
(19) 대한민국특허청(KR)
(12) 등록특허공보(B1)

(51)Int. Cl.
6

G06T 1/00

(45) 공고일자 2002년06월20일

(11) 등록번호 10-0331351

(24) 등록일자 2002년03월22일
(21) 출원번호 10-1998-0701282 (65) 공개번호 특1999-0044049
(22) 출원일자 1998년02월21일 (43) 공개일자 1999년06월25일

 번역문제출일자 1998년02월21일

(86) 국제출원번호 PCT/US1996/12719 (87) 국제공개번호 WO 1997/09665
(86) 국제출원일자 1996년08월05일 (87) 국제공개일자 1997년03월13일

(81) 지정국 국내특허 : 아일랜드 오스트레일리아 캐나다 일본 EP 유럽특허 : 오스트
리아 벨기에 스위스 독일 덴마크 스페인 프랑스 영국 그리스 이탈
리아 룩셈부르크 모나코 네덜란드 포르투칼 스웨덴

(30) 우선권주장 518031 1995년08월22일 미국(US)

(73) 특허권자 휴렛-팩커드 컴퍼니(델라웨어주법인) 파트릭 제이. 바렛트

미합중국 캘리포니아주 (우편번호:94304) 팔로 알토 하노버 스트리트 3000
(72) 발명자 프래져 알렌 엘

미국 켄사스주 67230 위치타 윌로우 벤드 코트 14602

브래드번 브렌트 엠

미국 켄사스주 67206 위치타 비츠 로드 12
(74) 대리인 김창세, 장성구

심사관 : 전상현

(54) 이진입력데이터스트림압축방법

명세서

기술분야

본 발명은 전반적으로 데이터 압축 분야에 관한 것으로서, 더욱 구체적으로는, 무손실 이미지 데<1>
이터 압축 및 압축해제(lossless image data compression and decompression)에 관한 것이다.

배경기술

이미지 데이터 정보의 전송 및 저장은 오늘날의 컴퓨터화된 세상에서 그 중요성이 날로 증가하고 <2>
있다. 이미지 스캐너, 사진복사 머신(photocopy machine), 전화 팩시밀리 머신 등은 한장의 인쇄된 텍
스트(text)나 도면과 같은 이미지를 디지털화한 후 그 이미지를 비트맵으로서 저장 또는 전송한다.

이렇게 이미지 데이터를 디지털화할 때에는, 처리 속도를 증가시키기 위해서, 필요한 메모리 저<3>
장량이나 전송 대역폭을 줄이기 위해서, 저장된 이미지의 해상도를 높이기 위해서, 또는 이 중 두 가지
이상을 목적으로, 데이터를 압축하는 것이 바람직하다. 이미지 데이터는 막대한 양의 중복 정보
(redundant inforamation)를 포함하는 것이 보통이므로, 종종, 중복 정보의 상당량을 제거함으로써, 이미
지를 표현하는 데 필요한 비트수를 줄이는 것이 가능하다.

압축은 중복 정보를 제거하는 프로세스이다. 압축해제는 압축된 데이터로부터 원래의 데이터를 <4>
복원하는 프로세스이다.

기존의 기법들은 여러 가지로 응용가능한 다수의 유용한 데이터 압축을 제공한다. 예컨대, <5>
MPEC이라고 알려진 ISO/IEC 표준 11172-3은 컬러 비디오 동화상(moving color video image)용으로 화질
(picture quality) 및 압축율(compression rate)의 밸런스를 맞추도록 최적화되었다. 이것은 "손실" 압
축 기법으로서, 적어도 몇몇 상황의 정보들이 인코딩 프로세스 도중 손실되어 버려, 이미지를 완전히 정
확하게 복원할 수 없게 된다.

"LZ" 시스템으로 알려진 무손실 압축 기법이 렘펠(Lempel) 및 지브(Ziv)에 의한 "A Universal <6>
Algorithm for Sequential Data Compression", IEEE Transactions on Information Theory, Volume IT-23,
N0. 3, May 1977에 기술되어 있다. LZ 시스템은 가변 길이의 입력 데이터 심볼 스트링(string)들을 나
타내는 고정 길이 코드 값들을 사용한다.

이 시스템은 단일 코드 값을 사용하여 가능한한 많은 데이터 심볼들을 표현하고자 한다. LZ 시<7>
스템은 변환 테이블, 히스토리 어레이(history array), 혹은 사전 등과 같이 다양하게 알려진 테이블―코
드 심볼들의 블럭들은 자신이 처리될 히스토리 어레이내에 저장되어 있음―을 사용한다. 동일한 데이터

26-1

1019980701282

값들의 블럭들의 장래 어커런스들은 그 블럭이 저장되어 있는 히스토리 테이블내에서의 위치를 지정하는
인덱스로 대체될 수 있다.

따라서, LZ 알고리즘은 "적응성(adaptive)"이 있어, 히스토리 어레이가 구축 및 수정될수록 점점 <8>
더 큰 압축율을 얻을 수 있게 된다. LZ 알고리즘에 대한 변형예가 웽(Weng)에게 허여된 미국 특허 제
4,881,075 호에 기술되어 있다. 이 시스템은 2 개의 변환 테이블을 사용하는데, 하나는 데이터를 압축
및 압축해제하는 데 사용되며, 다른 하나는 구축에 사용되어, 인코딩이 항상 전체 히스토리 테이블을 가
지고 수행되도록 한다.

사전-기반(dictionary-based) 인코딩 방법에 있어 중요한 문제점 중 하나는 이러한 기법들이 대<9>
개의 경우 막대한 양의 메모리를 필요로 한다는 것이다. 예컨대, 웽의 압축기에 대한 바람직한 실시예
에서는 4096 개의 엔트리(entry)를 갖는 사전을 사용한다. 사전이 엔트리를 많이 포함하고 있지
않거나, 입력 스트림이 가능한 심볼들 및 심볼 조합들을 조금 포함하고 있다면, 결과적으로 압축율도 작
은 값, 즉, 최소 값으로 될 것이다.

큰 사전들을 하드웨어로 구현하는 경우에는, 대용량의 메모리가 필요하게 되어, 회로가 차지하는 <10>
면적(circuit real estate)과 탐색 시간 모두에 있어서 비용 부담이 크게 된다. 소프트웨어로 큰 사전
을 구현하는 것 역시, 액세스 시간이 길어진다고 하는 문제가 있다.

따라서, 이미지 데이터에 대해 고압축율을 얻을 수 있고, 사전을 사용하는 경우에도 비교적 작은 <11>
사전을 가지고 구현할 수 있는 무손실 이미지 압축 기술이 요망되고 있다.

발명의 개요<12>

본 발명은 고압축율을 얻을 수 있고, 사전을 사용하는 경우에도 비교적 작은 사전만으로 구현가<13>
능하며, 인쇄된 텍스트, 선도(line drawing), 하프톤(half tone)들을 나타내는 이미지 데이터를 압축하는
데 특히 적합한, 무손실 데이터 압축 방법 및 장치를 제공하는 것이다.

본 발명의 하나의 특징은, 인코더가 복수의 코딩 단계(phase)―각각의 스테이지(stage)는 이전 <14>
단계로부터 출력된 데이터를 압축하는 데 특히 적합함―들을 갖는다는 것이다. 제 1 단계는 비트-런 길
이 코딩(bit-run length coding)이다. 입력 데이터 스트림을 검사(examine)하여, 연속된 값(value)들로
이루어진 런(run)들을 그 런내에 있는 값들의 개수로 바꾼(replace) 다음, 이렇게 압축된 데이터를 더 압
축하기 위해 제 2 단계로 전달한다.

제 2 단계는 페어 반복("pair-rep") 코딩이다. 한 쌍의 값들(페어)이 연속해서 반복되고 있으<15>
면, 이를 그 반복되고 있는 페어의 복사(copy)와 복사 카운터(repetition counter)로 바꾼다.

본 발명의 다른 특징은 사전-기반 인코딩 단계의 구현에 있다. 이 인코딩 단계는 다단계 인코<16>
더(multiple phase encoder)의 제 3 단계이자 선택사양적인 단계이다. 이 제 3 단계에서는, 적응적 사
전을 사용하여 남아있는 중복부분(redundancy)들을 더 제거한다.

인코딩의 처음 두 단계들에서 초기 데이터 스트림내에 존재하는 대부분의 중복부분들이 추출되기 <17>
때문에, 마이크로-테이블이라고 불리는 매우 작은 테이블을 사용하여 사전을 구현할 수 있으며, 따라서
하드웨어 구현시 필요한 회로 소자의 양을 상당히 줄일 수 있다. 마이크로-테이블은 가중화(weight)되
어 있는 데, 이는 새로운 엘리먼트를 이 테이블내에 첨가할 때, 가장 낮은 우선순위를 갖는 엘리먼트가
이 마이크로-테이블에서 삭제된다는 것이며, 여기서 우선순위는 사용 빈도 및 최근에 사용되었는 지의 여
부에 근거하여 부여된 것이다.

전체 인코더내에 있어서, 비트-런 인코더는 단순히 하나의 압축 메카니즘 이상의 중요성을 갖는<18>
다. 비트-런 인코더는 데이터의 성질을 변형시킨다. 자신의 비트-런 길이로서 비트맵을 인코딩함으로
써, 비트-런 단계는, 대개의 경우 순(raw) 비트맵보다 압축하기가 더 쉬운 데이터 스트림을 생성한다.
이미지 성분들이 픽셀 레벨에서 분석되어, 비트맵내에서의 바이트 경계 위치들이 더 이상 중요하지 않게
된다.

솔리드 컬러 하프톤(solid color halftone)들을 포함하는, 다수의 간단한 패턴들은 반복된 런 카<19>
운트들의 페어로서 인코드되는 데, 여기서 제 1 카운터는 화이트(white) 런 길이를 표시하고 제 2 카운트
는 블랙(black) 런 길이를 표시하며, 혹은 그 반대로 된다. 제 2 인코딩 단계는 반복된 페어 데이터를
압축할 수 있도록 최적화되므로, 디코더 단계들간에는 독특한 시너지즘(synergism)이 존재한다. 이 세
단계들을 개별적으로 구현하면, 어느 것에 의해서도 안정적인 고압축율을 얻을 수 없다.

이 단계들을 조합함으로써, 각각의 단계들의 단순 합(sum)보다 더 좋은 결과―광범위한 문서들에 <20>
대해 효율적인 압축을 얻을 수 있다고 하는 결과―를 만들어 낼 수 있게 된다.

따라서, 본 발명의 특징 중 하나는 다단계 인코딩―제 1 단계는 비트-런 길이 인코딩임―을 제공<21>
하는 것이다.

본 발명의 다른 특징은 비트-런 압축기, 페어-반복 압축기, 사전-기반 압축기를 포함하는 다단계 <22>
인코딩을 제공하는 것이다.

본 발명의 또 다른 특징은 다단계 인코더―제 1 단계는 매우 작은 사전을 사용하는 사전-기반 압<23>
축임―를 제공하는 것이다.

본 발명의 또 다른 특징은 다층(multiple tier)들을 갖는 마이크로-테이블―여기서, 여러번 반복<24>
된 엘리먼트는 이보다 덜 반복된 엘리먼트보다 높은 우선순위를 가짐―을 제공하는 것이다.

본 발명의 또 다른 특징은 다층들을 갖는 마이크로-테이블을 갱신(update) 및 가중화하는 간단한 <25>
방법을 제공하는 것이다.

26-2

1019980701282

본 기술 분야의 당업자라면, 첨부한 도면―동일 참조 부호는 동일 부분을 지칭함―과 함께 후술<26>
하는 발명의 상세한 설명을 참조함으로써, 본 발명의 상기한 사항은 물론이고 그 이외의 잇점 및 특징들
도 명확히 이해할 수 있을 것이다.

도면의 간단한 설명

도 1은 본 발명의 이미지 데이터 압축기의 전반적인 블럭도이다,<27>

도 2는 본 발명의 일 실시예에 따른 인코딩 프로세스의 예이다,<28>

도 3은 본 발명에 따른 단일-층 마이크로-테이블의 물리적 구성을 도시한다,<29>

도 3a는 도 3의 마이크로-테이블의 논리적 구성을 도시한다,<30>

도 4는 마이크로-테이블 히트(hit)의 물리적 효과를 도시한다,<31>

도 4a는 마이크로-테이블 히트 이전의 도 4의 마이크로-테이블의 논리적 구성을 도시한다,<32>

도 4b는 마이크로-테이블 히트 이후의 도 4의 마이크로-테이블의 논리적 구성을 도시한다,<33>

도 5는 도 4의 마이크로-테이블상에서의 마이크로-테이블 미스(miss)의 물리적 효과를 도시한다,<34>

도 5a는 도 4의 마이크로-테이블상에서의 마이크로-테이블 미스의 개념적 효과를 도시한다,<35>

도 6은 3개의 층(tier)를 갖는 마이크로-테이블을 도시한다,<36>

도 7은 간단한 교체(swap) 마이크로-테이블 갱신 기법에 따라, 다층화된(multi-tiered) 마이크로<37>
-테이블상에서의 마이크로-테이블 히트(hit)의 물리적 효과를 도시한다,

도 8은 도 7에서 도시한 마이크로-테이블 히트의 개념적인 효과를 도시한다,<38>

도 9는 무브-투-탑(move-to-top) 마이크로-테이블 갱신 기법에 따라, 다층화된 마이크로-테이블<39>
상에서의 마이크로-테이블 히트의 물리적 효과를 도시한다,

도 10은 도 9에서 도시한 마이크로-테이블 히트의 개념적인 효과를 도시한다,<40>

도 11은 마이크로-테이블 내의 모든 위치들을 동시에 탐색하는 하드웨어 비교기를 가지고, 하드<41>
웨어로 구현한 마이크로-테이블을 도시한다,

도 12는 본 발명에 따른 데이터 압축해제기를 도시한다,<42>

도 13은 비트-런 압축 단계의 소프트웨어 구현을 기술한다,<43>

도 14는 페어-반복 압축 단계의 소프트웨어 구현을 기술한다,<44>

도 15는 마이크로-테이블 압축 단계의 소프트웨어 구현을 기술한다,<45>

도 16는 마이크로-테이블 압축해제 단계의 소프트웨어 구현을 기술한다,<46>

도 17은 페어-반복 압축해제 단계의 소프트웨어 구현을 기술한다,<47>

도 18은 비트-런 압축해제 단계의 소프트웨어 구현을 기술한다.<48>

발명의 상세한 설명

다음의 설명은 설명을 위해 사용된 특정 실시예에 대한 것이다. 본 기술 분야의 당업자라면, <49>
본 발명의 범주를 벗어나지 않고도, 다음의 설명에서 사용된 파라미터들 중, 코드 워드 길이, 사전 어드
레스 범위, 데이터 심도(data depth)와 같은, 다수의 파라미터들이 변경될 수 있음을 알 것이다.

Ⅰ. 압축<50>

도 1은 본 발명에 따른 데이터 압축기를 개략적으로 도시한다. 스캐닝 장치(12)(본 발명의 범<51>
주에 속하지 않음)가 이미지(10)를 스캐닝하여, 이미지를 순 이미지 데이터의 스트림으로 변환시킨다.
스캐닝 장치는 개인용 컴퓨터들과 함께 사용되는 핸드 헬드(hand-held) 스캐너일 수 있으며, 또는 팩시밀
리 머신 또는 사진복사기 등에 내장될 수 있다.

순 이미지 데이터는 비트-런 압축기(16)에서 구현되는 비트-런 길이 압축 알고리즘을 이용하여 <52>
압축된 다음, 페어-반복 압축기(20)들내에서 구현되는 페어-반복 알고리즘을 이용하여 더 압축되고, 선택
사양적으로, 마이크로-테이블 압축기(24)내에서 사전-기반 마이크로-테이블 압축 알고리즘을 이용하여 더
욱 압축된다. 압축기가 하드웨어로 구현되는 경우에는, 선택사양적인 선입선출형(FIFO) 메모리들(18,
22)을 일련의 압축 단계들 사이에서 데이터들을 전달하는 데 사용할 수 있다.

FIFO들은 일련의 압축 단계들 사이의 대기 시간을 제거함으로써 처리를 증가시킨다. 압축기를 <53>
소프트웨어로 구현하는 경우에는, FIFO_top 및 FIFO_bottom 포인터들이 FIFO 동작에 대응되게 작동한다.
코드 팩커(code packer)(26)는 페어-반복 데이터나, 마이크로-테이블에 의해 더 압축된 페어-반복 데이터
중 하나를, 덴서(denser)가 의존하는 출력으로 스위칭한다.

26-3

1019980701282

압축된 출력 데이터는 자성 하드 디스크(28)와 같은 영구 메모리에 저장되거나, RAM과 같은 임시 <54>
메모리에 저장되거나, 혹은 원격의 위치로 전송된다. 데이터 압축의 장점은, 이와 대응하여, 메모리 요
구의 감소나 전송 시간의 단축으로서 나타난다.

도 2는 바람직한 실시예에서 이미지 데이터가 압축 프로세스내의 각 단계에서 어떻게 압축되는지<55>
를 도시한다. 스캐닝된 이미지를 나타내는 데이터는 이진 데이터 스트림(30)―"0"은 화이트 비트를 나
타내고 "1"은 블랙 비트를 나타내며, 혹은 그 반대로 됨―을 포함한다. 스캐닝된 이미지가 텍스트나 선
도를 포함하는 인쇄면일 때에는, 데이터 스트림(30)이 다수의 연속된 1들의 런들 혹은 연속된 0들의 런들
을 포함할 것이다.

a. 비트-런 압축<56>

비트-런 압축기(32)는 각각의 런의 길이를 카운트하여, 런의 길이값들로 된 시리즈인 데이터 스<57>
트림(34)을 생성한다. 각각의 런의 극성은 이전의 런의 극성과 반대가 된다. 바람직한 실시예에서,
런 값들은 니블(nibble : 4 비트)들로서 인코딩된다.

그러나, 본 기술 분야의 당업자라면, 런-길이 값들을 바이트(8 비트들), 워드들(16 비트들), 롱 <58>
워드들(32 비트들), 또는 압축될 특정 데이터에 대해 최선의 압축율을 얻기 위하여 요망되는 임의의 길이
로서, 달리, 표현할 수 있음을 알 것이다. 런 길이값들이 길수록 고 해상도(예컨대, 인치당 1200 도트)
데이터의 처리와 같은 특정한 구현에 더욱 적합할 수 있다. 반대로, 런 길이값들이 짧다는 것은 짧은
런들만을 포함하는 보다 효율적인 인코드 데이터임을 의미한다.

바람직한 실시예에서는, 4-비트 값들이 사용된다. 1 내지 15의 니블값들은 제각기 런 길이가 1 <59>
내지 15 임을 표시한다. 니블값 0은, 런 길이가 15를 초과하는 경우, 그 런의 일부로서 길이가 15이며
다음 니블에서 이 런이 계속되고 있음을 나타낸다. 따라서, 16 비트 또는 그 보다 긴 런들은 이 런의
매 15 비트마다 니블값 0을 출력하며, 이 런의 최종 니블은 나머지 런 길이를 표시하는 1과 15 사이의 값
을 갖게 된다. 표 1은 비트-런 인코딩의 예들을 기술한다.

[표 1]

표 2는 순 픽셀 데이터의 스트림이 비트-런 길이 압축기에 의해 어떻게 인코딩되는지를 <61>
기술한다.

[표 2]

도 2에서, 입력 데이터 스트림(30)은 비트-런 길이 압축 스트림(34)으로 도시한 바와 같이 인코<63>
딩된다.

도 13은 비트-런 인코더의 소프트웨어 구현을 기술한다. 블럭(200)에서 제 1 비트를 읽고, 비<64>
트-런 카운트를 1로 세트(set)한다. 블럭(202)에서, 데이터 비트가 전송 또는 기록의 마지막 비트가 아
니면, 블럭(204)에서 다음 비트를 읽어들인다. 블럭(206)에서 판단되는 바에 따라, 비트가 동일하면,
블럭(208)에서 런 카운트를 증가시킨다. 런 카운트가 최대값보다 작고(본 바람직한 실시예에서는 15가
최대값임), 블럭(202)에서 아직 데이터의 끝에 도달하지 않았다면, 블럭(204)에서 다음 비트를 읽어들인
다.

반면에, 카운트가 허용가능한 최대 카운트를 초과하면, 카운트를 1로 리셋하고, "0"을 출력하여, <65>

26-4

1019980701282

런 카운트가 15를 초과하였음을 표시한다. 블럭(206)에서 비교된 비트들이 서로 상이하면, 런이 끝난
것이므로, 현재의 카운트를 출력하고, 카운트를 1로 리셋한 다음, 비트 페치 및 카운트 프로세스를 다시
시작한다. 블럭(202)에서 데이터 전송 또는 기록의 마지막이 나타나면, 블럭(216)에서 그 때까지의 런
카운트 업을 출력하고, 비트-런 인코더를 종료한다.

니블값들을 사용하는 바람직한 실시예에서, 4-비트 코드값으로 압축될 수 있는 최대 런은 15 비<66>
트이다. 따라서, 이 제 1 단계에서 얻을 수 있는 최대 압축율은 15:4, 즉 3.75:1이다. 런 카운트들을
저장하는 데 더 큰 코드들을 사용하더라도, 안정된 양질의 압축율을 기대할 수는 없을 것이다. 비트-런
압축을 개선시키기 위해 제 2 압축 단계를 첨가한다.

b. 페어-반복 압축<67>

제 2 압축 단계는 페어-반복(페어-반복) 압축기(36)이다. 이것은 비트-런 코드들의 반복되는 <68>
페어들을 압축한다. 여러가지 특수한 인코딩 체계들이 페어-반복 단계에 사용될 수 있다. 바람직한
실시예에서, 페어-반복 압축기(36)는 반복되고 있는 패턴들을 식별하여, 이들을 반복 카운트 규칙자
(repeat count specifier)와 이 반복값들의 복사로 인코딩한다. 페어-반복의 일부로서 인코딩되지 않은
데이터는 변경되지 않은 채로 남는다.

[표 3]

페어-반복 압축기(36)의 출력(38)은 바이트로 구성된다. 각각의 바이트는 코드나 데이터 중 하<70>
나이다. 제 1 바이트는 코드이다. 각각의 코드는 얼마나 많은 데이터 바이트들이 뒤따라오는지를 표
시한다. 코드할 데이터가 없으면, 다른 코드값이 출력된다. 코드의 상위 비트는 자신의 타입을 표시
하며, 하위 7 비트들은 카운트를 표시한다. 타입 비트가 클리어이면, 카운트는 후속하는 문자
(literal)(페어되지 않은) 데이터 바이트들의 수를 표시한다.

예를 들면, 도 2의 데이터 스트림(38)에서, 처음의 2-바이트 워드는 다음의 정보를 포함한다. <71>
즉, 타입 필드(44)의 0 비트는 후속하는 데이터가 문자임을 표시하고, 카운트 필드(46)의 값 1은 이 문자
데이터가 1 바이트 길이(2 니블)임을 표시하며, 데이터 필드(48)의 값 81(16진수(hex))은 런-길이 데이터
(8 비트가 한 극성을 갖고, 후속하는 1 비트가 다른 극성을 가짐)를 표시한다.

스캐닝된 텍스트에서, 흑색의 수평 스캔 라인들과 여백들은, 화이트 비트들이 연속되어 있는 긴 <72>
스트링으로 나타난다. 이것들은, 테이블 1에 기술한 바와 같이, 비트-런 인코더에 의해 0인 니블값들의
시리즈로서 인코딩될 것이다. 이 데이터들은 페어-반복 인코더에 의해 블럭들의 시리즈―여기서, 각각
의 블럭은 "7F 0 0" 값(16진수)들을 포함함―로서 더 인코딩될 것이다. 7-비트 값 "7F"는 127번의 반복
을 표시하고, "0 0"은 15 개의 화이트 비트들 다음에 또 15 개의 화이트 비트들이 더 있음을 표시한다.
따라서, 16 비트인 각각의 블럭은 127×30=3810개의 연속된 화이트 화소들을 표시하며, 따라서

3810:116(238:1)의 최대 압축율을 얻게 된다.

도 14는 페어-반복 인코더의 소프트웨어 구현을 기술한다. 블럭(220)에서, 이전의 (비트-런) <73>
단계로부터 제 1 바이트를 읽어들인다. 이 바이트가 전송 또는 기록의 마지막이 아니라면, 블럭(224)에
서 페어 카운트를 0으로 세트한다. 블럭(226, 228, 230)에서, 이 데이터 스트림내의 반복되고 있지 않
는 바이트들의 수를 카운트하며, 블록(228)에서 연속한 두 바이트들이 동일한 것으로 검출될 때에만 이
루프로부터 제어가 빠져나온다.

일단 제어가 루프로부터 빠져나오면, 블럭(232)에서 반복되고 있지 않는 바이트 카운트(문자 카<74>
운트)를 출력하고, 블럭(234)에서 판단되는 바에 따라, 문자 스트림이 끝날 때까지 블럭(236)에서 문자들
을 계속해서 시프트 아웃(shift out)한다. 일단, 블럭(228)에서 문자들이, 검출된 반복 바이트들에 응
답하여, 시프트 아웃되면, 블럭(238)에서 반복 카운트가 2로 세트되고, 바이트가 반복된 횟수는 블럭
(240, 242, 244)으로 이루어진 루프에서 카운트된다.

블럭(242)에서 바이트(니블 페어)의 반복이 중단되었음을 검출하면, 곧, 블럭(246)에서 반복 카<75>
운트와 대응하는 니블 페어를 출력하고, 블럭(222)에서 전송 또는 기록의 마지막이 나타났음을 검출할 때
까지, 이 프로세스를 전부 다시 재개한다.

처음 두 단계가 스캐닝된 데이터내의 중복성을 다수 제거하였더라도, 많은 경우, 어느 정도는 여<76>
전히 중복부분이 남아 있을 것이다.

c. 마이크로-테이블 압축<77>

제 3 압축 단계에서, 마이크로-테이블 사전 인코더(50)(도 2 참조)가 비트-런 단계 및 페어-반복 <78>
단계가 완료된 후에도 남아있는 중복을 찾는 데 사용된다. 최종 단계로 전달된 데이터는 별로 압축할
것이 없을 것이다. 이 제 3 단계에서의 성공 열쇠는 압축되지 않은 부분들을 확장하는 일 없이 압축될

26-5

1019980701282

수 있는 부분들을 압축하는 것이다.

최종 압축 단계는 이미 압축된 데이터에 대한 작용이므로, 작용될 데이터량은 보다 적고, 따라서 <79>
이 최종 단계들에 대한 요건들이 줄어들 것이다. 제 3 단계는 소량의 데이터에 대한 오퍼레이션이므로,
더 느린 속도가 요구된다. 또한, 제 3 단계의 압축율에는 이전의 두 단계들의 압축율이 곱해질 것이므
로, 작은 압축률로도 전체적으로는 양호한 압축율을 얻을 수 있다.

예컨대, 이전의 두 단계들에서 5:1 압축을 얻었다면, 제 3 단계에서 2:1로만 압축하더라도 전체 <80>
시스템 압축은 10:1이 될 것이다. 이로써, 테이블이 압축되지 않은 순 데이터에 대해 작용되어야 할 때
보다 훨씬 저렴한 비용으로 이 테이블을 하드웨어로 구현하는 것이 가능하게 된다.

마이크로-테이블(50)은 데이터 스트림(38)에 나타난 데이터 패턴들을 저장함으로써 작업한다. <81>
데이터 스트림(38)과 이전에 마이크로-테이블(50)내에 저장되어 있던 스트링간에 패턴 매치가 발생하면,
마이크로-테이블(50)은 자신의 최상위 비트(most significant bit;MSB) 포지션에 "1"이 있고, 나머지 비
트들은 그 패턴이 이전에 저장되어 있던 마이크로-테이블(50)에 대한 인덱스를 표시한다.

도 2에 도시한 예에서, 마이크로-테이블(50)은 각각 16 비트로된 2
5
=32 개의 위치들을 포함한다. <82>

코드(56)는 6 개의 비트―MSB 포지션내의 1-비트 플래그와 5 개의 나머지 인덱스 비트들―로 이루어져 있
다. 데이터 스트림과 테이블간에 패턴 매치(pattern match)가 없으면, MSB 포지션은 문자를 표시하는
"0"이고, 나머지 8 개의 비트들은 문자 데이터와 동일한 9-비트 값(58)이 출력된다. 도 2에서, 패턴 3,
7, 3은 이미 마이크로-테이블내의 위치 1D(16진수)에 저장되어 있으며, 이 패턴이 다시 나타나면, 마이크
로-테이블 압축기가 출력 코드(56)내에서 인덱스값이 1D인 그 패턴을 이동시킨다.

전술한 바와 같이, 스캐닝된 이미지 라인이 모두 화이트인 경우에는, 페어-반복 인코더로부터의 <83>
한 개의 16-비트 데이터 블럭은 3810 개 모두 화이트 비트임을 표시할 것이다. 이 16-비트 데이터 블럭
은 마이크로-테이블에 의해 6-비트 코드 워드로 더 압축됨으로써, 블랭크 라인들에 대해서는
3810:6(635:1)의 최대의 전체 압축율을 얻게 될 것이다.

이 테이블은 가중된 MRU(Most Recently Used) 테이블로서 간주된다. 가장 최근에 발생한 패턴<84>
들을 저장하고 가장 예전에 발생한 패턴들을 제거한다. 이 메카니즘은, 패턴의 발생 빈도를 고려함으로
써 가중화될 수 있다. 한 번 이상 발생한 패턴들은 단 한번 발생한 패턴들보다 이 테이블내에서 더 오
래 유지될 것이다. 이 가중화된 MRU 메카니즘에 의해 인코더가 극소수의 테이블 엔트리들을 가지고 작
업할 수 있게 된다. 마이크로-테이블은, 새로운 엔트리를 위한 여유 공간을 만들기 위해서 이 테이블로
부터 엔트리를 제거할 때, 자주 사용한 엔트리들이 자주 사용되지 않는 엔트리들보다 높은 우선순위를 갖
도록 하는 방식으로 유지보수된다.

1. 단일 자격층(qualification layer)<85>

마이크로-테이블(50)은 여러가지 방식으로 구성될 수 있다. 한 개의 자격층만을 갖는 간단한 <86>
제 1 마이크로-테이블 실시예를 도 3 내지 도 5b에 도시한다. 도 3은 마이크로-테이블의 물리적(실제)
구성을 도시하며, 도 3a는 논리적(개념적) 구성을 도시한다. 도 3을 참조하면, 마이크로-테이블(60)은
8 개의 위치를 갖는 스택으로 구성된다. 소프트웨어 혹은 하드웨어로 구현되는 스택 포인터 bottom_ptr
은 이 스택에 대한 인덱스를 포함한다.

bottom_ptr(62)이 가리키는 위치는 이 스택의 논리상 최하부로서 정의되며, 이 스택의 물리적인 <87>
최하부는 이 스택의 물리적인 최상부와 연결되어 있다. bottom_ptr(62)을 증가시키면, 논리적으로는 스
택이 아래 방향으로 시프트되는 효과가 나타나, 최하부 값이 최상부로 가게 된다.

도 4에서, 테이블 탐색 결과, 매치(테이블 히트)가 발생하면, 히트 엘리먼트(68)가, 이 테이블의 <88>
논리적인 최상부로 이동되어 가장 최근에 사용되었음을 표시한다. 이것은, 물리적으로는, 히트 엘리먼
트(68)를 bottom_ptr(62)가 가리키는 엘리먼트와 교체(swap)한 후, bottom_ptr(62)을 증가시킴으로써 수
행된다. 도 4a를 참조하면, bottom_ptr(62)를 증가시킨 데 따른 논리적 효과는, 이전에 이 포인터가 가
리키고 있던 위치에 있던 데이터―이 경우에는 히트 엘리먼트(68)(교체 후)―가 새로운 논리적인 최상부
엘리먼트로 된다는 것이다. bottom_ptr(62)은 또한 이 테이블내의 다른 모든 엘리먼트들의 우선순위를
낮추는 효과도 갖는다.

순수한 LRU(least recently used)와 상이한 본 메카니즘의 특징 중 하나는, 교체 작용의 결과, <89>
이전에 이 테이블의 논리상 최하부에 있었던 엘리먼트가, 히트 엘리먼트가 논리적인 최상부로 이동함으로
인해 비게 된 슬롯(slot)을 채우기 위하여 이동된다는 것이다. 이로써, 테이블 히트가 있을 때마다, 테
이블내에서 히트 엘리먼트 아래에 있던 모든 엘리먼트들이 순환(cycle)되는 결과를 낳는다.

테이블의 최하부에 있는 엘리먼트가, 임의의 시점에, 최근 사용 빈도가 가장 최소인 것일 필요는 <90>
없다. 그러나, 최하부 엘리먼트가 인위적으로 상당히 상향된 우선순위를 갖게 될 수 있는 한편, 다른
엘리먼트들은 테이블 액세스당 한 엘리먼트씩 우선순위가 감소하기만 할 것이다. 엘리먼트가 자주 히트
되기만 하면, 테이블의 최하부는 결코 도달되지 않을 것이다.

이와 달리, 본 메카니즘은, 마이크로-테이블의 최상부 바로 근처의 히트를 특별히 처리함으로써 <91>
개선될 수 있다. 예컨대, 최상부 엘리먼트에 히트가 발생하면, 어떠한 이동도 필요없고, 제 2 엘리먼트
에 히트가 발생하면 처음의 두 엘리먼트들만 서로 교체하여 제 2 엘리먼트를 최상부로 이동시키면 된다.
이것을 특별 경우로 처리함으로써, 최하부 엘리먼트가 최상부 바로 근처로 이동된 경우, 마이크로-테이블
의 기능성을 개선시킬 수 있다.

테이블 미스<92>

26-6

1019980701282

테이블 미스(miss)의 물리적 및 논리적 효과를 제각기 도 5 및 도 5a에 도시한다. 테이블 탐색 <93>
결과, 매치가 발생하지 않으면(테이블 미스), 새로운 (탐색) 엘리먼트(72)가 이 테이블의 논리상 최상부
에 삽입되는데, 이를 위한 공간은 이 테이블의 최하부에 있던 엘리먼트(74)를 제거함으로써 확보한다.
이것은, 물리적으로는, bottom_ptr(62)이 가리키고 있던 엘리먼트(74)를 새로운 엘리먼트(72)로 바꾼 후,
bottom_ptr(62)이 이보다 한 단계 높은 우선순위를 갖는 엘리먼트(76)를 가리키도록 조정함으로써 달성될
수 있다. 테이블 히트의 경우와 마찬가지로, bottom_ptr(62)이 가리키는 포지션(position)을 증가시킴
으로써, 최하부 엘리먼트(74)와 교체된 히트 엘리먼트(72)가 새로운 상부로 되고 다른 모든 엘리먼트들의
우선순위는 낮아진다.

미스의 결과로 마이크로-테이블에 새로운 엘리먼트를 첨가할 때, 채용되는 MRU 메카니즘은 LRU <94>
메카니즘과 동일하게 기능한다. LRU 메카니즘을 이용하여 마이크로-테이블을 구현하여도 매우 유사한
결과를 얻을 수 있지만, 특히 인코더가 소프트웨어로 구현되는 경우에는, 기술한 MRU 메카니즘을 사용하
는 것이 훨씬 더 효과적이다. MRU 메카니즘에 있어서의 최근 사용된 패턴을 보존하는 특성은, 타고난
압축 사전으로서 이것을 더욱 유용하게 만든다. 그러나, 후술하는 바와 같이, MRU 메카니즘을 확장함으
로써 극소량의 테이블 공간을 훨씬 더 많이 활용할 수 있게 된다.

2. 복수의 자격층들<95>

복수의 자격층들을 갖는 제 2 마이크로-테이블 실시예를 도 6에 도시한다. 본 실시예는 극소량<96>
의 테이블 공간을 훨씬 더 많이 활용할 수 있게 하는 MRU 메카니즘의 확장을 기술하고 있다. 자격층은
단순히 별개의 자격 상태(가중치)가 주어진 테이블의 섹션(층)이다. 마이크로-테이블(80)은, 한 층의
최상부에 다른 층이 놓인 식으로 적층된 다층―여기서, 최하부 층에는 가장 낮은 자격 상태가 주어지고,
각각의 다음 층은 그 아래에 놓인 층보다 높은 자격 상태를 가짐―들로 구성되어 있다.

바람직한 실시예에서는, 마이크로-테이블(80)이 세 개의 자격층들로 나뉘어 있다. 최상위층<97>
(86)과 중간층(84)은 각각 8 개의 위치들을 포함하고, 최하위 층(82)은 16 개의 위치들을 포함하여, 총
32 개의 위치들이 있다. 마이크로-테이블(80)의 각 층은 별개의 MRU 메카니즘으로 유지보수된다. 층
내의 엘리먼트는, 그 엘리먼트의 "히트"가 발생한 때, 한 단계 높은 층으로 상향이동된다. 다른 엘리먼
트들이 그 레벨로 상향이동된 결과, 그 레벨내의 한 엘리먼트를 범프 오프(bump off)함으로써 한 단계 낮
은 층으로 하향이동시킨다.

하기 내용을 설명하기 위하여, 마이크로-테이블(80)을 탐색하는 데 대한 참조(reference)들을 집<98>
합 테이블(collective table)이라고 지칭한다. 바꾸어 말하면, 마이크로-테이블(80)의 각 층내의 각 엘
리먼트는, 목표 패턴이 발견되거나 모든 층들(82, 83, 86)내의 모든 엘리먼트들이 체크될 때까지, 그 목
표 패턴에 대해 탐색된다.

테이블 탐색의 결과, 매치가 발견되면, 앞서 기술한 MRU 첨가 프로세스를 이용하여, 히트 엘리먼<99>
트를 현재 포지션에서 제거하고 한 단계 높은 층의 최상부에 삽입한다. 한 단계 높은 층의 최하부에서
제거된 엘리먼트는, 다음의 두 방법 중 하나를 이용하여, 그 히트 엘리먼트의 원래 층내에 놓이게 된다.

테이블 히트<100>

도 7 및 도 8은 제 1 (간단한 교체) 방법을 도시한다. 도 7을 참조하여 물리적인 측면에서 보<101>
면, 히트가 발생한 경우, 하위 층(92)내의 매치된 엘리먼트(90)를 상위 층(94)내의 최하부 엘리먼트와 교
체하고, 상위 층의 bottom_ptr(98)을 증가시킨다.

도 8을 참조하여 개념적인 측면에서 보면, 히트가 발생한 경우, 하위 층(92)내의 히트 엘리먼트<102>
(90)를 상위 층(94)의 최상부로 이동시키고, 상위 층(94)내의 모든 나머지 엘리먼트들을 한 포지션씩 범
프 오프시킨다. 상위 층을 범프 오프시킨 후, 상위 층(94)의 최하부 엘리먼트였던 것을 히트 엘리먼트
(9)에 의해 비게 된 하위 층내의 포지션으로 이동시킨다. 단일 교체 방법의 잇점 중 하나는 구현하는
것이 쉽고 간단하다는 것이다.

도 9 및 도 10은 제 2 (무브-투-탑) 방법을 도시한다. 도 9를 참조하여 물리적인 측면에서 보<103>
면, 히트가 발생한 경우, 히트 엘리먼트(90)를 상위 층(94)의 최하부 스폿(spot)으로 이동시키고, 상위
층(94)의 최하부로부터 제거된 엘리먼트(102)를 하위(히트) 층(92)의 최상부에 삽입하며, 이 히트 엘리먼
트(90)에 의해 비게 된 스폿을 동일한 층(92)의 논리상 최하부 엘리먼트로 바꾼 후, 이 두 층들에 대한
bottom_ptr들(98, 100)을 모두 증가시킨다.

도 10을 참조하여 개념적인 측면에서 보면, 이 무브-투-탑 방법은 다음의 단계들을 포함한다. <104>
히트 엘리먼트(90)를 한 단계 높은 층(94)의 최상부로 이동시키고, 그 층내의 모든 엘리먼트들을 범프 오
프시킨 다음, 층(94)의 최하부에 있던 엘리먼트(96)를, 그 최하부를 범프 오프하여, 층(92)의 최상부 포
지션으로 이동시킨다. 개념상, 이것은 앞서 기술한 간단한 교체 방법을 수행한 후 원래 층의 MRU 갱신
을 수행함으로써 히트 포지션으로부터의 값(지금은 상위 층의 최하부로부터의 엘리먼트)을 원래 층의 논
리적인 최상부로 이동시키는 것으로 생각될 수 있다.

마이크로-테이블의 최상위 층에서 매치가 발견되면, 그 히트 엘리먼트를 그 층의 최상부로 이동<105>
시키도록 MRU 갱신을 수행할 수 있다. 이와 달리, 히트 엘리먼트는 이미 최상위 층에 있고 그 층내에서
의 정확한 포지션은 별로 중요하지 않으므로, 인코더가 아무런 행동을 취하지 않고, 간단히 마이크로-테
이블을 변경하지 않은 채로 내버려 두어도 무방하다.

테이블 미스<106>

26-7

1019980701282

마이크로-테이블 탐색 결과, 매치가 발견되지 않으면(즉, 목표 패턴이 테이블내의 어느 층에도 <107>
없는 경우), MRU 첨가 오퍼레이션을 사용하여, 목표 패턴을 최하부 층에 간단히 첨가할 수 있다.

도 15는 두 개의 층들을 갖는 마이크로-테이블 인코더의 소프트웨어 구현을 기술한다. 블럭<108>
(250)에서 페어-반복 인코더로부터 처음 16-비트 심볼을 읽어들인다. 이 심볼이 전송 및 기록의 마지막
이 아니면, 블럭(254)에서 마이크로-테이블 탐색을 수행하여 이 심볼이 이전에 마이크로-테이블 사전내에
저장되었 있었는지 여부를 판정한다. 심볼이 마이크로-테이블내에서 발견되면, 블럭(258)에서 그 심볼
을 가리키는 테이블 인덱스를 출력한다.

테이블 히트가 하위 층에서 발생한 경우에는 블럭(262)에서 다층 테이블 히트 갱신 작용을 수행<109>
하며, 그렇지 않은 경우에는 테이블을 변경하지 않는다. 블럭(256)에서 심볼이 테이블에서 발견되지 않
으면, 블럭(266)에서 심볼(문자)을 직접 출력하고, 블럭(266)에서 테이블 미스 갱신 작용을 수행한다.

다층화된 마이크로-테이블 사용의 결과는 다음과 같다. 엘리먼트가 히트되어 한 단계 높은 층<110>
으로 이동될 때마다, 마이크로 테이블내에서의 기반이 더욱 확고하게, 즉 고도로 가중화된다. 층들이
복수 개 있으므로, 단순히 사용되지 않았다는 이유로 엘리먼트가 제거되지는 않는다. 마이크로-테이블
의 상위 층으로 올라온 엘리먼트는, 몇개의 다른 엘리먼트가 동일한 레벨에 도달하여 그것과 바뀌는 경우
에만 제거될 것이다.

마이크로-테이블 인코더가 인코드불가능한 긴 데이터 시리즈를 만나면, 각각의 입력 패턴에 대해 <111>
자신의 최하부 층에 엘리먼트를 첨가한다. 패턴들 중 어느 것도 다시 히트되지 않는 한, 그것들 중 어
느 것도 테이블의 상위 층으로 올라가지 않을 것이다. 이 때문에 상위 층들에 도달한 패턴들이 최근에
히트되지 않았더라도 보존될 수 있다. 인코드되지 않은(한번 발생한) 데이터의 버스트(burst)가 마이크
로-테이블의 상위 층들내에 있는 패턴들을 치환(displace)할 수 없다는 것은 중요하면서도 유용한 결과이
다. 마찬가지로, 단 두 번 발생하고, 이에 의해 제 2 층에 도달한 데이터는 제 3 층내의 패턴들을 치환
할 수 없다.

인코더가 이렇게 작은 테이블을 사용하기 때문에, (입력 데이터에 비해) 이 테이블내에 저장된 <112>
패턴들의 질이 양적인 부족을 메울 수 있어야 한다는 것이 중요하다. MRU 메카니즘을 이용하여 양질의
패턴들을 제공하고, 이 데이터를 다층들내에 저장함으로써, 마이크로-테이블내에서 발생 빈도가 낮은 패
턴들이 보다 유용한 패턴들을 대체할 가능성을 줄일 수 있다.

작은 테이블을 사용하는 한 가지 잇점은 구현을 위해 요구되는 하드웨어가 큰 테이블을 사용하는 <113>
경우에 비해 저렴할 것이라는 점이다. 테이블 엔트리가 적기 때문에 테이블이 적은 레지스터에 의해 인
덱스 될 수 있다고 하는 부차적인 잇점도 있다. 마찬가지로, 압축된 데이터 스트림내의 코드로서 사용
되는 인덱스도 적은 수의 비트들을 포함할 것이다. 이것은, 다시말하면, 컴팩트한 인코딩 체계, 즉 양
호한 압축을 얻을 수 있음을 의미한다.

마이크로-테이블을 탐색하는 데에는 여러가지 방법이 가능하다. 마이크로-테이블을 하드웨어로 <114>
구현하는 경우, 한 가지 방법은 간단히, 각각의 테이블 위치를 순차적으로 공통의 버스상에 출력하여, 이
값을 탐색 값과 비교하는 것이다. 이것은 느리다. 더 복잡한 기법을 필요로 하기는 하지만, 훨씬 빠
른 방법으로서, 테이블 위치마다 하드웨어 비교기를 구현하여, 탐색 값을 테이블내의 모든 위치와 동시에
비교하는 방법이 있다.

도 11에 이 방법을 도시한다. 탐색 값을 탐색 레지스터(100)로 탑재하여, 마이크로-테이블<115>
(108)내의 각 사전 위치에 저장되어 있는 히스토리 데이터와 동시에 비교한다. 예컨대, 탐색 데이터가
최상부 위치(102)에 저장되어 있는 데이터와 매치되면, 하드와이어드(hardwired) 레지스터(104)내의 대응
하는 5-비트 하드와이어드 인덱스 값 1F(16진수)가 테이블_인덱스 버스상으로 출력될 것이다. 5-비트
값이, 1인 MSB(106)과 결합되어, 마이크로-테이블 압축기로부터 출력되는 6-비트 코드 값(110)이 될 것이
다.

이와 달리, 마이크로-테이블을 소프트웨어로 구현할 수 있다. 마이크로-테이블을 소프트웨어로 <116>
구현하는 경우에는, 해시 테이블(hash table)을 사용하여 테이블 탐색 속도를 증가시킬 수 있다. 해시
테이블은 랜덤 액세스 메모리(RAM)이며, 마이크로-테이블내에 저장될 수 있는 모든 가능한 데이터 값은
이 해시 테이블내에 대응하는 어드레스를 갖는다. 예컨대, 16-비트 심층(deep) 마이크로-테이블은

64K(2
16
=65,536 개의 위치들) 어드레스들을 갖는 해시 테이블을 요구할 것이다.

16-비트 데이터 값 8373(16진수)이 마이크로-테이블내의 위치 1D(16진수)에 저장되어 있다면, 해<117>
시 테이블내의 어드레스 8373에 값 1D가 저장된다. 다음에 코드 값 8373이 마이크로-테이블내에 저장되
어 있는지를 알기 위해, 마이크로-테이블 인코더가 테이블 탐색을 수행할 때에는, 간단히 해시 테이블내
의 어드레스 8373을 액세스하면 된다.

이 어드레스에 있는 해시 데이터는 1D이며, 따라서 인코더는 탐색 데이터(8373)가 마이크로-테이<118>
블내의 어드레스 1D에서 발견될 수 있다는 것을 알게 된다. 마이크로-테이블로부터 값을 범프(bump)할
때는 언제나, 그 위치에 있는 해시 데이터가 더이상 유효하지 않음을 표시하기 위하여, 이 범프할 데이터
에 대응하는 해시 테이블에서의 어드레스를 기입하고, 적당한 플래그(flag)를 그 위치에 세트한다. 해
시 테이블을 사용하기 전에, 모든 위치들을 예약 값으로 초기화하여야 한다. 이 예약 값은, 마이크로-
테이블 압축기에 의해 읽혀지면, 그 해시 테이블 어드레스와 동일한 유효한 패턴이 마이크로-테이블내에
저장되어 있지 않다는 것을 표시한다.

새로운 압축 기록이 생성되거나 전송되고, 해시 테이블이 사용되지 않는 경우는 언제나, 인코딩<119>
을 개시하기 전에 모든 위치에 초기 값을 줌으로써 마이크로-테이블을 초기화하여야 한다.

전술한 바에 따르면, 본 발명의 마이크로 메카니즘은 압축 및 압축해제를 목적으로 사용되어 왔<120>
다. 그러나, 본 기술 분야의 당업자라면, 바로 이 메카니즘을 LRU 스택 대신에 다수의 실제 응용에 적
용할 수 있음을 알 것이다. 여기에는 디스크 캐시 및 메모리 캐시와 같은 캐시 메카니즘, 다른 유형의

26-8

1019980701282

압축기 및 압축해제기에 사용되는 LRU 메카니즘, 가상 메모리 메카니즘 등이 포함되지만, 이에 국한되는
것은 아니다. 스택의 엘리먼트들에 대한 효과는 전형적인 LRU에 있어서와는 상당히 다르다. 그러나,
마이크로-테이블이 간단하기 때문에, 하드웨어로 구현시에는 비용이 저렴하게 되고 소프트웨어로 구현시
에는 높은 성능을 얻을 수 있게 된다는 점은, 많은 경우 잇점이 된다.

D. 코드 팩커<121>

도 1을 다시 참조하면, 스캐닝될 이미지의 특성과 마이크로-테이블(24)내에 충분한 데이터 히스<122>
토리가 구축되어 있는지의 여부에 의존하여, 마이크로-테이블 압축기(24)가 페어-반복 압축기(20)로부터
의 데이터를 압축시키지 않고 오히려 실제적으로는 확장시킬 수도 있을 것이다. 따라서, 마이크로-테이
블(24)을 디스에이블시키는 것이 보다 효과적일 수 있다. 또한, 마이크로-테이블(24)을 소프트웨어로
구현하는 경우에는, 마이크로-테이블 압축을 수행하는 데 관련된 오버헤드(overhead)가 있을 것이다.

또한, 데이터 전송 시간이 매우 빠른 시스템에서는, 마이크로-테이블(24)이 필요하지 않을 수도 <123>
있다. 이러한 이유로, 전형적인 문서들을 압축할 때 마이크로-테이블(24)을 디스에이블시킴으로써 실제
적으로 전체 시스템의 처리를 향상시킬 수 있다. 그러나, 마이크로-테이블 단계(24)가 없으면 만족할만
한 압축이 이루어지지 않는 페이지(page)들이 있을 수 있으므로, 필요에 따라 선택할 수 있도록 해야 한
다.

코드 팩커(26)는 마이크로-테이블(24)을 인에이블시킬지 여부를 판단한다. 도 2에 도시한 바와 <124>
같이 하드웨어로 구현하는 경우, 코드 팩커(26)는 페어-반복 압축기(20)의 출력이나 마이크로-테이블 압
축기(24)의 출력 중 하나를 사용할 것이다. 소프트웨어로 구현하는 경우에는, 코드 팩커(26)가 마이크
로-테이블(24)을 인에이블 혹은 디스에이블시킬 것이다.

코드 팩커(26)를 작동시킬 수 있는 알고리즘은 매우 다양하다. 제 1 방법으로, 코드 팩커(26)<125>
는, 처음의 두 단계(16, 20)에 의해 생성된 압축율이 사전선택된 임계 레벨과 맞지 않는 경우에만, 마이
크로-테이블(24) 출력을 사용할 수 있다. 그 점에서, 페이지의 압축이 완료되었기 때문에, 래스터화
(rasterization)가 느려져 압축 시간이 상당히 줄어들게 된다.

제 2 방법으로, 코드 팩커(26)는, 처음의 두 단계들(20, 16)에 의해 생성된 압축율이 이전 밴드<126>
(band)에 대한 것과 상당히 다를 경우(비트맵 데이터의 성질이 변했음을 표시함)에는 언제나 마이크로-테
이블(24) 출력을 사용하도록 할 수 있다. 테스트 밴드에 대해 상당한 이득을 얻는다면, 다음 밴드들에
도 역시 최종 단계를 적용할 것이다. 코드 팩커(26)를 작동시키는 다른 알고리즘들도 본 기술 분야의당
업자에게는 명백할 것이다.

Ⅱ. 압축해제<127>

도 12를 참조하면, 본 발명에 따른 압축해제는 기본적으로 압축의 역순이 된다.<128>

자성 디스크(120)와 같은 데이터 소스로부터, 압축된 비트맵을 나타내는 데이터 스트림을 수신한<129>
다. 데이터를 먼저 마이크로-테이블 압축해제기(122), 다음으로 페어-반복 압축해제기(126), 마지막으
로 비트-런 압축해제기(130)에 의해 압축해제한 다음, 레이저 프린터(132)와 같은 출력 장치로 전달한다.
도 1의 압축기와 같이, 선택사양적인 FIFO(124, 128)들이 일련의 압축해제기 단계들 사이에서 데이터를
완충하여 대기 시간을 제거함으로써 처리 속도를 증가시킨다. 압축해제의 여러 단계들에 대해 다음에
보다 상세히 기술한다.

A. 마이크로-테이블 압축해제<130>

마이크로-테이블 압축해제 단계(122)에서, 압축된 데이터 스트림은 압축기로부터 출력될 때와 동<131>
일한 순서로 처리되며, 문자 값들로부터 매치 코드들을 구별하도록 데이터를 파싱(parse)한다. 데이터
가 처리됨에 따라, 테이블 정보가 재구성되어 압축해제기는 각각의 가능한 입력 코드 값에 대응하는 패턴
값이 무엇인지를 알 수 있게 된다.

마이크로-테이블 압축해제(122) 동안, 테이블은, 압축시와 동일한 방식으로 조작된다. 기본적<132>
인 차이점은, (압축시와 같은 탐색을 요구하는 대신) 각각의 입력값이, 매치가 발생하였는지, 만약 발생
했다면, 테이블의 어느 위치에서 발생하였는지를 직접적으로 가리키고 있다는 점이다. 테이블 매치가
있으면, 마이크로-테이블 압축해제(122)는, 마이크로-테이블 압축기(24)(도 1 참조)가 동일한 포지션에서
의 매치에 대해 행하는 것과 동일한 방식으로 테이블을 갱신한다.

마찬가지로, 테이블 미스에 대해서는 마이크로-테이블의 최하위 층을 압축 동안 수행한 것과 유<133>
사한 MRU-첨가 작용으로 갱신된다. 마이크로-테이블 압축기(24)에 의해 수행된 테이블 조작을 재실행함
으로써, 마이크로-테이블 압축해제기(122)가 등가의 테이블을 만들어 낸다.

따라서, 마이크로-테이블 압축기(24)가 매치를 발견하여 테이블 포지션을 표시하는 코드를 출력<134>
할 경우, 마이크로-테이블 압축해제기(122)는 이 테이블의 복사내에서 그 포지션을 찾아봄으로써 매칭 패
턴이 무엇인지를 알아낼 수 있다.

마이크로-테이블 압축해제에는 한 가지 복잡한 문제가 있다. 마이크로-테이블 압축기(24)가 패<135>
턴에 대한 매치를 발견하지 못한 경우에는, 문자값으로서 그 패턴의 위치를 출력할 뿐이다. 나머지는
입력 데이터 스트림으로부터의 부가적인 데이터에 첨부되며, 테이블이 다시 탐색된다.

문자들은 원래 패턴의 위치를 표시하고 있을 뿐이므로, 마이크로-테이블 압축해제기(122)는 문자<136>
가 발견될 때 전체 패턴을 MRU내에 즉시 저장할 수 없다. 대신, 마이크로-테이블 압축해제기는, 이전

26-9

1019980701282

리터랄과 함께 마이크로-테이블에 첨가될 패턴의 나머지를 드러낸 다음 코드나 문자(character)를 수신할
때까지 대기한다.

이와 달리, 테이블 미스가 발생한 경우, 전체 리터랄 패턴이 압축기의 출력 스트림에서 인코드되<137>
도록 마이크로-테이블 압축기(24)(도 1)를 구성할 수도 있다. 이 경우, 패턴이 즉시 마이크로-테이블
압축해제기(122)에 이용가능하게 될 것이며, 따라서, 수신되자마자 테이블에 첨가될 수 있을 것이다.

도 16은 이층의 사전을 갖는 마이크로-테이블의 소프트웨어 구현을 기술한다. 블럭(272)에서 <138>
코드의 블럭을 읽어들인다. 블럭(274)에서, 코드가 테이블 히트를 표시하면(즉, 도 2의 코드 워드(56
또는 58)의 MSB가 "1"이면), 제어가 블럭(276)으로 넘어간다.

종전의 코드가 테이블 미스를 표시했었던 경우에는(즉, 이전 플래그가 -1로 세트되지 <139>
않았었다면), 블럭(278)에서, 이 코드를 하위 테이블의 최상부의 최하위 바이트로서 삽입하며, 다른 경우
에는, 그 히트 엘리먼트를 출력하고 테이블 히트를 표시하도록 이전 플래그를 세트한다.
블럭(282)에서, 히트가 상위 층에서 발생한 경우에는, 아무것도 행해지지 않는다. 블럭(282)에서 히트
가 하위 층에서 발생한 경우에는, 블럭(284)에서 그 히트 엘리먼트를 상위 층의 최상부로 이동시키고, 다
음 바이트를 읽어들인다.

반면에, 코드가 테이블 미스를 표시하면, 제어가 블럭(286)으로 넘어간다. 종전의 코드가 테이<140>
블 미스를 표시했었던 경우에는 블럭(288)에서 하위 테이블의 최상부에 코드를 삽입하며, 다른 경우에는
이 코드를 하위 테이블의 최상부 엘리먼트의 최상위 바이트로서 삽입하고 다음 바이트를 읽어들인다.

B. 페어-반복 압축해제<141>

페어-반복 압축해제기(126)는 반복된 페어를 카운터 표시기에 의해 지정된 횟수만큼 복제한다. <142>
반복되지 않은 데이터는 변경되지 않고 페어-반복 압축해제기로부터 출력된다.

도 17은 페어-반복 압축해제기(126)의 소프트웨어 구현을 기술한다. 블럭(294)에서 마이크로-<143>
테이블 압축해제기로부터 제 1 코드 바이트를 읽는다. 블럭(296)에서 이 코드 바이트가 반복된 데이터
를 나타낸다고 표시하는 경우(예컨대, 도 2에서 코드의 MSB(44)가 "1"인 경우), 블럭(298)에서 다음 바
이트(반복된 데이터임)를 읽어들여, 블럭(302)에서 적당한 횟수―이 횟수는 제 1 코드 바이트의 7 개의
최하위 비트들(LSB들)에 의해 지정됨―만큼 출력된 다음, 블럭(300)에서 카운트 다운된다.

코드 바이트가, 후속하는 데이터가 문자 데이터임을 표시하는 경우(예컨대, 도 2 에서 코드의 <144>
MSB(44)가 "0"인 경우), 블럭(306)에서 바이트의 수를 읽어 출력하는 한편, 판독 및 출력되고, 블럭(30
6)에서 문자 데이터 바이트 카운트를 카운트 다운한다.

C. 비트-런 압축해제<145>

비트-런 압축해제기(130)는 페어-반복 압축해제기(126)로부터의 런 길이 표시기들의 스트림을 1<146>
과 0들의 스트림으로 변환시킨다. 각각의 런 카운트마다, 현재의 극성을 갖는 비트들을 그 개수만큼 출
력한 다음 극성을 토글(toggle)한다. 카운트가 0이면, 최대 런 길이를 출력하고 극성은 토글하지 않는
다.

도 18은 비트-런 압축해제기(130)의 소프트웨어 구현을 기술한다. 블럭(312)에서 니블인 코드<147>
를 읽어들인다. 코드 니블이 0이 아니면, 블럭(318)에서 런 길이는 니블의 값으로 되고, 니블이 0이면,
블럭(316)에서 런 길이는 15보다 크며 다음 니블에서 계속된다.

블럭(320, 322)에서, "1" 또는 "0"이 런 길이와 동일한 횟수만큼 출력된다. 블럭(324)에서, 코<148>
드가 0이 아니면(데이터 런이 다음 니블에서 계속되지 않음), 출력 비트의 극성이 0에서 1로, 혹은 그 반
대로 변한다. 이어서, 블럭(310)에서 다음 니블에 대한 프로세스를 다시 시작한다.

본 발명은 블랙 비트와 화이트 비트를 나타내는 비트 스트림을 구성하는, 단색 이미지 데이터에 <149>
대하여 기술된 것이다. 그러나, 본 발명은 단색 이미지 데이터의 압축 및 압축해제에 국한된 것은 아니
다.

비트맵 데이터 스트림은 블랙/화이트 픽셀 데이터를 표시하는 데에만 사용되는 것이 아니라, 저<150>
장 또는 전송 효율에 있어서의 증가에 대응하여, 일 성분의 RGB 컬러 데이터나 일 성분의 밝기
(luminance)/명암(chrominance) 컬러 데이터와 같은, 일 채널의 다색 픽셀 데이터를 표시할 수도 있다.

본 발명은 16 비트의 고정 길이 엘리먼트들 갖는 사전에 관하여 기술된 것이다. 그러나, 사전<151>
들은 가변 길이 스트링을 인코딩하는 것으로 구성될 수도 잇다. 예컨대, 란가나단(Ranganathan) 등에게
허여된 미국 특허 제 5,179,378 호는 사전 테이블내의 데이터 스트링―여기서 인코드된 데이터 스트링들
은 가변 길이임―을 표시하는 데 코드 워드들을 사용하는 방법을 기술하고 있다. 본 기술 분야의 당업
자라면, 다수의 이러한 가변 길이 인코딩 기술이 본 발명과 결합되어 사용될 수 있다는 것을 알 것이다.

본 발명은 바람직한 실시예 및 그에 대한 도면들에 관하여 상세히 기술하고 있지만, 본 기술 분<152>
야의 당업자라면, 본 발명의 사상 및 범주를 벗어나지 않고도, 본 발명의 다양한 응용 및 변형이 가능하
다는 것을 알 것이다.

따라서, 앞서 상술된 바와 같은 상세한 설명 및 첨부한 도면은 본 발명을 제한하는 것으로 해석<153>
되어서는 안되며, 단지 다음의 청구의 범위 및 그의 등가 범위에 의해서만 본 발명이 한정되는 것임을 알
아야 한다.

(57) 청구의 범위

26-10

1019980701282

청구항 1

이진 비트(binary bit)들로 이루어진 이진 입력 데이터 스트림(binary input data stream)을 압
축하는 방법에 있어서,

(a) 제 1 압축 데이터 스트림을 만들어내기 위하여 상기 이진 입력 데이터 스트림을 비트-런 인
코딩(bit-run encoding)하는 단계로서,

(a1) 상기 입력 데이터 스트림내의 다수의 연속적인 동일 비트들로 이루어진 제 1 런
(run)을 상기 제 1 런내의 다수의 비트들을 나타내는 제 1 심볼로 바꾸는 단계와,

(a2) 상기 입력 데이터 스트림내의 다수의 연속적인 동일 비트들로 이루어진 제 2 런을
상기 제 2 런내의 다수의 비트들을 나타내는 제 2 심볼로 바꾸는 단계―상기 입력 데이터 스트림내에서
상기 제 2 런은 상기 제 1 런에 곧바로 이어지고, 상기 제 2 런은 상기 제 1 런내의 비트들의 극성과 반
대되는 극성을 갖는 비트들을 가짐―

를 포함하는 비트-런 인코딩 단계와,

(b) 제 2 압축 데이터 스트림을 만들어내기 위해 상기 제 1 압축 데이터 스트림을 페어-반복 압
축(pairs-rep compressing)하는 단계로서,

(b1) 상기 제 1 압축 데이터 스트림내에서 연속해서 반복되어 있는 한 쌍의
심볼들(페어)을 식별하는 단계와,

(b2) 상기 페어가 연속해서 반복되어 있는 횟수를 판정하는 단계와,

(b3) 상기 반복되는 페어와 상기 페어의 반복 횟수에 대응하는 제 1 값들의 셋트를 생성
하는 단계

를 포함하는 페어-반복 압축 단계

를 포함하는 이진 입력 데이터 스트림 압축 방법.

청구항 2

제 1 항에 있어서,

상기 부단계(substep) (a1)에서 만들어진 상기 제 1 심볼은 상기 제 1 런내에 있는 상기 비트들
의 예(example)를 포함하지 않고,

상기 부단계 (a2)에서 만들어진 상기 제 2 심볼은 상기 제 2 런내에 있는 상기 비트들의 예를 포
함하지 않는

이진 입력 데이터 스트림 압축 방법.

청구항 3

제 1 항에 있어서,

(c) 제 3 압축 데이터 스트림을 만들어내기 위해 사전-기반 압축(dictionary-based compressio
n)을 이용하여 상기 제 2 압축 데이터 스트림을 압축하는 단계를 더 포함하되, 상기 사전-기반 압축을 하
는 단계는,

(c1) 상기 사전내의 위치에 사전 엘리먼트를 저장하는 부단계―상기 사전 엘리먼트는 상
기 제 1 값들의 셋트에 대응함―와,

(c2) 상기 위치에 대응하는 인덱스를 생성하는 부단계와,

(c3) 상기 제 2 압축 데이터 스트림내의 상기 제 1 값들의 셋트를 상기 인덱스로 바꾸는
부단계를 포함하는

이진 입력 데이터 스트림 압축 방법.

청구항 4

제 3 항에 있어서,

상기 사전내의 상기 사전 엘리먼트들은 최대 32 개인 이진 입력 데이터 스트림 압축 방법.

청구항 5

제 3 항에 있어서,

상기 사전은 다수의 상기 사전 엘리먼트들을 포함하는 스택과, 상기 스택내에 있는 최하위 우선
순위 엘리먼트를 가리키는 포인터를 포함하며, 상기 스택은 다음의 단계, 즉

26-11

1019980701282

(d1) 상기 최하위 우선순위 엘리먼트를 가장 최근에 사용된 엘리먼트로 바꿈으로써 상기 스택내
의 엘리먼트들을 하향이동시키는 단계와,

(d2) 상기 포인터를 증가시키는 단계에 의해 갱신되는

이진 입력 데이터 스트림 압축 방법.

청구항 6

제 3 항에 있어서,

상기 사전은 다층화된 스택이고, 상기 다층화된 스택은 제 1 부스택과 제 2 부스택을 포함하며,
각각의 부스택은 식별된 최하위 우선순위 엘리먼트를 포함하고, 상기 스택은 다음의 단계, 즉

(e1) 제 1 사전 엘리먼트가 상기 제 2 압축 데이터 스트림에서 검출된 것에 응답하여, 상기 제 1
엘리먼트를 상기 제 1 부스택에서 상기 제 2 부스택으로 이동시킴으로써 상향이동시키는 단계와,

(e2) 상기 제 1 엘리먼트가 상기 제 2 부스택내의 최하위 우선순위 엘리먼트일 때, 제 2 엘리먼
트가 상기 제 1 부스택에서 상기 제 2 부스택으로 상향이동된 것에 응답하여, 상기 제 1 엘리먼트를 상기
제 2 부스택에서 상기 제 1 부스택으로 이동시킴으로써 하향이동시키는 단계에 따라 갱신되는

이진 입력 데이터 스트림 압축 방법.

청구항 7

제 3 항에 있어서,

상기 사전은 다층화된 스택이고, 상기 다층화된 스택은 제 1, 제 2, 제 3 부스택을 포함하며, 각
각의 부스택은 식별된 최하위 우선순위 엘리먼트를 포함하고, 상기 제 1, 제 2, 제 3 부스택들은 각각 최
하위부터 최상위까지로서 정의되며, 상기 스택은 다음의 단계, 즉

(e1) 제 1 사전 엘리먼트가 하위 부스택에 위치한 경우, 상기 제 1 사전 엘리먼트가 상기 제 2
압축 데이터 스트림내에서 검출된 것에 응답하여, 상기 제 1 엘리먼트를 상기 하위 부스택에서 상위 부스
택으로 이동시킴으로써 상향이동시키는 단계와,

(e2) 상기 제 1 엘리먼트가 상위 부스택내의 최하위 우선순위 엘리먼트인 경우, 제 2 엘리먼트가
상기 하위 부스택에서 상기 상위 부스택으로 상향이동된 것에 응답하여, 상기 제 1 엘리먼트를 상기 상위
부스택에서 상기 하위 부스택으로 이동시킴으로써 하향이동시키는 단계에 따라 갱신되는

이진 입력 데이터 스트림 압축 방법.

청구항 8

제 7 항에 있어서,

상기 제 1 부스택은 8 개의 사전 엘리먼트들을 포함하고,

상기 제 2 부스택은 8 개의 사전 엘리먼트들을 포함하며,

상기 제 3 부스택은 16 개의 사전 엘리먼트들을 포함하는

이진 입력 데이터 스트림 압축 방법.

요약

텍스트나 하프톤 이미지와 같은 이미지 데이터를 압축 또는 압축해제한다. 압축기는 연속해 있
는 동일한 픽셀들로 이루어진 각각의 런의 길이를 카운트하는 비트-런 길이 단계(32)와, 픽셀 런 값들의
반복된 페어들을 반복된 페어의 복사 및 반복 카운트로 압축하는 페어-반복 단계(36)와, 선택사양적인 사
전-기반 마이크로-테이블 인코더(50)의, 세 개의 단계들을 갖는다. LRU 메카니즘을 필요로하는 임의의
애플리케이션에서 사용될 수 있는 마이크로-테이블(80)은 복수의 자격층들(82, 84, 86)―이 자격층내의
엘리먼트들은 그 엘리먼트에 대한 테이블 히트가 발생하면 한 단계 높은 자격층으로 상향이동되고, 하위
자격층으로부터 상향이동된 엘리먼트들로 인해 범프됨으로써 한 단계 낮은 자격층으로 하향이동됨―을 갖
는다. 이 결과 테이블은 히트의 빈도 및 최근성 모두에 의해 가중된다.

26-12

1019980701282

대표도

도면

26-13

1019980701282

 도면1

26-14

1019980701282

 도면2

 도면3

 도면3a

26-15

1019980701282

 도면4

 도면4a

 도면4b

 도면5

26-16

1019980701282

 도면5a

 도면6

 도면7

26-17

1019980701282

 도면8

 도면9

 도면10

26-18

1019980701282

 도면11

26-19

1019980701282

 도면12

26-20

1019980701282

 도면13

26-21

1019980701282

 도면14

26-22

1019980701282

 도면15

26-23

1019980701282

 도면16

26-24

1019980701282

 도면17

26-25

1019980701282

 도면18

26-26

1019980701282

