发明名称
补偿装置和电梯

摘要
本发明涉及牵引滑轮电梯的补偿绳索，该电梯包括补偿绳索，其从电梯轿厢延伸到位于电梯井的最下层中的补偿装置的补偿滑轮。补偿绳索围绕补偿滑轮运行，由此补偿滑轮经由一导引结构关于电梯井底部被竖直导引，所述导引结构允许补偿滑轮的轴的下端与补偿滑轮轴的连接。本发明还涉及包括这种类型的补偿装置的电梯。本发明允许在非常低的电梯井高度要求的情况下补偿滑轮的轴的竖直运动。
1. 牵引滑轮电梯(10)的补偿装置(36)，所述电梯包括补偿绳索(32)，该补偿绳索从电梯轿厢(28)延伸到位于电梯井的最下部中的所述补偿装置的补偿滑轮(34)，补偿绳索(32)围绕所述补偿滑轮延伸，由此，所述补偿滑轮经由导向结构相对于电梯井底部(20)被竖直导引，所述导向结构允许所述补偿滑轮(34)的轴(50)的竖直运动，其特征在于，所述导向结构包括至少一个剪式接头配置(36)，该剪式接头配置的下端(42)适于与电梯井底部(20)连接且该剪式接头配置的上端(48)与补偿滑轮的轴(50)连接。

2. 根据权利要求1所述的补偿装置，其特征在于，所述剪式接头配置(36)包括两个第一臂(38a, 38b)，个两个第二臂铰接到关于所述电梯井底部(20)固定的底座部分(42)。

3. 根据权利要求2所述的补偿装置，其特征在于，所述剪式接头配置(36)包括两个第二臂(40a, 40b)，该两个第二臂经由枢轴(44a, 44b)铰接到第一臂(38a, 38b)。

4. 根据权利要求3所述的补偿装置，其特征在于，所述第二臂(40a, 40b)包括两个分开的臂部分，该两个臂部分在它们的上端被枢接到用于补偿滑轮的轴(50)的安装支承件(48)，由此，在所述臂部分之间提供了大于所述补偿滑轮(34)的厚度(d)的间隙(b)。

5. 根据权利要求2-4中的任一项所述的补偿装置，其特征在于，剪式接头配置(36)的枢轴(39a, 39b, 44a, 44b, 41a, 41b)是共轴的或者垂直于补偿滑轮的轴(50)。

6. 根据权利要求2-5中的任一项所述的补偿装置，其特征在于，第一臂(38a, 38b)在所述补偿滑轮(34)的轴向方向上具有比所述补偿滑轮(34)的厚度(d)更大的宽度(a)。

7. 根据前述权利要求中的任一项所述的补偿装置，其特征在于，该补偿装置包括至少一个锁定装置(46)，该锁定装置限制所述剪式接头配置(36)的竖直运动的最大范围和/或速度。

8. 根据权利要求7所述的补偿装置，其特征在于，所述锁定装置(46)包括缓冲器(54)。

9. 根据权利要求7或8所述的补偿装置，其特征在于，所述锁定装置(46)是液压或气动阻尼元件。

10. 根据权利要求7-9中的任一项所述的补偿装置，其特征在于，所述锁定装置(46)是具有第一室(47)和第二室(49)的液压缸或气动缸，活塞(45)可以在所述第一室和所述第二室之间运动。

11. 根据权利要求10所述的补偿装置，其特征在于，至少所述缸的第一室(47)经由压力泵被连接到流体储存器。

12. 根据前述权利要求中的任一项所述的补偿装置，其特征在于，张紧重量件(52a, 52b)被固定到所述剪式接头配置(36)的上端。

13. 根据前述权利要求中的任一项所述的补偿装置，其特征在于，所述剪式接头配置包括两个剪式接头，该两个剪式接头位于所述补偿滑轮的两端。

14. 一种电梯，包括至少一个电梯轿厢(28)，其上悬挂有所述电梯轿厢的悬挂绳索(26)，包括将所述悬挂绳索夹紧以限制所述电梯轿厢运动的牵引滑轮(24)的驱动机器，以及根据前述权利要求中的任一项所述的补偿滑轮(36)。

15. 根据权利要求14所述的电梯，其特征在于，该电梯包括悬挂于所述悬挂绳索(26)上的配重(30)，以及所述补偿绳索(32)在所述轿厢(28)和配重(30)之间经由所述补偿滑轮(34)延伸到所述电梯井(12)的下部。
补偿装置和电梯

技术领域

[0001] 本发明涉及一种补偿装置，其具有补偿绳索以补偿在高层牵引滑轮电梯中悬挂绳索的重量。快速电梯中的补偿装置具有两个任务。第一任务是要在非常大的提升高度的情况下，特别是当轿厢接近最高部或最低部轿厢位置时，补偿悬挂绳索的重量。补偿绳索与悬挂绳索一起建立闭环的绳索环。因此，绳索重量不再取决于电梯轿厢的位置。进一步地，补偿绳索防止在轿厢安全装置脱落的情况下配重自由向上运动，或在配重上的安全装置脱落或配重撞击缓冲器的情况下电梯轿厢自由向上运动。为了保持绳索张紧稳定，补偿装置必须具有补偿滑轮，该补偿滑轮具有可在竖直方向上自由调节的轴以便满足由于载荷变化、温度和湿度变化和磨损等引起的绳索长度的变化。

[0002] 通常，补偿装置包括在电梯井的最下部的补偿滑轮，补偿绳索围绕该补偿滑轮运行。补偿滑轮的轴以竖直可动方式被支撑以应对由环境情况和磨损引起的绳索长度的变化。补偿装置通常包括锁定装置，用于限制补偿滑轮的竖直运动的上界。

[0003] 在众所周知的解决方案中，竖直框架用于沿着竖直路径导引补偿滑轮轴以满足绳索长度的变化。无论如何，该已知的框架在电梯井凹坑道中占用相当大的竖直空间。这种限制电梯布局，特别是在电梯井道相当低的情形下，以使得补偿装置的导向框架为电梯布局设置了限制。

[0004] 此外，US 4,522,285 公开了一种用于补偿滑轮的支撑件，其包括具有竖直液压缸体的液压装置。该装置同样占用相当大的竖直高度，其又限制了用于电梯布局的选择方案。

发明内容

[0005] 因此，本发明的目的是要提供一种允许补偿滑轮的竖直运动的补偿装置，其不妨碍电梯布局并且可用于具有相对较低的电梯井道的电梯中。

[0006] 本发明的目标是通过根据权利要求 1 的补偿装置以及通过权利要求 10 的电梯得以解决的。本发明的有利实施例是从属权利要求的主题。

[0007] 根据本发明，补偿装置包括剪式接头（剪式千斤顶）配置，其允许根据绳索伸长或作用于电梯的力，调节补偿滑轮的轴。另一方面，剪式接头或剪式千斤顶配置仅需要非常小的竖直空间以便补偿滑轮轴的竖直调节在非常低的电梯井道中也是可能的。

[0008] 在这点上，剪式接头配置的下端与电梯井底部或与电梯井最下部中的电梯的任何结构连接。与电梯井底部的连接可以是直接的但是也可经由任何支撑结构来实现，其中所述任何支撑结构在电梯井下部中被连接到电梯井，例如连接到导轨，缓存器，单独的安装结构，电梯井底部或电梯井壁。

[0009] 剪式接头配置的基本优点是剪式接头的相同设计可用来适用于大的绳索伸缩范围，同时还具有非常低的安装高度。

[0010] 剪式接头配置的上端承载补偿滑轮的轴。经由该配置，补偿滑轮的轴在竖直路径上被刚性导引而不需要相当大的电梯井高度。

[0011] 优选地，通过剪式接头配置的上端，张紧重量件也可得到支撑，由此，该张紧重量
件还可集成到补偿滑轮中。该张紧重量件施加一重量到补偿滑轮的轴以便使补偿绳索以及悬挂绳索张紧。

[0012] 剪式接头提供了当在它的最高延伸位置剪式接头的臂变为它们的竖直位置时的范围的固有上限。在该情况下，补偿滑轮轴距离电梯井底部的距离处于最大值。当补偿滑轮轴的进一步向上运动不再可能时，该剪式接头还充当锁定装置。

[0013] 如果剪式接头配置包括铰接接到关于电梯井底部固定的底座部分的两个第一臂，以及如果剪式接头配置包括由枢轴接接到该第一臂的两个第二臂，就获得了剪式接头配置的很简单的构造。通过此配置，剪式接头配置仅需要四个臂以在与所述第二臂连接优选与其上端连接的安装支撑件上引导所述补偿滑轮。

[0014] 有利地，第二臂包括两个间隔开的臂部分，该臂部分在它们的上端枢接用于补偿滑轮轴的安装支撑件，由此，在臂部分之间提供了大于补偿滑轮的厚度 d 的间隔 b。通过该方法，补偿滑轮可在剪式接头配置的高度内延伸以便它不需要完全位于所述补偿滑轮之下。因此，包括补偿滑轮的该配置的高度非常低。

[0015] 优选地，剪式接头配置的枢转轴与补偿滑轮轴共轴。通过该配置，获得了节省空间的解决方案，虽然可能将剪式接头的枢轴布置成垂直于所述补偿滑轮。

[0016] 优选地，第一臂在补偿滑轮的轴向具有比补偿滑轮的厚度 d 更宽的宽度 a。通过该方法，提供了用于所述补偿滑轮轴的刚性径直导向件，由此剪式接头臂的宽度平行于所述补偿滑轮轴延伸。经由该构造，补偿滑轮的轴可以在两侧由剪式接头配置夹持。因此，剪式接头配置仅需要彼此铰接的两个第一臂和两个第二臂以在两端上支撑补偿滑轮轴。因而所述构造的构造是非常刚性的和简单的。进一步地，因为补偿滑轮延伸到所述剪式接头配置的臂区域中，所以该配置具有非常低的高度。

[0017] 优选地，剪式接头配置另包括连接到剪式接头配置的（可动）臂和/或接头中的一个或多个的至少一个锁定装置，该锁定装置限制剪式接头配置的竖直运动的最大范围和/或剪式接头配置的竖直运动速度。该装置例如可以是作为例如液压或气动缸-活塞对的具有一定的可延伸范围的伸缩装置，并且其可具有限制缸-活塞对的延伸速度的液压/气动阀。

[0018] 优选地，补偿装置，特别地剪式接头配置，包括至少一个锁定装置，该锁定装置限制剪式接头配置的竖直运动的最大范围和/或竖直运动的速度。这提供了一种更多限定类型的上限。优选地，锁定装置被连接在剪式接头配置的臂之间，或者被连接在剪式接头配置的第一和第二臂的连接点处的枢轴之间。该锁定装置优选为具有用于最小长度的止动器的长度可调节的配置。该装置例如可以是作为例如液压缸（术语“缸”在本文中用来描述缸-活塞装置，其中活塞在缸内是轴向可动的，具有本身已知的伸缩功能）的伸缩装置。

[0019] 当补偿滑轮在向上方向上，例如由于电梯中的任何动态情形，被拉动时，剪式接头的第一和第二臂趋于在竖直方向被向上拉直。从而布置在剪式接头的第一和第二臂之间的两个接头的相互距离在减小。优选地，锁定装置设置在这些接头之间。锁定装置具有用于接头的容许最小距离的止动器。当该最小距离通过经由补偿绳索在补偿滑轮上的拉动达到时，所述锁定装置的止动器开始动作且在该剪式接头的第一和第二臂之间的接头的相互距离可不被进一步减小。这还限制了剪式接头的上下端之间的最大距离以及因此限制了补偿滑轮距离电梯井底部的最大容许距离。
尽管锁定装置的水平位置是优选的，因为这提供了竖直方向上的空间节省配置，但是锁定装置还可竖直或倾斜地设置在电梯井中。

优选地，锁定装置适合于使剪式接头配置的运动速度慢下来。这例如通过将锁定装置设置为伸缩配置是可能的，其中伸缩配置的两个部分之间的摩擦接合，例如在气缸或液压缸中，得以实现。通过该解决方案，补偿滑轮的突然的跳起或掉落被阻尼，由此增加了电梯的安全性和可靠性。

在简单且可靠的实施例中，锁定装置是液压或气动阻尼元件。因此，锁定装置对减小补偿滑轮的任何振动或动态运动具有一些阻尼效果。

优选地，锁定装置包括作为用于运动范围限制的止动器的缓冲器。这能使平滑地接近所述剪式接头配置的竖直导引路径的极限。

优选地，锁定装置是具有第一室和第二室的液压或气动缸，其中活塞在所述第一室和第二室之间是可动的。这样的缸允许将缸内设置用于运动范围的极限以及缸的阻尼特性。缸进一步能够适应于补偿滑轮轴的大的竖直方向的活动，而在它的水平位置时不需要相当大的高度。

如果在进一步的优选实施例中至少缸的第一室经由可控制的压力泉被连接到流体储存器，锁定装置可用来将补偿滑轮的轴移动到顶部从而减小或消除补偿绳索上的张紧。通过该方法，容易执行任何的安装或维修工作。通过该方法，进一步可能的是，补偿滑轮在它的正常操作极限内被提升。通过该方法，绳索的最初的伸展可被消除，而无需在服役之后在操作中减小张紧。该特征可适于减少对缩短绳索的需要。

有利地，张紧重量件也被固定到剪式接头配置，优选与补偿滑轮轴一起被固定到剪式接头配置的上端。这能使经由补偿滑轮张紧补偿绳索和悬挂绳索。

剪式接头配置可包括多个，例如两个，分离或连接的剪式接头（或剪式千斤顶），由此这两个剪式接头位于所述补偿滑轮的两端。在此，分两个，补偿滑轮的每端使用一个剪式接头。通过该方法，非常简单的剪式接头构造可被使用，其不需要对补偿滑轮的任何适配。

此外，不言而喻的是，剪式接头不仅可以具有第一和第二臂，而且还可具有第三和第四臂，如果要实现更大的竖直导引路径的话。在该情况下，这些臂相互铰接，本身从剪式接头或剪式千斤顶中是已知的。

作为锁定装置，或还附到锁定装置，驱动设备，例如液压缸或齿轮齿条传动装置可定位在所述剪式接头的第一和/或第二臂之间以便能够提升补偿滑轮以及最终提升所述张紧重量件而没有使用任何人力。

虽然，根据本发明的补偿装置优选地被配置为用于大的电梯或具有大的提升高度的电梯，用于高速电梯，优选地用于具有 3.5 米/秒以上的速度的电梯，但是其还可用于更慢的电梯。无论如何，将补偿装置用于根据本发明的牵引滑轮电梯机构中对快速电梯而言是具有特别特征的。

补偿装置可用于具有和没有配重的电梯中。

本发明还涉及包括如上所述的补偿装置的电梯。

对技术人员明显的是，本发明的以上所述特征和优选解决方案的特征可任意结合，只要这在技术上是可行的。
附图说明
[0034] 现在将借助于附图示意性地描述本发明，在附图中：
[0035] 图 1 是示出具有补偿装置的电梯的示意图，其中所述补偿装置包括剪式接头配置；
[0036] 图 2 是图 1 的剪式接头配置的更详细的前视图；
[0037] 图 3 是图 2 的视图方向 III，以及
[0038] 图 4-6 是剪式接头配置的不同实施例。

具体实施方式
[0039] 在附图中，以下相同或功能相同的部件被分配给相同的附图标记。
[0040] 本发明的电梯 10 包括电梯井 12，其具有电梯井壁 14、电梯井天花板 18 以及电梯井底部 20。在电梯井 12 的上部中，为驱动机器设置了空间 22，该空间可与电梯井的轿厢和配重在那里运动的下部分开，或者可结合到电梯井中。驱动机器（不可见）驱动牵引滑轮 24，该牵引滑轮在它的周缘上夹紧提升绳索 26，该提升绳索可以是具有圆形横截面的绳索、带或链条。通常使用至少两根单独的平行绳索。悬挂绳索 26 被连接到电梯轿厢 28 和配重 30。补偿绳索 32 从电梯轿厢 28 向下延伸到补偿滑轮 34。补偿绳索 32 绕过牵引滑轮 34 的周缘且向上延伸到配重 30 之下的固定位置。补偿滑轮 34 经由具有第一臂 38a，38b 和第二臂 40a，40b 的剪式接头配置 36 被连接到电梯井底部 20。第一臂 38a，38b 框轴连接到与电梯井底部 20 连接的的底座部分 42。第一臂 38a，38b 的上端在枢轴 44a，44b 处枢轴连接到第二臂 40a，40b 的下端。锁定装置 46 水平地布置在枢轴 44a，44b 之间以限制剪式接头配置 36 的运动范围。第二臂 40a，40b 的上端被枢轴连接到用于所述补偿滑轮 34 的轴 50 的安装支撑件 48。
[0041] 剪式接头配置 36 的结构和功能从图 2 的详细的前视图中变得清楚。
[0042] 图 2 示出了第一臂 38a，38b 经由下部枢轴 39a，39b 枢轴连接到底部部分 42 以及第二臂 40a，40b 经由上部枢轴 41a，41b 枢轴连接到安装支撑件 48。
[0043] 安装支撑件 48 承载补偿滑轮 34 的轴 50 以及用来保持补偿绳索 32 张紧的张紧重量件 52a，52b。经由该剪式接头配置 36，补偿滑轮 34 的轴 50 的精确径直导引得以获得，从而满足了绳索响应于温度变化或作用于该绳索的环境或动态情况而引起的长度变化。
[0044] 锁定装置 46 是具有第一室 47 的液压缸，第一室 47 可经由压力泵与液压储存器（未示出）连接以便经由压力泵的动作使补偿滑轮向上运动。该解决方案便于安装与维修以及与绳索更换或绳索维修有关的任何工作。
[0045] 进一步地，所述锁定装置 46 包括缓冲器 54，如果获得了与所述补偿滑轮 34 的上部容许位置相对应的枢轴 44a 和 44b 之间的最小允许距离，那么所述缓冲器被锁定装置的活塞 45 撞击。
[0046] 另一方面，在锁定装置 46 中，设置了缓冲器弹簧 56，如果补偿滑轮到达它的最下部容许位置，例如如果绳索从补偿绳索滑轮分开，那么所述缓冲器弹簧 56 就撞到活塞 45 的背部。有利地，缓冲器弹簧 56 以及缓冲器 54 例如可通过在锁定装置的轴向螺纹上运行的调节螺母进行轴向调节，从而允许调节运动范围的极限值。缓冲器弹簧 56 确保平滑地接近
补偿滑轮的最低位置。这些缓冲器 54 和 56 之间的空间可以填充有气体或液体，由此活塞 45 包括穿孔，以允许严格限定的气流或液压流从锁定装置 46 的第一室 47 流动到第二室 49。在该情况下，锁定装置被设置为液压缸或气动缸。

[0047] 从图 2 的视角 111 示出了两个平行的锁定装置 46 被设置在补偿滑轮 34 的每个末端处。图 3 进一步示出了所述剪式接头配置 36 的第一和第二臂 38a 和 40a 的宽度 a) 大于所述补偿滑轮 34 的厚度 d)，其允许补偿滑轮的轴 50 在第二臂 40a 的上端由安装支撑件 48 牢固地夹持。

[0048] 进一步地，第二臂 40a 包括在它的上缘上具有宽度 b 的间隙，以便接纳补偿滑轮 34。因此所述间隙的宽度 b 稍微大于所述补偿滑轮 34 的宽度 d。通过该方法，所述剪式接头配置的高度可进一步减小。

[0049] 替代一个部件的剪式接头配置，也可在补偿滑轮 34 的两端布置两个单独的剪式接头。

[0050] 图 4 示出了包括两个臂 62,64 的剪式接头配置 60 的另一个实施例，所述两个臂 62,64 在它们的中间经由铰链 66 连接。第一臂 62 经由下部接头 70 被连接到底板 68，第一臂 62 的上端被可滑动地支撑在安装支撑件 48 的长的狭槽 72 中。底板 68 被连接到电梯井的底部 20。第二臂 64 通过其上端经由上部接头 74 被连接到安装支撑件 48，通过其下端被连接到底板 68 的长的狭槽 76。安装支撑件可根据图 1 到 3 的安装支撑件 48 被配置以引导补偿滑轮 34 的轴 50。而且，该剪式接头配置 60 允许竖直导引所述补偿滑轮 34 的轴 50。在第一和第二臂 62 和 64 的上端之间及其下端之间，液压缸，例如图 1 到 3 的液压缸 46，可被安置为阻尼设备和/或锁定装置或者甚至为驱动设备，如果其与压力泵和流体储存器连接以使补偿滑轮 34 与张紧重量件 52a,52b 一起向上运动的话。

[0051] 图 5 示出了剪式千斤顶配置 80，除了剪式接头配置的第一臂 38a,38b 和第二臂 40a,40b 彼此面对且没有如图 1 － 3 的那样彼此倾斜之外，所述剪式千斤顶配置 80 几乎与图 1.2.3 的剪式千斤顶配置相同。在该情况下，所述锁定装置优选为杆 82，其包括限制枢轴 44 的最大距离以及因此补偿滑轮 34 的最高位置的止动器 84。

[0052] 图 6 示出了设置为用于非常长的竖直调节的剪式接头的进一步的实施例 90。该剪式接头配置 90 包括由枢轴 94 连接的两个第一臂 92a 和 92b。第一臂 92a,92b 的上端经由第二枢轴 96a,96b 被连接到第二臂 98a,98b，该第二臂 98a,98b 纯经由枢轴 41a,41b 又被连接到用于牵引滑轮和张紧重量件的安装支撑件 48。第一臂 92a,92b 的下端经由下部枢轴 39a,39b 被连接到充当阻尼器以及锁定装置的液压缸 100。该液压缸被固定地安装到电梯井的最下部部分。

[0053] 本发明不限于以上所述的实施例而是可在所附权利要求的范围内变化。

[0054] 上述实施例的单个特征可彼此任意结合，只要彼此不矛盾。因此，所示的与某些实施例(图 1 到 6) 有关的锁定装置还可用于如图所示的剪式接头配置的其他实施例中。
图2