wo 2010/039428 A2 I T 0K 0O 001

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 11D 000 1.0 O 00 00 O A
ernational Bureau S,/ ‘) |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
8 April 2010 (08.04.2010) WO 2010/039428 A2

(51) International Patent Classification: One Microsoft Way, Redmond, Washington 98052-6399

GOG6F 17/30 (2006.01) GOG6F 17/00 (2006.01) (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2009/057050 kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date: ég’ éﬁ’ ég’ CAI\ZI, CBS ? CBRB’ CBI(J}, g;l’ DB]IE{ i DBI\(V ’];313[{ i]];é’
15 September 2009 (15.09.2009) DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/242,808 30 September 2008 (30.09.2008) Us » 00, OK, S, SM, 51, 5V, 5X, L), LM, LN, LR, 1L

TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): MI- . .
CROSOFT CORPORATION [US/US]; One Microsoft (84) Designated States (unless otherwise indicated, for every

Way, Redmond, Washington 98052-6399 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventors: HOLLINGSWORTH, Matt; c/o Microsoft ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

Cororation, One Microsoft Way, Redmond, Washington TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

98052-6399 (US). OSLAKE, John M.; c¢/o Microsoft ES, FIL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

Cororation, One Microsoft Way, Redmond, Washington MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,

98052-6399 (US). BICE, Shawn; c/o Microsoft Corora- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

tion, One Microsoft Way, Redmond, Washington ML, MR, NE, SN, TD, TG).

98052-6399 (US). VAN HYNING, Ken; c¢/o Microsoft .

Cororation, (glnje)Microsoft Way, Redmond, Washington Declarations under Rule 4.17:

98052-6399 (US). FENG, Jin; c/o Microsoft Cororation, — as to applicant’s entitlement to apply for and be granted

One Microsoft Way, Redmond, Washington 98052-6399 a patent (Rule 4.17(ii))

(US). SESHADRI, Praveen; c/o Microsoft Cororation,

[Continued on next page]

(54) Title: DATA-TIER APPLICATION COMPONENT FABRIC MANAGEMENT

/— 102 108
104

DAG Model /

114
DAC Container /

DAC Project [Gheck

-

Source
- Control

Data-Tier Application Savi

Component (DAC) File(s)

4
5

| Element 1 | | Element 2 | | Element 3 |
T T T 118

Create

103/ o110 \112
. Build
Edit Y

User (e.g., / 120

developer) DAC Package
100

Fabric

\ 126

FIG. 1

(57) Abstract: Systems and methods for managing database applications are disclosed. A system includes a fabric that identifies a
set of data-tier application components. Each of the data-tier application components includes a logical representation of a collec-
tion of database elements. The fabric identifies a set of database runtime resources hosting the set of data-tier application compo-
nents, and the fabric identifies computing resources used by the set of database runtime resources to host the set of data-tier appli-
cation components. The system also includes a management point to receive a fabric policy. One or more actions of the fabric pol-
icy are automatically applied to affected entities identitied by the fabric to bring fabric elements into compliance with the fabric
policy.

WO 2010/039428 A2 I 0000000 RO

— as fto the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

DATA-TIER APPLICATION COMPONENT FABRIC MANAGEMENT

BACKGROUND
[0001] During the lifecycle of an application, including the authoring, installation,
and runtime of the application, many different objects are typically created or
otherwise associated with the application. For example, programming code,
executable code, software resources, and hardware resources may be associated
with the application and each of the items may be assigned various file names and
file types. Database applications, in addition to being associated with programming
code, executable code, and resources, may become associated with additional
items, such as policies, tables, stored procedures, and database policies.
[0002] With many objects to track and maintain, it is often difficult and time
consuming for a database administrator to effectively manage all of the items
associated with a database application through its lifecycle. For example, when a
database administrator desires to make changes to the hardware or other items used
by the database application, or to add or change database server instances where the
database application is installed, the process of making the desired changes can be
time consuming and costly. Objects may be coded or otherwise directly linked to
hardware resources where they reside or on which they operate and modifying the
association between an item and the hardware resources may involve significant
reprogramming. The effort involved in modifying the items 1s increased in cases
where application objects are stored in multiple locations or when a single database
stores objects used by multiple applications.

SUMMARY

[0003] In order to achieve high management productivity during the lifecycle
stages of a database application, it is helpful to have a grouping abstraction that
associates the items that make up or are used by the database application. Without
a software grouping abstraction, it is very difficult to identify, conceptualize, move,
or reproduce, or otherwise manage a database application. Embodiments disclosed
herein associate elements of a database application in a container associated with
metadata of a database object that permits a database application, for example, to

be moved or reproduced as a whole. The container associates runtime resource

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

identifiers with the database elements that enable changing the hardware or other
runtime resources or to select elements of the database application to use different
resources without recoding the elements.
[0004] In addition, multiple database application containers may be associated
with a single grouping or fabric that enables the database application containers to
be moved, reproduced, or otherwise managed as a whole. The fabric references the
resource identifiers used by the elements of the database applications to enable the
management of multiple database applications.
[0005] According to a particular embodiment, a system comprises a fabric that
identifies a set of data-tier application components (DACs). Each of the data-tier
application components includes a logical representation of a collection of database
elements, a set of database runtime resources hosting the set of data-tier application
components, and computing resources used by the set of database runtime
resources to host the set of data-tier application components. The system also
includes a management point to receive a fabric policy. One or more actions of the
fabric policy are automatically applied at affected entities identified by the fabric to
bring fabric elements into compliance with the fabric policy.
[0006] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 is a block diagram that illustrates a database development tool that
uses a data-tier application component (DAC);
[0008] FIG. 2 is a flow diagram that illustrates a method of using a DAC and a
DAC package to install a DAC instance;
[0009] FIG. 3 is a general diagram that illustrates a particular embodiment of a
DAC;
[0010] FIG. 4 is a block diagram that illustrates a second embodiment of a DAC

that has an associated DAC name;

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0011] FIG. 5 is a block diagram that illustrates a particular embodiment of a
Server Fabric that includes a set of DACs;
[0012] FIG. 6 is a block diagram that illustrates a second embodiment of a Server
Fabric that includes a set of DACs;
[0013] FIG. 7 is a flow diagram that illustrates a method of applying a database
management action and a policy at entities of a server fabric;
[0014] FIG. 8 is a flow diagram that illustrates entity relationships of a server
fabric;
[0015] FIG. 9 is a block diagram of an embodiment of a system that manages
database applications;
[0016] FIG. 10 1s a flow diagram to illustrate a method of processing server fabric
elements;
[0017] FIG. 11 is a block diagram that illustrates a first particular embodiment of
a system for managing SQL instances;
[0018] FIG. 12 is a block diagram that illustrates a second particular embodiment
of a system for managing SQL instances;
[0019] FIG. 13 is a block diagram that illustrates a third particular embodiment of
a system for managing SQL instances;
[0020] FIG. 14 is a block diagram that illustrates a fourth particular embodiment
of a system for managing SQL instances;
[0021] FIG. 15 is a block diagram that illustrates a fifth particular embodiment of
a system for managing SQL instances; and
[0022] FIG. 16 is a block diagram that illustrates a sixth particular embodiment of
a system for managing SQL instances.

DETAILED DESCRIPTION
[0023] Particular embodiments describe the use of a data-tier application
component (DAC) that identifies elements of a database application and provides a
single unit of management for the database application. The database application
identified by the DAC is associated with a database object identifier and/or
metadata of a database object through which the database application can be

manipulated. In addition, a database runtime identifier is associated with one or

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

more of the runtime resources used by the elements of the database application.
One or more policies related to the execution of the database runtime resources are
also identified by the DAC. As a result, the DAC can be referenced by the database
object identifier to change, move, or replicate the database application. Similarly, a
runtime resource may be changed or the database application may be replicated by
changing the database runtime identifier associated with the respective elements.
As aresult, a database administrator is able to focus on managing content of
database applications and their intention as specitfied by policies rather than
devoting time and attention to managing organization aspects of instances of
database applications.

[0024] In a particular embodiment, a system is disclosed that includes a fabric that
identifies a set of data-tier application components. Each of the data-tier
application components includes a logical representation of a collection of database
elements. The fabric also identifies a set of database runtime resources that host
the set of data-tier application components. The fabric identifies computing
resources used by the set of database runtime resources that host the set of data-tier
application components. The system also includes a management point to receive a
tabric policy. One or more actions of the fabric policy are automatically applied at
affected entities identified by the fabric to bring fabric elements into compliance
with the fabric policy.

[0025] In another particular embodiment, a method of automatically applying a
fabric policy is disclosed. The method includes receiving a fabric policy at a
management point of a server fabric. The server fabric identifies one or more data-
tier application components. Each of the data-tier application components includes
a logical representation of a collection of database elements. The server fabric
identifies database runtime resources hosting the set of data-tier application
components. The server fabric identifies computing resources used by the database
runtime resources that host the data-tier application components. The method
includes monitoring entities of the server fabric and automatically applying one or
more actions of the fabric policy at affected entities identified by the server fabric

to bring elements associated with the server fabric into compliance with the fabric

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

policy. For example, automatically applying the one or more actions of the fabric
policy includes retrieving the fabric policy, evaluating the fabric policy over a set
of targets, generating one or more corresponding actions to enforce the fabric
policy, and executing the corresponding actions against the set of targets. The set
of targets may include one or more physical computing resources of a computing
system or all computing resources of the computing system.

[0026] The disclosed subject matter includes a software grouping abstraction that
associates the items that make up a database application. The software grouping
abstraction enables identification, conceptualization, and management of the
database application. The present disclosure includes an abstraction called a Data-
tier application component (DAC) that effectively models database objects,
policies, and runtime resources associated with the database application.

[0027] The DAC forms a single unit of management for the full lifecycle of an
application, including versioning. For example, a Human Resources (HR) DAC
may be developed in conjunction with the HR application code that it supports. As
the HR application executables are deployed to application servers, the HR DAC is
deployed to instances of Microsoft SQL Server. The HR DAC can then be
monitored and managed. For example, when a predicted load on the HR DAC may
result in the HR DAC exceeding the capacity of the current computer or database
instance on which the HR DAC is maintained, the HR DAC may be moved to a
new database instance. The move may be accomplished by referencing the
database application by the database object identifier associated with the DAC and
by changing the database runtime identifier associated with the database elements
to reference runtime resources of the new database instance. DACs can span
multiple types of database runtime environments in general, and/or Microsoft SQL
Server runtime environments in particular, including Microsoft SQL Server
database instances, Microsoft SQL Server Database Engine, Microsoft SQL Server
Analysis Services instances, Microsoft SQL Server Reporting Services instances,
and database servers and/or database of different vendors and types.

[0028] In addition, the present disclosure may provide benefits to managing a

database environment as a whole, allowing for more focus on managing DACs and

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

less on managing individual computers, database instances and databases. The
present disclosure addresses this through the concept of a “Fabric” (also referred to
as a “Microsoft SQL Server Fabric”), which models all of an organization’s DACs,
database instance (e.g., Microsoft SQL Server) runtimes, and hardware resources.
The Fabric provides a unified view of the entities and containers in the DACs,
runtimes, and resource layers, and enables more dynamic mappings between
entities. The Fabric also includes a central management point for declaring and
launching management actions, a central policy administrator, and a central
reasoning point that contains the models and data used for analysis, such as impact,
what-if, or deployment analysis. These declarative, model-driven features allow
database administrators and developers to define global management actions that
enforce organization rules, ensure DACs are deployed on runtimes that have all
teatures required by the DAC, and allow entities in the Server Fabric to respond to
environmental changes with minimal manual intervention.

[0029] These selt-managing capabilities, driven by greater knowledge of the state
of the entities in the Fabric, are desired to make developing, deploying, and
managing Data-tier application components significantly easier for database
administrators and developers. The present disclosure may allow database
administrators and developers to be more productive at managing their applications
through their lifecycles, giving them more time to incorporate additional data and
storage platform technologies into their systems.

[0030] The present disclosure shifts the focus toward the database application and
away from conventional focus on database instances (e.g., Microsoft SQL Server
instances), databases, computers, storage, and network resources. The DAC is a
new higher level abstraction sitting above both database instances and the
databases. The DAC includes the set of database instance entities that form the
data layer support for a traditional three-tier application. In modern systems,
database applications and system-level application information often spans multiple
databases and database instances. For example, Microsoft SQL Server system-
level application information may be stored in system databases such as “master”

and “msdb.”

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0031] More specifically, the present disclosure models a database application in a
container called a DAC. The DAC is a logical representation that pulls together all
of the database application artifacts, associated policies, and referenced runtime
resources for an application. Each DAC serves as a single unit of management. A
policy may be applied against the DAC and a DAC may be managed as a whole. A
policy may be used to manifest a developer or a deployment intent of a required or
a preferred outcome or consideration. For example, a developer can declare a
required intent by specifying a policy that a DAC can only be deployed on a 64-bit
runtime.

[0032] The Fabric models a set of DACs and maps them to the underlying
database instance runtimes (e.g., Microsoft SQL Server runtimes, Microsoft SQL
Server instances) and to the hardware resources used by the runtimes. The Server
Fabric provides a model of all the runtimes and hardware resources that a set of
DACs need to function. The Fabric also provides centralized management features
that simplify actions that are very complicated using other technology. For
example, each DAC has one or more well-known names (“endpoint names”) that
are managed by the Fabric. The endpoint names are independent of the hardware
resource or instance being used by the DAC. As a result, applications connect
using the endpoint names instead of computer and instance names, enabling a DAC
to be moved between instances without requiring application changes.

[0033] Combining a model of all available DACs, runtimes, and resources with a
central management and reasoning capability within the Fabric enables several
scenarios. For example, the resource usage of DACs in the Server Fabric may be
monitored. As another example, a central reasoning engine may predict the future
workloads of the DACs against the resources allocated to their host runtimes. As
another example, actions may be taken in response to a predicted resource shortage.
For example, a system may dynamically govern the resources available to a
runtime and discover a runtime with excess capacity and move a DAC to that
runtime in a way that minimizes or at least reduces impact on running applications.
A set of tools and capabilities are described to manage DACs through their

lifecycle (development, deployment, and management) in the Fabric.

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0034] In a particular embodiment, the DAC is a single unit of management that
packages metadata of a database object, a database runtime resource identifier of a
database runtime resource operable to manipulate the database object, and a policy
related to execution of the database runtime resource. As illustrated in FIG. 1,
different actions can be applied to a DAC depending on its state in the lifecycle.
[0035] For example, referring to FIG. 1, a user 100 (e.g., developer) may create a
DAC Model 102. The DAC Model 102 includes a data-tier application component
(DAC) 104. The DAC 104 may be included in a DAC container 106. The DAC
104 includes a collection of database elements. As shown in FIG. 1, the DAC 104
includes a first element 108, a second element 110, and a third element 112. The
first element 108 may include metadata of a database object including a database
object identifier. The second element 110 may include a database runtime resource
operable to manipulate the database object. The third element 112 may include a
policy related to execution of the database runtime resource. During development
of the database application represented in the DAC Model 102, the user 100 may
create, edit, and validate the DAC Model 102 and save a representation of the DAC
Model 102 as a DAC Project 114. The DAC Project 114 may include one or more
files 118. The DAC Project 114 then may be checked into and checked out of a
source control system or source control database 116 while the database application
1s under development.

[0036] Once the user 100 (e.g., developer) has completed development of the
database application represented in the DAC Model 102, the DAC Model 102 is
compiled or built into a completed DAC Package 120 based on the DAC Model
102. The DAC Package 120 may be imported into a Fabric Fabric 126 as a DAC
Type 122 that represents a conceptualized version of the DAC Model 102 that may
be reproduced and deployed as desired. The DAC Type 122 may be deployed to
create a deployed DAC Instance 124 which represents an operational installation of
the database application developed as the DAC Model 102. Thus, developing a
DAC Model 102, the developer has created a portable database application that
may be replicated without recoding the database application. The developer may

also configure the DAC Type 122 before deploying the DAC Instance 124.

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

Further, the DAC Instance 124 may be installed with respect to a specific set of
physical computing resources.

[0037] Referring to FIG. 2, a flow diagram of a particular method of deploying a
data-tier application component is illustrated. The method includes, at 202,
creating a DAC Model that contains a collection of database elements including
metadata of one or more database objects. The DAC Model further includes a
database runtime resource identifier of a database runtime resource operable to
manipulate the database objects. The DAC Model further includes a policy related
to execution of the database runtime resource. In a particular embodiment, at 204,
the method includes saving a representation of the DAC Model as a DAC Project
and optionally checking in the DAC Project into a source control system or source
control database to store the DAC Project. In another particular embodiment, at
206, the method includes editing the DAC Model and validating the DAC Model
betfore building the DAC Package, configuring the DAC Type before deploying the
DAC Instance, and installing the DAC Instance with respect to a specific set of
physical computing resources. Moving to 208, the method includes building a
DAC Package based on the DAC Model. Moving to 210, the method includes
importing a DAC Type from the DAC Package into a Server Fabric. Moving to
212, the method includes deploying the DAC Type to create a deployed DAC
instance.

[0038] It should be emphasized that a DAC has two main subdivisions in the
Server Fabric between the DAC Type and the DAC Instance. The DAC Type is
built when the DAC is imported to the Server Fabric. The DAC Type defines the
logical implementation of the objects in the DAC, such as tables and cubes, and
includes policies that define how the developer intends for the DAC to be used.
The DAC Instance is built when the DAC Type is deployed to one or more
database server runtimes (e.g., Microsoft SQL Server runtimes) in the Server
Fabric. The DAC Instance records how the entities in the DAC Type map to their
hosts in the Server Runtimes Layer. The DAC Instance includes policies that

define how the administrators intend for the DAC to operate in the Fabric.

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0039] Referring to FIG. 3, a high-level view of the contents of a Data-tier
application component (DAC) is illustrated. This diagram illustrates the conceptual
separation of developer intent (DAC Type) from deployment intent (DAC
Instance). As shown in FIG. 3, the DAC may be conceptually divided into a DAC
Type 304 and a DAC Instance 306. The DAC Type 304 contains the structure,
logic, policies, and other entities that comprise the DAC definition. The DAC Type
304 also provides a mechanism for the developer to formally define the invariants,
requirements, and intended usage and interpretation of the DAC 302. The entities
that comprise the DAC Type 304 are intended to be managed as a unit. The
information is global to all deployments of a specific version of the DAC 302.
Thus, the DAC Type 304 may express developer intent, may be versioned, and may
be immutable for a particular version, and has an identifier that is guaranteed to be
unique. The three main sections of the DAC Type 304 are, for organizational
purposes, denoted as Properties 308, Application Schema 310, and Developer
Intent and Policy 312.

[0040] Properties 308 of the DAC Type 304 are characteristics or attributes
specific to the DAC Type 304. For example, a property 308 may include a human-
readable name and a description. As a further example, a property 308 may include
one or more version identifiers, such as major and minor version numbers. As a
further example, a property 308 may include an identifier that is guaranteed to be
unique to the DAC Type 304. As a further example, a property 308 may include
well-known endpoint names. As a further example, a property 308 may include
dependencies on other DAC Types.

[0041] The application schema 310 of the DAC Type 304 defines the database
instance and database objects that comprise the DAC 302. The object definitions in
this portion of the DAC Type 304 are intrinsic to the DAC 302 and any changes
can generate a new version of the DAC Type. The application schema 310
essentially defines “what” the DAC 302 consists of. For example, the application
schema 310 may include application structures, such as tables, cubes, and data
mining models. As a further example, the application schema 310 may include

application logic, such as stored procedures, user-defined functions, and triggers.

10

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

As a further example, the application schema 310 may include reference data that is
considered part of the application definition. For example, lookup data such as zip
codes and other postal codes, or state and province codes, may be referenced.
[0042] Developer Intent and Policy 312 of the DAC Type 304 provides additional
information on how the DAC 302 is intended to be used or interpreted. For
example, developer intent and policy 312 may include Fabric resource
requirements that must be available to deploy the DAC 302. For example, the
DAC 302 may require Microsoft SQL Server 2008, enabling support for the spatial
data type and CLR Integration, and 80GB of disk space. As a further example,
developer intent and policy 312 may include configuration intent
(parameterization) that defines the configurability that is built into the DAC 302.
Another example related to policy is the specification of availability requirements,
e.g., the DAC requires deployment on an SQL Server instance where clustering is
enabled. This allows for deployment-specific configuration that does not affect the
DAC version, which includes the information that can or must be supplied at
deployment time. For example, configuration parameters can indicate that the
deployment process must provide mappings to specific types of Fabric resources
such as file groups and the name of the instance of Microsoft SQL Server. As a
further example, developer intent and policy 312 may include an interface
definition that specifies which portion of the DAC 302 is exposed externally. This
enables separation of the public interface and implementation details that are
internal to the DAC 302. For example, the interface definition would specify
which entities can be referenced by the client application or another DAC. As a
further example, developer intent and policy 312 may include workload profile
information, such as the queries that are executed against this DAC 302.

[0043] As shown in FIG. 3, the DAC Instance 306 captures actual instance or
deployment-specific information. This information is unique to the particular
deployment. The DAC Instance 306 expresses deployment intent. The DAC
Instance 306 is associated with a DAC Type 304. Multiple DAC Instances can
exist for each DAC Type 304. The DAC Instance 306 has an identifier guaranteed

11

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

to be unique within the Server Fabric. The DAC Instance 306 contains Server
Fabric mappings.

[0044] Properties 314 of the DAC Instance 306 are characteristics or attributes
specific to a deployed instance of the DAC 302. The Properties 314 include items
such as the DAC Instance 306 identifier and deployment name.

[0045] Deployment Schema 316 of the DAC Instance 306 is the portion of the
DAC Instance 306 that defines SQL objects that are specific to a particular
deployment. The Deployment Schema 316 includes objects such as authorization
principals and indexes.

[0046] Deployment Intent and Policy 318 of the DAC Instance 306 provides
information on “how” the DAC 302 is intended to be deployed or interpreted. The
Deployment Intent and Policy 318 includes items such as intended Fabric mappings
and intended policies specific to a particular deployment.

[0047] Fabric Mappings 320 is the portion of the DAC Instance 306 that defines
the mappings between the DAC Instance 306 and the underlying resources.
Examples of the contents of Fabric Mappings 320 include Microsoft SQL Server
Runtime mappings such as relational database instances or Analysis Server
instances, and hardware resources such as disk storage and computers.

[0048] Data 322 is the portion of the DAC Instance 306 that represents the data
that is associated with a particular DAC Instance. The Data 322 includes both
application data that is created by the user of the application and operational data,
such as performance data that is specific to the DAC Instance 306 or to the
application.

[0049] Referring to FIG. 4, a particular embodiment of a data-tier application
component (DAC) is illustrated at 400. The DAC 402 includes a collection of
database elements 404. The collection of database elements 404 includes a
database object identifier of a database object 406. The collection of database
elements 404 also includes a database runtime resource identifier of a database
runtime resource operable to manipulate the database object 408. The collection of
database elements 404 also includes a policy 410 related to execution of the

database runtime resource. The DAC 402 also includes a DAC name 412

12

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

associated with the collection of database elements 404. The DAC name 412 is
accessible for use by a database application 414. The collection of database
elements 404 are programmatically associated with, as shown at 416, a set of user-
selectable supporting computer resources 418.

[0050] The DAC name 412 (e.g., endpoint name) operates somewhat like a
Domain Name Service (DNS) name. Application executables connect to the DAC
names, not to the specific computer or instance hosting the DAC 402. The
association of the DAC 402 with a specific computer or instance is established in
the Fabric by mapping the DAC 402 to the computer and database instance. A
DAC 402 can be moved to a new instance without affecting the way that the
application connects to a database (e.g., without affecting connection strings), for
example, by simply remapping it to a new instance of Microsoft SQL Server. None
of the applications have to be changed; they all still connect to the same DAC
endpoint name. For example, a DAC with a DAC endpoint name of Payroll can be
moved from a default database instance on Computer! to another instance on
Computer2. Because all applications reference the well-known DAC endpoint
name Payroll, they still connect to the same DAC 402.

[0051] In a particular embodiment, the set of user-selectable supporting computer
resources 418 are changeable using an automated tool (e.g., a software application,
a user-controlled application, such as Microsoft SQL Server Management Studio,
Microsoft Visual Studio, command lines, Powershell, etc.). In another particular
embodiment, the DAC name 412 associated with the collection is accessible from
multiple database applications.

[0052] In another particular embodiment, the DAC name 412 is unchanged while
the set of user-selectable supporting computer resources 418 is modified.

[0053] In another particular embodiment, the DAC name 412 is unchanged while
the database elements in the collection of database elements 404 are modified.
[0054] In another particular embodiment, the database runtime resource is an
instance of Microsoft SQL Server, and the DAC name 412 is unchanged while the
instance of Microsoft SQL Server is modified from a first Microsoft SQL Server

instance to a second Microsoft SQL Server instance.

13

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0055] In another particular embodiment, the collection of database elements 404
can change or the set of user-selectable supporting computer resources 418 can
change, and the DAC endpoint name 412 is unchanged so that application
connection strings of one or more database applications (e.g., database application
414) do not need to be recoded (e.g., altered, updated, requiring a recompilation of
an application, requiring recreation of application binaries and/or executables)
when the collection of database elements 404 is changed or when the set of user-
selectable supporting computer resources 418 is changed.

[0056] In another particular embodiment, the database applications using the
DAC name 412 are located on different networked computers.

[0057] In another particular embodiment, the policy 410 related to execution of
the database runtime resource is applied to the DAC name 412, and the policy 410
continues to be applied when the collection of database elements 404 is changed or
when the set of user-selectable supporting computer resources 418 is changed.
[0058] In another particular embodiment, the DAC 402 further comprises an
application program interface (API) to interface with the collection of database
elements 404. For example the API may enable measurement of utilization of
elements of the collection of database elements. For example, the API may allow a
developer to interface with the collection of database elements 404, as in FIG. 1.
[0059] In a particular embodiment, the DAC 402 is stored in a computer readable
medium. The computer readable medium may include a single unit of management
that packages metadata of a database object, a database runtime resource identifier
of a database runtime resource operable to manipulate the database object, and a
policy related to execution of the database runtime resource. Although described
one at a time, it should be understood that the single unit of management can
package metadata of multiple database objects, multiple database runtime resource
identifiers of database runtime resources operable to manipulate the database
objects, and multiple policies related to execution of the database runtime
resources. In addition, the multiple database objects may include a schema, a table,
a view, a stored procedure, a function, trigger, a data type, an index, a login, a user,

a permission, a policy, statistics, a primary key, a foreign key, a default, a check

14

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

constraint, and/or any other object that can be created in a database instance or a
database.

[0060] The single unit of management may be mapped to a first physical
computing resource. The single unit of management may be remapped from the
first physical computing resource to a second physical computing resource. An
example of the first physical computing resource is a processor, a network device
or a memory storage device. In a particular embodiment, the single unit of
management is identified by an associated DAC name, where the DAC name is
accessible for use by a database application.

[0061] The database runtime resource operable to manipulate the database object
may be a database instance. The database instance may include an instance of
Microsoft SQL Server Database Engine, an instance of Microsoft SQL Server
Analysis Services, or an instance of SQL Server Reporting Services, or instances of
other database types and vendors.

[0062] The policy may be related to execution of the database runtime resource
including a resource limitation policy or a procedure related to software or
hardware resource requirements.

[0063] Referring to FIG. 5, a particular embodiment of a system is illustrated at
500. The system 500 includes a set of DACs 502. With regard to hosting of a
DAC by a database, multiple DACs may reside in a single database or a single
DAC may span multiple databases. In the embodiment shown in FIG. 5, a first
DAC 504, a second DAC 506, and a third DAC 508 are included in the set of
DACs 502. Alternatively, the set of DACs 502 may include any number of DACs.
Each of the DACs 504, 506, and 508 includes a logical representation of a
collection of database elements 510, 512, and 514.

[0064] The system 500 further includes a set of database runtime resources 516
hosting the set of DACs 502. In the embodiment shown in FIG. 5, the set of
database runtime resources 516 includes a first database runtime resource 518, a
second database runtime resource 520, and a third database runtime resource 522.
Alternatively, the set of database runtime resources 516 may include any number of

database runtime resources.

15

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0065] The system 500 further includes computing resources 524 used by the set
of database runtime resources 516 to host the set of DACs 502. In the embodiment
shown in FIG. 5, the computing resources 524 include a first computing resource
526, a second computing resource 528, and a third computing resource 530.
Alternatively, the computing resources 524 may include any number of computing
resources.

[0066] The computing resources 524 may include one or more computer server
resources, one or more computer data storage resources, or one or more virtual
machine resources. Each of the one or more computer server resources may
include a processor, a memory, or a network element. At least one of the one or
more computer data storage resources may be an operating system storage volume
that includes a plurality of files. At least one of the one or more computer server
resources may initially be mapped to a first storage area network (SAN) and
subsequently be mapped to a second SAN.

[0067] In one embodiment, each of the DACs 504, 506, and 508 in the set of
DACs 502 include a DAC container. Each DAC container may include a single
unit of management that packages metadata of a database object, a database
runtime resource identifier of a database runtime resource operable to manipulate
the database object, and a policy related to execution of the database runtime
resource.

[0068] The first DAC 504 in the set of DACs 502 may be dependent on the
second DAC 506 in the set of DACs 502.

[0069] Each of the DACs 504, 506, and 508 in the set of DACs 502 may be
represented by a DACs layer of a Fabric 501. The computing resources 524,
including the computing resources 526, 528, and 530, may be represented by a
hardware resources layer of the Fabric 501. Each of the database runtime resources
518, 520, and 522 in the set of database runtime resources 516 may be represented
by a Structured Query Language (SQL) Server runtimes layer of the Fabric 501.
[0070] The set of database runtime resources 516 may include one or more
runtime instances that provide Microsoft SQL Server services. The one or more

runtime instances may include one or more instances ot Microsoft SQL Server,

16

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

Microsoft SQL Server Analysis Services, and Microsoft SQL Server Reporting
Services. Further, the one or more Microsoft SQL Server runtime instances may
include schemas and views.

[0071] Each of the DACs 504, 506, and 508 may be mapped to one or more of the
database runtime resources 518, 520, and 522 and each database runtime resource
518, 520, and 522 may be mapped to one or more physical computing resources
526, 528, and 530. The database runtime resources may be remapped from a first
computer to a second computer.

[0072] Each of the DACs 504, 506, and 508 may include an associated DAC
endpoint name. The DAC endpoint name may be accessible for use by a database
application.

[0073] Referring to FIG. 6, a block diagram that illustrates a second embodiment
of a Fabric that includes a set of DACs 1s shown at 600. The Fabric 608 is a model-
based representation of a set of DACs (DACs), the Microsoft SQL Server runtimes
hosting the DACs, and the resources used by those runtimes to host the DACs. The
Fabric model has three layers as shown in FIG. 6: the DACs layer 610, the
Runtimes Layer 612, and the Host Resources layer 614. All of the objects within
the model are described using a set of general modeling concepts (nouns), and have
a series of actions (verbs) that can be performed on those objects.

[0074] For example, an action may include automatically moving one or more
files on the file system to a second file system on another operating system volume
when a file system is growing rapidly or is forecasted to reach a resource limit. As
another example, an action may include automatically moving a software
application to another computer that has a lower processor load when a processor
executing the software application is experiencing a high load. As a further
example, an action may include automatically executing one or more actions to
maintain performance (e.g., application performance) according to a measured
quality of service metric (e.g., a committed quality of service (QoS) level of
performance).

[0075] The DACs layer 610 hosts the Fabric definitions of DACs. In the
embodiment shown, the DACs layer 610 includes a first DAC 622, a second DAC

17

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

624, and a third DAC 626. Alternatively, the DACs layer 610 may include any
number of DACs. The Runtimes Layer 612 provides a view of the database
runtime resources (e.g., Microsoft SQL Server services) within the Fabric 608. In
the embodiment shown, the Runtimes Layer 612 includes a first database runtime
resource 616, a second database runtime resource 618, and a third database runtime
resource 620. Alternatively, the Runtimes Layer 612 may include any number of
database runtime resources. The Host Resources layer 614 represents the
computing and storage capacity used by the elements in the Fabric 608. In the
embodiment shown, the Host Resources layer 614 includes computer resources
630, including a first computer 636 and a computer server 638. Further, the Host
Resources layer 614 includes data resources 632, including a first storage resource
640 and a second storage resource 642. Further, the Host Resources layer 614
includes virtual resources 634, including a first virtual resource 644 and a second
virtual resource 646. Alternatively, the Host Resources layer 614 may include any
number of computer resources, data resources, or virtual resources.

[0076] The Fabric 608 identities DACs, database runtime resources hosting the
set of DACs, and computing resources used by the database runtime resources to
host the DACs. Each of the DACs 610 includes a logical representation of a
collection of database elements. A reasoning point (e.g., central reasoning point
604) monitors entities of the Fabric 608. One or more policies (e.g., central
policies 606) are used to automatically apply the received database management
action and the policy at affected entities identified by the Fabric 608.

[0077] Each layer in the Fabric 608 contains four types of entities: containers,
elements, resources and mappings. A container is a top-level entity within a given
layer of the Fabric 608 and provides an intuitive unit of management and identity.
Examples of containers include DACs, computers, virtual machines, storage
devices, instances of Microsoft SQL Server, Microsoft SQL Server Analysis
Services, and Microsoft SQL Server Reporting Services. An element is a unit in
the Fabric 608 that resides in a container. For example, tables and stored
procedures are elements that reside in a DAC. A resource is a special type of

element that has a finite capacity, and has properties which determine its capacity.

18

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

A processor device is an example of a granular resource, and its clock speed is an
example of a property that relates to its capacity. A storage device is an example of
a resource that contains more granular resources such as physical disks. The
capacity of a storage device is determined not only by properties of the physical
disks it contains, but also by its configuration properties such as RAID level. A
mapping represents the relationship between two parts of the Fabric 608.

Mappings are the nouns that make the Fabric 608 an actual model of the Microsoft
SQL Server environment. Mappings can be container-to-container, container-to-
element, container-to-resource, element-to-element, element-to-resource, and
resource-to-resource.

[0078] The makeup of each layer 610, 612, and 614 in the Fabric 608 can be
defined by applying the general modeling concepts described above. Each layer
consists of one or more containers, elements and resources within those containers,
and mappings between containers or elements in adjacent layers of the Fabric 608.
[0079] The DACs layer 610 hosts the Fabric definitions of DACs. Each DAC
may be defined using a DAC container. Each DAC container is made up of
numerous elements representing application entities such as structures, code,
version, and policies.

[0080] The mappings at the DACs layer 610 describe the relationship between a
DAC and a Microsoft SQL Server runtime (e.g., an instance of Microsoft SQL
Server). For example, a DAC in the DACs layer 610 can be mapped to an instance
of Microsoft SQL Server in the Server Runtimes Layer 612. The DAC can then be
moved from one instance to another by re-mapping the DAC between the instances.
As an example, the first DAC 622 may be mapped to the first database runtime
resource 616 (e.g., a first instance of Microsoft SQL Server), and the first DAC 622
can then be moved to the second database runtime resource 618 (e.g., a second
instance of Microsoft SQL Server) by re-mapping the first DAC 622 to the second
database runtime resource 618.

[0081] The mappings can also describe relationships between DACs. A DAC can
express a dependency on another DAC in order to allow re-use of common

elements. For example, a “base” DAC can be defined that has elements shared by

19

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

several applications, such as a set of stored procedures that enforce company
policies for ordering supplies. Any other DAC needing those elements can
reference them by mapping to the “base” DAC. For example, the first DAC 622
may be dependent on the second DAC 624.

[0082] The Runtimes Layer 612 provides a view of the Microsoft SQL Server
services within the Server Fabric. Microsoft SQL Server Runtimes containers
include instances of Microsoft SQL Server, Microsoft SQL Server Analysis
Services, and Microsoft SQL Server Reporting Services. Each runtime container
has one or more database elements. Database elements may include schemas,
tables, views, stored procedures, functions, data types, indexes, logins, users,
policies, statistics, primary key, foreign key, default, check constraint, and/or any
other objects that can be created in a database instance or a database.

[0083] The mappings at the Runtimes Layer 612 describe the relationship
between a particular database instance runtime (e.g., an instance of Microsoft SQL
Server instance) and the physical resources allocated to it. For example, a database
instance residing in the Runtimes Layer 612 is mapped to a physical computer in
the Hardware Resources layer 614. The database instance can be moved between
physical computers by re-mapping the instance between the computers. As an
example, the first database resource 616 can be mapped to the first server 636, and
the first database resource 616 can be moved to the second server 638 by re-
mapping the first database resource 616 from the first server 636 to the second
server 638.

[0084] The Host Resources layer 614 represents the computing and storage
capacity used by the elements in the Server Fabric 608. Containers at the Host
Resources layer 614 include physical computers, virtual machines, and operating
system storage volumes. Resource containers can also contain sub-elements. For
example, physical servers contain processor, memory, and network elements.
Operating system storage volumes may contain file elements as well as other
elements relating to storing the mentioned artifacts.

[0085] The mappings at the Host Resources layer 614 describe the relationships

between the physical resources. For example, a Host Resources layer mapping

20

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

expresses which SAN Logical Unit Numbers (LUNs) are accessible from each
physical computer. The SAN LUN could be moved between physical computers
by changing the mapping between the physical computers and the SAN LUN.
[0086] The Fabric 608 supports the central declaration of management actions and
policies that can be applied to entities throughout the Fabric 608. A management
point (e.g., central management point 602) of the Fabric 608 may receive a
database management action and a policy. The Fabric 608 also provides a
reasoning engine that can monitor Fabric entities and automatically apply
management actions and policies. The central management mechanisms of the
Fabric 608 are illustrated in FI1G. 6.

[0087] The central management mechanisms all reference a model that records the
relevant details, relationships, and constraints of the containers in the Fabric 608.
[0088] One of the Microsoft SQL Server instances in the Fabric 608 may be
nominated as the Central Management Point 602, and provides centralized
management capabilities (such as discovery, policy definition, and monitoring) for
all the Fabric layers. The central management point 602 is where all container
actions are triggered (e.g., import, move, create, and deploy). The central
management point 602 may be hosted at one of the database runtime resources
identified by the Fabric 608. For example, the central management point 602 may
be hosted at a first database runtime resource 616, a second database runtime
resource 618, or a third database runtime resource 620. The central management
point 602 may provide discovery, policy definition, and monitoring for Server
Fabric layers 610, 612, and 614.

[0089] The Central Reasoning Point 604 supplies the data model of the elements
in the Fabric 608. The model is used by analysis engines for predicting resource
usage trends and the impacts of possible actions across the Fabric 608. The central
reasoning point 604 may be used to take central reasoning actions on entities
identified by the Fabric 608. The central reasoning actions may include a first
action that, for example, estimates a predicted impact of uninstalling a first DAC,
where other DACs may have dependencies on the first DAC. The central reasoning

actions may also include a second action that, for example, estimates a predicted

21

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

impact on one or more DACs of modifying one or more of the computing
resources. The central reasoning actions may also include a third action that, for
example, presents a list of Microsoft SQL Server instances in the Fabric 608 that
are configured to host a DAC to be deployed. Accordingly, the Fabric 608 may be
used to determine a recommended action and a predicted impact of the
recommended action. A user interface may display a predicted utilization view of
related hardware resources and software applications of the Fabric 608 based on the
predicted impact of executing the recommended action. Displaying the predicted
impact of executing the recommended action in the predicted utilization view may
allow an administrator to decide whether to execute the recommended action. If
the administrator considers the predicted impact on the related hardware resources
and software applications unacceptable, the administrator may choose not to
execute the recommended action. If the administrator determines that the predicted
impact is acceptable, the administrator may choose to execute the recommended
action.

[0090] The Central Policies 606 may include a policy that is an authoritative
principle defined to guide behaviors or actions, and where the policy specifies a set
of conditions that can be applied to a set of entities identified by the Fabric 608.
For example, the set of entities may include one or more Microsoft SQL Server
runtime instances and the policy may restrict incorporation of the one or more
Microsoft SQL Server runtime instances into the Fabric 608 based on a software
version of Microsoft SQL Server instance. As an example, only Microsoft SQL
Server 2008 instance can be incorporated into the Runtimes Layer 612. Asa
further example, the set of entities may include one or more computing resources,
and the policy may restrict incorporation of the one or more computing resources
into the Fabric 608 based on the version of an operating system or an amount of
memory. As an example, only computers containing a 64-bit version of Windows
Server 2008 and at least four gigabytes (4GB) of memory can be incorporated into
the Host Resources layer 614. The policies described are examples of policies that
restrict inclusion of runtime instances and hardware resources into the Fabric 608.

Alternatively, a policy may restrict importation of DACs into the Fabric 608. For

22

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

example, the policy may only admit DACs into the Fabric 608 whose queries
comply with best practices. Best practices may be represented in the fabric model
as a set of programmatically verifiable rules. An example of a best practice is to
avoid use of “SELECT *” statements in database queries. Another example is to
require that all stored procedures conform to a particular naming convention.

[0091] The central management point 602 may trigger fabric actions. For
example, the fabric actions may include an import action, an export action, a deploy
action, a copy action, a validate action, an install action, an uninstall action, an add
action, a remove action, a get action, a set action, an enumerate action, a move
action, a create action, a save action, an upgrade action, a start action, a stop action,
a delete action, a restart action, a run action, a suspend action, a resume action, a
disable action, an enable action, a measure action, a monitor action, a predict
action, a govern action, a map action, an unmap action, a discover action, a
compare action, a merge action, a block action, an unblock action, a grant action, or
a revoke action. The server fabric actions may also include an optimize action. A
mitigating action to consider when resource utilization it too high is to optimize the
database configuration. Database optimization examples include adding an index
or data compression.

[0092] Lifecycle verbs describe the set of actions for managing entities from the
time of creation or importation into the Fabric 608 to the time or removal from the
Fabric 608. For example, lifecycle verbs cover actions like creation, modification,
and deletion of a given entity. Some lifecycle verbs may apply to one or more of
the layers 610, 612, and 614. The lifecycle verbs include import action, an export
action, a deploy action, a copy action, a validate action, an install action, an
uninstall action, an add action, a remove action, a get action, a set action, an
enumerate action, a move action, a create action, a save action, and an upgrade
action.

[0093] The Import action creates a new container and associated elements from an
external, persistent data store. The Import action may apply to the DACs layer 610.
For example, the Import action may import a DAC from a DAC package file into

the Fabric 608. The Export action creates a persistent external data store (e.g., a

23

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

file) from a container and its contained elements. The Export action may apply to
the DACs layer 610. For example, the Export action may export a DAC to a file.
[0094] The Deploy action places a container and its objects in an intended
location. The Deploy action may apply to the DACs layer 610. For example, the
Deploy action may deploy a first DAC 622 to an instance in the Runtimes Layer
612 (e.g., a first instance 616).

[0095] The Copy action copies a set of elements from one container to another
container. The Copy action may apply to the DACs layer 610 and the Runtimes
Layer 612. For example, the Copy action may copy a DAC from one Microsoft
SQL Server instance to another instance in the Runtimes Layer 612 (e.g., from the
first instance 616 to a second instance 618).

[0096] The Validate action checks if a target container, element, resource, or
mapping complies with a specified criterion. The Validate action may apply to the
DAC:s layer 610, the Server Runtimes Layer 612, and the Host Resources Layer
614. For example, the Validate action may validate that an instance of Microsoft
SQL Server has CLR Integration enabled.

[0097] The Install action configures a DAC to be operational in the Fabric 608.
The Install action may apply to the DACs layer 610 and the Runtimes Layer 612.
For example, the Install action may install the DAC on the first database instance
616. The Uninstall action removes a container and its elements from the specitied
location. The Uninstall action may apply to the DACs layer 610 and the Runtimes
Layer 612. For example, the Uninstall action may uninstall the DAC from the first
database instance 616.

[0098] The Add action incorporates a representation of an externally created
container, element, or resource into the Fabric. The Add action may apply to the
Runtimes Layer 612 and Host Resources layer 614. For example, the Add action
may add first Microsoft SQL Server instance 616 to the Runtimes Layer 612. The
Remove action disassociates an externally created container, element, or resource
from the Fabric 608. The Remove action may apply to the Runtimes Layer 612 and
the Host Resources layer 614. For example, the Remove action may remove the

Microsoft SQL Server instance 616 from the Runtimes Layer 612.

24

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[0099] The Get action retrieves the current configuration of a container, element,
resource, or mapping. The Get action may apply to the DACs layer 610, the
Runtimes Layer 612, and the Host Resources Layer 614. For example, the Get
action may get the version number of the DAC installed on the first Microsoft SQL
Server instance 616.

[00100] The Set action updates the current configuration of a container, element,
resource, or mapping. The Set action may apply to the DACs layer 610, the
Runtimes Layer 612, and the Host Resources Layer 614. For example, the Set
action may set the version number of the DAC installed on the first Microsoft SQL
Server instance 616.

[00101] The Enumerate action gets a set of elements or resources within a
container. The Enumerate action may apply to the DACs layer 610, the Runtimes
Layer 612, and the Host Resources Layer 614. For example, the Enumerate action
may enumerate the resources on the first server 636.

[00102] The Move action moves a set of elements or resources from one container,
element, or resource to another. The Move action may apply to the DACs layer
610, the Runtimes Layer 612, and the Host Resources Layer 614. For example, the
Move action may move a database from one instance of Microsoft SQL Server to
another instance in the Runtimes Layer 612. As another example, the Move action
may move a database instance (e.g., an SQL Server instance) or may move a
database file from one computer system to another computer system.

[00103] The Create action creates a new container or element. The Create action
may apply to the DACs layer 610 and the Runtimes Layer 612. For example, the
Create action may create a new policy constraint which specifies that the DAC
requires deployment on a Microsoft SQL Server 2008 instance.

[00104] The Save action persists the current configuration of a container, element,
resource, or mapping. The Save action may apply to the DACs layer 610, the
Runtimes Layer 612, and the Host Resources Layer 614. For example, the Save
action may save the version number of the DAC installed on the first Microsoft

SQL Server instance 616.

25

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[00105] The Upgrade action converts an existing configuration of a container or
element to a new definition. The Upgrade action may apply to the DACs layer 610
and the Runtimes Layer 612. For example, the Upgrade action may upgrade the
Orders table definition installed on the first Microsoft SQL Server instance 616
from a first version to a second version.

[00106] The Fabric 608 has several processes that perform actions such as
monitoring performance, reconciling changes, and validating compliance with
policies. The following set of verbs may be used to manage the processes. All of
the remaining verbs apply to all layers of the Fabric 608 (e.g., the DACs layer 610,
the Runtimes Layer 612, and the Host Resources Layer 614). The process control
verbs include a start action, a stop action, a restart action, a run action, a suspend
action, a resume action, a disable action, and an enable action.

[00107] The Start action initiates a process, which continues to run until stopped.
For example, the Start action starts reconciliation on the first Microsoft SQL Server
instance 616. The Stop action discontinues a running process. For example, the
Stop action may stop reconciliation on the first Microsoft SQL Server instance 616.
The Restart action stops a running process, and then starts it again. For example,
the Restart action may restart reconciliation on the first Microsoft SQL Server
instance 616. The Run action starts a process which executes and stops
automatically on completion. For example, the Run action may run discovery on
the first Microsoft SQL Server instance 616. The Suspend action pauses a process,
the process remains paused until it is resumed. For example, the Suspend action
may suspend discovery on the first Microsoft SQL Server instance 616. The
Resume action continues a suspended process. For example, the Resume action
may resume discovery on the first Microsoft SQL Server instance 616. The
Disable action configures a process to be unavailable so that it cannot be started.
The process remains disabled until it is enabled. For example, the Disable action
may disable reconciliation on the first Microsoft SQL Server instance 616. The
Enable action configures a disabled process to be able to start. For example, the

Enable action may enable reconciliation on the first Microsoft SQL Server instance

616.

26

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[00108] Performance Management verbs are used to analyze the current or
predicted health of the Fabric 608 in terms of the current utilization of Fabric
resources. For example, measured latency statistics of DAC operations, such as
queries, may be monitored to determine a current health state and to predict a future
health state. These verbs also provide the means to govern the usage of resources
by various containers and elements within the Fabric 608. The performance
management verbs may include a measure action, a monitor action, a predict
action, and a govern action.

[00109] The Measure action collects performance statistics related to a resource,
element, or container. For example, the Measure action may measure the space
used by database file Finance.mdb on Volume E of first server 636. The Monitor
action evaluates performance statistics related to a resource, element, or container
with respect to a policy. For example, the Monitor action may monitor the space
used by database file Finance.mdb on Volume E of first server 636 for occurrences
when utilization exceeds 80% of capacity. The Predict action forecasts
performance statistics for a container, element, or resource as a function of
historical data, resource changes, or Fabric actions such as deploy or move. For
example, the Predict action may predict when additional storage will be needed to
accommodate the Finance DAC growth. As a further example, the Predict action
predicts when additional resources will be needed to accommodate overall Fabric
growth. The Govern action specifies the minimum or maximum amount of
resource allocated to a container or element. For example, the Govern action may
restrict CPU utilization of first Microsoft SQL Server instance 616 to 50% of the
CPU capacity of the second server 638. Resource governing may also be applied to
a collection of containers and/or elements.

[00110] Mapping verbs provide a simple means of managing relationships between
the layers within the Fabric 608. Mapping verbs are primarily used to establish
relationships between two adjacent layers. The mapping verbs may include a map
action and an unmap action. Conceptually, these verbs can also be thought of as
top-level actions that can be taken against the Fabric 608 which result in a series of

other lifecycle actions being executed. For example, mapping a DAC to an

27

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

instance of Microsoft SQL Server tells the system that the DAC should be available
on that instance. This would invoke all of the verbs, such as deploy or install, that
are required to make that DAC available on the specified instance.

[00111] The Map action creates a relationship between containers, elements, or
resources. For example, the Map action may join the first DAC 622 to the first
Microsoft SQL Server instance 616. The Unmap action removes a mapping
between containers, elements, or resources. For example, the Unmap action may
split the first DAC 622 from the first Microsoft SQL Server instance 616.

[00112] Reconciliation is a process for identifying entities in the Fabric that have
drifted from their prescribed definitions. For example, reconciliation detects if the
definition of a table in a production server has been changed from how it was
defined in the DAC. Three Server Fabric verbs implement reconciliation. The
reconciliation verbs may include a discover action, a compare action, and a merge
action.

[00113] The Discover action defines an operation in which new items are found
and given a productive insight. For example, the Discover action may discover a
new column in an Employee table in the first Microsoft SQL Server instance 616.
The Compare action matches the current configuration of a container, element, or
resource with a pre-defined configuration, and reports any differences. For
example, the Compare action may compare the Employee table that exists on the
first Microsoft SQL Server instance 616 against the table definition in the DAC,
and finds that the version of the table in the first Microsoft SQL Server instance
616 that has a column not defined in the DAC. The Merge action creates a single
configuration of a container, element, or resource from multiple instances. For
example, the Merge action may merge the definition of the new column in the
Employee table into the DAC definition.

[00114] Access verbs provide a means of controlling access to parts of the Fabric
model to support long-running processes. For example, a process moving a file
from one volume to another must control access to the destination volume so that
multiple processes do not make conflicting space allocations. Security verbs limit

access to the containers and elements within the Fabric 608 to authorized users.

28

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

The present disclosure does not provide a new authorization infrastructure but
rather these verbs represent a unified interface for authorization configuration
across the Fabric 608. The Access and Security verbs may include a block action,
an unblock action, a grant action, and a revoke action.

[00115] The Block action provides the issuing process exclusive access to the
configuration of a container, element, or resource, and prevents other processes
from accessing the configuration. This verb acts on the data within the model of
the Server Fabric 608, not the actual entity itself. For example, the Block action
may block access to storage volume E of first server 636 so that space can be
reserved to perform a file migration. The Unblock action releases exclusive access
to the configuration of a container, element or resource. This verb acts on the data
within the model of the Server Fabric 608, not the actual entity itself. For example,
after file migration is complete, the Unblock action may unblock access to storage
volume E of the first server 636. The Grant action gives a principal permission to
access a container, element, or resource. For example, the Grant action may grant
principal Janet write access to the DAC. The Revoke action denies a principal
permission to access a container or element. For example, the Revoke action may
revoke write access to the DAC from principal Janet.

[00116] Referring to FIG. 7, a particular embodiment of a method of automatically
applying a database management action and a policy is illustrated. At 702, the
method includes receiving a fabric policy at a central management point of a Fabric
(e.g., the central management point 602 of Server Fabric 608 in FIG. 6). The
Fabric identifies DACs, database runtime resources hosting the set of DACs, and
computing resources used by the database runtime resources to host the DACs.
Each of the DACs includes a logical representation of a collection of database
elements. Moving to 704, the method also includes monitoring entities of the
Fabric at a central reasoning point (e.g., the central reasoning point 604 of Server
Fabric 608 in FIG. 6). Moving to 706, the method also includes automatically
applying one or more actions of the fabric policy at affected entities identified by
the Fabric to bring fabric elements into compliance with the fabric policy (e.g.,

using Central Policies 606 in FIG. 6).

29

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[00117] Referring to FIG. §, an entity relationship diagram (ERD) illustrates how
the Fabric represents a model that describes the components of the data-tier and
how they are related. The entity relationship diagram (ERD) in FIG. 8 illustrates
how this model takes shape to support the structure and semantics of the three
layers of the Fabric.

[00118] Each layer is represented as a formal entity within the model, as are the
containers, elements, and resources. The model also defines the relationship
semantics between these entities resulting in the defined structure of the Fabric.
This structure facilitates the mechanisms described in the next section by enabling
embodiments of the present disclosure to reason over and take actions on the
Fabric.

[00119] Referring to FIG. 9, a particular illustrative embodiment of a system is
illustrated, at 900. The Central Management Server (CMS) 902 provides the Fabric
with a centralized management point. The CMS 902 connects to a Central
Management Repository (CMR) 904. Managed instances of database instances
(e.g., Microsoft SQL Server) in the Fabric connect to the CMS 902 and upload
information into the CMR 904. The CMS 902 provides actions to discover SQL
Service instances on the network, provision DACs, place DAC elements in desired
locations, check DACs against criterion, and reconcile differences between
elements in the Fabric.

[00120] The CMR 904 contains a model (e.g., all relevant details, relationships,
and constraints) of the Fabric. The CMS 902 is the central reasoning point for
deployment analysis, impact analysis, and what-if analysis and contains core,
detailed, and linked data types. Two of the types represent data contained in the
CMR 904 with the classification based on the frequency of replication from the
IMRs (e.g., IMR 910 and 914) to the CMR 904. Frequently-replicated data is
referred to as core data. Less frequently-replicated data is referred to as detailed
data. Linked data types serve as indexes or pointers to data which is not stored in
the CMR 904.

[00121] A Central Management Data Warehouse (CMDW) 906 enables centralized

reporting of historical performance statistics across a set of physical computers and

30

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

instances. Data residing on each managed SQL Server runtime instance is
collected and uploaded to the location of the CMDW 906 database for monitoring
and reporting purposes.

[00122] A Central Fabric Service (CFS) 908 provides APIs for the core CMS 902
actions. These actions include discovery of SQL Service instances on the network,
provisioning of DACs, placement of DAC elements in desired locations, checking
DAC:s against criterion, and reconciliation of differences between elements in the
Fabric.

[00123] An Instance Management Repository (IMR) is a database that exists within
each database instance. For example, a first IMR 910 exists within a first Microsoft
SQL Server Instance 912. A second IMR 914 exists within a second Microsoft
SQL Server Instance 916. The IMR is the initial target of all deployments or
modifications of the Fabric. A mechanism known as “collection set” copies the
IMR information and uploads it into the CMR 904 to provide an aggregate-level
view of the Fabric.

[00124] An Instance Management Data Warehouse (IMDW) is a management data
warehouse that exists within each database instance. For example, a first IMDW
918 exists within the first Microsoft SQL Server Instance 912. A second IMDW
920 exists within the second Microsoft SQL Server Instance 916. The IMDW is
the initial target of performance data (e.g., reporting and/or monitoring) and
configuration data for the instance and the host computer, which is later uploaded
into the CMDW 906 to provide an aggregate view of the Server Fabric.

[00125] An Instance Fabric Server (IFS) provides APIs for the core management
actions. For example, a first IFS 922 exists within the first Microsoft SQL Server
Instance 912. A second IFS 924 exists within the second Microsoft SQL Server
Instance 916. These actions include validating and installing DAC Instances on the
local instance, discovering installation drift, and providing reconciliation
operations. The IFS may also measure the performance of the instance and DACs
and carries out actions sent from the CMS 902.

[00126] Referring to FIG. 10, an illustrative view of an end-to-end management

process is illustrated, at 1000. The present disclosure provides the tools and

31

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

infrastructure for managing a database application throughout the complete
software lifecycle from development to deployment to operations. In this section,
some canonical workflows of the present disclosure are exercised over the key
architectural components described in the previous section in order to provide
insight into the core design principles.

[00127] At 1002, the system is installed and the Fabric is configured. At 1004, a
DAC is created from an existing deployment and imported into the Fabric. At
1006, Fabric utilization is monitored and predicted. Based on the monitoring and
prediction, Fabric resources may be adjusted. For example, at 1008, Fabric
resources are governed. At 1010, Fabric elements are moved.

[00128] Referring to FIG. 11, an illustrative example of an installation process is
shown. An installation package is made up of three components: tools extensions,
Fabric services, and management repository schemas. Tools extensions are applied
to Microsoft Visual Studio or Microsoft SQL Server Management Studio and can
be extended for additional tools as well. The Fabric services and the management
repository schemas are installed within the Central Management Server and the
managed instances.

[00129] At 1102, the installation package is obtained. At 1104, tools extensions
(e.g., for Microsoft Visual Studio and Microsoft SQL Server Management Studio)
are installed. At 1106, the Central Management Server (CMS) and Central Fabric
Service (CFS) are installed and configured. At 1108, the Central Management
Repository (CMR) and Central Management Data Warehouse (CMDW) schemas
are installed. At 1110, all the runtime instances are discovered, and instances that
are to become managed instances in the Fabric are discovered. At 1112, Fabric
installation jobs are created within each managed instance. At 1114, the Instance
Management Repository (IMR) and Instance Management Data Warehouse
(IMDW) schemas are installed in each managed instance. At 1116, the Fabric
IMDW to CMDW data uploading mechanisms are installed and are started at 1118.
[00130] Referring to FIG. 12, an illustrative example of creating a DAC from an
existing deployment and importing it into the Fabric is shown. A DAC is the core

logical unit of management within the Fabric. The Fabric manages DACs to ensure

32

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

optimal resource utilization. DACs are authored within either Microsoft Visual
Studio or Microsoft SQL Server Management studio by creating a new DAC
Project. In addition, a new DAC can be reverse-engineered from a previous
database deployment by selecting application database objects.

[00131] At 1202, a DAC is created. At 1204, instance objects are added to the
DAC. At 1206, instance settings and policies are added to the DAC. At 1208,
deployment settings and policies are added to the DAC. At 1210, the DAC settings
and policies are validated against the IMR. At 1212, the DAC is saved to the IMR.
At 1214, the DAC is copied from the IMR to the CMR. Optionally, at 1216, a
DAC package binary file is created for later development use in Visual Studio.
[00132] Referring to FIG. 13, an illustrative example of monitoring and predicting
Server Fabric utilization is shown. Resource utilization policies can be set and
evaluated across the Server Fabric and the DACs to avoid over-utilization and
under-utilization of resources.

[00133] At 1302, the global resource monitoring policies are set in the CMR. At
1304, statistics are added to the IMDW. At 1306, the database resource monitoring
policy is set in the IMR. At 1308, resource utilization statistics are monitored in
the IMDW. Alternatively, other performance health statistics may be monitored
and predicted (e.g., latency statistics of DAC operations such as queries). At 1310,
IMDW resource utilization statistics are exported to the CMDW. At 1312, current
resource utilization is monitored in the CMDW. At 1314, predicted resource
utilization is monitored in the CMDW.

[00134] Referring to FIG. 14, an illustrative example of adjusting Server Fabric
resources 1s shown. Resource allocation policies can be set and evaluated across
the Fabric and the DACs to balance the resources available to DACs. Adjusting
resources can be accomplished through actions such as in-place resource governing
and moving Fabric elements, such as moving files between volumes or moving
Database Applications between servers. Examples of in-place resource governing
include re-allocating CPU, memory or storage space resources to database
instances or DACs based on one or more resource governing rules. Fabric

resources can be adjusted by implementing new resource governing policies.

33

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[00135] At 1402, resource balancing options are predicted for DACs related to the
target DAC. At 1404, new resource policies are set in the CMR. At 1406, the new
resource policies are copied to each IMR. At 1408, resource governing rules are
implemented in each IMR.

[00136] Referring to FIG. 15, another illustrative example of adjusting Fabric
resources is shown. In FIG. 15, the process of moving a DAC from one file to
another 1s illustrated.

[00137] At 1502, a DAC is obtained from the CMR. At 1504, potential target
volumes are predicted. At 1506, the DAC is mapped to another volume (volume
2). At 1508, the DAC is copied from the CMR to the IMR. At 1510, the DAC 1s
validated in the IMR. At 1512, the DAC is installed (alter database, copy file...).
At 1514, the DAC is validated in the CMR.

[00138] Referring to FIG. 16, another illustrative example of adjusting Fabric
resources is shown. In FIG. 16, the process of moving a DAC from one Microsoft
SQL Server instance to another is illustrated.

[00139] At 1602, the DAC is obtained from the CMR. At 1604, potential target
instances are predicted. At 1606, the DAC is mapped to runtime Instance 2. At
1608, the DAC is copied from the CMR to the Instance 2 IMR. At 1610, the DAC
1s validated in the Instance 2 IMR. At 1612, the DAC is installed into the Instance
2 IMR. At 1614, the DAC endpoint name is moved in the CMR. At 1616, the
DAC is validated in the CMR.

[00140] The illustrations of the embodiments described herein are intended to
provide a general understanding of the structure of the various embodiments. The
illustrations are not intended to serve as a complete description of all of the
elements and features of apparatus and systems that utilize the structures or
methods described herein. Many other embodiments may be apparent to those of
skill in the art upon reviewing the disclosure. Other embodiments may be utilized
and derived from the disclosure, such that structural and logical substitutions and
changes may be made without departing from the scope of the disclosure.
Accordingly, the disclosure and the figures are to be regarded as illustrative rather

than restrictive.

34

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

[00141] Those of skill would further appreciate that the various illustrative logical
blocks, configurations, modules, circuits, and algorithm steps described in
connection with the embodiments disclosed herein may be implemented as
electronic hardware, computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software, various illustrative
components, blocks, configurations, modules, circuits, or steps have been described
generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but such
implementation decisions should not be interpreted as causing a departure from the
scope of the present disclosure.

[00142] The steps of a method described in connection with the embodiments
disclosed herein may be embodied directly in hardware, in a software module
executed by a processor, or in a combination of the two. A software module may
reside in computer readable media, such as random access memory (RAM), flash
memory, read only memory (ROM), registers, hard disk, a removable disk, a CD-
ROM, or any other form of storage medium known in the art. An exemplary
storage medium is coupled to the processor such that the processor can read
information from, and write information to, the storage medium. In the alternative,
the storage medium may be integral to the processor or the processor and the
storage medium may reside as discrete components in a computing device or
computer system.

[00143] Although specific embodiments have been illustrated and described herein,
it should be appreciated that any subsequent arrangement designed to achieve the
same or similar purpose may be substituted for the specific embodiments shown.
This disclosure is intended to cover any and all subsequent adaptations or variations
of various embodiments.

[00144] The Abstract of the Disclosure is provided with the understanding that it
will not be used to interpret or limit the scope or meaning of the claims. In

addition, in the foregoing Detailed Description, various features may be grouped

35

10

WO 2010/039428 PCT/US2009/057050

together or described in a single embodiment for the purpose of streamlining the
disclosure. This disclosure is not to be interpreted as reflecting an intention that the
claimed embodiments require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive subject matter may be
directed to less than all of the features of any of the disclosed embodiments.

[00145] The previous description of the disclosed embodiments is provided to
enable any person skilled in the art to make or use the disclosed embodiments.
Various modifications to these embodiments will be readily apparent to those
skilled in the art, and the generic principles defined herein may be applied to other
embodiments without departing from the scope of the disclosure. Thus, the present
disclosure 1s not intended to be limited to the embodiments shown herein but is to
be accorded the widest scope possible consistent with the principles and novel

teatures as defined by the following claims.

36

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

WHAT IS CLAIMED IS:
1. A system comprising:
a fabric (501) identifying:
a set of data-tier application components (502), each of the data-tier
application components including a logical representation of a collection of
database elements (510, 512, 514);
a set of database runtime resources (516) hosting the set of data-tier
application components (502); and
computing resources (524) used by the set of database runtime
resources to host the set of data-tier application components (502); and
a management point (602) to receive a fabric policy, wherein one or more
actions of the fabric policy are automatically applied to affected entities identitied
by the fabric (501) to bring one or more fabric elements into compliance with the
fabric policy.
2. The system of claim 1, wherein the one or more actions include:

when a file system is growing or forecasted to reach a resource limit,
automatically moving one or more files on the file system to a second file system
on another operating system volume;

when a processor is experiencing a high load, automatically moving a
software application to another computer that has a lower processor load; and

automatically executing one or more actions to maintain performance
according to a measured quality of service metric.
3. The system of claim 1, wherein the computing resources include one or
more computer resources, one or more computer data storage resources, or one or
more virtual machine resources.
4. The system of claim 3, wherein each of the one or more computer resources
includes a processor, a memory, or a network element, and wherein at least one of
the one or more computer data storage resources is an operating system volume that
includes a plurality of files, and wherein at least one of the one or more computer
server resources 1s initially mapped to a first storage area network and is

subsequently mapped to a second storage area network.

37

10

15

20

25

30

WO 2010/039428 PCT/US2009/057050

S. The system of claim 1, wherein each of the data-tier application components
1s represented by a data-tier application components layer of a fabric, each of the
computing resources is represented by a hardware resources layer of the fabric, and
each of the database runtime resources is represented by a runtimes layer of the
tabric.
6. The system of claim 1, wherein each of the data-tier application components
1s mapped to one of the database runtime resources and wherein each database
runtime resource is mapped to one or more physical computing resources.
7. The system of claim 6, wherein the one of the database runtime resources is
remapped from a first computer to a second computer.
8. The system of claim 6, wherein the one of the database runtime resources is
remapped from a first operating system volume to a second operating system
volume.
0. The system of claim 1, wherein the one or more actions of the fabric policy
include one or more of allocating a subset of one or more resources to a particular
application in accordance with a first resource governing rule, re-allocating
hardware resources of a first computer system in accordance with a second resource
governing rule, and moving a software application and files associated with the
software application to a second computer system in accordance with a third
resource governing rule.
10. A method of automatically applying a fabric policy, the method comprising:
receiving (702) a fabric policy at a management point (602) of a server
fabric (501), the server fabric (501) identifying:
data-tier application components (502), each of the data-tier
application components (502) including a logical representation of a
collection of database elements;
database runtime resources (516) hosting the set of data-tier
application components (502); and
computing resources (524) used by the database runtime resources
(516) to host the data-tier application components (502);
monitoring (704) entities of the server fabric (501); and

38

10

15

20

WO 2010/039428 PCT/US2009/057050

automatically applying (706) one or more actions of the fabric policy at
affected entities identified by the server fabric (501) to bring elements associated
with the server fabric (501) into compliance with the fabric policy.
11. The method of claim 10, wherein automatically applying the one or more
actions of the fabric policy includes retrieving the fabric policy, evaluating the
fabric policy over a set of targets, generating one or more corresponding actions to
enforce the fabric policy, and executing the corresponding actions against the set of
targets.
12. The method of claim 10, wherein the fabric policy is used to determine a
health state of each of the fabric elements.
13. The method of claim 10, further comprising providing policy definition,
policy enforcement, server fabric object deployment, and monitoring of server
fabric layers.
14. The method of claim 10, wherein the fabric policy is an authoritative
principle defined to guide behaviors or actions, and wherein the fabric policy
specifies a set of conditions that can be applied to a set of entities identified by the
server fabric.
15. The method of claim 14, wherein the set of entities includes one or more
database runtime instances and the fabric policy restricts incorporation of the one or

more database runtime instances into the fabric.

39

PCT/US2009/057050

WO 2010/039428

1/16

L "OId

aoueIsuU| Ovd

>

9cl //

14" alge
toaxm@ poduw|
001 \/
abexoed Ova (1odojonep
\ “B9) Josn
ocl I _
|
2N o1 [PHN8 /90 "
/[
- __ _. ; g
/ gsweg | |zswsma| || Iuswslg
1no J _ _
joauon) ~1P8UD
sonog | T » (s)al — > (ovQq) 1usuodwo)
i N ul m.>mw uoneolddy Jai] -ejeq
“MIBYD | josloig ova

oLl

hq__\K

\ Jsuiejuod ova

-

\ [3PON Ovd

vOL—
901l

5 —

WO 2010/039428 PCT/US2009/057050

2/16

202

Create a DAC Model that contains a collection of database elements
including metadata of one or more database objects, a database
runtime resource identifier of a database runtime resource operable to
manipulate the database objects, and a policy related to execution of
the database runtime resource

'

204
/-

Save a representation of the DAC Model as a DAC Project and
check the DAC Project into a source control system or source control
database to store the DAC Model

'

206

Edit the DAC Model and validate the DAC Model before building
the DAC Package, configuring the DAC Type before deploying to
DAC Instance, and install the DAC Instance with respect to
a specific set of physical computing resources

:

208

Build a DAC Package based on the DAC Model

210

Import a DAC Type from the DAC package into a Server Fabric

212

Deploy the DAC Type to create a deployed DAC Instance

FIG. 2

WO 2010/039428 PCT/US2009/057050

3/16

304\ /302 /306

4 N
\ Data-tier Application Component (DAC) /
4 DAC Type N 4 DAC Instance N
308 | | Properties Properties] —314
N
Deployment Schema /
Application Schema 318
31
0\\ el
N Deployment Intent %
<::> & Policy
//320
Fabric Mappings /|
312\\ geF\)/oelligser Intent //322
A Data /
- J \ J
. J

FIG. 3

PCT/US2009/057050

WO 2010/039428

4/16

\ 14274

aweu Dy pue salsanb
aseqgejep buisn uonesiddy

v "Old

$92.4n0sa. Jayndwod
Bunioddns 9|ge109|9s Josn JO 199

8Ly

0]0)7

olv

SJUSLWSIS 8SBJRIEP JO UOI108||00
3y YIIM PaeIDoSSE sWeU JyQq

2y —

UONBIO0SSY

90JN0SaJ swijun ssegelep
8] JO uonnosxa 0] paiejal Aoljod

a|1qewuwelboid

N

N

199[qo asegelep ay)
aie|ndiuew 03 a|getado 821nosal
awinunl asegelep e Jo Jaljuapl
90JN0sal swijun. aseqgeleq

109[qo asegelep
B JO Jaliusp| 199[q0 aseqgeleq

SjusWa|3 8SegrIR(JO UOI108||0D

N

(OvQ) uoneolddy Jsi|-eleq

4017 K

WO 2010/039428 PCT/US2009/057050
5/16
500
Fabric
502 —
Set of DACs
504 ~ 506 ~ 508 ~
DAC 1 DAC 2 DAC 3
510 512 514
N\ N\ N\
Logical Logical Logical

Representation of
a collection of DB

Representation of
a collection of DB

Representation of
a collection of DB

elements elements elements
51 6\
Set of Database Runtime Resources
518 \ 520 \ 522 \
DB Runtime DB Runtime DB Runtime
Resource 1 Resource 2 Resource 3
524\
Computing Resources
526 \ 528\ 530 \
Computing Computing Computing
Resource 1 Resource 2 Resource 3

FIG. 5

WO 2010/039428

PCT/US2009/057050
6/16
600
602 604 606
Central Central
. Central
Management Reasoning .
Point Point Policies
608 \ + /
610 _\Fabric
622\ DAC Layer
DAC 1 DAC 2 DAC 3
624 — 626—"
612 \
616 Runtimes Layer 620,\
DB Runtime | ©18\ DB Runtime DB Runtime
Resource 1 Resource 2 Resource 3
614 \
630\ Host Resources Layer
Computer Data Virtual
Resources Resources Resources
1 636 1640 P A
DR 1
e
Computer 2 DR 2 VR2 1
632—" 634 —

FIG. 6

WO 2010/039428 PCT/US2009/057050

7116

702

Receive a fabric policy at a central
management point of a Fabric

704

Monitor entities of the Fabric
at a central reasoning point

/— 706

Automatically apply one or more actions of the
fabric policy at affected entities identified by the
Fabric to bring the database elements into
compliance with the fabric policy

FIG. 7

PCT/US2009/057050

WO 2010/039428

8/16

8 'OId

abelols SUIYSEN [BNJIA Jgindwo)
VS| Vsl ﬁ VS| Jahe
$90IN0S9Y
JSOH
a0Jnosay alempleH VSeH _ Joke 1soH
7 o] paddep
EERINES S90IAIBS tenieg
7 Bunodey sisAleuy TOS LosAII

tomo;?_@_

t.OwO.ho,cﬁ_

vs|

\

vseH

B ¢

Jake sswnuny

ejeq aouewlopad- \v sununy
ed eleq .hu“wM| VSseH aouelsu| VSEH Lw\Aml_ auiiuny aduelsu| asegele
aseqejeq osegeled oLpedden A
ejeq aoue}su|-
sbuiddey ouge4- VSEH
Juaju| uswAdag-
s108[qO wswAoldeg- v
seluadoid- | vseH Jake uoneoiddy aseqeleq
aouelsU| OvQ Joker
VSEH ova
sju| Jadojanaqg-
uoniuyeq ddy-
solladolg-
saoualaley
adAL Ov@
saoualaley

PCT/US2009/057050

WO 2010/039428

9/16

14%5)

owo/

0l6

6 'Old

dJNO

Aojisoday

swoabeuepy
|[enuan

MAnoO

asnoysalepp
ayeq
Juswsbeuep
[esusn

NI

19UI0

2INses|\

UoNnEIIouoI9Y

MANI

uolje|iejsu|

S4dl

Z 9oUBISU| JaAIsS TS JOSOIDIN

uon

| @oUB)SU| JaAISS TOS HOSOIIN

~ - gle 06

A Man U0
-:'
wswAiojdaq
Byl1o
ainsespy uonel|Iouooay
Eatastiide Asnoosiq

uonejesu| e)

sS40
S4i 26

806

_/

\v_ (SIND) J1eni88 uswabeuep [eius)

¢06 .\

I

916 |\

006

/

N_\mu\

(SINSS)

olpn)g Wwawabeue
JaAIag TOS HOSOIoIN

(disn)
108l01d DvA SA

WO 2010/039428

1000

10/16

PCT/US2009/057050

/ 1002

Install System and configure Fabric

:

1004
//

Create a DAC from an existing deployment
and import it into the Fabric

'

1006

Monitor and predict Fabric utilization

:

1008

Govern Fabric resources

1010

Move Fabric elements

FIG. 10

WO 2010/039428 PCT/US2009/057050

11/16
Microsoft Visual Studio
1102) (1104
Microsoft SQL Server Management Microsoft SQL Server Instance 3
Studio (SSMS) Microsoft SQL Server Instance 2
Microsoft SQL Server Instance 1
Central Management Server (CMS) -

Database

Discovery 611

Reconciliation

Installation

o
A\V2

\
[

Reconciliation

Measure

Deployment Other

Other

\l/

<_V >
| (1) e

1114(1116(1118

FIG. 11

WO 2010/039428

12/16

Microsoft Visual Studio

Microsoft SQL Server Management
Studio (SSMS)

PCT/US2009/057050

1202

Microsoft SQL Server Instance 1

Central Management Server (CMS)

CFS

Discovery

Reconciliation

Deployment

Other

/1

<=

Database
1208

IFS

Installation

Reconciliation

Measure

Other

IMDW

@0
4“

CMDW

< ¥V =

FIG. 12

1212

WO 2010/039428

Microsoft Visual Studio

Microsoft SQL Server Management
Studio (SSMS)

Central Management Server (CMS)

CFS

Discovery

Reconciliation

Deployment

Other

13/16

/1

PCT/US2009/057050
Microsoft SQL Server Instance 3
Microsoft SQL Server Instance 2
Microsoft SQL Server Instance 1
Database]
IFS ||
Installation
Reconciliation
Measure
Other
IMDW IMR
1304] 1308 1306] 1310

FIG. 13

WO 2010/039428 PCT/US2009/057050

14/16
Microsoft Visual Studio
Microsoft SQL Server Management Microsoft SQL Server Instance 3
Studio (SSMS) .
Microsoft SQL Server Instance 2
Microsoft SQL Server Instance 1
Central Management Server (CMS) -
Database |
CFS IFS |
Discovery Installation
Reconciliation
Reconciliation —
Measure
Deployment Other
Other
w l
/l /V 1406 J{ 1408

FIG. 14

WO 2010/039428

Microsoft Visual Studio

Microsoft SQL Server Management
Studio (SSMS)

Central Management Server (CMS)

CFS

Discovery

Reconciliation

Deployment

Other

/1

15/16

PCT/US2009/057050

Microsoft SQL Server Instance 3

Microsoft SQL Server Instance 2

CMDW @

<=

< = < =
IMDW m

Microsoft SQL Server Instance 1

Database]

IFS

Installation

Reconciliation

Measure

Other

FIG. 15

1510

S

PCT/US2009/057050

WO 2010/039428

16/16

ziaL)(oLol

91 "OId

—‘_

19U10

2INSes|\

uoljel|Iouooay

uone|jelsu|

S4l

—‘—

aseqejeq

-

Z 9oUe)sU| J1aAIag TOS LOSOIOIN

19U10

2INses|\

uoljel|iouooay

uonejjelsu|

S4l

aseqeleq

-

| 9oUBISU| JaAISS S HOSOIIN

19U10

wswAholdag

uonelIouoo9 Y

Asnoosiq

S40

(sno)
Janlag Juswsbeuel [enjus)

(SINSS) o1pniS Juswabeuely
JaAIaS TOS HOSOIIN

OIpN]S [ENSIA JOSOIIN

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings

