(54) 发明名称
 Al–Ge 键合方法

(57) 摘要
 本发明涉及一种改进的 Al–Ge 键合方法，包括提供具有图案化的 Ge 顶层的第一晶片；提供具有图案化的 Al 的第二晶片；对准步骤，将第一晶片与第二晶片对准；吹扫步骤，通入合成气吹扫晶面，所述合成气包括还原性气体和惰性的气体；抽真空步骤，将键合腔的压力降至 0.1mBar 以下的真空，键合腔温度 420 ~ 450℃；和键合步骤，对第一晶片和第二晶片施加力，温度升至高于 Al–Ge 共晶点 5 ~ 30℃。
1. 一种改进的 Al-Ge 键合方法，其包括：
 提供具有图案化的 Ge 顶层的第一晶片；
 提供具有图案化的 Al 的第二晶片；
 对准步骤，将第一晶片与第二晶片对准；
 吹扫步骤，通入合成气吹扫晶面，所述合成气包括还原性气体和惰性的气体；
 抽真空步骤，将键合腔的压力降至 0.1mBar 以下的真空，键合腔温度 420 ～ 450℃；
 键合步骤，对第一晶片和第二晶片施加力，温度升至高于 Al-Ge 共晶点 5 ～ 30℃。
2. 根据权利要求 1 所述的方法，其中所述还原性气体为 H₂。
3. 根据权利要求 1 所述的方法，其中所述惰性的气体为 N₂。
4. 根据权利要求 1 所述的方法，其中所述合成气体包括 90 ～ 97vol% 的 N₂ 和 10 ～
 3vol% 的 H₂。
5. 根据权利要求 1 所述的方法，其中所述吹扫步骤和抽真空步骤至少交替进行 2 轮。
6. 根据权利要求 1 所述的方法，其中所述抽真空步骤中，键合腔的压力降至 0.05mBar
 以下的真空。
7. 根据权利要求 1 所述的方法，其中对准步骤中，在第一晶片和第二晶片之间
 插入间隔体以将两晶片分离；在键合步骤中，将所述间隔体除去。
8. 根据权利要求 1 所述的方法，其中在所述抽真空步骤之后，键合步骤之前，对晶片
 进行退火处理，退火温度为 350 ～ 420℃。
9. 一种改进的 Al-Ge 键合方法，其特征在于，在键合步骤前对晶片进行退火处理，退火
 温度为 350 ～ 420℃。
10. 根据权利要求 8 所述的方法，其中所述退火步骤用于减少器件晶片的放气。
11. 根据权利要求 9 所述的方法，其中所述放气包括 Ar 气和水汽。
AI-Ge 键合方法

技术领域
[0001] 本发明涉及半导体制造技术领域，特别涉及 AI-Ge 键合方法。

背景技术
[0002] 晶片级 MEMS（微电子机械系统）键合技术在许多领域已经应用多年。近年来，MEMS 消费类产品市场爆发性增长，使得这一领域需要提供体积更小、成本更低的产品。
[0003] 熔融键合技术主要是通过选择性键合的方法流程。其中晶片表面的平整度、粗糙度和化学吸附状态是影响键合质量的内在因素，而键合温度和时间是影响键合强度的外在因素。由于热键合的高温退火不可避免地造成杂质的互扩散、引入应力以及空洞和缺陷的产生。因此热键合技术对晶片表面的粗糙度和完整性要求较高，不适宜键合含有铝的金属物器件。
[0004] 低共熔体键合是指在键合的晶片的界面上采用溅射或蒸发的方法蒸上一层熔点较低的金属，以这层金属为键合介质的键合技术。所采用的共熔体的熔点温度一般较低，如 AuBe、AuSi 合金等，其作用是为了在低的退火温度下完成材料性质差别较大的金属之间的键合。
[0005] 然而由于 Au 成本太高，期望采用成本较低的金属代替 Au。AI 是一种成本较低的金属，但是 AI-Si 共晶温度比较高，而且 AI 容易氧化，因此业界一直不考虑 AI 的使用。
[0006] 本发明人发现，AI-Ge 合金的共晶温度可以满足使用要求，但 AI 和 Ge 较易氧化，AI 和 Ge 表面一旦有了这些金属氧化物，它们的键合效果就会变差，主要体现在粘合力就大大降低了。

发明内容
[0007] 因此，需要对 AI-Ge 键合方法进行改进，以提高键合效果。
[0008] 本发明的第一个方面涉及一种改进的 AI-Ge 键合方法，其特征在于，提供具有图案化的 Ge 顶层的第一晶片；
[0009] 提供具有图案化的 AI 的第二晶片；
[0010] 对准步骤，将第一晶片与第二晶片对准；
[0011] 吹扫步骤，通入合成气吹扫晶面，所述合成气包括还原性气体和惰性的气体；
[0012] 抽真空步骤，将键合腔的压力降至 0.1mBar 以下的真空，键合腔温度 420 ~ 450℃；
[0013] 键合步骤，对第一晶片和第二晶片施加力，温度升至高于 AI-Ge 共晶点 5 ~ 30℃。
[0014] 根据本发明的一个实施方式，所述还原性气体为 H₂。
[0015] 根据本发明的一个实施方式，所述惰性的气体为 N₂。
[0016] 根据本发明的一个实施方式，所述合成气体包括 90 ~ 97vol% 的 N₂ 和 10 ~ 3vol% 的 H₂。
[0017] 根据本发明的一个实施方式，所述吹扫步骤和抽真空步骤至少交替进行 2 轮。
根据本发明的一个实施方式，所述抽真空步骤中，键合腔的腔压力降至 0.05mBar 以下的真空。

根据本发明的一个实施方式，在所述对准步骤中，将第一晶片和第二晶片之间插入间隔体以将两晶片分离；在键合步骤中，将所述间隔体除去。

本发明的第二个方面涉及一种改进的 AI-Ge 键合方法，其特征在于，

在键合步骤前对晶片进行退火处理，退火温度为 350 ~ 420℃。

该退火步骤用于减少器件晶片 (device wafer) 的放气，所述放气包括 Ar 气和水汽。

附图说明

本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述，用来解释本发明的原理。在附图中，

图 1 是根据本发明的一个实施方式的 AI-Ge 键合方法的流程图。

具体实施方式

在下文的描述中，给出了大量具体的细节以便提供对本发明更为彻底的理解。然而，对于本领域技术人员来说显而易见的是，本发明可以无需一个或多个这些细节而得以实施。在其他的例子中，为了避免与本发明发生混淆，对于本领域公知的一些技术特征未进行描述。

为了彻底了解本发明，将在下列的描述中提出详细的步骤和结构，以便说明本发明是如何解决现有技术中 AI-Ge 键合方法键合效果差的问题。显然，本发明的施行并不限定于半导体领域的技术人员所熟知的特殊细节。本发明的较佳实施例详细描述如下，然而除了这些详细描述外，本发明还可以具有其他实施方式。

图 1 是根据本发明的一个实施方式的 AI-Ge 键合方法的流程图，其包括提供具有图化的 Ge 顶层的第一晶片，提供具有图化的 AI 的第二晶片，对准步骤，吹扫步骤，抽真空步骤，和键合步骤。

图示化的 Ge 顶层的厚度一般为 0.5 ~ 1 μm，图示化的 AI 层的厚度与 Ge 层的厚度相当，一般也为 0.5 ~ 1 μm。

在对准步骤中，在第一晶片和第二晶片之间插入间隔体以将两晶片分离；在键合步骤中，将所述间隔体除去。对用作间隔体的材料没有特别的要求，只要比较硬就可以，例如金属材料。间隔体厚度为 100 μm ~ 200 μm。

在吹扫步骤中，合成气包括还原性气体和惰性的气体。合成气以过压 1.5 ~ 2.5bar 通入键合腔，优选为 2bar。

还原性气体用于将 AI 和 Ge 表面的氧化物还原，常用的还原性气体为 H₂。

惰性的气体用于吹扫晶片表面，去除表面尘污、水汽、有机气体等，常用的惰性的气体为 N₂。惰性的气体的使用能够提高键合后的真空质量。

从成本和效果两方面考虑，还原性气体和惰性的气体的比例为 3 ~10vol%：97 ~ 90vol %，优选为 4 ~ 5vol%：96 ~ 95vol%，最优选 5vol%：95vol%。

抽真空和键合步骤均为常规方法，在市售的晶片键合机（例如，Electronic
Visions Group, Inc. 或 Suss Microtec, Inc. 的产品）中即可实现。在抽真空步骤之前，两个晶片的温度大于 100°C。

【0035】退火步骤是在抽真空步骤之后，键合步骤之前进行的，退火温度为 350 ～ 420°C。该退火步骤在惰性的气体环境下进行，不可以使用前述合成气环境，大约进行 1 ～ 2 小时。这一步骤有利于驱逐出层间的羟基和挥发性气体以及之前工艺中附着的气体，减少后续器件晶片放气，促进衬底层与器件层之间更强更稳定的界面。

【0036】实施例 1

【0037】将的具有图案化的 1 μm 的 Ge 面层的第一晶片与具有图案化的 1 μm 的 Al 的第二晶片在 SUSS MicroTec BA8 对准器中对准，第二晶片的 Al 有 5 μm 的 Ge 层，第一晶片和第二晶片中插入 200 μm 厚的间隔体以确保两个晶片呈分离状态。

【0038】将对准的晶片传递到 SUSS MicroTec CB8 键合机进行晶片键合，通过吹扫线路引入含 95vol% N_2 和 5vol% H_2 的合成气。抽真空到小于 0.05mBar。再次引入合成气达到过压 2Bar。然后，再次抽真空。晶片温度大于 100°C。

【0039】当真空度达到规定值，移除间隔体，并在晶片上施加 15 ～ 40kN 的力，然后升温至 435°C 左右。这一过程大约持续 15 ～ 30mins。

【0040】实施例 2

【0041】用与实施例 1 相同的晶片以与实施例 1 相同的方法制备键合的晶片，不同在于在键合步骤前进行退火步骤，退火温度为 420°C，退火时间 2 小时。

【0042】键合之前，使用 RGA（残余气体分析仪）进行分析，测量释放的 Ar 和水汽。

【0043】RGA 的结果表明：经历了退火步骤的晶片与未经过退火步骤的晶片相比：经历了退火步骤的晶片 Ar 的释放量明显比未经过退火步骤的晶片少很多。这样就能保证在键合过程中释放的 Ar 和水汽的量尽可能地少，提高了键合的效果。

【0044】通过剪切力测试显示，与未经过上述步骤的 Al-Ge 键合晶片相比，按照本发明方法处理过的 Al-Ge 键合晶片的剪切力为未处理的 Al-Ge 键合晶片的 2 ～ 3 倍。这说明本发明的方法能够极大地提高 Al-Ge 键合晶片的键合强度。

【0045】本发明已经通过上述实施例进行了说明，但应当理解的是，上述实施例只是用于举例和说明的目的，而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是，本发明并不局限于上述实施例，根据本发明的教导还可以做出更多种的变型和修改，这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。
提供具有图案化的Ge顶层的第一晶片

提供具有图案化的Al的第二晶片

对准步骤，将第一晶片与第二晶片对准

吹扫步骤，通入合成气吹扫晶面，所述合成气包括还原性气体和惰性的气体

抽真空步骤，将键合腔的压力降至0.1mBar以下的真空，键合腔温度350~390°C

键合步骤，对第一晶片和第二晶片施加力，温度升至高于Al-Ge共晶点5~30°C