发明名称：表面活性剂作辅助剂的 EMT 沸石的合成方法

摘要
本发明是一种降低 EMT 沸石合成成本和晶化时间的新方法。现有降低合成成本的方法是所谓减少水含量的稠密体系法，但存在操作困难的缺点。本发明通过在传统的合成体系中加入少量廉价易得的表面活性剂使昂贵的 18-冠-6 模板剂的相对用量减少 40～50%，同时使晶化时间缩短为 5 天，晶化温度范围拓宽为 100～130℃。本发明具有如下特点：一、18-冠-6 模板剂的使用效率明显提高，合成成本降低；二、由于合成中不降低水溶剂的使用量，从而使操作过程简便易行；三、所用的合成步骤至今尚未见报道。
权利要求书

1. 一种表面活性剂作辅助剂合成 EMT 沸石的方法，以硅溶胶、铝酸钠分别作为硅源和铝源，以 18-冠-6 作为模板剂，添加的表面活性剂是阳离子型、阴离子型或非离子型，合成步骤如下:
 (1) 将表面活性剂溶解于水中，使其浓度范围是 0.02~0.20mol/L;
 (2) 将硅源、铝源和 18-冠-6 与表面活性剂溶液混合，在 20~35℃下搅拌约 0.5~1.5h，接着在室温下老化 12~48h，然后将混合物转入反应釜中;
 (3) 上述各原料之间的摩尔比范围如下: SiO₂/Al₂O₃ = 8~12, Na₂O/Al₂O₃ = 1.8~3.0, 18-冠-6/Al₂O₃ = 0.2~1.0;
 (4) 在 80~160℃的条件下晶化 3~30 天;
 (5) 晶化后的固体沉淀，经过滤、洗涤、烘干、焙烧即可。

2. 根据权利要求 1 所述的表面活性剂作辅助剂的 EMT 沸石的合成方法，其特征在于表面活性剂溶液的浓度范围是 0.03~0.10mol/L。

3. 根据权利要求 1 所述的表面活性剂作辅助剂的 EMT 沸石的合成方法，其特征在于室温老化时间是 20~24h。

4. 根据权利要求 1 所述的表面活性剂作辅助剂的 EMT 沸石的合成方法，其特征在于各原料之间的摩尔比范围是 SiO₂/Al₂O₃ = 9~11, Na₂O/Al₂O₃ = 1.8~2.4, 18-冠-6/Al₂O₃ = 0.35~0.70。

5. 根据权利要求 1 所述的表面活性剂作辅助剂的 EMT 沸石的合成方法，其特征在于各原料之间的摩尔比范围是 SiO₂/Al₂O₃ = 10~11, Na₂O/Al₂O₃ = 2.1~2.2, 18-冠-6/Al₂O₃ = 0.35~0.40。

6. 根据权利要求 1 所述的表面活性剂作辅助剂的 EMT 沸石的合成方法，其特征在于晶化温度范围是 100~130℃。

7. 根据权利要求 1 所述的表面活性剂作辅助剂的 EMT 沸石的合成方法，其特征在于晶化时间是 5~7 天。
说明

表面活性剂作辅助剂的 EMT 沸石的合成方法

本发明涉及一种加入表面活性剂高效合成 EMT 沸石的新方法。

本世纪六十年代人们即推断八面沸石中除包括 FAU （X 和 Y 沸石的总称）沸石外，还可能存在一种现在称为 EMT 的沸石。这两种沸石都由方钠石笼（或称β笼）通过双六员环相互连接而成。但不只连接的方式不同，二者又有显著的差别，主要表现为：EMT 沸石包括 Hypercage 和 Hypocage 两种类型的超笼，而且具备二维交叉的 12-员环直孔道体系，因此结构十分通畅；FAU 则只有一种类型的超笼，没有直孔道。由于 EMT 优越的结构特征，人们一直企图合成出纯 EMT 晶相。直到 1990 年，纯 EMT 沸石才由 F. Delprato 等人在使用 18-冠-6 作为模板剂的情况下首次得到，并且发现 EMT 沸石在八面沸石中有很高的硅铝比（Si/Al 在 3~5 之间），以后对这种沸石的研究还发现，氢型 EMT 的酸度比相同硅铝比的氢型 Y 沸石大。

众所周知，当今催化领域中，尤其在流动床催化裂化（FCC）过程中，Y 沸石起着非常重要的作用，而 EMT 沸石无论在结构上还是物理化学性质上较 Y 沸石都有很多优势，因此这种沸石已引起工业界的兴趣，具有十分诱人的潜在应用前景。然而，到目前为止，合成纯 EMT 沸石必须使用昂贵的 18-冠-6 模板剂，使得 EMT 沸石的合成成本太高，另一方面，合成 EMT 沸石所必需的晶化时间也较长（晶化温度为 110℃时一般晶化一周以上），这必将使其工业应用受到严重的限制。因此，在目前不能完全替代 18-冠-6 的情况下，尽量减少 18-冠-6 的相对用量和晶化时间就显得很有意义，这方面的文献报道很少。T. Chatelain 等人利用所谓的“稠密体系法”使 18-冠-6 的相对用量减少了约 40%，但这种方法因较大程度减少了水溶剂的用量从而增加了操作的难度。
本发明的目的是开发一种既能有效降低18-冠-6模板剂的相对用量又不增加操作难度的简便快速合成纯EMT沸石的实用方法。

本发明可分情况添加离子型表面活性剂（例如：十六烷基三甲基溴化铵、十二烷基苯基三甲基溴化铵等）、阴离子型表面活性剂（例如：十二烷基硫酸钠等）和非离子型表面活性剂（例如：烷基糖苷、月桂酸单乙醇酰胺聚氧乙烯（15）醚等），以18-冠-6作为模板剂，采用廉价的硅溶胶、铝酸钠分别作为硅源和铝源，通过晶化步骤合成出纯EMT沸石。

本发明先将表面活性剂溶解于水中，使其浓度范围在0.02~0.20mol/L之间，然后将硅源、铝源和18-冠-6与表面活性剂溶液混合，在20~35℃下搅拌0.5~1.5h，所得混合物中各原料之间的摩尔比是：SiO₂/Al₂O₃ = 8~12，Na₂O/Al₂O₃ = 1.8~3.0，18-冠-6/Al₂O₃ = 0.2~1.0。接着将反应混合物在室温下老化12~48h后转入不锈钢高压釜中，在80~160℃的条件下晶化3~30天。晶化后所得的固体沉淀经过滤、洗涤、烘干后即得合成型EMT沸石。将合成型EMT在空气气氛下焙烧脱除沸石中的18-冠-6模板剂（程序为：200℃/2h，540℃/4h）后得到焙烧型EMT沸石。

上述表面活性剂溶液较好的浓度范围是0.03~0.10mol/L。对于不同的表面活性剂，其溶液所应达到的浓度也一定有差异，这是因为表面活性剂只有在超过临界胶束浓度（CMC）后才能显著改变水溶剂的物理化学性质，从而起到应有的作用。

上述反应混合物在室内条件下较合适的老化时间为20~24h。对于EMT沸石的合成，老化阶段对加快沸石的晶化是有利的。

上述各原料之间摩尔比的较好范围如下：SiO₂/Al₂O₃ = 9~11，Na₂O/Al₂O₃ = 1.8~2.4；

18-冠-6/Al₂O₃ = 0.35~0.70。

上述各原料之间摩尔比的最好范围如下：SiO₂/Al₂O₃ = 10~11，Na₂O/Al₂O₃ = 2.1~2.2；

18-冠-6/Al₂O₃ = 0.35~0.40。

上述晶化温度的较好范围是100~130℃。晶化温度降低会使晶化时间延长，而晶化温度提高会有少量杂质出现，使EMT沸石的纯度降低。

上述晶化时间的较适宜范围是5~7天。晶化时间延长同样可以得到EMT沸石，但合成效率降低。

本发明使用的表面活性剂作辅助剂的合成方法获得如下效果。
(1) 在文献报道的水热合成体系中只需加入少量廉价易得的表面活性剂作为辅助剂就可使18-冠-6的相对用量减少40~50%；
(2) 合成EMT沸石的晶化时间大大缩短；
(3) 合成EMT沸石的晶化温度范围有所拓宽。

本发明的表面活性剂作辅助剂的EMT合成方法与传统EMT沸石的合成方法的产率和晶化时间两个指标的对比：

<table>
<thead>
<tr>
<th></th>
<th>表面活性剂作辅助剂的方法</th>
<th>传统方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>产率（克EMT/克18-冠-6）</td>
<td>4.0~4.5</td>
<td>6.5~7.0</td>
</tr>
<tr>
<td>晶化时间（天）</td>
<td>5~7</td>
<td>>25</td>
</tr>
</tbody>
</table>

本发明的EMT沸石具有典型的图1~6的表征结果。

图1是成型型EMT沸石的粉末X射线衍射谱（XRD）。在θ=5~7°的范围内有三个强度依次递减的衍射峰，分别对应于EMT沸石的[100]、[002]和[101]晶面，是EMT沸石的特征衍射峰。

图2是焙烧型EMT沸石的粉末X射线衍射谱（XRD）。此图表明，成型型EMT在脱模板剂过程中沸石的骨架结构能够很好的保持。

图3是成型型EMT沸石的扫描电镜（SEM）图象。从图中可以明显看到，成型出的EMT的晶粒外貌呈六角形片状，尺寸一般小于2μm。

图4是成型型EMT沸石的29Si魔角旋转核磁共振谱（MAS NMR）。在90~110ppm的化学位移范围内的三个峰依次对应于EMT沸石中Si(2Al)、Si(1Al)和Si(0Al)，由此可以计算出成型的EMT沸石的骨架硅铝比是3.6。

图5是成型型EMT沸石的27Al魔角旋转核磁共振谱（MAS NMR）。化学位移是60.6ppm处的峰对应于四配位的骨架铝，未出现0ppm附近的六配位非骨架铝信号，这表明铝物种全部进入沸石骨架。

图6是EMT的差热分析曲线（DTA）。包含在EMT超笼中的18-冠-6模板剂的脱除分两个阶段，分别对应于218.1℃和264.8℃。

实施例1：配成摩尔浓度为0.04mol/L的十六烷基三甲基溴化铵表面活性剂溶液，然
后将一定量的硅源（SiO2，25~30%）、铝源（Al2O3，43%）和18-冠-6模板剂与表面活性
剂溶液混合，所得混合物的摩尔比为 9 SiO₂：1 Al₂O₃：2.1 Na₂O：0.4 [18-冠-6]。将混合物在室温 (25℃) 下搅拌 1h 后转入不锈钢反应釜中，先在室温下静态老化 24h，然后加热到 100℃晶化 6 天，所得固体沉淀物经过滤、洗涤和烘干步骤得合成型 EMT，将其在空气气氛下焙烧（程序为：250℃/2h，500℃/4h）后得焙烧型 EMT。

实施例 2：配成摩尔浓度为 0.09mol/L 的十二烷基苯基三甲基氯化铵表面活性剂溶液，然后将一定量的硅源（SiO₂，25~30%）、铝源（Al₂O₃，43%）和 18-冠-6 模板剂与表面活性剂溶液混合，所得混合物的摩尔比为 10 SiO₂：1 Al₂O₃：2.2 Na₂O：0.4 [18-冠-6]。将混合物在室温 (30℃) 下搅拌 0.5h 后转入不锈钢反应釜中，先在室温下静态老化 15h，然后加热到 100℃晶化 7 天，所得固体沉淀物经过滤、洗涤和烘干步骤得合成型 EMT，将其在空气气氛下焙烧（程序为：250℃/2h，500℃/4h）后得焙烧型 EMT。

实施例 3：配成摩尔浓度为 0.05mol/L 的十二烷基硫酸钠表面活性剂溶液，然后将一定量的硅源（SiO₂，25~30%）、铝源（Al₂O₃，43%）和 18-冠-6 模板剂与表面活性剂溶液混合，所得混合物的摩尔比为 11 SiO₂：1 Al₂O₃：2.4 Na₂O：0.4 [18-冠-6]。将混合物在室温 (20℃) 下搅拌 1.5h 后转入不锈钢反应釜中，先在室温下静态老化 20h，然后加热到 120℃晶化 5 天，所得固体沉淀物经过滤、洗涤和烘干步骤得合成型 EMT，将其在空气气氛下焙烧（程序为：250℃/2h，500℃/4h）后得焙烧型 EMT。

实施例 4：配成摩尔浓度为 0.04mol/L 的烷基磺酰表面活性剂溶液，然后将一定量的硅源（SiO₂，25~30%）、铝源（Al₂O₃，43%）和 18-冠-6 模板剂与表面活性剂溶液混合，所得混合物的摩尔比为 10 SiO₂：1 Al₂O₃：2.2 Na₂O：0.4 [18-冠-6]。将混合物在室温 (35℃) 下搅拌 1.5h 后转入不锈钢反应釜中，先在室温下静态老化 24h，然后加热到 110℃晶化 5 天，所得固体沉淀物经过滤、洗涤和烘干步骤得合成型 EMT，将其在空气气氛下焙烧（程序为：250℃/2h，500℃/4h）后得焙烧型 EMT。

实施例 5：配成摩尔浓度为 0.04mol/L 的月桂酸单乙醇酰胺聚氧乙烯 (15) 醚表面活性剂溶液，然后将一定量的硅源（SiO₂，25~30%）、铝源（Al₂O₃，43%）和 18-冠-6 模板剂与表面活性剂溶液混合，所得混合物的摩尔比为 11 SiO₂：1 Al₂O₃：2.3 Na₂O：0.4 [18-冠-6]。将混合物在室温 (25℃) 下搅拌 1.0h 后转入不锈钢反应釜中，先在室温下静态老化 20h，然后加热到 110℃晶化 7 天，所得固体沉淀物经过滤、洗涤和烘干步骤得合成型 EMT，将其在空气气氛下焙烧（程序为：250℃/2h，500℃/4h）后得焙烧型 EMT。
图 1

图 2
图3

图4