SIMULATED BARK SIDING AND METHOD OF MANUFACTURING SAME

Inventor: Phillip Daniel Heatherly, Canton, NC (US)

Correspondence Address: J. BENNETT MULLINAX, LLC P. O. BOX 26029 GREENVILLE, SC 29616-1029 (US)

Appl. No.: 12/079,997

Filed: Mar. 31, 2008

Related U.S. Application Data

Provisional application No. 60/920,876, filed on Mar. 30, 2007, provisional application No. 61/066,558, filed on Feb. 21, 2008.

Publication Classification

Int. Cl. E04F 13/08 (2006.01)

U.S. Cl. 52/385; 52/309.1; 52/745.19

ABSTRACT

A synthetic composition panel having a surface which resembles a tree bark is provided. The synthetic composition panel defines a series of irregular grooves and indentations which extend varied distances into the thickness of the panel. The irregular pattern of the grooves, the angles of the grooves, and the depth of the grooves contribute to a panel having an appearance of a tree bark product. The panel has sufficient strength to be used as a roofing product, interior siding, exterior siding, and can be fashioned into decorative trim items such as door moldings, window moldings, and door frame moldings.
SIMULATED BARK SIDING AND METHOD OF MANUFACTURING SAME

RELATED APPLICATIONS

FIELD OF THE INVENTION

[0002] This invention relates to the field of siding and roofing materials, in particular, to decorative roofing and siding panels.

BACKGROUND OF THE INVENTION

[0003] Siding is frequently used to cover the exterior surfaces of homes, office buildings, and other dwellings, for instance when the exterior surfaces of dwellings lack aesthetic appeal or are not able to protect the dwellings from the elements. Structural roofs are also covered with sheets of material to protect the roof from rain. Aluminum sheets and wood or wood fiber planks are common siding materials. Asphalt shingles and shuke shingles are among the choices of sheet material that can be used to cover and protect a roof. In some locales, for instance those in rustic, heavily wooded areas, tree bark, such as poplar tree bark, is a favored siding material. However, tree bark, including poplar tree bark, is expensive both to harvest and to form into sheets of siding. Further, natural tree bark siding is not suitable as a roofing material. Manufactured siding and roofing material that retains many of the advantages of tree bark while reducing or eliminating many of the disadvantages of tree bark would be desirable. A synthetic tree bark building material would be useful for exterior use as siding or roofing material or for use as a material for interior walls and similar locations.

[0004] Accordingly, there remains room for improvement and variation within the art.

SUMMARY OF THE INVENTION

[0005] It is one aspect of at least one of the present embodiments to provide a synthetic composition panel having a surface which resembles tree bark comprising: a panel having an upper surface and a lower surface, the panel having a height of at least about 0.25 inches to about 0.75 inches; the upper panel further defining a plurality of irregular grooves and indentations interspersed between a plurality of intervening ridge regions, the upper surface having a surface area at least about 50 percent greater than said lower surface.

[0006] It is another aspect of at least one of the present embodiments to provide a synthetic composition panel with a tree bark simulated surface wherein the plurality of irregular grooves include grooves which extend a depth of at least about 50 percent of the panel height and in another aspect of the invention the irregular grooves extend a depth of at least about 75 percent of the panel height.

[0007] Further, the synthetic composition panel provides a plurality of the irregular grooves and indentations which define an included angle of at least about 45 degrees. In some embodiments, the synthetic composition panel’s irregular grooves and indentations may extend in a substantially parallel fashion and are discontinuous from one edge of the panel relative to an opposite edge of the panel. In other embodiments, substantially all of the irregular grooves and indentations are continuous from one edge of a panel to an opposite edge of the panel, thereby facilitating drainage of water from the upper surface.

[0008] These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] A fully enabling disclosure of the present invention, including the best mode thereof to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings.

[0010] FIG. 1 is a perspective view of a dwelling covered by simulated bark siding according to an embodiment of the invention;

[0011] FIG. 2 is a perspective view of a sheet of simulated bark siding according to an embodiment of the invention;

[0012] FIG. 3 is a top plan view of the sheet shown in FIG. 2;

[0013] FIG. 4 is a bottom plan view of the sheet shown in FIG. 2;

[0014] FIG. 5 is an elevational view of a major side edge of the sheet shown in FIG. 2;

[0015] FIG. 6 is an elevational view of a minor side edge of the sheet shown in FIG. 2;

[0016] FIG. 7 is a perspective view of a sheet of simulated bark roofing material according to an additional embodiment of the invention;

[0017] FIG. 8 is an elevational view of an alternative embodiment of a simulated bark siding showing a backing member;

[0018] FIG. 9 is a perspective view of an enlarged portion of the simulated bark surface showing additional details of the grooves, indentations, and ridges; and

[0019] FIG. 10 is the elevational view of a major side edge of a simulated bark siding panel showing additional details of the grooves, indentations, and ridges.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0020] Reference will now be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features, and aspects of the present invention are disclosed in the following detailed description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.

[0021] In describing the various figures herein, the same reference numbers are used throughout to describe the same
material, apparatus, or process pathway. To avoid redundancy, detailed descriptions of much of the apparatus once described in relation to a figure is not repeated in the descriptions of subsequent figures, although such apparatus or process is labeled with the same reference numbers.

[0022] Simulated bark siding according to an embodiment of the invention is shown broadly in FIG. 1 at reference numeral 10 as it appears on exterior surfaces 11 of a simple dwelling “D” such as a home or office. As used herein, the term “siding” with respect to the present invention refers to a synthetic product having a simulated bark ornamental surface which may be used as a building material for placement on the exterior of a dwelling, on interior walls, as a roofing material, and as shaped into articles such as decorative door trim, crown molding, chair molding, and window frame molding. The dwelling “D” in FIG. 1 is merely an example of the types of dwellings on which the siding 10 may be installed; the siding 10 may be installed on any dwelling having one or more exterior surfaces suitable to receive siding, including but not limited to dwellings with sizes and designs that vary dramatically from those of the dwelling “D” shown in FIG. 1.

Sheets of the siding 10 may be installed on the exterior surfaces 11 of the dwelling “D” in any one of a number of aesthetically and functionally desirable configurations known to those of ordinary skill in the art, including but not limited to the configuration shown in FIG. 1. Further, sheets of a siding 10 may be used as interior decorative wall siding or, as discussed in other embodiments of the present invention, the siding 10 may be used as a roofing material including shingles.

[0023] A single sheet 12 of the siding 10 is shown in FIGS. 2, 3, 4, 5, and 6. The siding sheet 12 as illustrated is substantially rectangular and includes a major outward-facing surface 13 (FIGS. 2 and 3), a major inward-facing surface 14 (FIG. 4) that opposes the major outward-facing surface 13, a pair of opposing major side edges 15, and a pair of opposing minor side edges 20. The major outward-facing surface 13 of the siding sheet 12 is formed to define a plurality of grooves and indentations 21 and a plurality of ridges 22 that are collectively configured to simulate the appearance of an outward-facing surface of a sheet of tree bark (not shown) such as poplar tree bark. The configuration of the plurality of grooves and indentations 21 and the plurality of ridges 22 may or may not follow a predesigned and/or preselected repeating pattern. The major inward-facing surface 14 of the siding sheet 12 is sufficiently smooth to enable substantial engagement of the major inward-facing surface 14 against the exterior surfaces 11 of the dwelling “D” when the siding sheet 12 is installed on the dwelling “D”. While the siding sheet 12 is illustrated as rectangular, the shape of any one siding sheet 12 may be varied to accommodate the enumerated uses and examples.

[0024] The siding sheet 12 may be fabricated from any material known by those of ordinary skill in the art as being capable of being formed to define the plurality of grooves and indentations 21 and the plurality of ridges 22 and capable of weathering the conditions and elements to which the siding sheet 12 may be exposed. As known by those of ordinary skill in the art, such materials may include, without limitation, wood fiber and/or concrete, and may be formed to define the plurality of grooves and indentations 21 and the plurality of ridges 22 using processes such as, without limitation; molding, injection molding, vacuum molding, foam molding, extrusion with embossing, and/or stamping. The overall process used to manufacture the siding sheet 12 comprises selecting a fabrication material, selecting a fabrication method, selecting or designing a fabrication design or pattern that simulates the appearance of an outward-facing surface of tree bark, obtaining a portion of the selected fabrication material that may be formed to define the selected or designed fabrication design or pattern through use of the selected fabrication method, and practicing the selected fabrication method on the formable portion of the selected fabrication material to form the selected or designed fabrication design or pattern on the selected fabrication material.

[0025] Any desired synthetic wood compositions, polymers, or foamed polymer compositions may be used in the present invention. For instance, the materials used to make the siding sheet of the present invention may be virgin or recycled materials including, but not limited to, cellulosic fillers, polymers, plastics, thermoplastics, rubber, inorganic fillers, cross-linking agents, lubricants, process aids, stabilizers, accelerators, inhibitors, enhancers, compatibilizers, blowing agents, foaming agents, thermosetting materials, and other similar, suitable, or conventional materials.

[0026] Examples of cellulosic fillers include sawdust, newspapers, alfalfa, wheat pulp, wood chips, wood fibers, wood particles, ground wood, wood flour, wood flakes, wood veneers, wood laminates, paper, cardboard, straw, cotton, rice hulls, coconut shells, peanut shells, biax, plant fibers, bamboo fiber, palm fiber, kenaf, and other similar, suitable, or conventional materials.

[0027] Examples of polymers include multilayer films, high density polyethylene (HDPE), polypropylene, polyvinyl chloride (PVC), low density polyethylene (LDPE), chlorinated polyvinyl chloride (CPVC), acrylonitrile butadiene styrene (ABS), ethyl-vinyl acetate (EVA), polystyrene, other similar copolymers, other similar, suitable, or conventional plastic materials, and formulations that incorporate any of the aforementioned polymers.

[0028] Examples of inorganic fillers include talc, calcium carbonate, kaolin clay, magnesium oxide, titanium dioxide, silica, mica, barium sulfate, acrylics, and other similar, suitable, or conventional materials.

[0029] Examples of thermosetting materials include polyurethanes, such as isocyanates, phenolic resins, unsaturated polyesters, epoxy resins, and other similar, suitable, or conventional materials. Combinations of the aforementioned materials are also examples of thermosetting materials.

[0030] Examples of lubricants include zinc stearate, calcium stearate, esters, amide wax, paraffin wax, ethylene bis-stearamide, and other similar, suitable, or conventional materials.

[0031] Examples of stabilizers include tin stabilizers, lead and metal soaps such as barium, calcium, and zinc, and other similar, suitable, or conventional materials. UV protectant stabilizers and biocides may also be incorporated into the molding or extruding materials. In addition, examples of process aids include acrylic modifiers and other similar, suitable, or conventional materials.

[0032] Examples of synthetic wood compositions include, but are not limited to, plastic/cellulosic filler compositions, polymer/cellulosic filler compositions, thermosetting/cellulosic filler compositions, thermoplastic/cellulosic filler compositions, rubber/cellulosic filler compositions, foamed synthetic wood compositions, inorganic-filled plastic compositions, and other synthetic wood compositions that are known now or in the future.
Where the synthetic compositions used to form a siding sheet 12 utilize flow molding or similar techniques, it is possible for much of the interior of the synthetic panel to define a significant number of voids or air space within the interior of the panel. The presence of the hollow voids within the panel can be beneficial depending upon the end application of the siding sheets 12. For instance, where weight is a concern, such as when used as a roofing material, it may be advantageous to maximize the amount of air space so as to reduce the weight of the panels. It is also possible to fill the voids with an insulating foam so as to improve the resistance (R) value to provide an increased measure of thermal insulation to structures which incorporate the panels. Similarly, it is envisioned that the interior of the panels could be maintained at a negative air pressure, i.e., a partial vacuum, which also increases the R value of the siding sheet 12.

In one aspect of the present invention of the present invention, a siding sheet 12 can be provided in which the ornamental bark surface is pigmented using colors and color variations to mimic a natural tree bark product. One way of accomplishing the desired coloration is to use pigments in the molding or formation stage such that the color is inherent in the material mixed throughout the thickness of the material. In this manner, any scratches or surface flaws that may result do not show an obvious color variation. The process of formulating, multi-color materials such as plastics are well known in the art. For instance, when using molten resins, it is well known to incorporate a base pigment along with additional color pigments, the additional color pigments being in the form of pellets having a different melting temperature than a base material. By partially melting the different melting point pigments and with appropriate mixing, desirable streaks of pigment can result at which time the material can be appropriately molded, extruded, or otherwise formed into the desired siding sheet 12. In this manner, a siding sheet 12 can be provided having multiple gradations of a realistic mark coloration which, depending upon the bark species, may include multiple variations of gray, brown, and with streaks or patches of black and white. While multiple color combinations are possible, it is believed preferred to closely mimic the natural appearance of the appropriate bark species.

It is also envisioned that the siding sheet 12 may be formed of a single color in which paints may thereafter be supplied. For instance, in a brown or gray tone simulated bark pattern, the original siding sheet 12 may be formed using a dark brown pigment. Thereafter, a short nap roller can be used to apply a complimentary but contrasting color to portions of the panel surface. By using a short napped roller, the deeper recesses of the molded, ornamental product will not receive any applied paint. The resulting painted product has a contrast between the painted color and the original molded color which is visible in the deeper recesses and edges of the molded product.

The siding sheet 12 may be installed on the exterior surfaces 11 of the dwelling “D” using fasteners, adhesive, and/or other installation materials known to those of ordinary skill in the art. When used as an interior or exterior siding material, the siding sheets 12 may be secured using nails, screws, or similar fasteners. Depending on the nature of the molded material used to fashion the siding sheets 12, the siding sheets 12 can be nailed in place similar to a natural bark siding product. For molded siding panels that may be too strong or brittle for conventional nailing, the siding sheet 12 may be installed by drilled pilot holes which are then used to insert a nail or a screw. Alternatively, the panels may define predetermined apertures in which nails or other fasteners may be used to attach the product to a structural support. Additionally, it is possible to use an appropriate architectural grade adhesive to apply the panels directly to the dwelling’s interior or exterior walls.

Further, the siding sheets 12 may be adhered to a backing material such as a rigid, structural backing material 30 as seen in FIG. 7 in which the backing material is then used to mount the roofing panel 12 with attached backing to a structural support.

As best seen in reference to FIG. 8, the bottom surface of siding sheet 12 may have a coating of a sealable material 30 which facilitates the installation and water resistant properties of the installed siding sheets 12. As seen in FIG. 8, a coating layer 30 is seen. Coating layer 30 may be in the form of an architectural grade adhesive. Alternatively, coating layer 30 may comprise a sealable membrane such as membranes used in roofing materials to seal around nail holes. For instance, it is known in the art to use sealants which incorporate materials such as polysiloxanes, polybutyl, polysiloxane, butyl rubber, styrene-isoprene-styrene, styrene-butadiene-styrene, styrene-ethylene-butadiene-styrene, acrylics, polyeurethanes, static polypropylene, and other similar sealants and/or suitable mixtures thereof. Optionally, coating layer 30 comprises a plastic mixture containing asphalt, filler, and one or more of the sealants described above which is applied to the bottom surface of the siding sheet 12. If desired, a protective release liner 32 may thereafter be applied to the adhesive layer which is removed at the time of installation.

The use of a sealant material as a coating layer 30 facilitates sealing of areas in proximity to nails or screws used to attach the siding sheet panels. Suitable adhesives which may be used as the backing layer 30 may be found in reference to U.S. patent application publication US 2007/0199276 A1 which is incorporated herein by reference.

The sealable adhesive backing layer 30 and optional paper backing layer 32 could also be applied to the lower surface of the siding sheet 12 as seen in FIG. 7 as modified for use as a roofing material. In addition, the flanges with attachment apertures seen in FIG. 7 could also be installed with self-sealing roofing nails as a replacement for or in addition to an adhesive/sealing layer present on the lower surface of the siding sheet 12 seen in FIG. 7.

As seen in FIG. 7, the backing 30 provides structural support and may extend beyond the border of roofing panel 12, allowing an overlapping installation of adjacent panels which covers the presence of the backing material of adjacent panels.

If desired, the backing material 30 may overlap additional edges as well. By having backing material which extends beyond the boundaries of the decorative portion of siding sheet 12 or roofing panel 12 facilitates the placement of a complete moisture barrier by installation of the panels by having overlapping backing areas. The presence of the backing material also allows for slight gaps to be maintained, without loss of moisture barrier properties, the gaps being needed to allow for thermal expansion and contraction of the panels which in exterior environments may be exposed to a temperature range of over 150°F variation. The necessity and extent of possible gaps for thermal expansion depend greatly upon the nature of the material used to make the molded product. For interior use, placement of panels is not depen-
dent upon allowances for thermal expansion. If desired, the backing material 30 may be integral with and an extension of the molded material used to form the siding sheet 12.

[0043] As best seen in reference to FIGS. 2, 5, and 6, a number of grooves and indentations 21 and ridges 22 are defined within the surface of the siding sheet 12. The grooves and indentations 21 form a random pattern of indentations of varying depth, width, and properties, which simulate the appearance of tree bark. As seen in the illustrated embodiment of FIG. 2, a bark pattern similar to poplar bark is provided.

[0044] The various indentations and grooves 21 and ridges 22, as illustrated in FIG. 2, form an overall parallel pattern relative to adjacent indentations and grooves. While this particular pattern is representative of numerous bark patterns such as poplar tree bark, there are other bark patterns such as pine bark or dogwood which may have well defined grooves and indentations 21 which form various polygonal structures such that some grooves may extend both vertically and horizontally across the simulated bark surface of siding sheet 12.

[0045] The synthetic bark surface, because of the deep grooves and indentations patterns, offers a three-dimensional product face which simulates the aesthetic appearance of a natural bark siding product. The bark facing of the present invention offers a textured surface which creates a series of shadows and areas of contrast which can be seen in all types of lighting. The number, placement, and extent of the grooves and indentations 21 achieve a realistic bark appearance. As best seen in reference to FIGS. 5 and 10, a number of the grooves and indentations 21 define an included angle of at least about 45° (including some which are 90° or greater) within the siding sheet 12. The combination of the depth and the angled walls helps to simulate a realistic appearance of a tree bark. Even the relatively flat regions such as the surface of ridges 22 may display the fine texture and detail of wood grain, as best seen in FIG. 9, thereby simulating the appearance of a natural bark. Further, the textured surface of the simulated poplar bark maintains a tactile quality which, when touched, mimics the rough texture of a natural bark product.

[0046] In one embodiment of the present invention, the siding sheet 12, as best seen in cross section in FIGS. 5 and 6 defines a series of grooves and indentations in which at least a portion of said grooves and indentations defines a depth of at least 50 percent of the panel thickness. More preferably, at least some of the grooves extend a depth of at least about 75 percent of the panel thickness when measured from an upper surface to a lower surface of a panel thickness. The depth and degree of defined surface texture facilitates the appearance of a natural bark product. The deeper grooves and indentations also provide greater structural strength to the panel by better distribution of weight. Increased strength allows the siding sheet 12 to absorb impact better. Further, when used as a roofing material, the increased structural strength provided by the surface grooves and indentations helps support and distribute weight better such that the roofing material can be walked upon without damage.

[0047] As seen in an end view such as in FIG. 5, cross section, the surface area of the upper ornamental surface is approximately 50 percent greater than the surface area of the corresponding flat bottom surface. Having a surface area which is at least about 50 percent greater than a corresponding flat surface provides for a realistic depth and appearance to the molded product. Furthermore, the numerous downwardly directed edges of the various grooves and indentations 21 increase the structural strength and rigidity of the ornamental surface of the panel as compared to a flat surface hollow molded product. The 50 percent or more increase in surface area contributes enormously to the desired simulated bark appearance and contributes to the functionality of the siding sheet 12.

[0048] As best seen in reference to FIGS. 9 and 10, close ups of the simulated bark surface set forth that the molded product presents a realistic depiction of a natural oak bark product. For instance, the upper ridge lines are not necessarily smooth but form an uneven texture of shallow depressions and raised regions including a visible wood grain pattern as seen by reference numeral 34. As illustrated, the grooves and indentations 21 and ridges 22 provide a realistic texture appearance both visually as well as providing a tactile sensation similar to a natural oak bark product.

[0049] For instance, the increased surface area allows for a greater radiant cooling effect such that the siding more quickly radiates heat away from the underlying structure. With respect to both an exterior wall siding and a roofing product, the ability to radiate heat prevents excessive heat accumulation and transfer to the adjacent dwelling. The increase in surface area of the ornamental surface also helps to prevent build up of undesired heat. But for brief intervals when the sun is directly opposite a surface of the panel, the extensive grooves and indentations 21 and the 45 degree or greater wall angles defined by many of the grooves and indentations 21 provide some element of shade/shadow to at least portions of the exposed surfaces of the panels. The shaded portions help maintain an overall cooler surface as opposed to a completely flat surface.

[0050] One of the attributes of a natural bark siding product favored by many consumers is the actual “weathered” look which increases over time for the natural bark siding. In areas of adequate moisture and shade, algae, moss, and similar plants may colonize the natural bark product and contribute to the overall aesthetic appeal of the siding. By providing a series of grooves and indentations, the synthetic siding sheets 12 facilitate a similar weathering process. If desired, the molded siding sheets 12 will facilitate the accumulation and colonization by algae, moss, and similar plants which enhance the aesthetic appearance of the molded product. While such growth on a conventional flat siding material designed to simulate finished wood or a painted wood product is considered unsightly, the texture and appearance of the siding sheet 12 can be enhanced by such natural colonization. However, if such growth is either excessive or considered unsightly, the durable nature of the simulated bark siding sheets 12 can be easily cleaned using conventional pressure cleaning and/or bleaching techniques. Such techniques are potentially harmful to and shorten the life of natural wood siding or many conventional roofing products such as a wooden shake roof, asphalt roof, or composite shingle roofing materials.

[0051] As best seen in reference to FIG. 7 a simulated bark siding material may be configured for use as a roofing product. As is conventional within the roofing art, a flange area or backing 30 is defined which extends along a bottom of the sheet 12 and extends in an upward direction as seen relative to a conventional pitch of a roof. The backing 30 defines a series of apertures which can be used to secure the roofing panel to a roof. As is well known in the art, subsequent panels can be placed in an overlapping position such that the flange region of each panel is positioned beneath the next adjacent roofing
member. To facilitate drainage, the groove and indentation pattern 21 may be modified as desired such that the grooves are substantially continuous and/or interconnect so as to drain from one panel to an adjacent panel. However, it is envisioned that there are applications where the various channels and grooves may have some advantage in maintaining pockets of water or moisture which don’t drain. For instance, some roofing designs operate on an evaporative cooling concept in which the evaporation of water from the roofing material facilitates cooling of the building structure by preventing accumulation of heat in the roof. Accordingly, in temperate regions which receive frequent intervals of rain and warm temperatures, the extensive surface area beneath the upper surface of the panel may provide for an accumulated pool of moisture from rainfall, dew condensation, or sprinklers such that the siding sheet 12 facilitates an evaporative cooling process of the roof. As seen in FIGS. 2 and 7, siding sheet 12 and roofing panel 12 illustrate the series of grooves and indentations some of which are continuous from one edge to an opposite edge and others which are discontinuous. This particular pattern of mixed continuous and discontinuous grooves more closely approximates the natural pattern of bark although this pattern may be modified to address the needs set forth above.

The shape and size of the decorative simulated bark siding sheet 12 or roofing panel 12 may be varied and adapted to achieve a number of different construction products. For instance, where a rustic look of a bark appearance is desired, the sheets 12 or panels 12 can be manufactured in a size and dimension for use as decorative door molding, window moldings, chair rails, crown molding, as well as used as exterior covering on exposed ceiling beams, porch or deck railings, and similar structures.

Simulated bark siding and a method of manufacturing the same are described above. Although preferred embodiments of the invention have been described using specific terms, devices, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present invention which is set forth in the following claims. In addition, it should be understood that aspects of the various embodiments may be interchanged, both in whole, or in part. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained therein.

That which is claimed:

1. A synthetic composition panel having a surface which resembles tree bark comprising:
 a panel having an upper surface and a lower surface, said panel having a height of at least about 0.25 inches to about 0.75 inches;
 said upper panel further defining a plurality of irregular grooves and indentations interspersed between a plurality of intervening ridge regions, said upper surface having a surface area at least about 50 percent greater than said lower surface.

2. The synthetic composition panel according to claim 1 wherein said plurality of grooves include grooves which extend a depth of at least about 50 percent of the panel height.

3. The synthetic composition panel according to claim 1 wherein said plurality of grooves include grooves which extend a depth of at least about 75 percent of the panel height.

4. The synthetic composition panel according to claim 1 wherein a plurality of said irregular grooves and indentations define an included angle of at least about 45 degrees.

5. The synthetic composition panel according to claim 1 wherein said irregular grooves and indentations extend in substantially parallel fashion and are discontinuous from one edge of the panel to an opposite edge of the panel.

6. The synthetic composition panel according to claim 1 wherein substantially all of said irregular grooves and indentations are continuous from one edge of a panel to an opposite edge of said panel, thereby facilitating drainage of water from said upper surface.

7. The synthetic composition panel according to claim 1 wherein said ridge regions further define a simulated wood grain.

8. A synthetic composition panel having a surface which resembles tree bark comprising:
 a panel having an upper surface and a lower surface, said panel having a height of at least about 0.25 inches to about 0.75 inches;
 said panel further defining a plurality of irregular grooves and indentations interspersed between a plurality of intervening ridge regions, said upper panel surface having a surface area of at least about 50 percent greater than said lower surface;
 an adhesive seal layer applied to a lower surface of said panel, said adhesive seal layer comprising a sealable mixture adapted for providing a water tight seal around a nail used to install the synthetic composition panel.

9. The synthetic composition panel according to claim 8 wherein said adhesive seal layer comprises a mixture of an asphalt and an adhesive sealant selected from the group consisting of styrene-butadiene-styrene, polybutane, polybutylene and mixtures thereof.