发明名称
一种合成 1-乙酰基-4-(4-羟基苯基)哌嗪的方法

摘要
本发明公开了一种合成 1-乙酰基-4-(4-羟基苯基)哌嗪的方法，涉及化合物合成方法。本发明所提供的方法，是向 4-羟基苯基哌嗪二氯化酸盐的醇水溶液中加入碱和醋酸进行反应得到产物。本发明以盐酸作为 4-羟基苯基哌嗪二氯化酸盐制备 1-乙酰基-4-(4-羟基苯基)哌嗪的乙酰化溶剂，能减少或避免产生副产物，提高产品得率和纯度；采用 40%HBr 代替现有技术中 48%HBr 来制备反应原料 4-羟基苯基哌嗪二氯化酸盐，能降低成本，减少污染。本发明制备过程简单，产率高，能达到 80%以上。
1、一种合成 1-乙酰基-4-(4-羟基苯基)哌嗪的方法，是向 4-羟基苯基哌嗪二溴酸盐的醇水溶液中加入碱和醋酐进行反应得到产物，所述加入碱和醋酐进行反应的步骤包括：（1）在冷却搅拌下向所述 4-羟基苯基哌嗪二溴酸盐的醇水溶液中加入碱至溶液 pH 接近中性，然后加入醋酐及再加入碱；（2）搅拌反应 20—40min，调节溶液 pH8—9；（3）加热到 90—100℃回流反应 1—2h。

2、根据权利要求 3 所述的方法，其特征在于：步骤（1）所述 4-羟基苯基哌嗪二溴酸盐、所述加入碱、所述醋酐与所述再加入碱的重量份数比为 1：0.5—0.7：1：0.5—0.7。

3、根据权利要求 2 所述的方法，其特征在于：所述加入碱和 / 或所述再加入的碱为碳酸钠或碳酸钠。

4、根据权利要求 1 或 2 或 3 所述的方法，其特征在于：所述 4-羟基苯基哌嗪二溴酸盐的醇水溶液中 4-羟基苯基哌嗪二溴酸盐：水：醇的重量份数比为 1：1.5：4—8。

5、根据权利要求 4 所述的方法，其特征在于：所述醇为甲醇、乙醇或丙醇。

6、根据权利要求 1 或 2 或 3 所述的方法，其特征在于：所述 4-羟基苯基哌嗪二溴酸盐先由二乙醇胺和浓度为 40%的氢溴酸加热回流溴化生成二溴乙基胺氢溴酸盐，再与水在碱中环合合成 4-甲氧基苯基哌嗪二溴酸盐，然后再用质量浓度为 40%的氢溴酸加热回流去甲基合成所述 4-羟基苯基哌嗪二溴酸盐。

7、根据权利要求 5 所述的方法，其特征在于：所述 4-羟基苯基哌嗪二溴酸盐先由二乙醇胺和质量浓度为 40%的氢溴酸加热回流溴化生成二溴乙基胺氢溴酸盐，再与对氨基苯甲醚在碱中环合合成 4-甲氧基苯基哌嗪二溴酸盐，然后再用质量浓度为 40%的氢溴酸加热回流去甲基合成所述 4-羟基苯基哌嗪二溴酸盐。
说明 书

一种合成 1-乙酰基-4-(4-羟基苯基)哌嗪的方法

技术领域

本发明涉及化合物合成方法，特别是涉及一种合成 1-乙酰基-4-(4-羟基苯基)哌嗪的方法。

背景技术

酮康唑（Ketoconazole）为高效低毒、口服有效的广谱抗真菌药物，其关键中间体之一是 1-乙酰基-4-(4-羟基苯基)哌嗪。

Heeres.J 等（1982 年）在美国专利 US4358449 中公开了有关酮康唑及其类似物和中间体的合成方法，1-乙酰基-4-(4-羟基苯基)哌嗪的合成方法大体如下：N-(4-羟基苯基)哌嗪二氯溴酸盐 33.8 份，醋酐 11.2 份，K₂CO₃ 42 份，1,4-二氧六环 300 份，搅拌回流 3 天，过滤蒸发溶剂，固体经过处理得产品 5.7 份，产物 mp 为 181.3°C，收率约 27%。由于该方法产率低、处理过程繁琐，1988 年林寒芬等（医药工业，1988, 19: 75）用卤代烷和水为混合溶剂，将 4-羟基苯基哌嗪二氯溴酸盐在搅拌下加碱和醋酐室温下反应数小时分得粗品，乙醇精制即可得产品，产物 mp 为 180-181°C，收率约 72%。但是，应用该方法制备时，室温反应 4-羟基苯基哌嗪二氯溴酸盐易与两端酰化，副产物难于除去。

另外，按文献（Prelog V 等 collect Czech Chem. Commun. 1975, 40: 220; 1934, 6: 211; Poll CB 等 J. Org Chem. 1958, 23: 1333）作为原料的 4-羟基苯基哌嗪二氯溴酸盐的合成包括如下步骤：由二乙醇胺和 48%HBr 加热先溴化成二溴乙基氢溴酸盐，再与对氨基苯甲醚在碱中环合合成 4-甲氧基苯基哌嗪二氢溴酸盐，然后用 48%HBr 脱去甲基而合成 4-羟基苯基哌嗪二氢溴酸盐。

发明内容

本发明的目的是提供一种简便、经济并且收率较高的合成 1-乙酰基-4-(4-羟基苯基)哌嗪的方法。

本发明所提供的方法，是向 4-羟基苯基哌嗪二氢溴酸盐的醇水溶液中加入碱和醋酐进行反应得到产物。

其中，所述加入碱和醋酐进行反应的步骤包括：（1）在冷却搅拌下向所述 4-羟基苯基哌嗪二氯溴酸盐的醇水溶液中加入碱至溶液 pH 接近中性，然后加入醋酐及再加入碱；（2）搅拌反应 20-40min，调节溶液 pH8-9；（3）加热到 90-100°C 回流反应 1-2h。
步骤（1）所述 4-羟基苯基哌嗪二氢溴酸盐、所述加入碱、所述酯化物与所述再加
入碱的重量份数比为 1: 0.5-0.7: 1: 0.5-0.7。调节 4-羟基苯基哌嗪二氢溴酸盐
的醇溶液 pH 值所用的碱，和与酯化物同时加入到反应体系中的碱，可以不同，也
可以不同，通常可选用碳酸钾或碳酸钠等。

所述 4-羟基苯基哌嗪二氢溴酸盐的醇溶液中 4-羟基苯基哌嗪二氢溴酸盐：水：
醇的重量份数比为 1: 1.5: 4-8; 常用醇为甲醇、乙醇或丙醇。

所用的 4-羟基苯基哌嗪二氢溴酸盐可以购买得到，也可以采用下述方法合成：先
由二乙醇胺和 40%HBr 加热回流溴化生成二溴乙基氢溴酸盐，再与对氨基苯甲醚在碱
中环化合成 4-甲氧基苯基哌嗪二氢溴酸盐，然后再用 40%HBr 加热回流脱去甲基合成
所述 4-羟基苯基哌嗪二氢溴酸盐。采用该方法制备 4-羟基苯基哌嗪二氢溴酸盐能减
少所用 HBr 浓度和用量，能降低成本，减少污染。

本发明以醇作为 4-羟基苯基哌嗪二氢溴酸酯制备 1-乙酰基-4-(4-羟基苯基)哌嗪
的乙酰化溶剂，能减少或避免产生副产物，提高产品得率和纯度；采用 40%HBr 代替
现有技术中 48%HBr 来制备反应原料 4-羟基苯基哌嗪二氢溴酸盐，能降低成本，减少
污染。本发明制备过程简单，产率高，能达到 80%以上。

具体实施方式

本发明中，采用如下反应式合成 1-乙酰基-4-(4-羟基苯基)哌嗪：

\[
\begin{align*}
\text{HOCH}_2\text{CH}_2\text{NH} & \xrightarrow{40\% \text{HBr}} \text{NH}_2\text{Br} \\
\text{HO} & \xrightarrow{40\% \text{HBr}} \text{HO} \\
\text{HO} & \xrightarrow{\text{Ac}_2\text{O}, \text{K}_2\text{CO}_3} \text{HO}
\end{align*}
\]

实施例 1、1-乙酰基-4-(4-羟基苯基)哌嗪的合成

1. 合成二溴乙基胺氢溴酸盐

在 2000ml 三口烧瓶中加入二乙醇胺 194ml（210g，2.0mol），在冷却搅拌下滴加
40%HBr1050ml（约 2.5 小时加完），将反应瓶装上分馏柱（高 35cm）然后加热至 120
-130°C，馏出生成的水（40 小时收集 500ml）。提高温度至 140-150°C 蒸出过量的
氢溴酸（bp124°C）至反应液呈稠状，稍冷后加丙酮搅匀，冷后析出晶体，滤集后用
丙酮洗，抽干得 319.7g（收率 51.2%），产物 mp166-170°C。将液减压浓缩，析出结晶，
经丙酮重结晶得产品二溴乙基胺氢溴酸盐 27.5g，其 mp142-148°C。

2. 合成 4-甲氧基苯基哌嗪二氢溴酸盐

在反应瓶中加入二溴乙基胺氢溴酸盐 15.6g（0.05mol）加少许甲醇，然后加正丁
醇 40ml 加热溶解，再加对氨基苯甲醚 6.19g (0.05mol)，于 110℃左右搅拌回流 6h，
在继续加热和搅拌下分次加入无水碳酸钠粉 5.2g，加热搅拌反应 6h，稍冷后将溶液
倾出，在冰浴下结晶，滤集晶体用丙酮洗涤，得产物 4-甲氨基苯基哌嗪二氢溴酸盐
7g，其 mp216—222℃。瓶内固体用水精制除去无机盐也能获得产物，合计约 8g 以上
（收率 60—66%），产品 mp218—219℃。

3、合成 4-羟基苯基哌嗪二氢溴酸盐
反应瓶中加入回收 40%HBr300ml 及 4-甲氨基苯基哌嗪二氢溴酸盐 39g
(0.143mol)，装上分馏柱 (高约 35cm) 加热回流，缓缓馏出水约 88ml，再提高温度
至 124℃持续蒸馏 6h，然后将反应液减压浓缩至稠状，稍冷后加丙酮 50ml，摇匀、冷却，
滤集结晶用丙酮洗涤得产物 4-羟基苯基哌嗪二氢溴酸盐 38g (收率 78.6%)，其 mp280℃（分解）。

4、合成 1-乙酰基-4-(4-羟基苯基)哌嗪
反应瓶中加入 4-羟基苯基哌嗪二氢溴酸盐 10.5g (0.031mol)，加水 15ml 溶解
后加乙醇 60ml，在冰浴搅拌下分次加入碳酸钾粉至 CO₂气体减少后加醋酐 9.6ml，碳
酸钾粉 6.3g，搅拌 30min；然后调节反应液至 pH8—9，加热到 90—100℃回流反应 2
小时，冷却后结出固体，水洗至中性得产物 1-乙酰基-4-(4-羟基苯基)哌嗪，其熔点
mp180—182℃，产率 85%以上。样品经乙醇重结晶后其 mp190—193℃。

以苯-丙酮 (0.6: 0.4) 为展开剂对产物进行薄层层析，其 Rf 值为 0.82；
元素分析: C₉H₆N₂O₂ 计算值 (%) C 65.45, H 7.27, N 12.73; 实测值 (%) C 65.60,
H 7.44, N 12.58。

红外光谱 IR(cm⁻¹): 3150（宽中强，缩合 OH），2960, 2920, 1360 (CH₃)，1620
（强，NCOCH₃ 中 C=O），1575, 1500, 1470 (Ar 环)。

证明所得产物正确。

实施例 2、1-乙酰基-4-(4-羟基苯基)哌嗪的合成
采用与实施例 1 步骤 4 相同的方法，其中，用 100ml 甲醇代替乙醇，用 5.25g 碳
酸钠代替碳酸钾，其余反应物及用量均不变；在 90—100℃回流反应 1 小时后得到产
物，产率 80%，产物熔点 mp186—192℃。

实施例 3、1-乙酰基-4-(4-羟基苯基)哌嗪的合成
采用与实施例 1 步骤 4 相同的方法，其中，用 80ml 丙酮代替乙醇，碳酸钾用量
为 7.35g，其余反应物及用量均不变；在 90—100℃回流反应 1 小时后得到产物，产
率 80%，产物熔点 mp 在 190℃左右。