 10 is
trained. Training also occurs during setup, prior to the runtime. Optionally, the
computing system 18 estimates the pose of a target object 12 (Figures 2A, 2B,
3A, 3B) at 106. Pose estimation occurs following set up, during the runtime, for
example in a production mode. That is during operation of the system to
recognize features of target objects during intended operation. In some
embodiments, the machine-vision system 10 may be employed for tasks other
the pose estimation, for example, inspection or modeling. Calibration, training
and pose estimate are each discussed in detail below, with reference to Figures
5-11.

Figure 5 shows a method 102 of calibrating the image sensors
24a-24c, according to one illustrated embodiment.
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At 110, the intrinsic parameters for each image sensor 24a-24c is
determined. Intrinsic calibration is performed for all the image sensors 24a-24c,
and involves the determination of the internal parameters such as focal length,
image sensor center and distortion factors. An explanation of the preferred
calibration algorithms and descriptions of the variables to be calculated can be
found in commonly assighed U.S. Patent 6,816,755 issued on November 9,
2004, and pending application Serial No. 10/634,874. The method may employ
any of the many other known techniques for performing the intrinsic calibration.

In some embodiments, the intrinsic calibration of the image
sensors 24a-24c may be performed before installation in the field. In such
situations, the calibration data is stored and provided for each image sensor
24a-24c. It is also possible to use typical internal parameters for a specific
image sensor, for example parameters associate with particular camera model-
lens combinations.

At 112, extrinsic calibration may be preformed by determining the
pose of one or more of the image sensors 24a-24c. For example, one of the
image sensors 24a may be calibrated relative to a robot coordinate system 45
(Figure 1), while the other images sensors 24b, 24c are not calibrated.
Through extrinsic calibration the relationship (i.e., 3D transformation) between
an image sensor coordinate reference frame and an external coordinate system
(e.g., robot coordinate reference system) is determined, for example by
computation. In at least one embodiment, extrinsic calibration is performed for
at least one image sensor 24a-24c to a preferred reference coordinate frame,
typically that of the robot 14. An explanation of the preferred extrinsic
calibration algorithms and descriptions of the variables. to be calculated can be
found in commonly assigned U.S. Patent 6,816,755 issued on November 9,
2004 and pending application Serial No. 10/634,874. The method may employ
any of the many other known techniques for performing the exitrinsic calibration.

Some embodiments may omit extrinsic calibration of the image
sensor(s) 24a-24c, for example where the method is employed only to create a
comprehensive object model without performing pose estimation with respect to
an external coordinate system, such as the robot coordinate system 45.

Figure 6 shows a method 104 of training the machine-vision
system 10 with respect to features of the training object 12 (Figure 1) according
to one illustrated embodiment. Training refers to the process whereby an
object and its attributes are introduced to the machine-vision system .10 .
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During the training process, images of the training object 12a are captured or
acquired and various landmark features are selected whose geometrical
properties are determined and stored. In some embodiments the images may
be stored along with sparse model information, while in other embodiments
feature information extracted from the images may be stored along with the
sparse model information. During the operation of the machine-vision system
10 , the latter information is used in conjunction with runtime data to compute a
3D pose of a target object 12. The data stored at training may be referred to as
the ‘Training Set'. The Training Set is constructed by analyzing images of the
training object 12a captured or acquired by various image sensors or cameras
24a-24c in one or more positions.

During the object feature training process, images in a given view
of the training object 12 are used to select various features, for some of which
sparse model information is introduced and stored along with the images for
each view. Alternatively feature information can be extracted from the images
and stored, whereby images need not be stored.

At 120, a first view of the training object 12 (Figure 1) is acquired,
and the features 42a-42i are trained. For example, Figure 1 depicts the training
object 12 (e.g., car body) in a first imaging position. The training object 12 is
stationary when each image sensor 24a-24c¢ is instructed to acquire or capture
a single image of its respective field of view 26a-26¢. The field of view 26a-26¢
of each image sensor 24a-24c is selected such that one or mere object features
are visibie in each view.

The process of selecting object features 42a-42i suitable for pose
determination may range from fully automatic to strictly user-driven. In one
semi-automatic embodiment, the acquired images are presented to the user via
a graphical user interface on the display 30 (Figure 1). To assist the user, the
computing system 18 may perform a degree of analysis on the images (e.g.,
highlight high contrast areas of the images) to point out suitable candidates to
be used as features 42a-42i. This information is then overlaid on the images
from each image sensor 24a-24c and presented to the user. The user then
proceeds by selecting visible geometric features 42a-42i present in the images.
For example, the features 42a-42i may include lines, edges, contours, circles,
corners, centers, etc that are deemed to be suitable and reliable.

In some embodiments, the user may create one or more local
models per image sensor 24a-24c. One or more object features 42a-42i may
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be assigned to each local model. The assigned object features 42a-42i are
then broken down into a series of basic geometric entities (“primitives”) such as
points and lines. Alternatively the feature selection and local model assignment
may be performed automatically by the computing system 18 based on preset
criteria.

In such embodiments, various model-based techniques can be
used to calculate the 3D pose of a local model. The degree of freedom to
which this pose can be calculated depends on the total number of primitives
obtained by breaking down the object features, the proportions of various
primitives and the specific model-based method used. For example, a local
model may be constructed from a single circular feature. The circle in this case
can be broken down to multiple ‘point’ type primitives by selecting invariant
points along the perimeter. The resulting local model is capable of providing
from three to five degrees of freedom depending on available image resolution
and required accuracy. In contrast a local model built by combining a square
object feature and a circular object feature can be set up produce a total of five
point type primitives (e.g., one from the center of the circle and four from the
four corners of the square). This local model would be capable of providing a
full six degrees of freedom pose relative to the respective image sensor 24a-
24c. In essence the same object feature(s) (e.g., circular feature) may be
broken down into primitives differently based on the availability of other features
as well as the application requirements in terms of desired degrees of freedom
to which the pose of the object is to be calculated. To complete the training of
the local model, the machine-vision system 10 calculates and stores the current
3D pose of each local model (with the associated degrees of freedom) in the
respective camera coordinate frame (“local model Reference Pose”). For
instance in the case of the local model constructed using a singular circular
feature, the 3D pose of the model with three to five degrees of freedom is
calculated by a) decomposing the circular feature to provide 5 or more point
primitives by selecting invariant points on the perimeter of the circle; and b)
using the Single Camera 3D method as cited in commonly assigned United
States Patent No. 6,816,755 and U.S. non-provisional patent applications Serial
No. 10/634,874 to calculate the relative 3D pose of the local model to the
camera coordinate frame.

Returning to Figure 6, depending on the specific parameters and
configuration of a given machine-vision system 10 , the training may require
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imaging the training object 12 at more than one position (i.e., multiple views
acquired or captured at multiple imaging positions). Thus, at 121 the computing
system 18 or the user determines a number of additional views at which images
will be acquired. The number of additional views, in addition to the first view, is
determined as described below, where f is the number of features, m is the
number of measurements (capture or acquire positions, views), r is the number
of known rays (i.e., when the distance from a center of the image sensor to a
feature on the object 12 is known), c is the number of image sensors or
cameras, and kd is the number of known distances between features.

.There is" a solution where c is greater than or equal to 1 and f is
greater than or equal to 4, and either r is greater than or equal to 2 or k is
greater than or equal to 1. Solutions are also possible with three features (i.e., f
equal 3), if r+k equals 3 (e.g., {r=3 AND k=0} or {r=2 AND k=1} or {r=1 AND
k=2} or {r=0 AND k=3}), and m is greater than or equal to 2. Also, if more
invariant physical relationships, other than distances like angles, are used to
build the system of equations, one known distance can be enough to solve the
system of equations (i.e., find the pose) for three features.

In some instances it may be useful to move the training object 12
in one or more (m) different positions keeping the features 42a-42i in the field-
of-view 26a-26c¢ of each image sensor 24a-24c where m is calculated as set out
immediately below.

In the general case, when the relationship between some or all
image sensors 24a-24c is known:

m>= (f2-f-2k-2r+6(c—ck-1))/(-3f)-1 Equation 0
where k >=1, ¢ >=1,ck>=0
When c is equal to 1, then ck is equal to O (ie., no physical
relationship exist between image sensors 24a-24c, since there is only a single
image sensor 24a.

When the relationship between all image sensors 24a-24c is
known (i.e., ¢ = ck + 1), the equation 0 becomes:

m>= (f2-f-2k-2r)/ (- 3f) -1, where k >=1

For both cases: ¢ greater than or equal to 1 and f greater than or
equal to 4 and (r greater than or equal to 2 or k greater than or equal to 1)
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above applies. All equations are true in the case of using only distances as
invariant physical relationships. If more invariant physical relationship are used
then m (i.e., number of views) decreases accordingly.

Based on the outcome at 120, the pose of the training object
relative to the image sensors 24a-24c is optionally changed at 122, and
additional views of the training object 12 are acquired. To afrive at various
imaging positions, the training object 12 and/or the image sensors 24a-24c¢ can
be moved relative to each other. If the image sensors 24a-24c are moved, then
the relationship between the image sensors 24a-24c in the new position should
be known or remain the same as the other positions (“moved as a system”).
Once the new imaging position is achieved images of a new view are acquired.
The same process is repeated as many times as indicated by the
aforementioned algorithm to complete the training for the given setup. The
images in every view may be stored as part as the training. Alternatively,
feature information can be extracted from the images and stored whereby
images need not be stored.

At 124, features are extracted from the additional views of the
training object 12. Extraction is discussed in more detail below with reference
to Figure 7.

At 126, sparse model information is provided to the computing
system 18. The sparse model information describes the geometrical physical
relationships between object features or the geometrical attributes of a single
feature (e.g., diameter of a circular feature) from which the former may be
calculated, for less than all selected features. The sparse model information
may be sourced from a CAD model of the object, measured directly or
calculated.

At 128, the computing system 18 computes the three-dimensional
positions of the features in the respective coordinate frames associated with
each image sensor 24a-24c, for creating local models. ,

Figure 7 shows a method 124 of extracting features according to
one illustrated embodiment.

At 140, the computing system 18 starts with ali acquired images
from all views. At 142, the computing system 18 executes a first loop for
processing the views (e.g., 1 to m) one at a time. At 144, the computing system
18 executes a second loop for processing each image (e.g., 1 to ¢) from a
particular view, one at a time. At 146, the computing system 18 locates
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features in the image, that were previously trained for the respective image
sensor that acquired the current image. At 148, the computing system 18
extracts feature information, such as position. At 150, the computing system 18
stores the extracted feature information. The feature information may, for
example, be stored as an indexed list of the X and Y coordinates in the image
or image sensor reference frame of all features in the particular image, and in
some embodiments may include additional feature information, for example the
radius of a circle, center points of an ellipse, etc.

At 152, the computing system 18 determines whether there are
additional images for the current view. If there are additional images for the
current view, control returns to 144 to process the next image. If there are not
additional images for the current view, control passes to 154, where additional
images for the current view determines whether there are additional views. If
there are additional views, control passes to 142 to process the next view. If
there are not additional views, control passes 156, to computed the target
object 12 position or pose.

Figures 8A and 8B show a method 128 of computing three-
dimensional positions of the features in the respective coordinate frames
associated with each image sensor 24a-24c. Such may be used for creating
local models, according to one illustrated embodiment. - In particular, the
method 128 is described with respect to information extracted from images
acquired by each of a plurality of image sensors, a first set of extracted
information 160a which is denominated as “camera 1’ and a second set of
extracted information 160c which is denominated as “camera c¢” 24c. The
method 128 is applicable sets of information exiracted from images acquired by
additional images sensors 24a-24c, which sets of information are not explicitly
illustrated in Figures 8A-8B for sake of brevity and clarity of presentation.

The sets of extracted information 160a, 160¢ may include lists of
features information from each of a plurality of views (e.g., views 1 to m), for the
respective image sensor 24a-24c, for example the coordinates of the particular
features 42a-42i in the image reference frame coordinate system. The features
information may be represented with nomenclature for convenience, or for use
in referring to the particular information in a software program, routine or
function for processing the feature information. The nomenclature adopted
represents a specific feature by the letter F, followed by a superscript that
identifies the particular feature, a first subscript that identifies the particular
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feature, and a second subscript identifies the particular image sensor. Again,
the features information may include the X, Y coordinates of the features in the
reference frame of the corresponding image sensor 24a-24¢, and may include
additional information.

At 164, the computing system 18 constructs a nonlinear set of
equations by equating the distances between each features 42a-42i and all
other features 42a-42i in one view with the same distances in another view.
Using the above nomenclature, such may be mathematically represented as:

P(Fjvs,cp, Fivs,Cr) = P(Fjvt,cp, Fivt,cr)

At 126, sparse model information is employed by the computing
system 18. The sparse model information may take a variety of forms, for
example distances between various features 42a-42i, between various image
sensors 24a-24c, and/or between various features 42a-42i and image sensors
24a-24c At 168, the computing system 18 uses a minimization aigorithm to
solve the set of equations for the three-dimensional position information at least
some, if not all of the features. At 170, the computing system 18 stores the
three-dimensional position information to suitable processor-readable medium
such as RAM.

It is noted that if the physical relationship between image sensors
24a-24c¢ is not known, these relationships are determined as part of method
128. In such a case, the number of positions (m) is determined based on the
general case set out above. In some embodiments, the previously described
methods may be employed to determine the positions and orientations of the
various image sensors, advantageously automating and simplifying to
installation of machine-vision systems.

In some embodiments, the computing system 18 will determine
the three-dimensional position of a target object 12 in an external coordinate
system, such as a robot coordinate system 45. An overview of such a process
will be described, followed by a discussion of a number of more specific
methods for performing such a process.

As discussed in detail above, the computing system 18 searches
each image to find as many of the frained features for each image sensor 24a-
24c as possible. Alternatively, the computing system 18 may employ previously
stored feature information.
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The position of features in the image coordinate frame is therefore
used in conjunction with the sparse model information stored during training to
compute the pose of each feature or each local model in respective image
sensor coordinate frame by setting up and solving a non-linear system of
equations according to the algorithm described in the previous section. The
computation may done to as may degrees of freedom as possible, or as
desired.

Features are selected from the two views (i.e., runtime and
training views) and features positions are transformed from each image sensor
frame to the common reference frame. These transformed positions are then
used to compute the 3D object pose (see Figure 9).

The 3D object pose may be determined using any number of
known methods. For instance in the case of a local model constructed using a
singular circular feature, the 3D pose of the local model with three to five
degrees of freedom relative to the current camera is calculated by a)
decomposing the circular feature to provide 5 or more point primitives by
selecting invariant points on the perimeter of the circle; and b) using the Single
Camera 3D method as cited in United States Patent Applications No.
10/153,680 and 10/634,874 to calculate the relative 3D pose of the Local Model
created in step b) to the camera coordinate frame. .

Where the coné;ept of local models is employed, the calculation of
the position of each local model at training time and at runtime in the Reference
Camera coordinate frame using the local model reference pose in each
respective camera coordinate frame stored at training and the current local
model pose in the same respective frame may be computed as described
above. To accomplish this, the method takes advantage of the rigidity of the
object and the constancy of the geometrical relationships between its features
and therefore between the local modeis. This property is exploited by way of
forming a system of n equations and m unknowns whereby the unknowns are
made up of pose elements of the local models in the reference camera
coordinate frame at training and at runtime. For instance, such a system of
eqguations can be constructed by equating the formulae for distances between
local models at training time and at runtime. Similar systems of equations may
be constructed by equating not only the relative distances between local
models but also their relative 3D orientation in cases when the said local
models provide such pose information.
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The number of equations (n) and unknowns (m) is affected by a
multitude of factors such as the number of image sensor or cameras, the
number of local models, the number of degrees of freedom provided by each
local model, and the number of positions in which the object should be imaged
to complete the Training Set (Imaging Positions). The following mathematical
formula explains how each factor affects the values of m and n. For each
specific application, the system parameters must be adjusted so as to provide n
(left hand side of the following inequality)>=m (right hand side of the following
inequality) resulting in a system of equations that can be solved.

6%t c [ c ] c Mc,.[ ]
(f N 2)| Zi:l Mci * j=i+l Mcj 212 (C - 1) +3t* Zz’:l Zj:l 6~ Fnz'ici

where:
t: number of Imaging Positions required to complete the Training
Set + 1
C: number of image sensors or cameras
Ci ith camera

Mci:  number of local models for the ith image sensor or camera

m ¢ the jth model of the ith image sensor or camera

F vl cit the number of degrees of freedom of the jth model of the ith
image sensor or camera

For instance, given a system that consists of four image sensor or
cameras (i.e., C=4) viewing one local model (i.e., M¢; =1) per image sensor for
all i, with each local model capable of producing a 3 degrees of freedom pose
(i.e., X, y, z coordinates) or F m ci=3foralliand j , the above inequality may be
solved to yield the number of viewing positions t resulting in the requirement of
two or more viewing positions (i.e., t>=2). In other words given the above
parameters, the object needs to be viewed (imaged) in two different positions to
complete the training process.

The pose of local models in the reference camera frame at
training and runtime provide the necessary information to calculate the
transformation between the pose of the entire object at training and at runtime
in the reference camera coordinate frame. The specific steps followed here are
dependent on the number of local models and the degrees of freedom provided
by each. If for instance, there exist three local models providing a three
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degrees of freedom pose each, the task of calculating said object
transformation from training to runtime invoives calculation of the parameters
for two 3D planes (frames) corresponding to the training and runtime poses of
the local models and then computing the transformation between these planes.
in other cases whereby there exists a larger number of local models and/or
when some or all local models provide more or less degrees of freedom, more
glaborate means of ‘fitting’ or ‘morphing’ may be used to reconcile the
redundant pose data from various local models.

In some embodiments, the machine-vision system 10 may be
employed for guiding the robot 14. In some such embodiments, the training
process also involves training of an operational path of the robot 14 with
respect to the target object 12. This task is independent of the object training
process and may be undertaken at any point throughout the training process.
The path may be generated through manual robot path training by a human
operator or user, or by an offline robot path simulation software package that
can generate the path using object CAD data. The path generation may take
place at other points in the overall training process.

Training the operational path may, for example, include acquiring
a training view (j.e., robot training view) with the training object 12a in a position
where robot path training is desired. A 3D transformation between the runtime
view and the robot training view may be determined by transforming the 3D
features positions calculated for each view to a common reference frame.
These transformed positions may be used to compute the transformation of the
object pose between the two views (see Figure 10).

Once the transformation describing the movement or difference in
the pose of the object from training time view and runtime view is determined,
the transformation may be transmitted to a controller of the robot 14 for
adjusting the intended path of operation. The robot controller may be
implemented by the computing system 18, or by a separate controller which
may, or may not be an integral part of the robot 14. There are several options
for communicating the object 3D pose data. These include ‘3D Offsets’,
‘Transformed Path’ and ‘Object Frame’ methods.

In the 3D Offsets method, the computing system 18 fransmits the
elements of the computed 3D object transformation (from training to runtime
relative to a robot coordinate system) to the robot controller.  This
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transformation is subsequently applied to the intended path of operation by the
robot controller.

The Transformed Path method in contrast involves the computing
system 18 applying the above transformation to the entire robot path, as
previously defined at training and stored in an accessible memory location,
directly. In this case the entire corrected path is transmitted to the robot
controller in a suitable form as points or other geometrical definition.

The Object Frame method is yet another convenient method for
sending object pose data to the robot. This method works by initially sending
the object 3D pose at the Training View, i.e., the object reference frame, to the
robot 14. The robot intended path of operation is then trained relative to this
frame with the object in the training position. At runtime, the current object -
frame is sent to the robot controller which is then used in place of the original
reference frame (see Figure 10). The robot controller uses this mechanism to
adjust its path of operation.

in other embodiments, the machine-vision system 10 may omit
the robot 14. For example, the machine-vision system 10 may take the form of
an inspection system for inspecting objects, without controlling any robotic-
elements. Alternatively, or additionally, the machine-vision system 10 may take
the form of a modeling system, that creates comprehensive or relatively
comprehensive CAD models based on sparse model information.

Figure 9 shows a method 106a of computing a three-dimensional
pose of the target object 12, according to a first illustrated embodiment.

At 200, the computing system 18 employs the three-dimensional
position information stored at 170 (Figure 8A), for example retrieving the three-
dimensional position information from memory. At 202, the computing system
18 transforms the positions of the features for the desired view from the image
sensor reference coordinate frames to a common reference frame. At 204, the
computing system 18 uses the fransformed feature positions from 202, to
determine the 3D object pose.

Figure 10 shows a method 106b of computing a three-
dimensional pose of the target object 12, according to another illustrated
embodiment. The method 106b may be more suitable for guiding the robot 14
(Figure 1) in a look and move fashion, than the method 106a (Figure 9).

At 220, the computing system 18 employs the three-dimensional
position information stored at 170 (Figure 8A), for example retrieving the three-
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dimensional position information from memory. At 222, the computing system
18 selects at least three non-colinear features 42a-42i.

At 224a, the computing system 18 takes selected features from
the view in which the object 12 was in an object reference position. At 224b,
the computing system 18 takes selected features from the view in which the
target object 12 was in a current object position.

At 226a 226b, the computing system 18 transforms the positions
of the selected features from each image sensor coordinate system reference
frame to a common coordinate system reference frame.

At 228a and 228b, the computing system 18 uses the transformed
positions to build an object reference frame, and a current object frame,
respectively.

Figure 11 shows a method 106¢ of computing a three-dimensional
pose of the target object 12, according to yet another illustrated embodiment.
The method 106¢c may be particular useful for tracking a moving object, for
example in a real or near real time environment. Many of the acts of the
method 106¢ are similar or identical to the acts of the method 106b (Figure 10).
Consequently, the same reference numbers are used for similar or identical
acts, and only significant differences in operation are discussed below.

In contrast to the method 106b, the method 106c takes selected
features from a view of the object in a previous position, at 224¢. This may
allow real time updates.

A brief description of the underlying algorithms, including the
relevant equations may be useful in understanding and/or implementing the
machine-vision system 10 and method.

The machine-vision system 10 and method exploit the constancy
or invariance of different physical relationships to set up a system of equations,
which may be solved to determine the pose of a target object relative to a
reference coordinate system, for example via a general nonlinear minimization
algorithm. The constancy or invariance derives from the assumption that the
object, or at least a portion thereof, is rigid. The physical relationships generally
exist between various features on the target object. The machine-vision system
10 and method may employ other physical relationships as well, such as those
between various image sensors and/or between features and image sensors.

In particular, the system of equations may be set up using the
constancy of distances, angles and/or enclosed volumes between features 42a-
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42i. However, other additional equations can be set up by exploiting other
constant or invariant relationships between features 42a-42i. As example,
Feature Coordinates:
- image coordinates (extracted from image): xi, yi
5 - sensor coordinates (computed): xs, ys, f (focal length) (feature
coordinates in the sensor plane)
- camera space coordinates (unknowns): xc, yc, zc

Pinhole camera model relationships:

.=z, Lo Equation. 1
f

10 VY, =2, =%

s Equation 2
v

For example, the constancy of distances between features in
different views may be exploited. Consider two features f1 and f2 that appear
in two views v1 and v2. Assuming a rigid object, the distance between f1 and
£2 should remain the same from v1 to v2. This equation can be written as:

15 (fl vl_ f2 vl)Z +(f1 vl__f2 ‘1) +(fl vl fZZ)l) _(fl v2__f2 12)2 +(1’1 v2_ f2 v2) +(f] v2_f2 \2)
Equation 3

Using equations 1 and 2, equation 3 becomes:

(fl vl fl v] f2x|1 fZZ\l) +(f1 vl le\l f2 vl 2 vl) +f (fl vl_ f2 vl)

(f1x§2 fovz 12402 12 \2) +(f1 v2 f1, ‘2 f2 v2 f2 v2) +f (fl v2 szvz) ,3)

Equation 4
20 Each pair of features generates ¢, =m-(m-1)/2 equations for m
Views. There are 1, =nf-(nf —1)/2, possible pairs for a total of nf features. So

the nonlinear system contains ¢ =t

equations 'z
t =nf - m unknowns.

o equation  and

mn

unknowns
For each known distance (d), the corresponding equation for each
25 viewis:

(fl :1 levl 12y »1 2 vl) +(f1 vl 1, vl f2 vl 72 vl) +f (fl vl fzz»l)

Equation 5
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So the total number of equations for a number of known distances

(kd) is:

Laguations =Ly~ Ly + K -m(m=3)/2 Equation 6

For each known ray and corresponding z coordinate (zc) of the
feature relative to the imager coordinate system, the number of unknowns
decreases by 1.

Likewise, the machine-vision system 10 and method may
additionally, or alternatively, exploit the constancy of angles that are formed
between features in different views. For example, consider three features f1, {2
and f3 extracted from two views v1 and v2. The angle between the vectors
generated by f1, f2 (A) and f2, f3 (B) should remain the same from v1 to v2.
This equation can be written as:

cos(a™) = cos(a™) Equation 7

The angle equation in one view is:

y Avl . Bvl
cos(ct 1)=—————Av1 I

vl _gf2 vl f2, 91 f1vl f1ov1 2 91 f2 91 flovl fl vl f2 vl f1 vl
A" (N2 g SRy SRy Sy SR g

vi _gf2.v1 f2, 91 3. vl f3_vi F2 01 f2 vl f3_vl f3 v f2_ v f3_wm
B'—( x:'Zc_jx'Z y!'Zp—ys'ZD,Zc‘-Zc)

5 c?

=\[(fzz::)2. (fzx:1)2+(fzysv1)2+1]+(flz:1)2, (flx:l)z+(f1y:1)z+l]_2_(fzx:l‘flx:I_’”fzy:vl.fly:I)_fZZ:I_flzzl

Avl

=J(fzz:1)2 ] .(fzx:l)z +(f2y:1)2 +1J'+(f32:1)2 ] .(f3x;rl)z +(f3y:1)2 +1j_2'(fzx;;l.f3x:vl+f2y:1'f3y:l)‘fzzzl.f32:l

Equation 8

BVI

Each triplet of features generates ¢ =m-(m~1)/2 equations. There are
ty =nf - (f =1)-(nf —2)/6, possible triplets for a total of nf features. So the
nonlinear system contains ¢ equations and ¢, =nf-munknowns.

Further, the machine-vision system 10 and method may
additionally, or alternatively exploit the constancy of volumes generated
between features in different views. For example, consider four non-coplanar
features f1, f2, f3 and f4 extracted from two views v1 and v2. The volume of the
tetrahedron generated by f1, f2, f3, f4 should remain the same from v1 to v2.

This equation can be written as:

equations tty"a : tm

vol (fip34") =vol (fizss") Equation 9
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The volume equation in one view is:

y Av] . Bvl Xc\’l
voz(fl,z,s,zz )) = —(_—)

_(fz vl f2 \] fl vl fl vl f2. vl f2 vl f)yal fl vl f2 vl_ f1 vl)
~_(fz vl f2 vl f3 \»1 3 vI,ny:l f2 vl fay;n 13 Z;d,fz vi_f3 vl)
- jz vi f2 vl f4 vl f4 vl f2. v f2 vi_f4 vl f4 vl f2 vl ja v
=( > Vs Ve Ees «) Equation 10
Each tetrahedron generates : =m-(m-1)/2 equations. There are
Ly =0 -(nf =1)-(nf =2)-(nf —3)/24, possible tetrahedron for a total of nf features..
5 So the nonlinear system contains Loguations =Ly 1, €Quations  and

=nf -m unknowns.

Beyond the cases outlined above, similar equations can be written
based on constancy of various other properties and relationships such as
constancy of area enclosed between features.

10 A nonlinear system for calculating the 3D pose of the object is
then created using a collection of equations from various cases. To have a
solution there should be at least as many equations as unknowns. For instance
such a system may contain equations from case a and a ‘combination of
equations from b and/or c.

15 : The system of equations contains the ‘Zc’ coordinates of each
feature in each view as unknowns. Zc can alternatively be expressed as other
unknowns in which case the system can be solved for these.

Various methods for solving non-linear systems of equations such
as Levenberg-Marquardt, Gauss-Newton, etc. can be used to solve for the pose

20 of the object.

tunknawnx

An example of use of the machine-vision system 10 with two or
more image sensors may be helpful. Consider the transformation from image
sensor i o a common reference frame:

25 The coordinates of a given feature in the common reference
frame are given by:
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X Y
X7 =hgyzy Ty 2, Sy 2, L

x .
Y =ry oz, ot ez, 2 Fry ez, L, Equation 11

x Yy
f — s .. s
=Ty 2, +¥y,z

Cf

+7y, -z, +1,,(5)

Equation 4 is valid in the common reference coordinate system. In
this case, Equation 4 becomes:

S 7 yvl 12,0 f2 yvl
r 2 2 2 2
(rot;]'flzvl,cl . L:; +r(:l'ﬂZ:1'ﬂ s +’cl fl vi, cl+tcl :DZ fZZ:d,x:Z‘ c; + ;‘P'fZZ:I,CZ s +rc f vl, r:2+tc2)2+
/ f f e
fiom f2.v 2.
X5 1 X, 1 2
(Tfl‘leVI'd +rc f] viel | ys +’L1 f1 vlcl+tcl 22 fZZvI,cz c; +¥ lcl2 fZZ: 2, ys 4 rc fZ vic2 +tc2) +
A r f e
Sl vl S, vl S22 v
y X ) ) X, )
(r:l_flz\l.cl_ f; +rzcl1.flz‘1,u wa’i +rcl fl vl +tol 2f)z.fzzn,cz_ fc; + 2c]2_fzz‘ 02 f):; _H,cz f2 Vie2 _]_tfz)z -
N xv2 lyv?. fol’Z ny
) 3 y 2 v
(’:‘:)lhflz\Z,r:l . fci +’;;I‘flzv2,cl f _\- + Ll f] v2,cl +tcl _r£2'flzl2,c2. fC; +r;2j v2,e2 f,:; {’_ wC2 f2 v2,02 +t02)2
€ c x e c
flxvz 1y\2 f2x|2 ny\Z
(r:'ﬂZVZ'CI‘ fb_; +rlr:l‘leV2'cl f ; +l cl fl v2,cl +td lzz szuz,cz fc; + LC2 f2 v2,e2 f 5 s 44 :2 fZZ:'Z,c? +t:.7)2 +
c c y 3 : .
flxvz ly\Z fo\Z ny\
(rcl ‘flzvz,cl . f:; +r21-l‘l .fIZvZ.L‘I fc_; ;‘1 fIZVZ,Cl +tfl ___r;Z.f2Z|12,z:2 . fc; +7‘;2'f22"2"2 f s +7”C2 f?. v2.c2 +t02)2 (6)
5 Equation 12

The nonlinear system can be solved for rays and also for the
transformations from camera spaces to the reference frame. If the reference
frame is not the coordinate system of one of the cameras (in which case the
transformation would have been the identity transformation) then at least one

10  transformation (one camera coordinate system to the reference frame) should

be known.
Each pair of features generates ¢, = m-(m—1)/2 equations.
There are t,.=nf-(nf-1)/2, possible pairs for a total of nf
features.
15 The nonlinear system contains 1,,,,,.=t,t, equation and

Lanknowns = 1,y - UNKNOWNS if the cameras to reference frame transformation are
known. Otherwise the number of unknowns is:

The noniinear system contains i, =t,-t, equation and
Luntrons = Loy * 11 unknowns if the cameras to reference frame transformation are

20 known. Otherwise the number of unknowns is:
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An equivalent approach as described above in the case of one
image sensor for the angles or volumes can be extended for the multi-camera

-case.

The above description of illustrated embodiments, including what
is described in the Abstract, is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Although specific embodiments of and
examples are described herein for illustrative purposes, various equivalent
modifications can be made without departing from the spirit and scope of the
invention, as will be recognized by those skilled in the relevant art. The
teachings provided herein of the invention can be applied to machine-vision
systems for inspection, modeling and other applications, not necessarily the
exemplary robotics machine-vision system generally described above. For
example, while examples are illustrated employing distances between features
as the invariant physical relationship or parameter, the teaching herein are
generally suitable for use .with other invariant physical relationships such as
angles, areas, volumes, etc.

‘For instance, the foregoing detailed description has set forth
various embodiments of the devices and/or processes via the use of block
diagrams, schematics, and examples. Insofar as such block diagrams,
schematics, and exampies contain one or more functions and/or operations, it
will be understood by those skilled in the art that each function and/or operation
within such block diagrams, flowcharts, or examples can be implemented,
individually and/or collectively, by a wide range of hardware, software, firmware,
or virtually any combination thereof. In one embodiment, the present subject
matter may be implemented via Application Specific Integrated Circuits
(ASICs). However, those skilled in the art will recognize that the embodiments
disclosed herein, in whole or in part, can be equivalently implemented in
standard integrated circuits, as one or more computer programs running on one
or more computers (e.g., as one or more programs running on one or more
computer systems), as one or more programs running on one or more
controllers (e.g., microcontrollers) as one or more programs running on one or
more processors (e.g., microprocessors), as firmware, or as virtually any
combination thereof, and that designing the circuitry and/or writing the code for
the software and or firmware would be well within the skill of one of ordinary
skill in the ‘art in light of this disclosure.
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In addition, those skilled in the art will appreciate that the
mechanisms of taught herein are capable of being distributed as a program
product in a variety of forms, and that an illustrative embodiment applies equally
regardless of the particular type of signal bearing medium used to actually carry
out the distribution. Examples of signal bearing medium include, but are not
limited to, the following: recordable type medium such as floppy disks, hard disk
drives, CD ROMs, digital tape, and computer memory; and transmission type
medium such as digital and analog communication links using TDM or IP based
communication links (e.g., packet links).

The various embodiments described above can be combined to
provide further embodiments. All of the U.S. patents, U.S. patent application
publications, U.S. patent applications, foreign patents, foreign patent
applications and non-patent publications referred to in this specification and/or
listed in the Application Data Sheet, including but not limited to U.S. Patent
6,816,755 issued on November 9, 2004, pending U.S. Nonprovisional
application Serial No. 10/634,874; and U.S. provisional application Serial No. ,
filed 60/587,488, filed July 14, 2004 are incorporated herein by reference, in
their entirety. Aspects of the invention can be modified, if necessary, to employ
systems, circuits and concepts of the various patents, applications and
publications to provide yet further embodiments of the invention. ‘

These and other changes can be made to the invention in light of
the above-detailed description. In general, in the following claims, the terms
used should not be construed to limit the invention to the specific embodiments
disclosed in the specification and the claims, but should be construed to include
all machine-vision systems and methods that operated in accordance with the
claims. Accordingly, the invention is not limited by the disclosure, but instead
its scope is o be determined entirely by the following claims.
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CLAIMS
We/l claim:

1. A method useful in machine-vision of objects, the method
comprising:

acquiring a number of images of a first view of a training object
from a number of image sensors;

identifying a number of features of the training object in the
acquired at least one image of the first view;

employing at least one of a consistency of physical relationships
between some of the identified features to set up a system of equations, where
a number of unknowns is not greater than a number of equations in the system
of equations; and

automatically computationally solving the system of equations.

2. The method of claim 1 wherein employing at least one of a
consistency of physical relationships between some of the identified features to
set up a system of equations comprises employing at least one invariant
distance between at least two of the features.

3. The method of claim 1 wherein employing at least one of a
consistency of physical relationships between some of the identified features to
set up a system of equations comprises employing at least one invariant area
enclosed between or by at least one of the features.

4, The method of claim 1 wherein employing at ieast one of a
consistency of physical relationships between some of the identified features to
set up a system of equations comprises employing at least one invariant
volume enclosed between or by at least one of the features.

5. The method of claim 1, further comprising:

determining a number of additional views to be obtained based at
least in part on the number of image sensors, the number of features identified,
the number of features having an invariant physical relationship associated
thereto, and a type of the invariant physical relationship associated with the
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features, sufficient to provide a system of equations and unknowns where the
number of unknowns is not greater than the number of equations;

acquiring at least one image of each of the number of additional
views of the training object by the at least one camera; and

identifying at least some of the number of features of the training
object in the acquired at least one image of the number of additional views of
the training object.

6. The method of claim 1, further comprising:

determining a number of additional views to be obtained by
computationally solving the equation m > (f - f - 2k - 2r + 6(c-ck))/(f* - 3f)-1,
where m is the number of views, f the number of features, k the number of
known distances between pairs of the features, r is the number of rays with a
known distance between a feature and an image sensor, ¢ is the number of
image sensors and ck is the number of known transformation between an
imager sensor reference frame and a common reference frame.

7. The method of claim 1 wherein employing at least one of a
consistency of physical relationships between some of the identified features to
set up a system of equations comprises associating parameters to less than all
of the identified features which parameters define an invariant physical
relationship between either the feature and at least one other feature, the
feature and the at least one camera, or between the at least one camera and at
least another camera where an invariant physical relationship between each
one of the features and at least one other feature is not known when
associating the parameters before a runtime.

8. The method of claim 7, further comprising:

simultaneously solving the system of equations to determine
three-dimensional poses for at least some of the features in respective camera
coordinate reference frames.

9. The method of claim 8, further comprising:

acquiring at least one image of a view of a target object by the at
least one image sensor during the runtime;
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identifying at least some of the features in the acquired at least
one image of the view of the target object that were previously identified in the
at least one image of the view of the training object; and

determining a three-dimensional object pose based at least in part
on the determined three-dimensional poses for at least some of the features in
respective camera coordinate reference frames.

10. A machine-vision system, comprising:
at least one image sensor operable to acquire images of a training
object and of target objects;
processor-readable medium storing instructions for facilitating
machine-vision for objects having invariant physical relationships between a
number of features on the objects, by:
acquiring a number of images of a first view of a training
object from a number of image sensors;
identifying a number of features of the training object in the
acquired at least one image of the first view:;
employing at least one of a consistency of physical
relationships between some of the identified features to set up a system of
equations, where a number of unknowns is not greater than a number of
equations in the system of equations; and
automatically computationally solving the system of
equations; and
a processor coupled to receive acquired images from the at least
one image sensor and operable to execute the instructions stored in the
processor-readable medium.

11. The machine-vision system of claim 10 wherein the
instructions cause the processor to employ at least one of a consistency of
physical relationships between some of the identified features to set up a
system of equations by employing at least one invariant distance between at
least two of the features.

12. The machine-vision system of claim 10 wherein the

instructions cause the processor to employ at least one of a consistency of
physical relationships between some of the identified features to set up a
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system of equations by employing at least one invariant area enclosed between
or by at least one of the features.

13. The machine-vision system of claim 10 wherein the
instructions cause the processor to employ at least one of a consistency of
physical relationships between some of the identified features to set up a
system of equations by employing at least one invariant volume enclosed
between or by at least one of the features.

14.  The machine-vision system of claim 10 wherein the
instructions cause the processor to facilitate machine-vision for objects by
determining a number of additional views to be obtained based at least in part
on the number of image sensors, the number of features identified, the number
of features having an invariant physical relationship associated thereto, and a
type of the invariant physical relationship associated with the features, sufficient
to provide a system of equations and unknowns where the number of
unknowns is not greater than the number of equations.

15. The machine-vision system of claim 10 wherein the
instructions cause the processor to facilitate machine-vision for objects by
computationally solving the equation m > (f - f - 2k - 2r + 6(c-ck)/(f? - 3)-1,
where m is the number of views, f the number of features, k the number of
known distances between pairs of the features, r is the number of rays with a
known distance between a feature and an image sensor, ¢ is the number of
image sensors and ck is the number of known transformation between an
imager sensor reference frame and a common reference frame.

16. A method useful in machine-vision for objects having
invariant physical relationships between a number of features on the objects,
the method comprising:

in a pre-runtime environment:

acquiring at least one image of a first view of a training
object by at least one image sensor;

identifying a number of features of the training object in the
acquired at least one image of the first view; and
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associating a number of parameters to less than all of the
identified features which define an invariant physical relationship between the
either the feature and at least one other feature or between the feature and the
at least one image sensor;

determining a number of additional views to be obtained
based at least in part on the number of image sensors acquiring at least one
image, the number of features of the training object identified, the number of
features having parameters associated therewith, and a type of invariant
physical relationship associated with each of the parameter;

acquiring at least one image of a second view of the
training object by the at least one image sensor; and

identifying at least some of the number of features of the
training object in the acquired at least one image of the second view; and

in at least one of a pre-run time environment or a runtime

environment, computationally determining a local model using the identified
features in each of a number of respective image sensor coordinate frames.

17.  The method of claim 16 wherein determining a number of
additional views to be obtained comprises computationally solving the equation
m > (% - f - 2k - 2r + 6(c-ck))/(f*- 3f)-1, where m is the number of views, f the
number of features, k the number of known distances between pairs of the
features, r is the number of rays with a known distance between a feature and
an image sensor, c is the number of image sensors and ck is the number of
known transformation between an imager sensor reference frame and a
common reference frame.

18. The method of claim 16 wherein acquiring at least one
image of a first view of a training object by at least one image sensor comprises
acquiring the image of the object with a first position and a first orientation with
respect to the first image sensor, and wherein acquiring at least one image of a
second view of the training object by the at least one image sensor comprises
acquiring the image of the object with at least one of a second position or a
second orientation with respect to the first image sensor.

19.  The method of claim 16 wherein identifying a number of
features of the training object in the acquired at least one image of the first view
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comprises identifying at least one of a number of inherent structural features of
the training object or a number of markers added to the training object.

20. The method of claim 16 wherein computationally
determining a local model using the identified features in each of a number of
respective image sensor coordinate frames comprises determining a pose for
each of the identified features in a respective one of the acquired images the
respective image sensor coordinate frame.

21.  The method of claim 16, further comprising:
pose estimating in a runtime environment, by:
acquiring at least one image of a view of a target object by
the at least one image sensor;
identifying at least some of the features in the acquired at
least one image of the view of the target object that were previously identified in
the at least one image of the view of the training object;
computationally determining a reference pose of each of
the local models; and
computationally determining a pose of each of the local
models in a common reference coordinate system.

22. The method of claim 21 wherein the pose estimating in the
runtime environment is further by computationally determining a transformation
between the pose of the target object and the pose of the training object by
simultaneously solving a system of a number of equations and a number of
unknowns, where the number of equations is greater than or equal to the
number of unknowns.

23. The method of claim 16, further comprising:
calibrating the at least one image sensor in the pre-runtime
environment.

24.  The method of claim 23 wherein calibrating the at least one
image sensor comprises obtaining a set of intrinsic parameters for the at least
one image sensor.
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25. - The method of claim 23 wherein calibrating the at ieast one
image sensor comprises determining a pose of the at least one image sensor
with reference to a robot coordinate system.

26. A machine-vision system, comprising:
at least one image sensor operable to acquire images of a training
object and of target objects;
a processor-readable medium storing instructions for facilitating
pose estimation for objects having invariant physical relationships between a
number of features on the objects, by: ‘
in a pre-runtime environment:
acquiring at least one image of a first view of a
training object by at least one image sensor;
identifying a number of features of the training object
in the acquired at least one image of the first view; and
associating a number of parameters to less than all
of the identified features which define an invariant physical relationship between
the either the feature and at least one other feature or between the feature and
the at least one image sensor;
determining a number of additional views to be
obtained based at least in part on the number of image sensors acquiring at
least one image, the number of features of the training object identified, the
number. of features having parameters associated therewith, and a type of
invariant physical relationship associated with each of the parameter;
acquiring at least one image of a second view of the
training object by the at least one image sensor; and
identifying at least some of the number of features of
the training object in the acquired at least one image of the second view; and
in at least one of a pre-run time environment or a runtime
environment, computationally determining a local model using the identified
features in each of a number of respective image sensor coordinate frames;
and
a processor coupled to receive acquired images from the at least
one image sensor and operable to execute the instructions stored in the
processor-readable medium.
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27.  The machine-vision system of claim 26 wherein the at least
one image sensor comprises one of a video camera or a digital still camera.

28. The machine-vision system of claim 26 wherein the
instructions cause the processor to determine the number of additional views to
be obtained by computationally solving the equation m > (f* - f - 2k - 2r + 6(c-
ck))/(f* - 3f)-1, where m is the number of views, f the number of features, k the
number of known distances between pairs of the features, r is the number of
rays with a known distance between a feature and an image sensor, c is the
number of image sensors and ‘ck is the number of known transformation
between an imager sensor reference frame and a common reference frame.

29. The machine-vision system of claim 26 wherein the
instructions cause the processor to computationally determine the local model
using the identified features in each of the number of respective image sensor
coordinate frames by determining a pose for each of the identified features in a
respective one of the acquired images the respective image sensor coordinate
frame.

30. The machine-vision system of claim 26 wherein the
instructions cause the processor to facilitate machine-vision, further by:
pose estimating in a runtime environment, by:
acquiring at least one image of a view of a target object by
the at least one image sensor;
identifying at least some of the features in the acquired at
least one image of the view of the target object that were previously identified in
the at least one image of the view of the training object;
computétionally determining a reference pose of each of
the local models;
computationally determining a pose of each of the local
models in a common reference coordinate system; and
computationally determining a transformation between the
pose of the target object and the pose of the training object.
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31. The machine-vision system of claim 30 wherein the
instructions cause the processor to facilitate pose estimation, further by:

calibrating the at least one image sensor in the pre-runtime
environment.
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WHERE:

P: 3D POSITION (x,y,z) OF A GIVEN FEATURE
RELATIVE TO THE RESPECTIVE IMAGE SENSOR
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