

MINISTERO DELLO SVILUPPO ECONOMICO DIREZIONE GENERALE PER LA LOTTA ALLA CONTRAFFAZIONE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA DI INVENZIONE NUMERO	102015000069891
Data Deposito	06/11/2015
Data Pubblicazione	06/05/2017

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	24	Н	ı	20
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	24	D	3	08
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	28	D	ı	03
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
p.	28	D	1	053
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	28	D	1	02

Titolo

Bollitore per produzione e accumulo di acqua sanitaria calda.

DESCRIZIONE

dell'invenzione industriale avente per titolo:

"Bollitore per produzione e accumulo di acqua sanitaria calda"

a nome: TOL GROUP S.r.i.

米米米米

La presente invenzione concerne un bollitore per produzione e accumulo di acqua sanitaria calda.

Due sono i sistemi normalmente utilizzati per produrre acqua sanitaria calda: quello istantaneo e quello ad accumulo. Per acqua sanitaria si intende quell'acqua destinata al consumo umano come le acque trattate o non trattate utilizzate ad uso potabile, per la preparazione dei cibi e delle bevande e per altri usi domestici, indipendentemente dall'origine e dal sistema di fornitura che può essere una rete idrica di distribuzione o delle cisterne.

Il sistema istantaneo è concepito e dimensionato per far fronte alle richieste d'acqua calda con una produzione diretta, cioè istantanea. Il sistema ad accumulo è invece concepito e dimensionato per far fronte alle richieste d'acqua calda sia con una produzione diretta, sia con l'aiuto di una riserva d'acqua preriscaldata. Rispetto a quello istantaneo, il sistema ad accumulo consente l'utilizzo di generatori molto meno potenti ed inoltre un funzionamento dell'impianto più continuo, regolare e quindi a maggior resa termica.

Tipicamente, un sistema ad accumulo comprende un serbatoio atto ad accumulare l'acqua sanitaria con all'interno uno scambiatore di calore atto a far fluire un fluido termovettore che ha il compito di trasferire la propria energia termica all'acqua sanitaria al fine di riscaldarla. Un esempio di scambiatore di calore presente all'interno di un sistema di accumulo può essere quello illustrato nel brevetto KR-1496361B1, ovvero uno scambiatore di calore a serpentina comprendente un unico tubo scambiatore conformato secondo una pluralità di spire tra loro accatastate.

Il problema dei sistemi ad accumulo noti è che, a causa di un simile scambiatore di calore (che può presentarsi anche con un numero di serpentine maggiore di uno), per ottenere un'elevata superficie di scambio necessitano di serbatoi notevolmente ingombranti e di difficile collocazione a parete.

Scopo della presente invenzione è quello di realizzare un sistema ad accumulo per

la produzione di acqua sanitaria calda che risolva i suddetti problemi, migliorando al contempo l'efficienza e riducendo il consumo di energia.

In accordo con l'invenzione tale scopo è raggiunto con un bollitore per la produzione di acqua sanitaria calda comprendente un serbatoio di accumulo dell'acqua sanitaria proveniente da un sistema di fornitura idrica, detto bollitore essendo caratterizzato dal fatto di comprendere internamente uno scambiatore di calore a piastre stagne atto a realizzare lo scambio termico tra un fluido termovettore proveniente da un circuito di riscaldamento collegato ad una pompa di calore, o altro, e l'acqua sanitaria accumulata in detto serbatoio, detto scambiatore di calore comprendendo

un collettore superiore di distribuzione atto all'iniezione del fluido termovettore di mandata proveniente dal circuito di riscaldamento,

un collettore inferiore di distribuzione atto all'uscita del fluido termovettore di ritorno al circuito di riscaldamento.

una pluralità di piastre scambiatrici connesse tra detti collettore superiore ed inferiore di distribuzione, ciascuna piastra scambiatrice comprendendo una camera interna comunicante con detti collettori superiore ed inferiore ed atta a far fluire internamente il fluido termovettore per lo scambio di calore con l'acqua sanitaria accumulata.

Queste ed altre caratteristiche della presente invenzione saranno rese maggiormente evidenti dalla seguente descrizione dettagliata in un suo esempio di realizzazione pratica illustrato a titolo non limitativo nei disegni allegati, in cui:

la Figura I mostra una vista dall'altro di un bollitore, secondo la presente invenzione, per la produzione di acqua sanitaria calda;

la Figura 2 mostra una vista in sezione secondo la linea II-II del bollitore di Fig.1;

la Figura 3 mostra una vista in sezione secondo la linea III-III del bollitore di Fig.1;

la Figura 4 mostra una vista in sezione secondo la linea IV-IV del bollitore di Fig.1;

la Figura 5 mostra una vista in sezione secondo la linea V-V del bollitore di Fig.2;

la Figura 6 mostra una vista in sezione secondo la linea VI-VI del bollitore di Fig.3;

la Figura 7 mostra una vista in sezione secondo la linea VII-VII del bollitore di

Fig.3;

la Figura 8 mostra una vista in sezione secondo la linea VIII-VIII del bollitore di Fig.3;

la Figura 9 mostra una vista frontale di una piastra scambiatrice di uno scambiatore di calore compreso nel bollitore di Fig.1;

la Figura 10 mostra una vista in sezione secondo la linea X-X della piastra scambiatrice di Fig.9.

In Figg.1-8 è mostrato un bollitore 1 per la produzione di acqua sanitaria calda secondo la presente invenzione.

Si definisce acqua sanitaria l'acqua destinata al consumo umano come le acque trattate o non trattate utilizzate ad uso potabile, per la preparazione dei cibi e delle bevande e per altri usi domestici, indipendentemente dall'origine e dal sistema di fornitura che può essere una rete idrica o delle cisterne.

Il bollitore 1 comprende un serbatoio 2 d'accumulo dell'acqua sanitaria da riscaldare proveniente, ad esempio, dalla rete idrica; l'acqua sanitaria viene introdotta all'interno del serbatoio 2 attraverso un condotto d'ingresso 3 comunicante con la rete idrica e viene fornita calda attraverso un condotto d'uscita 4 collegato a degli impianti idrici sanitari.

Particolarmente, il serbatoio 2 ha sostanzialmente la forma di un cilindro ellittico e comprende una base superiore 5 ed una base inferiore 6 di forma sostanzialmente ellittica, ed una superficie laterale 7.

In una sua forma di realizzazione, il serbatoio 2 può essere un serbatoio in acciaio INOX con capacità di 200 litri, con il cilindro ellittico avente un'altezza di 2010 mm, e ciascuna delle basi superiore ed inferiore 5, 6 avente un diametro maggiore di 404 mm ed un diametro minore di 304 mm. L'ingombro complessivo del serbatoio 2 è pertanto 404 x 304 x 2010 mm.

La particolare sezione ellittica del serbatoio 2 consente, a parità di spazio occupato, di contenere una maggiore quantità d'acqua rispetto ad un classico serbatoio a sezione circolare e, conseguentemente, un agevole collocamento a parete. Invece, rispetto ad un serbatoio a sezione rettangolare (o, in generale, poligonale), il serbatoio 2 riesce a sostenere la pressione interna dell'acqua sanitaria (compresa tra 3-5 bar) utilizzando uno spessore ridotto di superficie laterale 7, dunque avrà un peso nettamente

inferiore.

Come mostrato in Fig. 4, il condotto d'ingresso 3 dell'acqua sanitaria dalla rete idrica è posizionato in una parte inferiore della superficie laterale 7 del serbatoio 2 e comprende un tubo 20 provvisto di una pluralità di fori 21, detto tubo 20 essendo atto ad iniettare l'acqua sanitaria in ingresso attraverso detti fori 21 all'interno del serbatoio 2. L'acqua sanitaria calda viene invece prelevata da un condotto d'uscita 4 collocato nella parte centrale della superficie laterale 7 del serbatoio 2; il condotto d'uscita 4 comprende un tubo 19 con un primo tratto curvo ed un secondo tratto lineare verticale per il pescaggio dell'acqua sanitaria calda dall'alto del serbatoio 2. Per mezzo del condotto d'uscita 4, come detto, l'acqua sanitaria viene inviata agli impianti idrici sanitari.

Internamente al serbatoio 2 d'accumulo è presente uno scambiatore di calore 8 atto a realizzare lo scambio di energia termica tra un fluido termovettore che scorre internamente allo scambiatore di calore 8 e l'acqua sanitaria contenuta nel serbatoio 2; ad esempio, il fluido termovettore può essere costituito da acqua, prendendo il nome di "acqua tecnica". In questo caso si tratta di uno scambiatore di calore 8 del tipo acqua-acqua, con l'acqua tecnica che rappresenta il fluido a temperatura più alta ed ha il compito di trasmettere il calore all'acqua sanitaria.

L'acqua tecnica è ad una temperatura di circa +55°C e proviene da un circuito di riscaldamento che può essere collegato ad una pompa di calore, ad un impianto solare termico, ad un impianto che trae energia da biomasse o a generatori termici alimentati a gas o ad altro combustibile. Nonostante il bollitore I secondo la presente invenzione sia progettato per il funzionamento con ognuno dei suddetti impianti, esso è ottimizzato per l'accoppiamento alle pompe di calore poiché, come si vedrà in seguito, la grande superficie di scambio offerta dal particolare scambiatore di calore 8 utilizzato fa si che l'acqua tecnica di ritorno alla pompa di calore dal circuito di riscaldamento avrà una temperatura non elevata e dunque tale da preservare la pompa di calore stessa.

Com'è noto, infatti, una pompa di calore comprende essenzialmente quattro elementi che sono un evaporatore, un compressore, un condensatore ed una valvola di espansione. Un fluido refrigerante con punto di ebollizione estremamente basso circola attraverso un circuito chiuso che attraversa i suddetti elementi. L'energia ambientale fornita da un circuito geotermico causa l'evaporazione di tale fluido refrigerante che.

dopo esser stato compresso (con conseguente surriscaldamento ad elevate temperature) trasmette energia termica al circuito di riscaldamento in cui scorre l'acqua tecnica. Ciò avviene ciclicamente poiché, dopo la fase di condensazione dovuta alla trasmissione del calore all'acqua tecnica, viene ridotta la pressione del fluido refrigerante che può assorbire l'energia ambientale.

Se l'acqua tecnica non rilascia sufficiente calore durante lo scambio termico con l'acqua sanitaria, la pompa di calore può danneggiarsi poiché l'acqua tecnica di ritorno avrà una temperatura troppo alta. Grazie all'elevata superficie di scambio offerta dal particolare scambiatore di calore 8 di seguito descritto, l'acqua tecnica di ritorno rilascerà sufficiente energia termica da avere una temperatura ottimale per il corretto funzionamento della pompa di calore.

Lo scambiatore di calore 8 è uno scambiatore di calore fisso in acciaio INOX del tipo a piastre stagne ad elevata superficie di scambio termico e ridotta perdita di carico lato acqua tecnica. Detto scambiatore di calore 8 (Fig. 2) comprende un collettore superiore 9 di distribuzione, atto all'iniezione dell'acqua tecnica di mandata proveniente dal circuito di riscaldamento, e dunque dalla pompa di calore, ed un collettore inferiore 10 di distribuzione per l'uscita dell'acqua tecnica di ritorno attraverso il circuito di riscaldamento verso la pompa di calore. Entrambi i collettori superiore ed inferiore 9, 10 come detto sono realizzati in acciaio INOX e, nel caso in esempio, hanno un diametro di 1 pollice.

Inoltre, lo scambiatore di calore 8 comprende una pluralità di piastre scambiatrici 11 (anch'esse in acciaio INOX) connesse tra detti collettore superiore ed inferiore 9, 10 di distribuzione. Ciascuna piastra scambiatrice 11 (Figg. 9, 10), a propria volta, ha una superficie di forma sostanzialmente rettangolare e comprende una camera interna 12, atta a far fluire internamente l'acqua tecnica; ogni camera interna 12 riceve l'acqua tecnica proveniente dal collettore superiore 9 dello scambiatore di calore 8 e la conduce fino al collettore inferiore 10. Nella forma realizzativa in esame, lo scambiatore di calore 8 comprende cinque piastre scambiatrici 11 (Fig. 2), ciascuna con un lato lungo di 1766 mm ed un lato corto di 235 mm e la camera interna 12 che può essere realizzata mediante operazione di stampa o gonfiaggio delle superfici, opportunamente sagomate per ottenere la massima efficienza di scambio (Figg. 9, 10).

Come mostrato in Figg. 1-8, lo scambiatore di calore 8 è posizionato centralmente

all'interno del serbatoio 2, con le piastre scambiatrici 11 orientate verticalmente a partire dal collettore superiore 9 di distribuzione, che è si trova in una parte alta del serbatoio 2, fino al collettore inferiore 10 di distribuzione, che si trova in una parte bassa del serbatoio 2.

D'altro canto, il tubo 20 di iniezione del condotto d'ingresso 4 è posizionato in modo tale che i propri fori 21 siano sfalsati rispetto alle piastre scambiatrici 11 dello scambiatore di calore 8; in altre parole, primo e ultimo foro 21 a parte, ciascuno dei restanti fori 21 è posizionato in modo da trovarsi tra due piastre scambiatrici 11, ciò al fine di ottimizzare lo scambio termico tra l'acqua tecnica e l'acqua sanitaria.

L'acqua tecnica è introdotta nelle camere interne 12 di ciascuna piastra scambiatrice 11 attraverso il collettore superiore 9 di distribuzione per sfruttare al meglio la produzione di acqua sanitaria calda con effetto istantaneo al prelievo. In questo modo, infatti, l'acqua sanitaria presente nella parte superiore del serbatoio 2, che è quella che per prima viene pescata attraverso il tubo 19 al momento dell'utilizzo, sarà anche quella che verrà riscaldata meglio e prima dall'acqua tecnica poiché arriva in ingresso allo scambiatore di calore 8 alla sua massima temperatura (+55°C).

Come detto, il circuito di riscaldamento si collega al bollitore 1 attraverso i collettori superiore ed inferiore 9, 10 di distribuzione dello scambiatore di calore 8 per condurre all'interno delle camere interne 12 delle piastre scambiatrici 11 l'acqua tecnica che provvederà a riscaldare l'acqua sanitaria presente all'interno del serbatoio 2; a tale scopo il serbatoio 2 comprende un primo ed un secondo manicotto 13, 14, il primo disposto centralmente sulla base superiore 5 ed il secondo inferiormente sulla superficie laterale 7 del serbatoio 2, accoppiati rispettivamente a detti collettori superiore ed inferiore 9, 10.

Il bollitore I comprende, inoltre, un anodo in magnesio 15 (Figg. 1-3) cosicché le superfici interne del serbatoio 2 possano essere sottoposte a protezione catodica, ovvero alla protezione per via elettrochimica dalla corrosione del metallo. Come ben noto, la protezione catodica è una tecnica elettrochimica di salvaguardia dalla corrosione di strutture metalliche esposte a un ambiente elettrolitico che può essere aggressivo nei confronti del metallo.

Un pozzetto per sonda di temperatura 16 (ad es. di lunghezza 70 mm) è previsto per il monitoraggio della temperatura dell'acqua sanitaria all'interno del bollitore 1.

Infine, il bollitore 1 comprende un terzo manicotto 17 (Fig. 3) in una parte inferiore della superficie laterale 7 del serbatoio 2 per lo scarico dell'acqua sanitaria ed un quarto manicotto 18 per la pulizia interna del serbatoio 2 in una parte superiore ancora della superficie laterale 7.

La coibentazione è realizzata in poliuretano espanso rigido, con spessore medio di 50 mm, ed elevato isolamento termico con coefficiente di conducibilità 0,023W/mK.

Nel funzionamento, l'acqua tecnica di mandata a +55°C, proveniente dal circuito di riscaldamento collegato alla pompa di calore, viene introdotta dall'alto per mezzo del collettore superiore 9 di distribuzione all'interno delle piastre scambiatrici 11 attraversando le camere interne 12.

D'altro canto, l'acqua sanitaria in ingresso al serbatoio 2 (che si trova a circa +10°C) viene introdotta controcorrente rispetto al movimento dell'acqua tecnica, e ciò avviene tramite il tubo 20 del condotto d'ingresso 3 che è posizionato nella parte inferiore del serbatoio 2. Grazie alla disposizione sfalsata dei fori 21 rispetto alle piastre scambiatrici 11, l'acqua sanitaria viene iniettata tra una piastra e l'altra, cosicché viene incrementato lo scambio termico tra l'acqua tecnica e l'acqua sanitaria accumulata.

L'elevata superficie di scambio offerta dalle piastre scambiatrici 11 fa si che l'acqua tecnica di ritorno abbia rilasciato sufficiente energia termica da avere una temperatura ottimale per il corretto funzionamento della pompa di calore, evitando che questa possa danneggiarsi.

L'acqua sanitaria calda (ad una temperatura di circa +50°C) viene pescata dalla parte superiore del serbatoio 2 per mezzo del tubo 19 del condotto d'uscita 4 così da avere un effetto di riscaldamento quasi istantaneo al prelievo (variabili: temperatura arrivo acqua sanitaria, temperatura aria esterna, ecc.) poiché, come detto, è dal collettore superiore 9 di distribuzione che arriva l'acqua tecnica alla sua massima temperatura dalla pompa di calore.

Di seguito alcuni dati tecnici relativi al bollitore 1 secondo la forma realizzativa sopradescritta:

- il tempo di messa a regime, ovvero per riscaldare l'intero quantitativo di acqua accumulata nel serbatoio 2 (in questo caso 200 litri), da una temperatura di circa +10°C ad una temperatura di circa +50°C e acqua tecnica a temperatura +55°C, con la pompa di calore di potenza 8,0KW, è pari 52 minuti; differentemente, con la pompa di calore di

potenza 14,0kW il tempo di messa a regime è di circa 39 minuti;

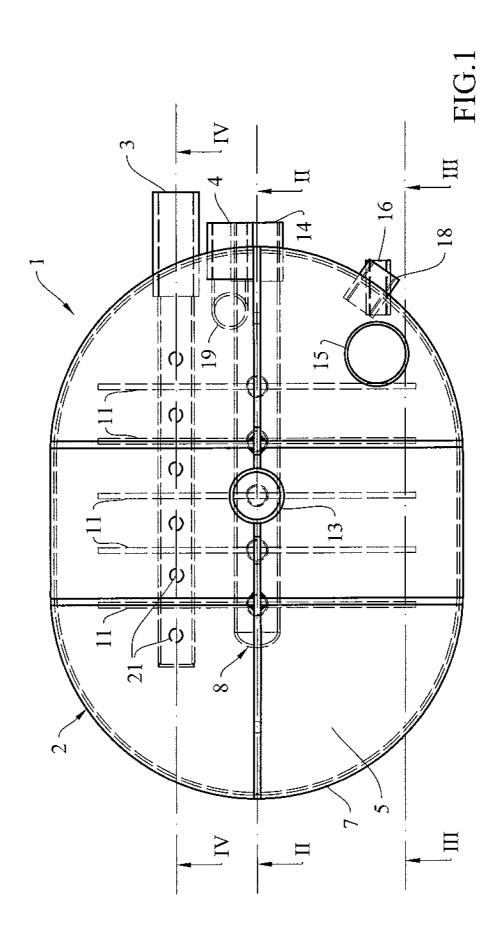
- la potenza massima scambiabile in KW con acqua tecnica a temperatura +55°C,
 acqua sanitaria accumulata fra +10°C e +45°C e prelievo in continuo dell'acqua
 sanitaria calda prodotta è pari a 35kW;
- la portata di acqua tecnica con pompa di calore di potenza 8,0kW è pari a 1,38mc/h;
- la portata di acqua sanitaria con pompa di calore di potenza 14,0kW è di 2,40mc/h;
- l'acqua sanitaria calda prelevabile nei primi 10 minuti in lt/10' fra +10°C e
 +45°C accumulo a +50°C e primario a +55°C con generatore di potenza 8,0kW è pari a
 350 litri.

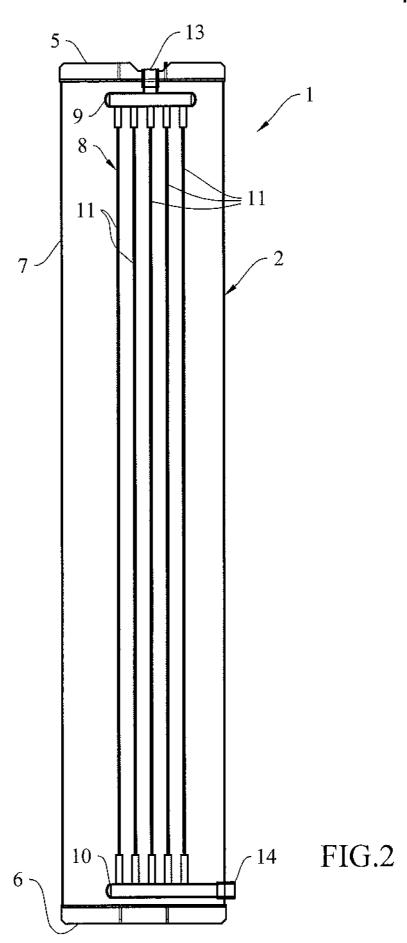
Per quanto detto, il bollitore 1, secondo la presente invenzione, per la produzione di acqua sanitaria calda ha un bassissimo ingombro, grazie alla sua forma a cilindro ellittico, e al contempo garantisce un'elevata efficienza, grazie all'utilizzo del particolare scambiatore di calore 8 a piastre stagne ed elevata superficie di scambio termico, riducendo così il consumo di energia.

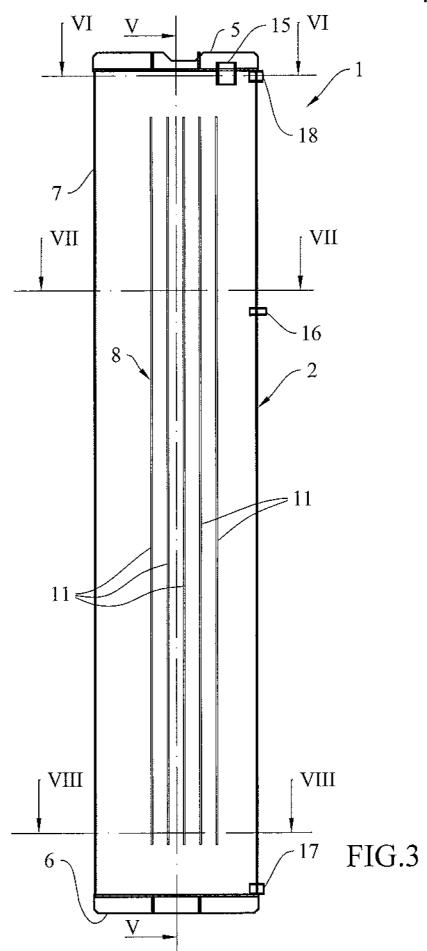
RIVENDICAZIONI

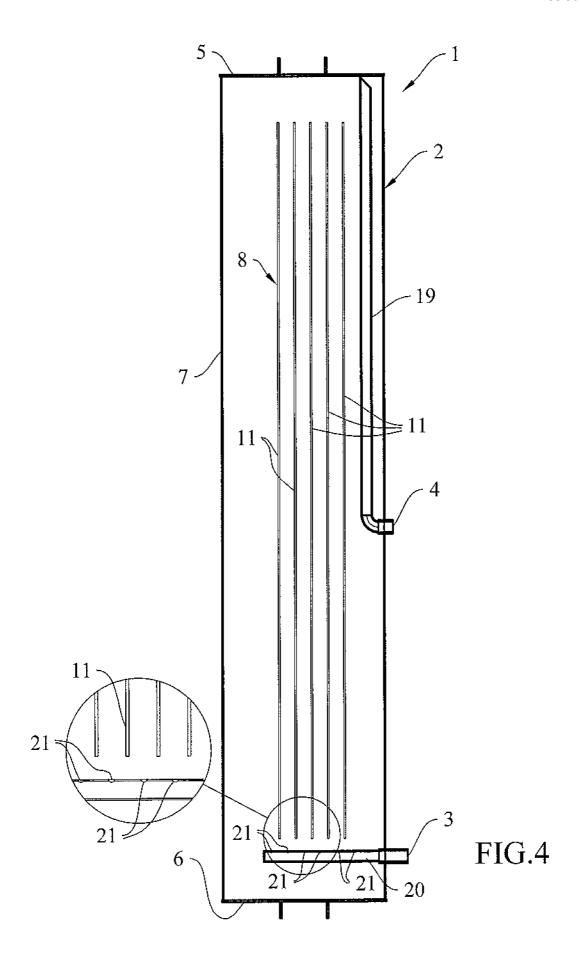
1. Bollitore (1) per la produzione di acqua sanitaria calda comprendente un serbatoio (2) di accumulo dell'acqua sanitaria proveniente da un sistema di fornitura idrica, detto bollitore (1) essendo caratterizzato dal fatto di comprendere internamente uno scambiatore di calore (8) a piastre stagne atto a realizzare lo scambio termico tra un fluido termovettore proveniente da un circuito di riscaldamento collegato ad una pompa di calore, o altro, e l'acqua sanitaria accumulata in detto serbatoio (2), detto scambiatore di calore (8) comprendendo

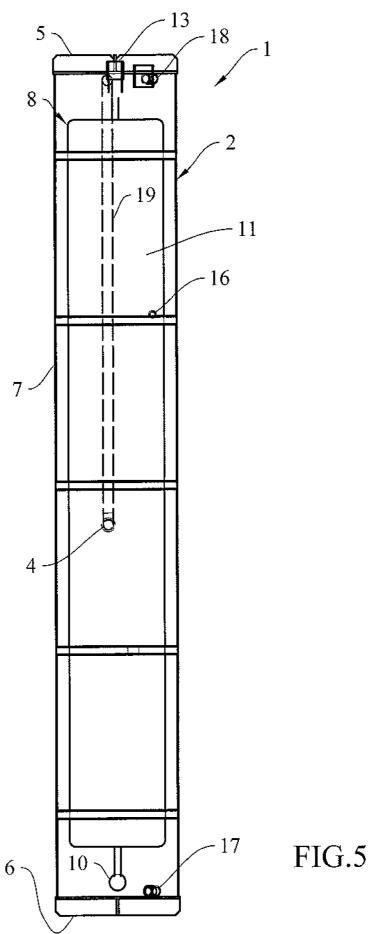
un collettore superiore (9) di distribuzione atto all'iniezione del fluido termovettore di mandata proveniente dal circuito di riscaldamento,


un collettore inferiore (10) di distribuzione atto all'uscita del fluido termovettore di ritorno al circuito di riscaldamento,


una pluralità di piastre scambiatrici (11) connesse tra detti collettore superiore ed inferiore (9, 10) di distribuzione, ciascuna piastra scambiatrice (11) comprendendo una camera interna (12) comunicante con detti collettori superiore ed inferiore (9, 10) ed atta a far fluire internamente il fluido termovettore per lo scambio di calore con l'acqua sanitaria accumulata.


- 2. Bollitore (1) secondo la rivendicazione 1, caratterizzato dal fatto che detto serbatoio (2) di accumulo ha sostanzialmente la forma di un cilindro ellittico e comprende una base superiore (5) ed una base inferiore (6) di forma sostanzialmente ellittica, ed una superficie laterale (7).
- 3. Bollitore (1) secondo la rivendicazione 2, caratterizzato dal fatto che un condotto d'ingresso (3) dell'acqua sanitaria dal sistema di fornitura idrica è posizionato in una parte inferiore della superficie laterale (7) del serbatoio (2), mentre l'acqua sanitaria riscaldata è prelevata dalle parte superiore del serbatoio (2), attraverso un condotto d'uscita (4) atto a trasportare l'acqua sanitaria verso degli impianti idrici sanitari.
- 4. Bollitore (1) secondo la rivendicazione 3, caratterizzato dal fatto che detto condotto d'ingresso (3) comprende un tubo (20) provvisto di una pluralità di fori (21) sfalsati rispetto alla disposizione delle piastre scambiatrici (11) dello scambiatore di calore (8), detto tubo (20) essendo atto ad iniettare l'acqua sanitaria in ingresso attraverso detti fori (21) tra le piastre scambiatrici (11) all'interno del serbatoio (2), e che detto condotto d'uscita (4) comprende un tubo (19) con un primo tratto curvo ed un


secondo tratto lineare verticale per il pescaggio dell'acqua sanitaria calda dall'alto del serbatoio (2).


- 5. Bollitore (1) secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto scambiatore di calore (8) è posizionato centralmente all'interno del serbatoio (2), con le piastre scambiatrici (11) orientate verticalmente a partire dal collettore superiore (9) di distribuzione, che si trova in una parte alta del serbatoio (2), fino al collettore inferiore (10) di distribuzione, che si trova in una parte bassa del serbatoio (2).
- 6. Bollitore (1) secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto serbatoio (2) comprende sulla superficie laterale (7) un primo ed un secondo manicotto (13, 14), il primo nella parte superiore ed il secondo nella parte inferiore, che sono accoppiati rispettivamente a detti collettori superiore ed inferiore (9, 10) e sono atti al collegamento con detto circuito di riscaldamento.
- 7. Bollitore (1) secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che ciascuna piastra scambiatrice (11) ha una forma sostanzialmente rettangolare.
- 8. Bollitore (1) secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto fluido termovettore è acqua e prende il nome di "acqua tecnica".

