发明名称
驱动装置、成像设备和润滑脂组合物

摘要
本发明的名称是：驱动装置、成像设备和润滑脂组合物。驱动装置包括：滑动轴承；穿过滑动轴承的轴；固定至轴的齿轮；和容纳在滑动轴承和轴之间的间隙中的润滑脂组合物。滑动轴承和轴的至少一个由树脂制成。间隙在10至110μm的范围内。润滑脂组合物含有烃基础油和用作稠化剂的锂皂。烃基础油与锂皂的重量比在94：5：5至96：0：4：0的范围内。润滑脂组合物的稠度在360至400的范围内。
1. 一种驱动装置，其包括：
滑动轴承；
穿过所述滑动轴承的轴；
固定至所述轴的齿轮；和
容纳在所述滑动轴承和所述轴之间的间隙中的润滑脂组合物，其中
所述滑动轴承和所述轴的至少一个是由树脂制成的，
所述间隙在 10 至 110 μm 的范围内；
所述润滑脂组合物含有烃基础油和用作增稠剂的锂皂；
所述烃基础油与所述锂皂的重量比在 94.5:5.5 至 96.0:4.0 的范围内；并且
所述润滑脂组合物的黏度在 360 至 400 的范围内。
2. 根据权利要求 1 所述的驱动装置，其中所述滑动轴承和所述轴的一个是由金属或合金制成的。
3. 根据权利要求 2 所述的驱动装置，其中所述轴是由不锈钢或易切削钢制成的。
4. 根据权利要求 1 至 3 任一项所述的驱动装置，其中所述滑动轴承是由聚缩醛树脂制成的。
5. 根据权利要求 1 至 4 任一项所述的驱动装置，其中所述烃基础油的动力粘度在 40℃下大于或等于 20mm²/s。
6. 根据权利要求 1 至 5 任一项所述的驱动装置，其中所述润滑脂组合物含有烯烃树脂粉末。
7. 根据权利要求 1 至 6 任一项所述的驱动装置，进一步包括容纳在连结至所述轴的所述齿轮的齿面上和与连结至所述轴的所述齿轮啮合的另一个齿轮的齿面上的润滑脂组合物：
所述润滑脂组合物含有烃基础油和用作增稠剂的锂皂；
调节所述烃基础油与所述锂皂的重量比在 94.5:5.5 至 96.0:4.0 的范围内；并且
所述润滑脂组合物的黏度在 360 至 400 的范围内。
8. 根据权利要求 1 至 7 任一项所述的驱动装置，其中容纳在所述间隙中的所述润滑脂组合物含有苯乙烯增稠剂。
9. 一种成像设备，其包括根据权利要求 1 至 8 任一项所述的驱动装置。
10. 一种用于根据权利要求 1 至 8 任一项所述的驱动装置的润滑脂组合物。
驱动装置、成像设备和润滑脂组合物

【0001】相关申请的交叉引用
【0002】本申请要求于2014年5月29日在日本提交的日本专利申请号2014-111463和于2015年3月9日在日本提交的日本专利申请号2015-045778的优先权并且通过引用将其全部内容并入。

技术领域
【0003】本发明涉及使用润滑脂组合物的驱动装置和成像设备，以及用于驱动装置和成像设备的润滑脂组合物。

背景技术
【0004】利用电子照相过程的成像设备使用用于例如图像读取过程、成像过程、转印过程和纸张传送过程的机构中的许多驱动装置。常规的成像设备是大尺寸的并以作为精密设备操纵。因而，成像设备经常安装在远离在办公室中实行办公操作的人的地方，例如为设备提供的专用空间。因而，在成像过程期间由这些成像设备产生的声音不是严重问题。事实上，由所产生的声音检查成像的开始并且由声音的停止确认成像的结束。
【0005】近年来随着成像设备小型化的进展，成像设备将安装在邻近用户的位置例如在使用者的办公桌或侧桌上的情形已经增加。多个用户经常使用用户的个人计算机通过局域网（LAN）访问成像设备以指示成像设备成像图像。结果，成像设备的运行速率趋于增加。曾经不是严重问题的由成像设备产生的声音对于邻近安装成像设备的位置的用户经常是难以忍受的。另外，现在办公室是安静的。因而，从成像设备产生的声音变得更加容易注意。
【0006】大多数来自成像设备的声音的产生来源是以上所述的驱动装置。驱动装置通过经由例如齿轮和皮带传输来自驱动源例如电动机的动能至目标以驱动目标。每个成像设备包括许多驱动装置。特别地，齿轮是用于传输驱动源动能的非常重要的部件。这种驱动装置通常设置有许多齿轮。由于例如在啮合齿轮的齿面之间的摩擦，滑动轴承和齿轮固定至的轴之间的摩擦以及在固定不转动的轴和在轴上转动的齿轮之间的摩擦，从驱动装置产生声音。
【0007】作为降低由在齿轮的齿面之间的摩擦产生的噪音的实例成像设备，在日本专利申请特开号2010-083658和日本专利申请特开号2003-312868中的成像设备已经开发了通过施加在齿轮的齿面上的润滑脂组合物降低噪音。在日本专利申请特开号2001-228660中，公开驱动装置，其使用具有槽的齿轮以容纳润滑脂组合物用于防止润滑脂组合物从齿面脱落。作为实例，例如以上所述的成像设备和驱动装置，通常地，主要在齿轮上施加用于降低噪音的润滑脂组合物已经是惯例。认为含有固体润滑剂——例如聚四氟乙烯、二硫化钼、石墨或氯化聚四氯化碳——的稍硬的润滑脂组合物具有降低噪音的较高效果。这种润滑脂组合物防止撞击声由齿轮之间的直接接触产生，并且减少齿轮之间的摩擦和磨损，从而使得能够维持齿轮的平滑转动。使用稍硬的润滑脂组合物特别是具有低黏度的润滑脂组合物的原因是过软的润滑脂组合物在驱动装置的运行期间由于离心力可从齿面脱落。常规地，
认为来自驱动装置的噪音主要从齿轮的齿面产生，并且在滑动轴承和穿过滑动轴承的轴（在下文中，该轴也被描述为固定齿轮的构件）之间产生的噪音是不值得考虑的。

发明内容

[0008] 本发明人已经发现，作为更有效地降低从驱动装置产生的噪音的研究结果，防止在滑动轴承和穿过滑动轴承的轴之间产生的噪音是非常重要的。穿过滑动轴承的轴经常直接连接到用作驱动源的电动机，或者布置在目标最后被驱动的位置上。穿过滑动轴承的轴在施加到轴上的高度和扭矩下转动，因而，相对较大的波。已经发现，虽然由在滑动轴承和穿过滑动轴承的轴之间的滑动运动产生的噪音是相对较小的，但滑动轴承和穿过滑动轴承的轴很大程度上影响从驱动装置整体产生的噪音。在滑动轴承和穿过滑动轴承的轴之间产生的噪音是由轴不平滑转动引起的。由于轴不平滑转动造成的不良影响被传播到其他齿轮，从而引起作为驱动装置整体生产较大的噪音。

[0009] 不能够在滑动轴承释放中平滑转动的轴缩短了滑动轴承的运行寿命。具体地，滑动轴承通常地经常由塑料材料制成，这是因为塑料材料可实现例如降低重量、容易维修部件以及降低成本。当穿过滑动轴承的轴（固定齿轮的构件）由金属材料制成并且不稳定地转动同时与滑动轴承直接接触时，轴容易引起滑动轴承磨损或损坏。随着滑动轴承的磨损或损坏程度增加，轴更加不稳定地转动，从而引起较大的噪音。结果，在其运行寿命结束之前，需要在早期阶段更换滑动轴承。

[0010] 本发明人已经进行实验以通过在滑动轴承和穿过滑动轴承的轴之间提供润滑脂组合物以降低滑动轴承的磨损。已经发现，大多数含有固体润滑剂的润滑脂组合物对在滑动轴承和穿过滑动轴承的轴之间的摩擦几乎没有效果，并且事实上一些润滑脂组合物经常恶化噪音。将它们施加到齿轮的齿面上时，大多数恶化噪音的润滑脂组合物降低噪音。这些润滑脂组合物经常恶化噪音的原因是由于在滑动轴承和穿过滑动轴承的轴之间的间隙，大尺寸的固体润滑剂被捕获到滑动轴承或轴，从而阻碍轴的转动。

[0011] 在成型之后由塑料材料制成的滑动轴承在尺寸精度上不如由金属材料（包括合金）制成的滑动轴承。因而，减小在滑动轴承和穿过滑动轴承的轴之间的间隙的尺寸变化是困难的。因而，润滑脂组合物中含有的具有相对大尺寸的固体润滑剂容易被捕获到滑动轴承或轴，从而阻碍轴的转动。结果，产生噪音。

[0012] 本发明的目标是提供驱动装置、成像设备和润滑脂组合物，该润滑脂组合物可以防止噪音的发生同时保持穿过滑动轴承的轴平滑转动。

[0013] 根据实施方式，驱动装置包括滑动轴承；穿过滑动轴承的轴；固定到轴的齿轮；和在滑动轴承和轴之间的间隙中容纳的润滑脂组合物。滑动轴承和轴的至少一个是用树脂制成的。间隙在 10 至 110 μm 的范围内。润滑脂组合物含有烃基础油和用作增稠剂的锂皂。烃基础油与锂皂的重量比是在 94.5:5.5 至 96.0:4.0 的范围内。润滑脂组合物的黏稠度在 360 至 400 的范围内。

[0014] 当连同附图考虑时，通过阅读本发明目前优选实施方式的以下详细描述将更好地理解本发明的以上和其他目标、特征、优势以及技术和产业意义。

附图说明
具体实施方式

以下描述了根据本发明的驱动装置和成像设备的实施方式。

首先，描述了由本发明人进行的实验。本发明人已经检查了滑动轴承和穿过滑动轴承的轴（在下文中该轴也被描述为固定齿轮的构件）之间的关系以进行关于如何适当地维持穿过滑动轴承的轴的平滑转动的研究。已经发现，在滑动轴承和穿过滑动轴承的轴之间的摩擦理想地是处于流体摩擦状态，并且在滑动轴承和穿过滑动轴承的轴在长时间内稳定地提供润滑脂组合物是重要的。也已经发现，当相对硬的润滑脂组合物施加在滑动轴承和穿过滑动轴承的轴之间时，在其间产生极其小的间隙，从而使得难以维持穿过滑动轴承的轴的平滑转动。还发现，当相对软的润滑脂组合物施加在滑动轴承和穿过滑动轴承的轴之间时，在施加之后润滑脂组合物立即存在于滑动轴承和轴之间，但是经过较长时间之后在间产生了极小缝隙。这使得难以维持轴的平滑转动。产生极小缝隙的原因是穿过滑动轴承的轴的转动加快了软的润滑脂组合物的流出。

本发明人进行了如下实验。

润滑脂组合物 1 由以下配方制备：

具有 24mm²/s 动力粘度的合成油：按重量计 74%
锂皂：按重量计 9%
聚四氟乙烯（PTFE）：按重量计 5%
二硫化钼：按重量计 4%
氧化铝：按重量计 8%
润滑脂组合物 1 的黏度度（由日本工业标准（JIS）K2220 确定）是 300。

润滑脂组合物 2 由以下配方制备：

具有 12mm²/s 动力粘度的合成油：按重量计 90%
锂皂：按重量计 3.8%
苯乙烯添加剂：按重量计 6.2%
润滑脂组合物 2 的黏度度是 370。

图 1 是图解于实验的第一测试驱动装置的示意性结构图。图 1 中，第一测试驱动装置 900 的电动机齿轮 902（由易切削钢制成）具有 9 齿，0.5 的模数和 16° 的扭转角。齿轮 906（由铝制成）具有 109 齿，0.5 的模数和 16° 的扭转角。支撑轴 903 的两个滑动轴承 904（由聚缩醛树脂制成）的孔径是 6.03mm。两个滑动轴承 904 关于轴 903 具有相
同的结构关系。因而，在以下描述中关于轴 903 的结构关系对一个滑动轴承 904 描述。轴 903 (由易削钢制成) 的外直径是 5.99mm。测量了滑动轴承 904 和轴 903 之间的间隙。具体地，在孔的整个外围上测量了滑动轴承 904 的孔径并且确定了最大值和最小值。在轴的整个外围上测量了轴 903 的直径并且确定了最大值和最小值。从滑动轴承 904 孔径的最大值减去轴 903 直径的最小值。该减发结果获得作为最大间隙值。从滑动轴承 904 孔径的最小值减去轴 903 直径的最大值。该减法结果获得作为最小间隙值。最大和最小值以微米获得, 并且四舍五入小数点后第一位。每个所得的值是 18 μm。在其他实验中以如上所述的相同方式测量间隙。通过四舍五入最大值小数点后第一位获得的值和通过四舍五入最小值小数点后第一位获得的值在所有间隙中是彼此相等的。

【0040】电动机 901 在 2750rpm 下转动并且在滑动轴承 904 和轴 903 之间不提供任何东西。在三分钟之后，从整个装置产生的噪音测量为无润滑油脂噪音。

【0041】在以下描述中，显示相对有利结果的实验条件被称作“实施例”而显示不利结果的实验条件被称作“比较实施例”。

【0042】比较实施例 1

【0043】将润滑油组合物 1 施加在滑动轴承 904 和轴 903 之间，并且电动机 901 在 2750rpm 下转动。在三分钟之后，测量从整个装置产生的噪音，从无润滑油脂噪音减去该测量结果。获得所得的值作为噪音改进量。当值是负数时，该值不是噪音改进量而实际是噪音劣化量。

【0044】实施例 1

【0045】将润滑油组合物 2 施加在滑动轴承 904 和轴 903 之间，并且电动机 901 在 2750rpm 下转动。在三分钟之后，测量从整个装置产生的噪音，从无润滑油脂噪音减去该测量结果。获得所得的值作为噪音改进量。

【0046】实施例 2

【0047】除了用在其和滑动轴承 904 之间的间隙是 10 μm 的轴 903 代替实施例 1 中使用的轴 903 之外，在与实施例 1 相同的条件下获得噪音改进量。

【0048】比较实施例 2

【0049】除了用在其和滑动轴承 904 之间的间隙是 10 μm 的轴 903 代替比较实施例 1 中使用的轴 903 之外，在与比较实施例 1 相同的条件下获得噪音改进量。

【0050】比较实施例 3

【0051】除了用在其和滑动轴承 904 之间的间隙是 6 μm 的轴 903 代替实施例 1 中使用的轴 903 之外，在与实施例 1 相同的条件下获得噪音改进量。

【0052】比较实施例 4

【0053】除了用在其和滑动轴承 904 之间的间隙是 6 μm 的轴 903 代替比较实施例 1 中使用的轴 903 之外，在与比较实施例 1 相同的条件下获得噪音改进量。

【0054】表 1 中阐明了结果。

【0055】表 1

<table>
<thead>
<tr>
<th>间隙 [μm]</th>
<th>润滑脂</th>
<th>噪音改进量 [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>18</td>
<td>润滑脂 2</td>
</tr>
</tbody>
</table>
实施例

| 实施例 | 润滑脂 2 | 润滑脂 1 | 油 | 润滑脂 2 | 润滑脂 1 | 间隙
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 比较实施例 1 | 18 | | | | | -0.3
| 比较实施例 2 | 10 | | | | | -0.4
| 比较实施例 3 | 6 | | | | | -0.4
| 比较实施例 4 | 6 | | | | | -1.3

从结果发现通过使用具有相对较大粘度度的润滑脂组合物并且增加间断至相对较大的值可以有效地降低噪音。

接着，根据表 2 中阐明的配方制备润滑脂组合物 3 至 12。当苯乙烯添加剂用于含有基础油和碱性的基础润滑脂组合物时，加入基础油和预先分散在基础油中的苯乙烯添加剂的混合物和添加剂，并且然后搅拌所得的混合物以便制备润滑脂组合物。

表 2

<table>
<thead>
<tr>
<th>润滑脂</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油 a</td>
<td>89.6</td>
<td>80.8</td>
<td>81.3</td>
<td>80.4</td>
<td>83.7</td>
<td>85.0</td>
<td>-</td>
<td>42.5</td>
<td>91.9</td>
<td>89.9</td>
</tr>
<tr>
<td>基础油 b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82.3</td>
<td>49.4</td>
<td>-</td>
</tr>
<tr>
<td>碱</td>
<td>4.8</td>
<td>4.2</td>
<td>3.7</td>
<td>4.6</td>
<td>3.7</td>
<td>5.0</td>
<td>7.7</td>
<td>3.7</td>
<td>3.7</td>
<td>1.2</td>
</tr>
<tr>
<td>烷烃树脂粉末</td>
<td>-</td>
<td>-</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>7.0</td>
<td>9.4</td>
<td>9.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>苯乙烯添加剂</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>3.8</td>
<td>3.8</td>
<td>8.3</td>
</tr>
<tr>
<td>抗氧化剂</td>
<td>0.5</td>
</tr>
<tr>
<td>腐蚀抑制剂</td>
<td>0.1</td>
</tr>
<tr>
<td>基础油粘度 [mm²/s]</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>9850</td>
<td>533</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>铝皂比 [wt%]</td>
<td>5.1</td>
<td>4.9</td>
<td>4.4</td>
<td>5.4</td>
<td>4.2</td>
<td>5.6</td>
<td>8.6</td>
<td>3.9</td>
<td>3.9</td>
<td>1.3</td>
</tr>
<tr>
<td>粘度度</td>
<td>394</td>
<td>376</td>
<td>396</td>
<td>361</td>
<td>394</td>
<td>448</td>
<td>358</td>
<td>357</td>
<td>455</td>
<td>402</td>
</tr>
</tbody>
</table>

*铝皂 / (烷基础油 + 铝皂)

表 2 中所阐明的各组分的具体物质如下：

基础油 a: 聚-a-烯烃（在 40℃下 18mm²/s）
基础油 b: 乙烯-a-烯烃低聚物（在 40℃下 9850mm²/s）
铝皂: 12- 烷基硬脂酸铝
烷烃树脂粉末: 聚乙烯粉末 (12 μm 的平均粒径)
苯乙烯添加剂：氢化苯乙烯－异戊二烯嵌段共聚物（按重量计36%的苯乙烯含量）

抗氧化剂：由ADEKA Corporation制造的Adekastab QL

腐蚀抑制剂：由BASF制造的Irgamet 39

表2中基础油粘度、粘稠度以及锂皂比的值通过以下方式测量：

基础油粘度：根据JIS K 2283测量的在40℃下的动力粘度

粘稠度：根据JIS K2220测量的混合物粘稠度

锂皂比：锂皂重量与基础油和锂皂总重量的比

实施例3

除了用在其和滑动轴承904之间的间隙是50μm的轴903代替实施例1中使用的轴903，并且使用润滑脂组合物3代替润滑脂组合物2之外，在与实施例1相同的条件下获得噪音改进量。

实施例4

除了用在其和滑动轴承904之间的间隙是85μm的轴903代替实施例1中使用的轴903，并且使用润滑脂组合物3代替润滑脂组合物2之外，在与实施例1相同的条件下获得噪音改进量。

实施例5

除了用在其和滑动轴承904之间的间隙是110μm的轴903代替实施例1中使用的轴903，并且使用润滑脂组合物3代替润滑脂组合物2之外，在与实施例1相同的条件下获得噪音改进量。

比较实施例5

除了用在其和滑动轴承904之间的间隙是的125μm的轴903代替实施例1中使用的轴903，并且使用润滑脂组合物3代替润滑脂组合物2之外，在与实施例1相同的条件下获得噪音改进量。

表3中阐明了结果。

表3

<table>
<thead>
<tr>
<th>间隙 [μm]</th>
<th>润滑脂</th>
<th>噪音改进量 [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例3</td>
<td>50</td>
<td>润滑脂3</td>
</tr>
<tr>
<td>实施例4</td>
<td>85</td>
<td>润滑脂3</td>
</tr>
<tr>
<td>实施例5</td>
<td>110</td>
<td>润滑脂3</td>
</tr>
<tr>
<td>比较实施例5</td>
<td>125</td>
<td>润滑脂3</td>
</tr>
</tbody>
</table>

从表1和3中阐明的结果，发现为了有效地降低噪音需设置间隙在10至110μm的范围内。

实施例5至8和比较实施例6至10

以与实施例3中相同的方式使用轴903，在该轴903和滑动轴承904之间的间隙
是 50 μm。在滑动轴承 904 和轴 903 之间不提供任何东西，并且电动机 901 在 2750rpm 下转动。在三分钟之后，测量从整个装置产生的噪音。然后在滑动轴承 904 和轴 903 之间施加润滑脂组合物 4，并且电动机 901 在 2750rpm 下转动。在 60 分钟之后，测量从整个装置产生的噪音。从当无润滑脂组合物施加时的噪音减去该测量结果。获得所得的值作为噪音改进量。也以与上述相同的方式对润滑脂组合物 5 至 12 的每个获得噪音改进量。

[0088] 表 4 中阐明了结果。

[0089] 表 4

实施例 5	润滑脂 4	18	4.9	376	0.8
实施例 6	润滑脂 5	18	4.4	396	0.8
实施例 7	润滑脂 6	18	5.4	361	0.7
实施例 8	润滑脂 7	18	4.2	394	0.4
比较实施例 6	润滑脂 8	18	5.6	448	-0.1
比较实施例 7	润滑脂 9	9850	8.6	358	-0.2
比较实施例 8	润滑脂 10	533	3.9	357	-0.3
比较实施例 9	润滑脂 11	18	3.9	455	-0.1

[0091]

| 比较实施例 10 | 润滑脂 12 | 18 | 1.3 | 402 | -0.1 |

[0092] 第一测试驱动装置 900 作为驱动装置用于以上所述的实验。

[0093] 实施例 9 至 11 和比较实施例 11 和 12

[0094] 图 2 是图解用于实验的第二测试驱动装置 920 的示意性结构图。

[0095] 在第二测试驱动装置 920 中，向第一侧板 909 和第二侧板 910 的每个提供滑动轴承 904。第二齿轮 908 被固定至穿过该两个滑动轴承 904 的轴 903。固定的轴 913 在第一侧板 909 和第二侧板 910 之间延伸并且被不可转动地固定在其上。具有通孔的第一齿轮 911 安装在固定的轴 913 上。固定的轴 913 可转动地支撑第一齿轮 911。第一齿轮 911 具有驱动齿轮部分 911a 和从动齿轮部分 911b，其二者都围绕相同的轴线转动并整体地形成。

[0096] 用作待驱动目标的伪负荷 914 固定在由滑动轴承 904 可转动地支撑的轴 903 的一端。电动机齿轮 902 与第一齿轮 911 的驱动齿轮部分 911a 咬合。通过第一齿轮 911、第二齿轮 908 和轴 903，电动机齿轮 902 的转动驱动力传输至伪负荷 914。

[0097] 表 5 中阐明了第二测试驱动装置 920 的单个元件的规格。

[0098] 表 5
说明书

<table>
<thead>
<tr>
<th>材料</th>
<th>SUS</th>
<th>POM</th>
<th>POM</th>
<th>POM</th>
</tr>
</thead>
<tbody>
<tr>
<td>齿数</td>
<td>13</td>
<td>62</td>
<td>58</td>
<td>70</td>
</tr>
<tr>
<td>模数</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>扭转角 [°]</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>咬合齿宽[mm]</td>
<td>12</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>轴直径[mm]</td>
<td>0.05</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>滑动轴承的材料</td>
<td>POM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>间隙[mm]</td>
<td>0.05</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

[0099] POM：聚甲醛，被称为聚缩醛树脂

[0100] 在其中无润滑脂组合物施加到第二测试驱动装置 920 的单个元件的条件下，电动机 901 在 2500rpm 下运转。在三分钟之后，测量从整个装置产生的噪音。然后，将润滑脂组合物施加到第二测试驱动装置 920 中的第一部分 P1 和第二部分 P2。第一部分 P1 是在滑动轴承 904 和轴 903 之间的部分。第二部分 P2 是在圆柱形轴 913 和第一齿轮 911 的通孔的内圆周表面之间的部分。将润滑脂组合物施加到第一部分 P1 和第二部分 P2。其后，电动机 901 在 2750rpm 下运转。在 30 分钟之后，测量从整个装置产生的噪音。从当无润滑脂组合物施加时的噪音减少到该测量结果。获得所得的值作为噪音改进量。在实施例 9 中使用润滑脂组合物 4，在实施例 10 中使用润滑脂组合物 5，并且在实施例 11 中使用润滑脂组合物 6。在比较实施例 11 中使用润滑脂组合物 1，而在比较实施例 12 中使用润滑脂组合物 9。

[0102] 表 6 详细了那些实验的结果。

[0103] 表 6

<table>
<thead>
<tr>
<th>润滑脂</th>
<th>基础油粘度</th>
<th>酯皂比</th>
<th>膏稠度</th>
<th>噪音改进量 [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 9</td>
<td>润滑脂 4</td>
<td>18</td>
<td>4.9</td>
<td>376</td>
</tr>
<tr>
<td>实施例 10</td>
<td>润滑脂 5</td>
<td>18</td>
<td>4.4</td>
<td>396</td>
</tr>
<tr>
<td>实施例 11</td>
<td>润滑脂 6</td>
<td>18</td>
<td>5.4</td>
<td>361</td>
</tr>
<tr>
<td>比较实施例 11</td>
<td>润滑脂 1</td>
<td>24</td>
<td>10.8</td>
<td>300</td>
</tr>
<tr>
<td>比较实施例 12</td>
<td>润滑脂 9</td>
<td>9850</td>
<td>8.6</td>
<td>358</td>
</tr>
</tbody>
</table>

[0105] 从表 4 和 6 理解需要满足以下条件的润滑脂组合物用于有效地降低噪音。基础油与酯皂的重量比（基础油 : 酯皂）是在 94.5 : 5.5 至 96.0 : 4.0 的范围内并且膏稠度是
在 360 至 400 的范围内。

【0106】 实施例 12 至 14 和比较实施例 13

【0107】 除了将润滑脂组合物 4 施加到第一部分 P1 和第二部分 P2 之外还施加到第三部分 P3 和第四部分 P4 之外，以与实施例 9 相同的方式进行实验以获得噪音改进量。该实验是实施例 12。第三部分 P3 是第一齿轮 911 的从动齿轮部分 911b 的齿面和第二齿轮的齿面。第四部分 P4 是电动机齿轮 902 的齿轮和第一齿轮 911 的驱动齿轮部分 911a 的齿面。

【0108】 除了将润滑脂组合物 5 施加到第一部分 P1 和第二部分 P2 之外还施加到第三部分 P3 和第四部分 P4 之外，以与实施例 10 相同的方式进行实验以获得噪音改进量。该实验是实施例 13。除了将润滑脂组合物 6 施加到第一部分 P1 和第二部分 P2 之外还施加到第三部分 P3 和第四部分 P4 之外，以与实施例 11 相同的方式进行实验以获得噪音改进量。该实验是实施例 14。除了将润滑脂组合物 1 施加到第一部分 P1 和第二部分 P2 之外还施加到第三部分 P3 和第四部分 P4 之外，以与比较实施例 11 相同的方式进行实验以获得噪音改进量。该实验是实施例 13。

【0109】 表 7 说明了那些实验的结果。从与表 6 的比较理解在齿轮的齿面上施加润滑脂组合物可以进一步有效地降低噪音。

【0110】 表 7

<table>
<thead>
<tr>
<th>润滑脂</th>
<th>基础油粘度</th>
<th>铝比</th>
<th>黏稠度</th>
<th>噪音改进量 [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 12</td>
<td>润滑脂 4</td>
<td>18</td>
<td>4.9</td>
<td>376</td>
</tr>
<tr>
<td>实施例 13</td>
<td>润滑脂 5</td>
<td>18</td>
<td>4.4</td>
<td>396</td>
</tr>
<tr>
<td>实施例 14</td>
<td>润滑脂 6</td>
<td>18</td>
<td>5.4</td>
<td>361</td>
</tr>
<tr>
<td>比较实施例 13</td>
<td>润滑脂 1</td>
<td>24</td>
<td>10.8</td>
<td>300</td>
</tr>
</tbody>
</table>

【0112】 实施例 15 和 16 与比较实施例 14

【0113】 在第二测试驱动装置 920 中，将固定电动机 901 并且具有 1.6mm 厚度的托架 915 改变为具有 0.8mm 厚度的托架。在改变后的改进的装置中，将润滑脂组合物施加到所有第一部分 P1、第二部分 P2、第三部分 P3 和第四部分 P4，并且测量噪音。从无润滑脂组合物施加并且使用具有 1.6mm 厚度的托架 915 时的噪音减去该测量结果。获得所得的值作为噪音改进量。使用润滑脂组合物 4 的实验条件是实施例 15，使用润滑脂组合物 5 的实验条件是实施例 16，并且使用润滑脂组合物 1 的实验条件是实施例 14。实施例 15 的噪音改进量是 1.8dB。实施例 16 的噪音改进量是 1.4dB。实施例 14 的噪音改进量是 -0.7dB。发现其中施加润滑脂组合物并且使用具有较小厚度的托架 915 的条件能够降低的噪音低于其中无润滑脂组合物施加并且使用具有 1.6mm 厚度的托架 915 的条件。

【0114】 实施例 17 和 18

【0115】 准备由 Ricoh Company, Ltd. 制造的 IPSiO SP 4310 作为成像设备。测量从成像设备产生的噪音作为无润滑脂施加时的噪音。其后，将润滑脂组合物 4 施加在不包括固定装置在内的成像设备中成像单元中提供的所有滑动轴承和穿过滑动轴承的轴之间的间隙中。
也将润滑脂组合物施加在 75%的不包括那些固定装置在内所有齿面上。在 25℃和 55%
RH 的环境下在 250,000 张记录纸张上输出测试图像之后，测量从整个设备产生的噪音，并
且其后获得噪音改进量（实施例 17）。作为另一个实验，除了使用润滑脂组合物 5 代替润滑
脂组合物 4（实施例 18）之外，以与实施例 17 中相同的方式获得噪音改进量。实施例 17 中
噪音改进量是 4.4dB，而实施例 18 中噪音改进量是 4.5dB，其是有利的结果。
[0116] 如上所述发现当将在滑动轴承和穿过滑动轴承的轴之间的间隙设置在 10 至
110 μm 的范围内并且将具有在 360 至 400 范围内粘度度的润滑脂组合物施加在滑动轴承和
轴之间时，可以有效地降低噪音。另外发现当使用含有烃基础油（A）和用作增稠剂的锂
皂（B），并且（A）与（B）的比率在 94.5:5.5 至 96.0:4.0 的范围内的润滑脂组合物时，可以有
效地降低噪音。
[0117] 根据本发明的驱动装置包括滑动轴承、穿过滑动轴承的轴、固定至轴的齿轮以及
在滑动轴承和轴之间的间隙中容纳的润滑脂组合物。滑动轴承和轴的至少一个是由树脂制
成的。间隙是在 10 至 110 μm 的范围内。润滑脂组合物含有烃基础油和锂皂。调节烃基础
油与锂皂的重量比（烃基础油：锂皂）在 94.5:5.5 至 96.0:4.0 的范围内。调节润滑脂组合
物粘度在 360 至 400 的范围内。
[0118] 根据本发明的驱动装置传输驱动电动机的转动能量通过多个齿轮至待驱动的目
标以便驱动目标。除了所需要的齿轮之外，还可以提供皮带和滑轮。待驱动的目标数量基
本上是一个，但是也可以驱动多个目标。通过经由齿轮减小或增大驱动电动机的转动速度，
根据本发明的驱动装置可以在适当的速度下驱动待驱动的目标。
[0119] 根据本发明的驱动装置包括固定至穿过滑动轴承的轴并且随同轴转动的至少一
个齿轮。除了该齿轮之外，还可提供具有通孔并且当固定的轴插入到该通孔时在该固定
的轴上转动的另一个齿轮。固定至穿过滑动轴承的轴并且随同轴转动的齿轮可以用例如紧定
螺钉、锥柄连接、键联接、花键插头或摩擦连接（friction joint）固定至轴。齿轮可以通过
与轴结合形成。当穿过滑动轴承并且被滑动轴承支撑时轴随同齿轮转动。轴承的已知实施
例包括滑动轴承、球轴承和滚子轴承。根据本发明的驱动装置至少包括滑动轴承、穿过滑动
轴承的轴以及固定至轴的齿轮。由于其制造成本低、重量轻以及紧凑的尺寸，结构比其他轴
承更简单的滑动轴承具有用于制造紧凑型驱动装置的优势。
[0120] 根据本发明的驱动装置包括至少一组滑动轴承和穿过滑动轴承的轴，并且滑动轴
承和轴的至少一个是由树脂制成的。滑动轴承和穿过滑动轴承的轴的至少一个是由实现轻
重量并且具有优良的可加工性的树脂制成的，从而使得能够提供紧凑、重量轻并且低成本
的驱动装置。
[0121] 任何金属材料和树脂材料可以用作在根据本发明的驱动装置中使用的滑动轴承
的材料。考虑到重量轻的性质和成本，优选地使用树脂材料。用于滑动轴承的树脂材料的
实例包括聚丙烯、聚缩醛树脂、聚苯硫醚树脂和聚醚醚酮树脂。考虑到耐久性和成本，最优
选的是聚缩醛树脂。
[0122] 任何金属材料和树脂材料可以用在根据本发明的驱动装置中使用的穿过滑动
轴承的轴的材料。金属材料优选地用于在高速度下转动并且接收高扭矩的轴，而树脂材料
优选地用于在低速度下转动并且接收低扭矩的轴。可以用于穿过滑动轴承的轴的金属材料
的实例包括合金和各种金属。考虑到耐久性、可加工性和成本，金属材料优选地是不锈钢或
易切削钢。可以用于穿滑动轴承的轴的树脂材料的实例包括氟树脂、聚缩醛树脂、聚苯硫醚树脂和聚酰胺树脂。考虑到耐久性和成本，优选的是聚缩醛树脂。

[0123] 在根据本发明的驱动装置中使用的滑动轴承和穿滑动轴承的轴之间的间隙是在 10 至 110 μm，优选地 20 至 100 μm，以及更优选地 25 至 90 μm 的范围内。当在滑动轴承和轴之间的间隙小于 10 μm 时，由于在装配和驱动中间的接触，容易损坏滑动轴承或轴，从而引起轴的转动不稳定。结果，不利地，噪音变大并且滑动轴承或轴的耐久性降低。特别地，当滑动轴承和轴的一个由金属材料制成，而另一个由树脂材料制成时，噪音的影响明显增大。当在滑动轴承和轴之间的间隙大于 110 μm 时，由于轴的较差固定，轴不稳定地转动。结果，不利地，噪音变大并且滑动轴承轴或轴的耐久性降低。

[0124] 图 3 是图解根据实施方式的驱动装置的主要部件的主结构图。如图 3 中所图解的，根据实施方式的驱动装置至少包括滑动轴承 301，穿过滑动轴承 301 的轴 302 和固定至轴 302 以便齿轮 303 与轴 302 整体地转动的齿轮 303。通过被防止转动构件（rotation preventive member）304 捕获，防止齿轮 303 以空转方式在轴 302 上转动。提供带有至少一组滑动轴承 301、轴 302 和齿轮 303 的驱动装置。滑动轴承 301 关于轴 302 具有相同的结构关系。因而，关于轴 302 的结构关系在以下描述中对一个一个滑动轴承 301 描述。

[0125] 在滑动轴承 301 和轴 302 之间提供润滑脂组合物（在下文中，也描述为根据实施方式的润滑脂组合物）。润滑脂组合物含有烃基础油（A）和用作增稠剂的铸模（B）。烃基础油（A）与铸模（B）的比率在 94.5:5.5 至 96.0:4.0 的范围内。润滑脂组合物的黏度在 360 至 400 的范围内。由在滑动轴承 301 和轴 302 之间提供的润滑脂组合物产生的流体油膜压力支撑轴 302，导致轴 302 平滑地转动而没有受到摩擦阻力。结果，几乎不产生噪音。所以，可以实现滑动轴承 301 和轴 302 的半永久性运行寿命。

[0126] 当根据实施方式的驱动装置提供有滑动轴承 301、轴 302 和齿轮 303 的多个组合（在下文中该组合被称作“轴组”）时，优选地，在所有轴组中滑动轴承 301 和轴 302 之间提供润滑脂组合物。在包括在相对低的速度下转动并且受小扭矩的轴 302 的“轴组”中，考虑到成本可以不在滑动轴承 301 和轴 302 之间提供润滑脂组合物。在所有“轴组”的至少一个中，在滑动轴承 301 和轴 302 之间提供润滑脂组合物。

[0127] 根据实施方式的驱动装置除了图 3 中图解的齿轮 303 之外还包括齿轮（未图解）。将根据实施方式的润滑脂组合物优选地施加到齿轮的齿面以获得能够进一步降低从驱动装置产生的噪音的效果。与根据实施方式的润滑脂组合物不同的一般用于防止噪音的润滑脂组合物可以用作施加在齿面上的润滑脂组合物。然而，如果在滑动轴承 301 和轴 302 之间错误地提供一般用于防止噪音的润滑脂组合物，则噪音可能恶化。因而，需要细心留意，以便防止在驱动装置的装配过程中错误地使用润滑脂组合物。当根据实施方式的润滑脂组合物施加到齿轮的齿面时，该润滑脂组合物展现了降低齿面之间的噪音的优良效果。因此，考虑到简化驱动装置的装配过程并防止噪音，优选地将根据实施方式的润滑脂组合物施加到齿面。

[0128] 如以上所述的，根据实施方式的润滑脂组合物的黏稠度在 360 至 400 的范围内，并且优选地在 365 至 395 的范围内。具有小于 360 的黏稠度的润滑脂组合物几乎不能均匀地提供在滑动轴承 301 和轴 302 之间，并且因而几乎不能均匀地维持流体油膜压力。结果，润滑脂组合物不利地引起噪音变得更大并且可降低滑动轴承 301 和轴 302 的耐久性。具有大
于 400 的粘度的润滑脂组合物可不利地以下列方式表现，其中在滑动轴承 301 和轴 302 之间的间隙在 10 至 110 μm 的范围内。随着驱动装置的运行进展，润滑脂组合物从在滑动轴承 301 和轴 302 之间的间隙流动至其外面，从而引起难以均匀地维持流体油膜压力。结果，噪音变得更大并且滑动轴承 301 和轴 302 的耐久性降低。当由于进一步降低噪音或进一步增加齿轮耐久性的目的将具有大于 400 的粘度的润滑脂组合物施加到驱动装置中的齿轮的间隙时，随着驱动装置的运行进展，润滑脂组合物趋于容易从齿轮的间隙分散。结果，不利地，由于分散的润滑脂组合物造成的对驱动装置和外部装置的污染之外，在长时间内维持降低噪音或增加齿轮耐久性效果也变得困难。根据 JIS K2220 测量润滑脂组合物的粘度指数。

[0129] 在根据实施方式的润滑脂组合物中，烃基础油 (A) 与用作增粘剂的锂皂 (B) 的比在 94.5:5.5 至 96.0:4.0 的范围内。当增粘剂的量与基础油的量的比大于上述所述的范围内，润滑脂组合物变硬并且可增加搅拌阻力。当增粘剂的量与基础油的量的比小于该范围时，润滑脂组合物软化并且可不利地从间隙溢出。

[0130] 无论矿物油和合成油的类型或者无论单独或作为混合物使用，任何烃基础油都可以用作根据实施方式的润滑脂组合物的烃基础油。烃基础油的实例包括以石蜡油和环烷基油为代表的矿物油、以二酯和多元醇酯为代表的酯合成油、以聚 -α- 烷烃、α- 烷烃低聚物、聚丁烯和聚异丁烯为代表的烯烃合成油、以及以亚烷基二苯醚和聚亚烷基醚为代表的酯合成油。烯烃合成油是优选的，其对于树脂材料造成相对小的损伤并且在耐热性和低温性能之间具有优良的平衡。这些基础油可单独使用或者作为两种或多种油的组合使用。为了平滑地转动齿轮和轴并降低整个驱动装置的噪音，基础油的动力粘度优选地在 40°C 下 advantages 或小于 20mm²/s。

[0131] 无论单独使用或者作为混合物使用，任何锂皂可以用作根据实施方式的润滑脂组合物的增粘剂。锂皂的实例包括一元脂肪酸或羟基一元脂肪酸的锂盐以及植物油例如种子油和用于制造锂皂的动物油或者源自油的脂肪酸的锂盐。优选的是以一元脂肪酸或羟基一元脂肪酸的锂盐。特备地，优选的是具有 8 至 12 个碳原子的一元脂肪酸或羟基一元脂肪酸的锂盐。更具体地，一元脂肪酸的锂盐的实例包括月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、山棕酸、肉豆蔻烯酸、棕榈油酸、油酸和亚油酸的锂盐；而羟基一元脂肪酸的锂盐的实例包括 12- 羟基硬脂酸、14- 羟基硬脂酸、16- 羟基硬脂酸、6- 羟基硬脂酸和 9, 10- 羟基硬脂酸的锂盐。而且，优选的是关于由金属化合物和树脂化合物组成的润滑脂部分具有优良的耐久性的直链一元脂肪酸或直链羟基一元脂肪酸。更具体地，优选地使用硬脂酸锂或 12- 羟基硬脂酸锂。

[0132] 除了烃基础油和锂皂之外，还可以根据预期的用途根据实施方式的润滑脂组合物中添加一般混合的添加剂。添加剂的实例包括固体润滑剂、增稠剂、抗氧化剂、极压添加剂、油性添加剂、防锈剂、腐蚀抑制剂、金属钝化剂、染料、色相稳定剂 (hue stabilizer)、粘度指数改进剂和结构稳定剂。特别地，优选地添加固体润滑剂以防止由于油膜不足造成的不良润滑，平滑地转动齿轮和轴，降低整个驱动装置的噪音并增加耐久性。无论单独使用或者作为混合物使用，都可以使用任何固体润滑剂。固体润滑剂的实例包括以氟尿酸三氟氯胺、二硫化钼、氯化硼、石墨、云母和氟化石墨为代表的层状化合物，以聚四氟乙烯 (PTFE)、四氟乙烯 - 全氟烷基乙烯基醚共聚物 (PFA)、四氟乙烯 - 六氟丙烯共聚物 (FEP)、乙烯 - 四氟乙烯共聚物 (ETFE)、聚偏氟乙烯 (PVDF) 和聚氟三氟乙烯 (PCTFE) 为代表的氟树脂，以二
氧化锌和氧化锌为金属氧化物，以及聚烯烃和聚酰胺为代表的合成树脂粉末。为了使得齿轮和轴继续平稳转动，烯烃树脂粉末优选地用作固体润滑剂，这是因为烯烃树脂粉末容易分散在具有范围从360至400的黏度度的非常软的润滑脂组合物中。用作固体润滑剂的烯烃树脂粉末的含量关于润滑脂组合物的总质量优选地在按质量计1至20％的范围内，并且更优选地按质量计2至10％。过量的烯烃树脂粉末可以不利地增加齿轮的转动阻力。

[0133] 根据实施方式的润滑脂组合物具有范围从360至400的黏度度，其是非常软的。由于柔软性，苯乙烯增稠剂优选地用于下述目的：防止润滑脂组合物从齿轮和轴的滑动面滴下或分散，使得具有轴穿过的孔的齿轮和穿过滑动轴承的轴平滑地转动，降低从整个驱动装置产生的噪音，和增加耐久性。苯乙烯增稠剂的含量优选地在关于润滑脂组合物的总质量按质量计1至20％的范围内，并且更优选地，按质量计2至10％。当添加过量的苯乙烯增稠剂时，在其中烃基础油与锂皂的比在9.4.5：5.5至96.0：4.0的范围内，不能够调节黏度度在360至400的范围内。结果，齿轮的转动阻力可进一步增大。当添加过少的苯乙烯增稠剂时，不利地可能不能够实现苯乙烯增稠剂的预期作用。该预期作用是防止润滑脂组合物从齿轮和轴的滑动面滴下和分散，使得齿轮和轴平滑地转动，降低从整个驱动装置产生的噪音，和增加耐久性。

[0134] 根据实施方式的驱动装置产生很少的噪音并且具有优良的耐久性，从而使得能够安装在各种设备。各种设备的实例包括在安静的办公室或在封闭的空间内或在安静的环境例如在午夜环境运行的设备，以及刚好邻近人运行的设备。特别地，由于以下原因，驱动装置可以优选地用于使用例如热传递技术、热技术(thermal technique)、喷墨技术或电子摄像技术的成像设备（例如，打印机、传真机、复印机和多功能外围设备）。这些成像设备普遍地在家庭或办公室使用。随着成像设备小型化的进展，它们刚到靠近使用者安装。结果，强烈要求降低噪音。

[0135] 在其中提供根据实施方式的润滑脂组合物的局部部分，在树脂之间的摩擦系数、在树脂和金属或合金之间的摩擦系数，或者在金属或合金和金属或合金之间的摩擦系数在长时间段优选地是较小的。特别地，非常优选地是，使用烯烃树脂粉末的润滑脂组合物的摩擦系数一一该摩擦系数以以下所述的方式获得——在长时间段内得以维持，使得摩擦系数等于或小于0.15，优选地等于或小于0.13，并且更优选地在0.01至0.12的范围内。在其中具有1/2英寸直径的球在其上施加了某种润滑脂组合物的板上滑动的测试中，使用往复测试仪在10至2000周期的范围内测量摩擦系数。在使用往复测试仪的摩擦系数的测量中，在一些情况下根据在循环的初始阶段（小于10个周期）润滑脂组合物的施加状态，摩擦系数的测量值可以是不稳定的。因此，重要的是，往10至2000周期的范围内测量摩擦系数，在该情况下润滑脂组合物是在稳定的施加状态。

[0136] 使用根据实施方式的烯烃树脂粉末的润滑脂组合物的摩擦系数在长时间段内是较小的。因而，润滑脂组合物极大地有助于驱动装置的可靠性改进。用于参考，使用图5中图解的装置测量实施例19中使用的润滑脂组合物（使用实施例5中使用的润滑脂组合物4）以及常规用于成像设备的驱动装置的润滑脂组合物的摩擦系数。如图5中所示的，例如，装置设置有重物801、1/2英寸直径的尼龙66球802（产品名称：AMILAN CM3001-N）和测力仪805。对于常规使用的润滑脂组合物，使用在比较实施例15（含有烯烃油、锂皂、PTFE

15
说明书

和氯酸三聚氰胺，并且黏度是 333。比较实施例 16（含有二甲基硅油和锂皂，且黏度是 357）。比较实施例 17（含有全氟醚油和PTFE，并且黏度是 250）和比较实施例 18（含有烯烃油和尿素，并且黏度是 262）中的那些润滑脂组合物。测试如下进行。将每种润滑脂组合物（图 5 中图解的润滑脂组合物 803）施加在具有 0.1mm 厚度的 POM 板（DURACON SW-01）804 上。当具有 1/2 英寸直径的尼龙 66 球 802（产品名称: AMILAN CM3001-N）在其上载荷是 0.49N，滑动速度是 60cpm 并且滑动距离是 40mm 的条件下滑动时，测量摩擦系数。[0137] 图 6 是图解摩擦系数的测量结果的图表。如图 6 中所图解的，与常规使用的比较实施例 15、16、17 和 18 中的润滑脂组合物的摩擦系数相比，实施例 19 中的润滑脂组合物具有更小的摩擦系数。在摩擦周期内，实施例 19 中的润滑脂组合物的摩擦系数是较少波动并且稳定的。[0138] 然后，除了使用铜板（C2801P）代替 POM 板（DURACON SW-01）804，并且使用 POM 球（DURACON M90-02）代替具有 1/2 英寸直径的尼龙 66 球 802（AMILAN CM3001-N）之外，以如以上所述的相同方式测量摩擦系数。图 7 是图解摩擦系数的测量结果的图表。如图 7 中所图解的，与常规使用的比较实施例 15、16、17 和 18 中的润滑脂组合物的摩擦系数相比，实施例 19 中的润滑脂组合物具有更小的摩擦系数。在摩擦周期内，实施例 19 中的润滑脂组合物的摩擦系数是较少波动并且稳定的。[0139] 除了使用钢板（SPCC）代替 POM 板（DURACON SW-01）804，并且使用钢球（SUS 304，其是不锈钢的）代替具有 1/2 英寸直径的尼龙 66 球 802（AMILAN CM3001-N）之外，以如以上所述的相同方式测量摩擦系数。图 8 是图解摩擦系数的测量结果的图表。如图 8 中所图解的，与常规使用的比较实施例 15、16、17 和 18 中的润滑脂组合物的摩擦系数相比，实施例 19 中的润滑脂组合物具有更小的摩擦系数。在摩擦周期内，实施例 19 中的润滑脂组合物的摩擦系数是较少波动并且稳定的。[0140] 根据实施方式的润滑脂组合物具有优良的存储持久性（storage conservation）。特别地，根据实施方式的使用苯乙烯增稠剂的润滑脂组合物具有非常小的根据 JIS K2220 测量的油分离度。油分离度可减小到等于或小于 0.2%，优选地等于或小于 0.15%，并且更优选地等于或小于 0.1%。以这种方式，根据实施方式的润滑脂组合物具有优良的存储持久性和稳定性。根据实施方式的使用苯乙烯增稠剂的润滑脂组合物极大地有助于驱动装置可靠性的改进。[0141] 用于参考，测量了根据实施方式的润滑脂组合物（在实施例 19 中的润滑脂组合物）和比较实施例 15、16、17 和 18 中的润滑脂组合物的油分离度的老化。具体地，通过根据 JIS K2220 油分离度的测量方法在 100℃下测量油分离度的老化持续 100 小时。图 9 是图解老化测量结果的图表。与在实施例 15、16、17 和 18 中润滑脂组合物的油分离度的老化改变相比，实施例 19 中的润滑脂组合物具有较小的油分离度的老化改变。实际上在 100℃下持续 100 小时，实施例 19 中的润滑脂组合物的油分离度不变。因此，实施例 19 中的润滑脂组合物具有优良的存储持久性和稳定性。[0142] 以下描述了成像设备，根据实施方式，在其上安装了多个根据本发明的驱动装置。可证明降低噪音的超常效果的根据实施方式的成像设备是根据本发明的成像设备的实例。根据本发明的成像设备不限于根据实施方式的成像设备。[0143] 图 4 是图解根据实施方式的成像设备 100 的示意性结构图。成像设备 100 包括执
行成像的主体（打印机单元）110，在主体110上面提供的文档阅读器（扫描单元）120，在文档阅读器120上面提供的自动文档进纸器（ADF）130和在主体110下提供的供纸单元200，并且具有复印机的功能。成像设备100具有与外部设备连通的功能。通过连接至外部设备例如个人计算机，成像设备100可以用作打印机或扫描仪。另外，通过连接至电话线或光通信线路，成像设备100可以用作传真机。

[0144] 在主体110中，四个成像单元（成像站）10并排放置。成像单元10具有相同的结构并且使用彼此不同的调色剂颜色。四个成像单元10使用各自不同颜色的调色剂（例如，黄色（Y），品红（M），青色（C）和黑色（K））形成不同颜色的调色剂图像。将该彩色调色剂图像转印在中间转印介质7上以彼此交迭，从而能够形成多颜色或全色图像。

[0145] 四个成像单元10沿着具有带状并且被多个辊拉伸的中间转印介质7并排放置。由成像单元10形成的各自颜色的调色剂图像顺序地转印到中间转印介质7上以彼此交迭。其后，交迭的调色剂图像被二次转印装置12立即转印到具有片状形状的转印介质例如纸上。

[0146] 围绕各自的鼓状感光体1（Y1，M1，C1和K1）四个成像单元10每个包括保护剂施加装置2，充电装置3，引导从潜像形成装置8发出的写入光（例如，激光）至相应感光体1的曝光单元，显影装置5，初级转印装置6和清洁装置4。用于各自颜色的成像单元10每个具有在共用卡盒中的感光体1，保护剂施加装置2（包括清洁装置4），充电装置3和显影装置5的处理卡盒。处理卡盒以可拆卸的方式连接至主体110。

[0147] 以下描述了成像设备100的运行。作为实例，以阴图晒阳图法（negative-positive process）描述了一系列用于成像的过程。四个成像单元10以相同的方式运行，并且作为实例描述了一个成像单元10的运行。

[0148] 鼓状感光体1——其是具有有机感光层的有机感光体（OPC）为代表的图像载体，由例如放电管（未图解）中和，并且其后通过具有充电构件（例如，充电辊）的充电装置3均匀地充电至负极性。当感光体1通过充电装置3充电时，将适用于将感光体1充电到期望电位的充电电压从电压施加机构（未图解）施加到充电构件。充电电压具有适当的量级或者是其中交流电压叠加在该电压上的电压。

[0149] 充电的感光体1被从潜像形成装置8发出的激光利用激光扫描技术光学扫描。潜像形成装置8包括，例如，多个激光源，耦合的光学系统，光偏转器和扫描成像光学系统。通过在感光体1的整个表面光学扫描曝光的区域形成静电潜像（曝光区域电位的绝对值比未曝光区域电位的绝对值小）。从激光源（例如，半导体激光器）发出的激光被包括具有多边形的多棱镜并且为了扫描在高度下转动的光偏转器偏转，并且通过包括扫描透镜和反射镜的扫描成像光学系统在感光体1的转动轴方向（主扫描方向）扫描感光体1的表面。

[0150] 因而在感光体1的表面上形成的潜像用调色剂颗粒或包括调色剂颗粒和在用作显影装置5的显影剂载体的显影剂51的显影套筒上负载的载体颗粒的混合物的显影剂显影。结果，形成调色剂图像。当潜像被显影时，自电压施加机构（未图解）施加显影偏压至显影装置51的显影套筒。显影偏压是其值在感光体1的曝光区域和未曝光区域的那些电压之间的具有适当量级的电压或者是其中交流电压叠加在该电压上的偏压。

[0151] 在成像单元10的各自的感光体1上形成的各自颜色的调色剂图像通过包括转印辊在内的初级转印装置6顺序地初级转印到中间转印介质7上以彼此交迭。与成像操作和初级转印操作同步的，从供纸盘201a，201b，201c和201d选出任意一个盒，该供纸盘在供纸
单元 200 以多步骤排列。从所选择的供纸盒，具有片形状的转印介质例如纸由包括供纸辊 202 和分离辊 203 在内的供纸机构供应，并且通过输送辊 204、205 和 206 以及对位辊 207 输送至二次转印单元。

【0152】在二次转印单元中，在中间转印介质 7 上的调色剂图像二次转印到通过二次转印装置（例如，二次转印辊）12 输送至二次转印单元的转印介质上。在转印过程中，将具有与充电的调色剂的极性相反的极性的电位优选地施加到初级转印装置 6 和二次转印装置 12 作为转印偏压。

【0153】在穿过二次转印单元之后，转印介质与中间转印介质 7 分离。在初级转印之后保留在感光体 1 上的调色剂颗粒被清洁装置 4 的清洁构件 41 收集到清洁装置 4 中的调色剂收集室中。在二次转印之后保留在中间转印介质 7 上的调色剂颗粒被带清洁装置 9 的清洁构件收集到带清洁装置 9 中的调色剂收集室中。

【0154】成像设备 100 具有所述的串联结构，其中用于各自颜色的多个成像单元 1 沿着中间转印介质 7 布置，并且通过中间转印技术在转印介质上形成图像。如以上所已经描述的，在成像单元 10 的各自感光体 1（1Y、1M、1C 和 1K）上形成的各自颜色的彼此不同颜色的调色剂图像顺序地转印到中间转印介质 7 上以彼此交迭，并且其后交迭的调色剂图像立即转印到转印介质例如转印纸上。在转印之后通过输送装置 13 将转印介质输送到定影装置 14，其中通过例如加热将调色剂图像定影在转印介质上。在穿过定影装置 14 之后，转印介质通过输送装置 15 和出纸辊 16 被排出到排纸托盘 17 中。

【0155】成像设备 100 具有双面打印功能。在双面打印中，通过改变定影装置 14 下游的输送路径将仅在其一个表面上定影图像的转印介质输送到用于双面打印的输送装置 210。用于双面打印的输送装置 210 另转印介质的前表面和后表面。其后，通过输送辊 206 和对位辊 207 将转印介质再一次输送到二次转印单元。二次转印单元在转印介质的后表面（另一个表面）上二次转印图像。其后，将转印介质再一次输送到定影装置 14。定影装置 14 在转印介质的后表面上定影图像。然后，将转印介质输送到排纸托盘 17 以便排出到成像设备外。

【0156】可以利用串联直接转印系统代替串联中间转印系统。在这种情况下，使用负载并传输转印介质的转印带或类似物代替中间转印介质 7。在四个成像单元 10 的各自感光体 1（1Y、1M、1C 和 1K）上顺序形成的彼此不同颜色的调色剂图像转印到转印带上的转印介质上以直接彼此交迭。然后，将转印介质输送到定影装置 14，其中，例如通过加热将图像定影在转印介质上。

【0157】如此构成的成像设备包括多个驱动装置，其每个单独地驱动感光体 1、清洁装置 4、以及显影装置 5、初级转印装置 6。不断地输送中间转印介质 7 同时拉伸该中间转印介质 7 的驱动辊，以及多种输送辊。利用根据实施方式的驱动装置作为多个驱动装置的至少一个。在其中产生热的定影装置 14 中，使用与根据实施方式的驱动装置不同的驱动装置，这是因为由热软化的润滑脂可能会例如流出。

【0158】通过实施例的方式表示以上描述。本发明在以下方面也具有特别的优势。

【0159】方面 A

【0160】方面 A 提供驱动装置，其包括滑动轴承（例如，滑动轴承 301）、穿过滑动轴承的轴（例如，轴 302）和固定至轴的齿轮（例如，齿轮 303），以及容纳在滑动轴承和轴之间的间隙
中的润滑脂组合物。滑动轴承和轴的至少一个是由树脂制成的。间隙是在 10 至 110 μm 的范围内。润滑脂组合物含有烃基础油和用作增稠剂的锂皂。调节烃基础油与锂皂的重量比（烃基础油 : 锂皂）在 94.5 : 5.5 至 96.0 : 4.0 的范围内。调节润滑脂组合物的黏稠度在 360 至 400 范围内。

[0161] 在此结构中，在滑动轴承和轴之间的间隙被设定至适当的值，并且其中烃基础油与锂皂的重量比和黏稠度被调节至适当的范围的润滑脂组合物存在于该间隙中，从而能够防止噪音的产生和维持穿过滑动轴承的轴的平滑转动。

[0162] 方面 B

[0163] 方面 B 提供根据方面 A 的驱动装置，其中滑动轴承和轴的一个是由金属（包括合金）制成的。在此结构中，滑动轴承和轴的至少一个是由金属制成的，从而使得能够使其坚固并且延长寿命。而且，即使当另一个（与该一个不同的滑动轴承或轴）由实现轻重量和低生产成本的树脂制成，也可以有效地防止噪音的发生。

[0164] 方面 C

[0165] 方面 C 提供根据方面 B 的驱动装置，其中轴是由不锈钢或易切削钢制成的。即使当使用由具有高强度的不锈钢或易切削钢制成的轴时，此结构也可以防止噪音的发生。

[0166] 方面 D

[0167] 方面 D 提供根据方面 A 至 C 的任意一个的驱动装置，其中滑动轴承是由聚缩醛树脂制成的。即使当使用由实现轻重量和低生产成本的聚缩醛树脂制成的滑动轴承时，此结构也可以防止噪音的发生。

[0168] 方面 E

[0169] 方面 E 提供根据方面 A 至 D 的任意一个的驱动装置，其中烃基础油的粘度在 40℃下等于或小于 20mm²/s。此结构使得能够通过在滑动轴承和轴之间充分地提供含有具有在 40℃下等于或小于 20mm²/s 的粘度的烃基础油的润滑脂组合物而平滑地转动轴。结果，可以有效地防止噪音的发生。

[0170] 方面 F

[0171] 方面 F 提供根据方面 A 至 E 的任意一个的驱动装置，其中润滑脂组合物含有烯烃树脂粉末。通过在滑动轴承和轴之间均匀地提供具有良好地分散在烃基础油中的烯烃树脂粉末，此结构可以有效地防止噪音的发生。

[0172] 方面 G

[0173] 方面 G 提供根据方面 A 至 F 的任意一个的驱动装置，该驱动装置进一步包括容纳在连接至轴的齿轮的齿面上和与连接至轴的齿轮啮合的另一个齿轮的齿面上的润滑脂组合物。润滑脂组合物含有烃基础油和用作增稠剂的锂皂，调节烃基础油与锂皂（烃基础油 : 锂皂）的重量比在 94.5 : 5.5 至 96.0 : 4.0 的范围内，并且调节润滑脂组合物的黏稠度在 360 至 400 的范围内。对于在滑动轴承和轴之间，和在固定至轴的齿轮的齿面和与固定至轴的齿轮啮合的其他齿轮的齿面之间提供的润滑脂组合物，使用具有相同配方的润滑脂组合物。此结构可以改进驱动装置的组件的可加工性（避免润滑脂组合物被施加到错误的地方）。结果，可以增加驱动装置的生产力。

[0174] 方面 H

[0175] 方面 H 提供根据方面 A 至 G 任意一个的驱动装置，其中容纳在间隙中的润滑脂组
合成物含有苯乙烯增稠剂。润滑脂组合物中含有的苯乙烯增稠剂防止在润滑脂组合物中发生油分离。此结构可以防止噪音的发生同时避免由于油分离造成的故障。

[0176] 方面 I

[0177] 方面 I 提供包括方面 A 至 B 任意一个的驱动装置的成像设备。此结构可以有效地防止来自驱动装置的噪音的产生。

[0178] 方面 J

[0179] 方面 J 提供用于根据方面 A 至 B 的任意一个的驱动装置的润滑脂组合物。此结构使得润滑脂组合物能够有效地防止来自驱动装置的噪音的产生。

[0180] 本发明具有防止噪音发生同时维持穿过滑动轴承的轴平滑转动的有利效果。

[0181] 虽然为了完整和清楚的公开关于具体的实施方式已经描述了本发明，但所附的权利要求并不因此受到限制，而应解释为包括清楚地落入本文所阐述的基本教导内的本领域技术人员想到的所有更改和变化结构。

[0182] 参考标记列表
[0183] 7 : 中间转印介质
[0184] 10 : 成像单元
[0185] 100 : 成像设备
[0186] 110 : 主体
[0187] 120 : 文档阅读器
[0188] 130 : ADF
[0189] 301 : 滑动轴承
[0190] 302 : 轴
[0191] 303 : 齿轮
图 5

图 6

PA-66 球 (AMILAN CM3001-N) / POM 板 (DURACON SW-01)

比较实施例 15
比较实施例 16
比较实施例 17
比较实施例 18
工作实施例 19

摩擦系数
周期
图 9