(86) Date de dépôt PCT/PCT Filing Date: 2008/05/20
(87) Date publication PCT/PCT Publication Date: 2008/12/18
(85) Entrée phase nationale/National Entry: 2009/10/27
(86) N° demande PCT/PCT Application No.: FR 2008/050874
(87) N° publication PCT/PCT Publication No.: 2008/152275
(30) Priorité/Priority: 2007/05/30 (FR0703823)

(51) Cl.Int./Int.Cl. C21D 9/56 (2006.01), C21D 1/34 (2006.01), F27D 13/00 (2006.01)
(71) Demandeur/Applicant: GDF SUEZ, FR
(72) Inventeurs/Inventors: BUCHET, PHILIPPE, FR; RICHARD, NICOLAS, FR; LHOMME, PIERRE-JACQUES, FR
(74) Agent: BCF LLP

(54) Titre : PROCEDE ET INSTALLATION DE CHAUFFAGE D'UNE BANDE METALLIQUE, NOTAMMENT EN VUE D'UN RECEUIT
(54) Title: METHOD AND EQUIPMENT FOR HEATING A METAL STRIP, IN PARTICULAR FOR ANNEALING

FIG. 4

(57) Abrégé/Abstract:
L'invention concerne le chauffage d'une bande métallique. Elle se rapporte à une installation de chauffage d'une bande métallique qui comprend une enceinte (2) de pré-chauffage munie d'un dispositif (11) de projection de gaz chauds vers la bande (1), une enceinte (4) de chauffage à brûleurs régénératifs (16, 16'), une canalisation (31) d'évacuation des gaz de l'enceinte de chauffage, une soupape réglable à trois voies (32), et un dispositif de régulation comprenant un capteur (34) de température de consigne de la bande métallique et un organe (36) de réglage de la soupape à trois voies (32), afin que celle-ci règule la quantité de gaz chauds transmise au dispositif (11) de projection. Application aux installations de chauffage de feuillus avant leur recuit.
METHOD AND EQUIPMENT FOR HEATING A METAL STRIP, IN PARTICULAR FOR ANNEALING

PROCEDE ET INSTALLATION DE CHAUFFAGE D'UNE BANDE METALLIQUE, NOTAMMENT EN VUE D'UN RECUIT

Abstract: The invention pertains to the heating of a metal strip, and relates to equipment for heating a metal strip that comprises a pre-heating housing (2) provided with a device (11) for projecting hot gases towards the strip (1), a heating housing (4) with regenerative burners (16, 16'), a duct (31) for discharging the gases from the heating housing, a three-way adjustable valve (32) and an adjustment device including a sensor (34) for detecting the setpoint temperature of the metal strip and a member (36) for adjusting the three-way valve (32) so that it can adjust the amount of hot gases fed to the projection device (11). The invention can be used in equipment for heating narrow strips before annealing the same.
Abrégé : L'invention concerne le chauffage d'une bande métallique. Elle se rapporte à une installation de chauffage d'une bande métallique qui comprend une enceinte (2) de pré-chauffage munie d'un dispositif (11) de projection de gaz chauds vers la bande (1), une enceinte (4) de chauffage à brûleurs régénératifs (16, 16'), une canalisation (31) d'évacuation des gaz de l'enceinte de chauffage, une soupape réglable à trois voies (32), et un dispositif de régulation comprenant un capteur (34) de température de consigne de la bande métallique et un organe (36) de réglage de la soupape à trois voies (32), afin que celle-ci régule la quantité de gaz chauds transmise au dispositif (11) de projection. Application aux installations de chauffage de feuil-lards avant leur recuit.
PROCÉDÉ ET INSTALLATION DE CHAUFFAGE D'UNE BANDE MÉTALLIQUE, NOTAMMENT EN VUE D'UN RECUIT

L'invention concerne un procédé et une installation de chauffage d'une bande métallique à une température de consigne nécessitant la présence d'une atmosphère de combustion réductrice (défaut de comburant par rapport à la quantité stoechiométrique).

On décrit l'invention dans son application au chauffage d'une bande métallique sous forme d'un feuillard transmis à une installation de recuit, notamment pour la fabrication d'acier galvanisé.

On connaît déjà divers types d'installations de recuit de feuillards.

La figure 1 est un schéma d'un premier exemple d'installation connue de préchauffage d'un feuillard à une température de consigne convenant à une installation de recuit. Elle comporte un four délimitant une enceinte 102 destinée au préchauffage du feuillard 100 et une enceinte 104 de chauffage du feuillard afin que, à la sortie de l'installation, le feuillard ait une température de consigne, par exemple de 750°C.

Dans l'enceinte de préchauffage 102, comprise entre l'entrée 108 du four et un emplacement 110 d'injection d'air de post-combustion provenant d'une canalisation 112, des gaz chauds, qui ont un pouvoir réducteur nul pour que l'atmosphère du four, qui pourrait s'échapper par l'entrée 108, ne soit pas toxique (c'est-à-dire ne contienne pas de
CO), s'écoulent de la partie de chauffage 104 vers la proximité de l'entrée 108, à contre-courant du feuillard 100. Les échanges de chaleur entre une surface et un courant parallèle à cette surface sont peu efficaces, à cause de la présence de couches laminaires. En conséquence, l'enceinte 102 doit avoir une grande longueur.

Dans l'enceinte de combustion 104, comprise pratiquement entre l'emplacement 110 d'injection d'air et la sortie 114 du four, des brûleurs 116 reçoivent un combustible transmis par un circuit 118 d'alimentation raccordé à chaque brûleur 116, et de l'air de combustion par un circuit 120, lui aussi raccordé à chacun des brûleurs. L'air du circuit 120 a de préférence été préchauffé dans un échangeur de chaleur 122 dans lequel circulent aussi les gaz chauds évacués par une canalisation 124 depuis la proximité de l'extrémité d'entrée 108 du four.

Dans l'enceinte de chauffage 104, les brûleurs 116 sont des brûleurs à feu nu fonctionnant en atmosphère de combustion réductrice, c'est-à-dire en présence de CO. Dans l'enceinte de chauffage 104, le feuillard passe d'une température voisine de 350 à 400 °C, près de l'emplacement 110 d'injection d'air, à une température de consigne par exemple de 750 °C à la sortie 114.

L'installation qu'on vient de décrire présente un certain nombre d'inconvénients.

D'abord, étant donné la simple circulation à contre-courant des gaz chauds et du feuillard dans l'enceinte de préchauffage 102, l'échange de chaleur entre les gaz et la bande n'est pas efficace, de sorte que la longueur de l'enceinte 102 est très importante et l'espace occupé par le four est donc important.

Ensuite, le système global utilisant les brûleurs à feu nu pour former l'atmosphère de combustion réductrice avec de l'air préchauffé par l'échangeur 122 a un rendement relativement faible, de l'ordre de 50 %, de sorte que la quantité de combustible consommé est élevée.

Enfin, les déperditions de chaleur sont importantes, du fait essentiellement de l'évacuation à l'atmosphère de gaz
dont la température est encore élevée, car l'échangeur de chaleur 122 qui récupère la chaleur des gaz évacués par la canalisation 124 a une efficacité elle-même modérée.

On connait aussi, d'après le document JP2002-294 347, un autre exemple d'installation connue de préchauffage d'un feuillard, avant recuit de celui-ci, qui ne présente pas l'inconvénient d'occuper un très grand espace au sol.

Plus précisément, cette installation comprend une enceinte de préchauffage 202 de faible longueur, car elle comporte un dispositif 210 de préchauffage du feuillard par projection de gaz chauds en direction perpendiculaire au feuillard. Ce dispositif comporte des chambres dont la paroi tournée vers le feuillard comporte une multitude d'orifices qui projettent autant de jets de gaz chauds. Un tel dispositif 210, parfois appelé "plenum", permet un échange de chaleur efficace sur une faible longueur.

Cette enceinte de préchauffage 202 est reliée à une enceinte de chauffage 204 dans laquelle le feuillard suit un trajet en zigzag entre des tubes radiants. L'enceinte de préchauffage et l'enceinte de chauffage ont une même atmosphère protectrice. Les gaz de combustion évacués par les tubes radiants, qui sont séparés de l'atmosphère protectrice de l'enceinte 204, sont extraits par des conduites 205 vers un échangeur de chaleur 206, à l'aide d'une soufflante 207. Dans l'échangeur de chaleur 206, une atmosphère protectrice circule sous la commande d'une soufflante 208. Le circuit de circulation comprend deux canalisations montées en parallèle, une canalisation 209 alimentant le dispositif 210 de projection de gaz chauds sur le feuillard, et une autre canalisation 211 comprenant une soupape de régulation 212 qui s'ouvre plus ou moins pour moduler la quantité de gaz transmise au dispositif 210 de projection de gaz chauds.

Ainsi, un capteur de température de consigne 218, qui mesure la température du feuillard à la sortie de l'installation, permet la commande de la soupape 212 afin qu'elle régule la quantité de gaz pouvant circuler dans la canalisation 209, et donc la puissance de préchauffage du dispo-
sif 210 de projection, afin que la température de consigne mesurée par le capteur 218 ne varie pas.

L'installation représentée sur la figure 2 ne présente pas l'inconvénient d'occuper un espace important, mais elle présente d'autres inconvénients.

D'abord, le rendement des brûleurs radiants utilisés n'est pas élevé.

Ensuite, comme la chaleur des gaz de combustion n'est récupérée que partiellement par l'échangeur de chaleur 206, l'installation a un rendement énergétique relativement réduit, qui ne dépasse une valeur de l'ordre de 50 %.

De plus, l'ensemble de l'installation, comprenant les deux enceintes et le circuit de gaz d'alimentation des chambres de projection de gaz sur le feuillard, contient une atmosphère protectrice qui soit peut être toxique, et ne remplit pas alors les conditions "d'hygiène" de la combustion, soit est inerte et coûteuse.

Enfin, comme le feuillard suit un trajet sinueux dans l'enceinte de chauffage, le coût de l'installation est élevé, et celle-ci est sujette à des pannes.

On connait par ailleurs, notamment d'après le document JP–2001/304 539, des ensembles de chauffage à brûleurs "régénératifs". Ce terme indique que, dans une première phase, de la chaleur tirée des gaz de combustion est accumulée, et, dans une seconde phase, la chaleur accumulée est restituée à l'air de combustion. De tels ensembles comporte habituellement deux brûleurs 301a, 301b montés en tandem, l'un étant en mode de combustion, dans lequel de l'air de combustion d'une canalisation 316 circule dans une masse régénérative 306 avant de participer à une combustion, et l'autre étant en mode de récupération de chaleur dans lequel les gaz de combustion du premier brûleur circulent dans sa masse régénérative 306 et la chauffent. Après un certain temps, par exemple une fraction de minute, les deux brûleurs échangent leurs modes de fonctionnement. Dans le document précité, chaque brûleur 301a, 301b comporte aussi un dispositif 308 d'alimentation en air qui, en mode de régénération, introduit de l'air de post-combustion qui se mélange
aux gaz de combustion avant que ceux-ci ne circulent dans la masse régénérative 306. Une masse régénérative peut être formée d'une céramique, par exemple sous forme de billes.

Grâce à la récupération de chaleur par l'air de combustion dans la masse régénérative 306 et à l'absorption de la chaleur de post-combustion des gaz encore réducteurs avec l'air de post-combustion introduit par le dispositif 308, le rendement de l'ensemble de chauffage est accru de façon très importante par rapport à celui de simples brûleurs à feu nu travaillant en atmosphère de combustion réductrice, utilisés dans une installation du type décrit en référence à la figure 1.

On ne connaît pas actuellement d'utilisation de tels ensembles de chauffage par brûleurs régénératifs dans des installations continues de chauffage, par exemple du type utilisé pour l'alimentation d'une installation de recuit de feuillards.

L'invention met en œuvre une combinaison de caractéristiques des installations des figures 1 et 2 et des brûleurs régénératifs de la figure 3, tout en réduisant les pertes de chaleur dues à l'utilisation d'échangeurs de chaleur. Ce sont les gaz évacués des brûleurs régénératifs qui sont projetés sur le feuillard dans la zone de préchauffage, qui participent à une augmentation sensible du rendement thermique global de l'installation, et qui permettent la régulation de température. En outre, une atmosphère protectrice qui peut être toxique, n'existe que dans l'enceinte de chauffage, et l'installation a donc de bonnes conditions "d'hygiène" de la combustion.

Plus précisément, l'invention concerne un procédé de chauffage d'une bande métallique à une température de consigne nécessitant la présence d'une atmosphère de combustion réductrice, du type qui comprend un préchauffage de la bande à une température intermédiaire qui ne nécessite pas la présence d'une atmosphère protectrice, par projection de gaz chauds vers au moins une face de la bande, et un chauffage de la bande en atmosphère de combustion réductrice de la température intermédiaire à la température de consigne,
avec régulation de la température de consigne par variation de la projection des gaz chauds de préchauffage ; selon l'invention, le chauffage en atmosphère de combustion réductrice est effectué par un chauffage par brûleurs régénératifs à feu nu, exécuté dans une première phase qui comprend, dans au moins un premier brûleur, une combustion à l'aide d'air qui a absorbé de la chaleur d'une première masse d'absorption thermique, et, dans au moins un autre brûleur, une régénération par absorption de chaleur des gaz de combustion du premier brûleur au moins par une autre masse d'absorption thermique, et dans une deuxième phase dans laquelle les fonctions du premier brûleur au moins et de l'autre brûleur au moins d'une part et les fonctions de la première masse d'absorption thermique et de l'autre masse d'absorption thermique d'autre part sont inversées, la régénération par absorption de chaleur des gaz de combustion est effectuée dans une opération qui comprend, avant le passage des gaz de combustion dans la masse de régénération, le mélange de ces gaz de combustion avec une quantité supplémentaire d'air de post-combustion, le préchauffage par projection de gaz chauds comprend l'utilisation d'une partie au moins des gaz évacués du chauffage par brûleurs régénératifs, et la régulation de la température de consigne comprend le réglage de la quantité de gaz chauds pour le préchauffage par projection.

De préférence, le réglage de la quantité de gaz chauds utilisée pour le préchauffage comprend le réglage des proportions des gaz chauds transmises d'une part à l'étape de projection et d'autre part à l'étape d'évacuation de gaz chauds.

De préférence, la quantité d'air introduite pour être mélangée aux gaz de combustion est suffisante pour que les gaz évacués aient un pouvoir réducteur nul.

De préférence, le mélange des gaz de combustion à de l'air de post-combustion introduit avant le passage des gaz de combustion dans la masse régénérative est réglé en fonction du résultat d'une mesure du pouvoir réducteur des gaz de combustion.
De préférence, le procédé comprend l'établissement d'une circulation de gaz directement de l'étape de chauffage à l'étape de préchauffage, et l'injection d'air de post-combustion entre les deux étapes.

Dans un exemple, la température intermédiaire est de l'ordre de 400 °C, la température de consigne est une température de recuit de la bande métallique, le métal de la bande métallique est l'acier, et la bande métallique est un feuillard.

L'invention concerne aussi une installation de chauffage d'une bande métallique à une température de consigne nécessitant la présence d'une atmosphère de combustion réductrice, qui comprend une enceinte de préchauffage munie d'un dispositif de projection de gaz chauds vers la bande, une enceinte de chauffage munie d'un ensemble de chauffage à feu nu en atmosphère de combustion réductrice, l'ensemble de chauffage comprenant au moins deux brûleurs régénératifs travaillant en tandem, l'un au moins des brûleurs étant en mode de combustion dans lequel de l'air de combustion circule dans une masse régénérative avant de participer à une combustion, et un autre brûleur au moins étant en mode de récupération de chaleur dans lequel les gaz de combustion du premier brûleur au moins circulent dans la masse régénérative de l'autre brûleur et la chauffent, les deux brûleurs au moins échangeant leur mode de fonctionnement, chaque brûleur comportant un dispositif d'alimentation en air en mode de régénération, afin que cet air se mélique aux gaz de combustion à l'état réducteur avant qu'ils ne circulent dans la masse régénérative, une canalisation d'évacuation des gaz de l'ensemble de chauffage, une soupape réglable à trois voies ayant une entrée reliée à la canalisation d'évacuation des gaz de l'ensemble de chauffage, une sortie reliée au dispositif de projection de gaz de l'enceinte de préchauffage, et une sortie reliée à une canalisation d'évacuation de gaz hors de l'installation, et un dispositif de régulation comprenant un capteur de température de consigne de la bande métallique et un organe de réglage de la soupape à
trois voies, afin que celle-ci régule la quantité de gaz chauds transmise au dispositif de projection.

De préférence, le dispositif d'alimentation en air en mode de régénération introduit une quantité d'air sensiblement constante, au moins suffisante pour que les gaz évacués aient toujours un pouvoir réducteur nul.

De préférence, un second dispositif de régulation, qui comprend un capteur du pouvoir réducteur des gaz et un organe de réglage de la quantité d'air introduite en fonction du signal du capteur de pouvoir réducteur, régule la quantité d'air introduite par le dispositif d'alimentation en air.

De préférence, les enceintes de préchauffage et de chauffage sont adjacentes et colinéaires.

De préférence, l'installation comporte en outre un dispositif d'introduction d'air de post-combustion entre les enceintes de préchauffage et de chauffage, la quantité d'air introduite par ce dispositif étant suffisante pour que l'enceinte de préchauffage contienne des gaz de pouvoir réducteur nul.

Par rapport à l'installation de la figure 1, l'invention présente l'avantage de permettre la réalisation d'une installation de longueur réduite, grâce à la réduction considérable de la zone de préchauffage.

Par rapport à l'installation de la figure 2, l'invention présente l'avantage d'une plus grande simplicité, dans la mesure où le feuillard suit un trajet linéaire.

Par rapport à toutes les installations décrites, l'invention permet une réduction considérable des pertes énergétiques et une augmentation très significative du rendement énergétique, obtenues essentiellement par utilisation d'ensembles à brûleurs régénératifs et à l'absence d'échangeur de chaleur.

Ainsi, si une installation telle que représentée sur la figure 1 présente un rendement énergétique global de l'ordre de 50 %, une installation analogue du type représenté sur la figure 4 dépasse largement 60 %.
Tous ces avantages sont obtenus par la combinaison de l'utilisation d'un trajet rectiligne, de l'utilisation d'un dispositif de préchauffage par projection, de l'utilisation de brûleurs à feu nu de type régénératif, et de l'utilisation d'une régulation de la température de consigne par le dispositif de préchauffage. Plus précisément, les brûleurs régénératifs sont mis en œuvre de façon à obtenir une température des gaz de combustion évacués beaucoup plus élevée que dans l'état de la technique. En effet, dans toutes les applications connues, les brûleurs régénératifs, qu'ils fonctionnent en atmosphère oxydante ou réductrice, produisent des gaz de combustion à des températures de l'ordre de 150°C. En partie pour cette raison, tous les brûleurs régénératifs connus, y compris celui du type décrit dans le document JP-2001/304 539, sont mis en œuvre avec une évacuation dans l'atmosphère des gaz de combustion. Dans le cadre de l'invention, les brûleurs fonctionnent au contraire de manière à obtenir une température des gaz chaud permettant leur utilisation directe par projection dans l'enceinte de préchauffage, avantageusement de l'ordre de 400°C.

D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre d'un exemple de réalisation, les figures étant telles que, les figures 1 à 3 ayant déjà été décrites, la figure 4 est un schéma d'une installation selon l'invention, représentée sous forme schématique.

L'installation de la figure 4 comprend un certain nombre de parties analogues à celles de la figure 1.

Ainsi, un feuillard 1 pénètre dans un four 6 qui comprend une première enceinte 2 travaillant en milieu oxydant, ou au moins de pouvoir réducteur nul, et une seconde enceinte 4 ayant une atmosphère de combustion réductrice. L'entrée 8 du feuillard ne peut laisser passer que l'atmosphère de la première enceinte 2, c'est-à-dire une atmosphère qui n'est pas toxique et qui ne contient pas de CO, grâce à l'introduction d'air de post-combustion par une entrée 10, à l'aide d'une canalisation 12. Le feuillard
quitte le four par une sortie 14 à une température de consigne, après être passé en face de brûleurs 16. Ces brûleurs sont alimentés en combustible par un circuit 18 et en air par un circuit 20. Les gaz finalement évacués à proximité de l'entrée 8 quittent l'installation par une canalisation 24 qui rejoint par exemple une cheminée.

Les autres caractéristiques de l'installation de la figure 4 sont différentes de celles de la figure 1.

D'abord, l'enceinte de préchauffage 2 comporte un dispositif 11 de projection de gaz chauds de préchauffage, alimenté en gaz chauds par l'enceinte de chauffage 4, comme décrit dans la suite.

Chaque brûleur à feu nu 16 est associé à une masse régénérative 26, analogue à la masse régénérative 306 décrite en référence à la figure 3. Une entrée 28 d'air de post-combustion est analogue à l'entrée 308 décrite en référence à la figure 3. Deux brûleurs 16 et 16' disposés l'un en face de l'autre fonctionnent en tandem, de la manière décrite en référence à la figure 3.

Dans un premier mode de réalisation, la quantité d'air de post-combustion introduite par l'entrée 28 en amont de la masse régénératrice 26 peut être suffisante pour que les gaz évacués par le brûleur présentent toujours un pouvoir réducteur nul. Dans ce cas, les brûleurs fonctionnent avec un excès d'air de post-combustion.

Dans une variante, un capteur de pouvoir réducteur (non représenté) est incorporé aux brûleurs, en amont ou en aval de la masse régénérative, afin qu'il permette une régulation de la quantité d'air de post-combustion introduite dans chaque brûleur. De cette manière, le rendement thermique est optimisé et la consommation d'énergie par les brûleurs est réduite au minimum.

Malgré la réaction de post-combustion qui dégage une quantité supplémentaire de chaleur, notamment par combustion de CO dans l'atmosphère de combustion réductrice, les gaz évacués par les masses régénératives 26 ont une température suffisamment basse pour pouvoir être transmis par une soufflante 30 d'une canalisation 31 d'évacuation des gaz de...
combustion à une soupape à trois voies 32 de régulation et
au dispositif 11 de projection de gaz chauds, à une tempé-
rat ure qui ne nécessite pas la présence d'une atmosphère de
combustion réductrice pour le feuillard. La présence d'une
soufflante, dans tous les cas nécessaire à l'extraction des
gaz de combustion, permet en outre de profiter de la
pression dynamique qu'acquièrent ces gaz pour accroître
l'efficacité thermique du préchauffage par projection. Cela
participe encore à l'augmentation du rendement du système
objet de l'invention.

On a aussi représenté un capteur de température 34
destiné à déterminer la température de consigne du feuillard
1 à la sortie du four 6. Un circuit de régulation (non
représenté), en fonction de la température déterminée par le
capteur 34, commande un dispositif 36 de manoeuvre qui règle
la soupape à trois voies 32. De cette manière, la quantité
des gaz évacués par les brûleurs qui est utilisée pour le
préchauffage dans le dispositif 11 peut être régulée avec
une grande vitesse de réaction, nécessaire à cause de la
grande vitesse du feuillard dans le four.

L'enceinte de chauffage 4 de l'installation de la
figure 4 a une longueur analogue à celle de l'enceinte de
chauffage 104 de l'installation de la figure 1. Par contre,
l'enceinte de préchauffage 2 de l'installation de la figure
4 est beaucoup plus courte que l'enceinte 102 de l'ins-
tallation de la figure 1.

L'installation de la figure 4 permet un passage
linéaire du feuillard 1 qui est simplement supporté locale-
ment par quelques rouleaux à l'intérieur du four, contraire-
ment à l'installation complexe de circulation en zigzag du
feuillard dans l'installation représentée sur la figure 2.
Grâce à la présence de deux atmosphères distinctes, l'une
qui peut être oxydante et qui n'est pas réductrice au sens
de la combustion, dans l'enceinte de préchauffage, et
l'autre qui est réductrice au sens de la combustion, dans
l'enceinte de chauffage, les gaz de combustion peuvent être
utilisés directement pour le préchauffage, contrairement au
cas de l'installation de la figure 2 qui nécessite un
échangeur de chaleur entre les gaz de combustion et les gaz utilisés pour le préchauffage du feuillard.

Un autre avantage de l'invention est que, grâce au préchauffage à une température élevée et à l'augmentation du rendement thermique des masses régénératives des brûleurs qui peut atteindre 80 %, les fumées évacuées peuvent contenir des quantités réduites d'oxydes d'azote NOx, par exemple inférieures à 200 mg/m³ dans les conditions normales pour 3 % d'oxygène dans les fumées, si ce système de préchauffage de l'air de combustion est associé à une technique à haute performance en matière d'émission de polluants (par exemple oxydation sans flamme). En outre, grâce à l'augmentation du rendement thermique de ces brûleurs performants, il est possible de chauffer plus rapidement le feuillard et donc d'obtenir une augmentation de productivité, avec réduction de la consommation de combustible et de l'émission d'oxydes d'azote.

Bien qu'on ait décrit l'invention dans son application au chauffage d'une bande métallique, ce chauffage peut constituer un véritable traitement thermique, et non une simple opération antérieure à un traitement thermique, tel qu'un recuit.

L'invention présente donc de grands avantages, non seulement au point de vue de la rentabilité et du coût, mais aussi au point de vue de la préservation des ressources fossiles et de la sauvegarde de l'environnement, grâce à la réduction du combustible consommé et des émissions, et à l'augmentation de la sécurité.
REVENDICATIONS

1. Procédé de chauffage d'une bande métallique à une température de consigne nécessitant la présence d'une atmosphère de combustion réductrice, du type qui comprend un préchauffage de la bande à une température intermédiaire qui ne nécessite pas la présence d'une atmosphère protectrice, par projection de gaz chauds vers au moins une face de la bande, et un chauffage de la bande en atmosphère de combustion réductrice de la température intermédiaire à la température de consigne,

avec régulation de la température de consigne par variation de la projection des gaz chauds de préchauffage, caractérisé en ce que

le chauffage en atmosphère de combustion réductrice est effectué par un chauffage par brûleurs régénératifs à feu nu, exécuté dans une première phase qui comprend, dans au moins un premier brûleur (16, 16'), une combustion à l'aide d'air qui a absorbé de la chaleur d'une première masse d'absorption thermique (26), et, dans au moins un autre brûleur (16, 16'), une régénération par absorption de chaleur des gaz de combustion du premier brûleur au moins par une autre masse d'absorption thermique (26), et dans une deuxième phase dans laquelle les fonctions du premier brûleur au moins (16, 16') et de l'autre brûleur au moins (16, 16') d'une part et les fonctions de la première masse d'absorption thermique (26) et de l'autre masse d'absorption thermique (26) d'autre part sont inversées

la régénération par absorption de chaleur des gaz de combustion est effectuée dans une opération qui comprend, avant le passage des gaz de combustion dans la masse de régénération (26), le mélange de ces gaz de combustion avec une quantité supplémentaire d'air de post-combustion,

le préchauffage par projection de gaz chauds comprend l'utilisation d'une partie au moins des gaz évacués du chauffage par brûleurs régénératifs, et
la régulation de la température de consigne comprend le réglage de la quantité de gaz chauds pour le préchauffage par projection.

2. Procédé selon la revendication 1, caractérisé en ce que le réglage de la quantité de gaz chauds utilisée pour le préchauffage comprend le réglage des proportions des gaz chauds transmises d'une part à l'étape de projection et d'autre part à l'étape d'évacuation de gaz chauds.

3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que la quantité d'air introduite pour être mélangée aux gaz de combustion est suffisante pour que les gaz évacués aient un pouvoir réducteur nul.

4. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le mélange des gaz de combustion à de l'air de post-combustion introduit avant le passage des gaz de combustion dans la masse régénérative (26) est réglé en fonction du résultat d'une mesure du pouvoir réducteur des gaz de combustion.

5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend l'établissement d'une circulation de gaz directement de l'étape de chauffage à l'étape de préchauffage, et l'injection d'air de post-combustion entre les deux étapes.

6. Installation de chauffage d'une bande métallique à une température de consigne nécessitant la présence d'une atmosphère de combustion réductrice, caractérisée en ce qu'elle comprend

une enceinte (2) de préchauffage munie d'un dispositif (11) de projection de gaz chauds vers la bande (1),

une enceinte (4) de chauffage munie d'un ensemble de chauffage à feu nu en atmosphère de combustion réductrice, l'ensemble de chauffage comprenant au moins deux brûleurs régénératifs (16, 16') travaillant en tandem, l'un au moins des brûleurs (16, 16') étant en mode de combustion dans lequel de l'air de combustion circule dans une masse régénérative (26) avant de participer à une combustion, et un autre brûleur au moins (16, 16') étant en mode de récupération de chaleur dans lequel les gaz de combustion du
15 premier brûleur au moins (16, 16') circulent dans la masse régénérative (26) de l'autre brûleur (16, 16') et la chauffent, les deux brûleurs au moins (16, 16') échangeant leurs modes de fonctionnement, chaque brûleur (16, 16') comportant un dispositif d'alimentation en air en mode de régénération, afin que cet air se mélange aux gaz de combustion à l'état réducteur avant qu'ils ne circulent dans la masse régénérative (26), une canalisation (31) d'évacuation des gaz de l'enceinte de chauffage, une soupape réglable à trois voies (32) ayant une entrée reliée à la canalisation (31) d'évacuation des gaz de l'ensemble de chauffage, une sortie reliée au dispositif (11) de projection de gaz de l'enceinte de préchauffage, et une sortie reliée à une canalisation (24) d'évacuation de gaz hors de l'installation, et un dispositif de régulation comprenant un capteur (34) de température de consigne de la bande métallique et un organe (36) de réglage de la soupape à trois voies (32), afin que celle-ci régule la quantité de gaz chauds transmise au dispositif (11) de projection.

7. Installation selon la revendication 6, caractérisée en ce que le dispositif d'alimentation en air en mode de régénération introduit une quantité d'air sensiblement constante, au moins suffisante pour que les gaz évacués aient toujours un pouvoir réducteur nul.

8. Installation selon la revendication 6, caractérisée en ce qu'elle comprend un second dispositif de régulation, qui comporte un capteur du pouvoir réducteur des gaz et un organe de réglage de la quantité d'air introduite en fonction du signal du capteur de pouvoir réducteur, destiné à réguler la quantité d'air introduite par le dispositif d'alimentation en air.

9. Installation selon l'une quelconque des revendications 6 à 8, caractérisée en ce que les enceintes (2, 4) de préchauffage et de chauffage sont adjacentes et colinéaires.

10. Installation selon l'une quelconque des revendications 6 à 9, caractérisée en ce qu'elle comporte en outre un dispositif (10) d'introduction d'air de post-combustion
entre les enceintes (2, 4) de préchauffage et de chauffage, la quantité d'air introduite par ce dispositif étant suffisante pour que l'enceinte (2) de préchauffage contienne des gaz de pouvoir réducteur nul.