wo 2014/028261 A1 |1 I} NN TP OO0 A RO A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/028261 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

20 February 2014 (20.02.2014) WIPO I PCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2013/053678

International Filing Date:

6 August 2013 (06.08.2013)
Filing Language: English
Publication Language: English
Priority Data:
13/572,900 13 August 2012 (13.08.2012) Us

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399
(US).

Inventors: ROOMP, Kristof; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). DHARIWAL,
Alok; ¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-

(8D

6399 (US). DIMITROY, Ivaylo; c¢/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). HO, Cheng; c/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
LIU, Lincoln; ¢/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). PAI, Brandon; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).
PASUMARTHY, Kumar; c¢/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). PITIGOI-ARON,
Gruia; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). RODRIGUES, John; c/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

[Continued on next page]

(54) Title: DE-DUPLICATING ATTACHMENTS ON MESSAGE DELIVERY AND AUTOMATED REPAIR OF ATTACH-
MENTS

(57) Abstract: Systems and techniques of de-duplicating file and/or blobs

oy L g 4 o

104

S A
) |
) s 112 |
1 i |
! wr ‘
| : |
| i |
! 114 !
! Metazata . !
1 |
) . |
) 116 |
. /s ;
)

| |
: Email message body and }
| attachment |
) 118b |
| /* 118a (‘ }
)

) copy1 <opyn |
| |
1 |
I |
) |
1 |
) |
) |

within a file system are presented. In one embodiment, an email system is dis-
closed wherein the email system receives email messages comprising a set of
associated attachments. The system determines whether the associated attach -
ments have been previously stored in the email system, the state of the stored
attachment, and if the state of the attachment is appropriate for sharing copies
of the attachment, then providing a reference to the attachment upon a request
to share the attachment. In another embodiment, the system may detect wheth-
er stored attachments are corrupted and, if so, attempt to repair the attachment,
and possibly, prior to sharing references to the attachment.

WO 2014/028261 A1 |IIWAT 00N A0 0O KL A0

84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EF, EG, ES, FL, GB, GD, GE, GH, GM,
GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

DE-DUPLICATING ATTACHMENTS ON MESSAGE DELIVERY AND
AUTOMATED REPAIR OF ATTACHMENTS

BACKGROUND
[0001] In the area of database and memory management, it may be desirable to reduce
the number of duplicate files (called “blobs”) — within a given computer, within a number
of computers, or across a computing and networked environment. To automate such a
process, the computer or environment needs to identify these blobs and take appropriate
action thereafter.
[0002] The effort to avoid duplicate files is rewarded with a concomitant savings in disk
space, /0O and network bandwidth savings. Thus, it may be desirable to accurately and
efficiently handle and manage duplicate files.

SUMMARY

[0003] The following presents a simplified summary of the innovation in order to
provide a basic understanding of some aspects described herein. This summary is not an
extensive overview of the claimed subject matter. It is intended to neither identify key or
critical elements of the claimed subject matter nor delineate the scope of the subject
innovation. Its sole purpose is to present some concepts of the claimed subject matter in a
simplified form as a prelude to the more detailed description that is presented later.
[0004] Systems and techniques of de-duplicating file and/or blobs within a file system
are presented. In one embodiment, an email system is disclosed wherein the email system
receives email messages comprising a set of associated attachments. The system
determines whether the associated attachments have been previously stored in the email
system, the state of the stored attachment, and if the state of the attachment is appropriate
for sharing copies of the attachment, then providing a reference to the attachment upon a
request to share the attachment. In another embodiment, the system may detect whether
stored attachments are corrupted and, if so, attempt to repair the attachment, and possibly,
prior to sharing references to the attachment.
[0005] In one embodiment, a method for de-duplicating data in a file system is
disclosed, where the file system comprising one or more files, each file may comprise a set
of data and the set of data capable of being shared by two or more users. The method may
comprise the following steps: receiving a file to be stored within a file system; checking
whether a set of data within said file has been previously stored in said file system; if said

set of data has been stored in said file system, checking the state of the stored set of data;

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

and if said state of stored set of data is appropriate for sharing copies of said file, then
providing a reference to said file upon a command to share said set of data.
[0006] In another embodiment, a system for de-duplicating data in an email system is
disclosed where the system may comprises: an email server, said email server in
communication with a set of email clients; a database for storing emails and associated
attachments; said database storing at least one of group, said group comprising: the email
message, associated attachments, metadata regarding the email message and metadata
regarding said associated attachments; a module for managing the sharing of attachments
between said set of email clients; and further wherein said module of managing the
sharing of attachments between said set of email clients is capable of detecting the state of
an attachment and sharing a reference pointer to said attachment depending upon the state
of said attachment .
[0007] Other features and aspects of the present system are presented below in the
Detailed Description when read in connection with the drawings presented within this
application.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Exemplary embodiments are illustrated in referenced figures of the drawings. It
is intended that the embodiments and figures disclosed herein are to be considered
illustrative rather than restrictive.
[0009] FIG. 1 depicts one exemplary computing and/or networked environment in
which various embodiment of the present application might operate and persist in
accordance with the principles of the present application.
[00010] FIG. 2 is one embodiment of a state table/flowchart of a blob management
system as made in accordance with the principles of the present application.
[00011] FIG. 3 is one embodiment of high level flowchart of an email delivery system
and an associated blob management system as made in accordance with the principles of
the present application.

DETAILED DESCRIPTION

[00012] As utilized herein, terms "component,”" "system," "interface," and the like are
intended to refer to a computer-related entity, either hardware, software (e.g., in
execution), and/or firmware. For example, a component can be a process running on a
processor, a processor, an object, an executable, a program, and/or a computer. By way of

illustration, both an application running on a server and the server can be a component.

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

One or more components can reside within a process and a component can be localized on
one computer and/or distributed between two or more computers.
[00013] The claimed subject matter is described with reference to the drawings, wherein
like reference numerals are used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific details are set forth in order to
provide a thorough understanding of the subject innovation. It may be evident, however,
that the claimed subject matter may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form in order to
facilitate describing the subject innovation.

Introduction
[00014] In the interest of saving space, processing time and overall cost of a file system,
database, email system or the like, it may be desirable to implement a system that may
effectively manage the de-duplication of files (“blobs”) across the entire system. Such a
system may also be concerned with notions such as data security, data recovery and data
integrity, among others.
[00015] FIG. 1 is one example of a computing/networking environment (100) in which
embodiments of the present application may operate and reside. Although FIG. 1 is
depicted in the form of an email system, the principles of the present application may able
with equal force in the applications of database management or file system management as
well.
[00016] In the environment 100, there may be a plurality of email clients 102a, 102b, and
102c. In this example, client 102a writes an email 104 with attachment and sends it into
the networked system 106, destined for another client 102b. Client 102b, in turn, may
decide to forward the email with the attachment to a third client 102c.
[00017] Within the networked system 106, there may exist an email server 108, together
possibly with a number of other servers, routers and other network components that are
known in the art. For example, in the design of Microsoft Outlook® email system, the
system ensures that the copies of data reside on independent hard drives, controllers, and
machines. This kind of system is nicknamed “JBOD,” which stands for “Just a Bunch Of
Disks.” In a JBOD system, the hard drive controller attempts to get out of the way, which
means that the software is more concerned about the failures that the controller previously
handled. These failures may range from firmware bugs on the hard drives themselves to
issues such as “unrecoverable read errors” that previously were automatically fixed by the

controllers. In addition, the software may now scrub the drives periodically to check the

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

data for “bit rot” (i.e., data that has for some reason become unreadable or corrupt). In this
case, it is possible to build a distributed "RAID" controller completely in software, which
replaces the industry-standard firmware ones.

[00018] The software for such a JBOD system may monitor the hard drives schedules
repair actions, detects failures, and diagnoses repairs. This software may also comprise a
number of “watchdogs” that constantly monitor for certain types of failures. If the
watchdog detects the failure that it is looking for, it raises an alert, which may
automatically trigger a repair process. This repair process may range from rebooting a
machine or restarting a process, to fixing data corruption or even involving a human if
progress can’t be made.

[00019] As a part (110) of the overall system, metadata 112 and redundant metadata 114
may be employed so that the software may also know exactly how many good copies (e.g.
118a and 118b) of an email message to which the system has access (in, 116, for
example). In the case where it finds that there are too few copies, it may prioritize repair
actions to avoid a potentially dangerous situation. In situations where repairs are taking
too long, it is possible to move data to another location altogether.

[00020] The system may effectively manage and store replicated email messages by
storing original email messages in exactly the same as they were when they were
delivered. Data about email messages that changes (such as read/unread, location in a
folder, etc.) is stored separately — e.g., in metadata store 112.

[00021] The system may comprise a set of machines, each of which may have its copy of
an email message and a journal recording messages that have arrived, organized by arrival
date. The machines may talk to each other from time to time, compare their journals, and
copy any messages that they realize haven’t been copied to all machines. This can happen
for a variety of reasons, mostly due to machine, network, or hard drive failures. In some
cases, the journals are too far out of sync, in which case the system does a full
comparison/copy.

[00022] Although hard drives have gotten bigger and cheaper, the speed at which they
can retrieve data hasn’t changed much. This means that although hard drives may pack
more data on larger hard drives, the hard drives would eventually be unable to handle the
rate of requests. One technology that is promising in this area is Flash Storage (also called
SSD, or Solid State Drive). SSDs use technology similar to what you'd find on an SD card
or USB stick, but with a faster internal chipset and a much longer lifespan. A normal hard

drive can perform a little more than one hundred read/write operations per second,

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

whereas some of the fastest SSDs can do over one hundred thousand operations per
second. However, this comes at a price, as these devices may be 10 to 100 times more
expensive than hard drives when you look at what you pay per gigabyte of storage.
[00023] In storing the email messages, the system may also keep track information about
these messages (metadata 112), such as the list of messages in your folders, read/unread
status of your messages, conversation threading, mobile phone synchronization etc. This
metadata tends to take up an extremely small fraction of our total storage space, but due to
its constantly changing nature, it may consume a good share of the load on the hard drives.
[00024] By using SSDs for this small and rapidly changing set of data, and using the
largest hard drives available for storing messages, the system may be able to take
advantage of the trend in larger and cheaper hard drives without making any sacrifices in
the performance of our system.

[00025] In one embodiment, the system -- upon file and/or message delivery -- may
detect if the file and/or message is greater than a given threshold size (say, Y), or if the file
and/or message has an attachment(s) (say, X), greater than a given threshold size (say, Y).
If so, then the system may check to see if the exact file, message or attachment(s) X has
already been delivered to, shared by (or stored by) a user on the system. To check to see if
the file, message and/or attachment has been delivered and/or shared with a user on the
system, the system may perform a hash function upon the file, message and/or attachment
and compare previous hash results for a match. In addition, the system may store and/or
retain metadata regarding the file, email message and/or attachment, including: state
metadata, metadata regarding how and/or with whom sharing and/or duplication may have
occurred.

[00026] If the file, message and/or attachment has been delivered, shared -- and the
‘blob’ is in a good state and there are no more than another threshold number (say, Z) of
references and/or links to X already, then increase the reference count to that blob and
‘point’ to that blob for the new message delivery, not saving X again on the file-system.
During this process, the system may also detect if the ‘blob’ on disk is corrupted and, if so,
either repair or replace with the good X. For example, in the context of FIG. 1, when
client 102b forwards email 104 with the same attachment to another target client and/or
entity, then the system may forward a pointer reference to the attachment without creating
another duplicate of the attachment.

[00027] It will be appreciated that other systems — such as databases, email system and/or

other file systems — may have architectures that differ from the one described in reference

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

to FIG. 1; but the techniques of the present application may also benefit other such
architectures.

De-Duplication Embodiments

[00028] In the context of an email system (merely for exemplary purposes), one
embodiment of the system may be designed to identify duplicated attachments, upon mail
delivery, and de-duplicate them on a file-store; thereby possibly achieving disk savings of
34% or more and I/O and network bandwidth savings. In addition to uniquely identifying
attachments, the systems may incorporate understanding the life-cycle of a ‘blob’, how to
perform re-replication of ‘blobs’ from other source machines or disk drives if a ‘blob’
becomes lost or corrupted, and perform hot-spot ‘blob’ management to ensure efficiency
of storage and 1/O for the file-system.

[00029] In many email systems, it is noted that a large proportion of the content
comprises a small set of large attachments, which are stored across many email accounts.
From this observation, other embodiments of the present application desire to take
advantage by allowing these attachments to be stored once (or a limited number of times)
and shared within or across a plurality of accounts. In one embodiment, the system may
extract attachments out of message files and stored separately so that they can be
referenced and tracked independently of the account they originated from.

[00030] Other embodiments of the present application may comprise modules to affect:

(1) Finding duplicates: a module to affect an index mechanism that allows for
newly delivered content to be identified as a candidate for de-duplication and
for existing duplicates to be located and taken advantage of.

(2) Maintaining duplicates: a module to repair and maintain our de-duplicated data
in the face of hard drive failures and data corruption, and in other
embodiments, being especially careful since the loss of a single de-duplicated
blob could affect many accounts.

(3) Garbage collection: a module to safely remove attachments that are no longer
referenced.

[00031] In some embodiments, it is possible to choose the scope of de-duplication to
coincide with the scope of a single SQL database. In such a case, duplicate blobs may be
discovered that are referenced by accounts that are stored within the same SQL database.
In such embodiments, such a scope may allow the system to achieve space savings, while
at the same time simplifying duplicate discovery and garbage collection. In some

embodiments, it may be possible in some embodiments to allow multiple copies of the

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

same duplicate to be stored on different disk groupings in order to limit the amount of
damage that could be caused by the loss of a single attachment.

Identification and Management of Email Parts/Attachments

[00032] In one embodiment, a module for identifying the various email parts may be
desirable to detect and/or identify those parts (e.g. attachments, etc.) as possibly being
subject to de-duplication. In another aspect of an identification module, this module may
also discern and/or successfully identifying attachments that may already been shredded
for the same or another individual and having multiple accounts point to the same
shredded attachment without privacy or data corruption concerns. For example, a
cryptographic hash may be used to make uniqueness between attachments.
[00033] Additionally, in the case where a de-duped attachment already exists on disk, it
may no longer be desirable to write the attachment to disk, but the system may simply
increment a refcount, and save disk space, 10, and network bandwidth by not re-writing it.
It may be desirable for the module to pay attention to, and track, the life-cycle of blobs.
More specifically, the module may track a blob through the various states a shredded
attachment may take, such as when to delete it, decrement/increment the reference to it, or
replace it. Automated re-replication from other source machines/disks may be desirable, if
a blob is lost and/or corrupted. In addition, some more techniques may be desirable such
as the recovery of lost meta-data and bringing the store back to consistency, automatically;
the prioritization of which attachment to increment the ref-count (as explained herein); and
having a spill over mechanism to reduce hot spots when references are popular.
[00034] Towards the identification of attachments and other objects that might comprise
a blob, some embodiment may make this identification at the MIME parts boundary. In
this embodiment, there may be a plurality of representations of messages that are
used/recognized by the systems:
(1) “Literal MIME”: This may be just the MIME message as it was received via
SMTP. Attachments may be included as base64 or binary encoded streams.
(2) “Compressed MIME” or “V1”: This may be the literal MIME format compressed
via Xpress.
(3) “AttachStore” message format: This may be a container that has the extracted the
attachments and placed them separately at the end of the file.
[00035] In one embodiment, it may be desirable to enhance the “AttachStore” format to
support pointers to blobs that are stored as separate files on disk. In such an embodiment,

it may be possible to make changes in the AttachStore as follows:

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

(1) A blobld and a hash may be stored in the ATTACHMENT LIST NODE.
(2) A complete file CRC may be stored at the end of the file to simplify CRC
validation.

[00036] In addition, blobs may be stored in a separate directory structure on the file-
system, parallel to where messages may be stored as follows: msg, index, ptf, blob (first 2-
characters of hash; attachment hash).
[00037] In one embodiment, it may be desirable to store blob files not as a single large
directory, as that may result in a severely fragmented directory file once it reaches a large
number of entries. So, in one embodiment, it may be desirable to use the first two
characters of a hash as the directory name and then limit the number of files per directory
to desired number — e.g., a few thousand.
[00038] This embodiment, moreover, may implement de-duplication at the machine/db
level. This approach may be applicable directly at a larger scale — e.g., a group of
machines or even an entire data center (DC). Individual de-duplicated blobs found to be
corrupt may then be recovered from other copies existing within the local or even in a
remote DC. Exceptional handling may be made for the recovering after catastrophic data
failures.

One State Diagram Embodiment

[00039] During their lifetime, blobs will tend to transition to various states as they are
created, corrupted, fixed and deleted. This observation may lead to one embodiment that
employs a state-transition approach that describes the life-cycle of a blob. The states may
determine which APIs can be applied to (or used against) a blob and may be used to make
sure that various tasks do not step on each other. Alternatively, another embodiment
might rely on reference counts to manage blobs; but states may be desirable to use as there
may be different interpretations of a reference count of 0; and they may be treated
differently.

[00040] In another embodiment, the system may affect a state diagram (200), such as
shown in FIG. 2. System 200 may comprise a plurality of states — e.g., AllCorrupt 202,
Tentative 204, Deleting 206, Recovered 208, Orphan 210, SomeCorrupt 212, Good 214
and Tbl-blob row deleted 216 — as explained herein. As mentioned, the system may
maintain a counter of the number of pointers (i.e. “Refcount”) to a blob (possibly in
metadata store). If all blobs are designated as “corrupt” then the state data may reflect
one of two states — (1) Tentative, if Refcount =0 or (2) AllCorrupt, if Refcount >0. The

system may send the request for storage and/or access to Tentative 204.

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

[00041] If desired, the system may CreateBlob at the Tentative state 204 — in which case
the blob is “committed” to store (e.g. “HBM”) and the system may transfer to Good state
214. In one embodiment, it may be desirable to commit blob to store only after the blob
has been physically written to all of the replicas. The following is a description of the
various states employed:

Good State
[00042] This is the normal state for a blob. It can be AddRef’d during delivery of a new
message and will not be garbage collected. In one embodiment, AddRef may indicate
that a blob may be reused. If the blob has already been delivered and is in this state, then
the blob “already exists”, and additional references to it may lead to incrementing its
reference count (i.e. without storing it again) and updating the pointers for proper reuse of
the blob.
[00043] Good blobs may have a soft limit on the number of references, which may cause
additional copies of the blob to be created.

Orphan State
[00044] This is a blob which may no longer have active references and may be a
candidate for removal by Message Remover. Until it is actually put into the Deleting
state, it may be AddRef’d and go back into a Good state.
[00045] Like the Tentative state, after a period of a desired time period, Message
Remover will delete these blobs.

Recovered State
[00046] It may be desirable to reconstruct “tbl blob” from disk in the case of database
corruption, or loss of the recent transaction log. In one embodiment, tbl blob may be the
data structure that holds information about the location and state of each blob. If this table
and/or data structure is lost, then it may be desirable to recover the data in any fashion
known in the art for data recovery. In order to facilitate this, there is a state called
“Recovered”, which is similar to Orphan. Since Recovered blobs may not have been
validated yet, the system should monitor recovered blobs before reusing them either via
delivery or for recovered messages. For any AddRef, if a blob is found in the Recovered
state, the mail delivery may rewrite the blobs to ensure that all copies are not corrupted.
[00047] Database recovery may have the option of either reusing the blob in
SomeCorrupt state without verifying, or verifying the integrity and committing it as Good.
In some case, database recovery may not be able to verify the integrity of all copies of

blob, such as when a share is down. Once recovery is completed, any remaining blobs

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

may be moved to the Tentative state, since it may not be desirable to reuse a blob without
getting the blob validated/rewritten first. Garbage collection may not be performed on
recovered blobs. It may be made the responsibility of the database recovery process to
clean up once completed. AddRef OK only after verifying validity.

Tentative State
[00048] The “Tentative” state may be used by processes that write new blobs to disk.
Since a blob-write may fail due to network errors, transient errors, etc., it may be desirable
to remember where these blobs have been written so that they may be cleaned up, if the
blobs were left behind and/or never used. For safety’s sake, blobs may be suitable for use
by de-duplication if all copies are written successfully. In these cases, if a tentative blob
with full redundancy was failed to be written, it may be possible to fall back to writing the
message in the complete format. The expectation is that callers will first create a blob in a
Tentative state, then call Torres to write the file to all shares, and then transition the blob
via CommitHeaderBlobMapping (Commit HBM) or by setting the state to Orphan. In
one embodiment, Commit HBM may be an internal function call that moves the blob state
in the metadata store from the Tentative state to the appropriate new state (in which case,
the blob may be ready to used and re-used). In addition, Commit HBM may increment
the Refcount for the blob — for example, a Commit HBM call on a blob in Tentative state
may not only change its state, but may also increment Refcount to 1.
[00049] If a blob already exists in a Tentative state, there is the potential for a race-
condition if another blob is delivered at the same time. This condition is dealt with by
Torres, which will ensure that writing blobs never destroys existing data. (See section on
Torres for full description)

Deleting State
[00050] Once Message Remover decides to actually delete the file on disk, it will mark
the blob as “Deleting” before starting the delete operation. This will ensure that no one
will attempt to use a half deleted blob. Once confirmation is received that all copies have
been deleted from disk, the row is removed from tbl_blob. If an error occurs, it may be
desirable to stay in this state until deletion is confirmed (either because the file does not
exist anymore or it is deleted).
[00051] Ifablob is in a Deleting state and a caller attempts to create a new blob with the
same hash, a different database group will be chosen for the new blob. AddRef -- NOT
OK.

10

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

SomeCorrupt State
[00052] If any copies of a blob are detected as corrupt or unreadable, the system may
mark the blob as “SomeCorrupt” — or some other named “corrupt” state. It is desirable
that the system does not store information about which replica is corrupt. This is both a
signal to a module for detecting corrupt blobs, and/or repairing corrupt blobs (aka
“TurboFSS”). This module may periodically query for corrupt blobs. This module may
also attempt repair, in addition to making this blob unavailable for any new deliveries. As
the system may not know the exact state of the blob (only that there’s something wrong),
the system may not use the blob for de-duping. For purposes of this application,
TurboFSS refers to a module that makes sure files and blobs are kept in sync among
multiple redundant copies in the system.
[00053] TurboFSS may also consider the last Write time of the blob when performing
repairs to avoid attempting the repair too many times. If a blob reaches refcount 0, it may
go to the Tentative state, since it may be desirable to have the blob rewritten before the
blob is reused. If a new blob arrives with the same hash as an existing blob in
SomeCorrupt, the system may overwrite it with the new delivery. If all writes are
successful, then the blob may be marked repaired. Blobs that are partially redundant
because a share was down during delivery or moveuser are not put into the SomeCorrupt
state, since the system may not de-duplicated if all blobs could not be written with full
redundancy. AddRef NOT OK.

AllCorrupt State
[00054] This state indicates that data-loss has occurred for a given blob and that all repair
attempts have failed. Further attempts at repair may not be attempted. Blobs may stay in
this state forever until manually repaired or all reference count reaches 0 and they are
deleted.
[00055] Since MoveUser may move entire accounts (including missing blobs),
AllCorrupt blobs may be created on the destination system by MoveUser if the blob was
completely missing on the source system. If a blob is in this state reaches a refcount of 0,
it may goes to Tentative, since it may be desirable to have the blob validated and/or
rewritten before getting reused. For purposes of this application, MoveUser is a module
that moves email accounts around an intra- and interdata center for optimal balancing with

the file system or email system or the like.

11

10

15

20

25

WO 2014/028261 PCT/US2013/053678

[00056] In one embodiment, blobs in this state may stay in the database while some user
and/or entity is referencing them. In some embodiments, there may be a plurality of
techniques for the repair of such blobs, including:

(1) Mail delivery or MoveUser may repair an existing blob if a new blob with the

same hash is delivered.

(2) Look on other servers or database groups to see if the attachment exists there.

(3) For users that use ActiveSync, the system may pull the attachment from there.
[00057] If a new blob arrives with the same hash as an existing blob in AllCorrupt, one
embodiment may overwrite it with the new delivery, since persistent storage may be
guaranteed to be idempotent with writes. If all writes are successful, then the blob will be
marked Good and then AddRef’d. Addref NOT OK.

Reference Counting

[00058] Since blobs may be shared between users, it may be desirable to track the
number of references a blob has so that the system may clean it up when it reaches zero
references. Alternatively, the system may potentially prevent a blob from having too
many references if it is desirable to mitigate data loss that may affect a desired threshold
number of accounts.
[00059] The state of a blob may also have an effect on the reference count, since certain
states desire the reference count to be 0 and others desire it to be greater than 0. For

example, the following table reflects one embodiment’s implementation:

AllCorrupt | SomeCorrupt | Deleting | Tentative | Good | Orphan | Recovered
Ref [>0 >0 =0 =0 >0 |=0 =0

Count

[00060] Reference counts may be incremented when rows are added to

tbl HeaderBlobMapping (i.c., tbl HBM) and may be decremented when rows are
removed. Rows may be removed from tbl HeaderBlobMapping when the message is
removed from tbl_deletedmessage. It may be desirable to that the system does not remove
on the deletion from tbl header, as that this may cause blobs to get garbage collected
before their messages are deleted by Message Remover. In one embodiment, if the system
desires to revert message remover for some reason, it may be desirable to ensure that the

attachments can still be read.

12

10

15

20

WO 2014/028261 PCT/US2013/053678

[00061] When the reference count reaches 0, the trigger may change the state in the
tbl blob table in the following way:

New\Old |AllCorrupt |SomeCorrupt| Deleting | Tentative | Good | Orphan (Recovered
State

New State | Tentative | Tentative |Already 0| Already 0| Orphan |Already 0| Already 0
when Ref
Count =0

[00062] Blobs that are partially or fully corrupt may transition to the Tentative state so
that the system may not attempt to repair them.

[00063] In one embodiment, the system may enforce a soft limit on reference counts to
limit the amount of damage that loss of the copies of a blob may have. This limit may be
read from a configuration file and may be enforced when CreateBlob is called. If the
system notices that a blob is over the configured limit, the system may return a new
Tentative blob at a new location rather than returning an existing blob. For the purposes
of this application, CreateBlob is a function call that may either create a new blob location
or reuse an existing location.

[00064] In some embodiments, the limit may be enforced logarithmically, so that each
additional copy may multiply the number of blobs by the limit. For example, if the limit is
100 copies per blob, two copies would allow 100*100 = 10000 copies and three copies
would allow 100”3 copies.

[00065] The following table is one embodiment of possible blob repair states under a

number of different conditions:

Repair of blob states

Email Blob Email -> Message Blob Recoverable by
message Blob
connection

MISSING GOOD GOOD GOOD GOOD Reading the message file and

redelivering it
GOOD MISSING GOOD GOOD GOOD Both from Email -> Blob
connection and the blob on

disk

13

WO 2014/028261 PCT/US2013/053678

GOOD GOOD MISSING GOOD GOOD The system may commit an
entry in Email -> Blob
connection when the
attachment header is read in
the message file

MISSING MISSING GOOD GOOD GOOD Header is recovered by
redelivering the message. Blob
entry can be recovered from
the blob file

MISSING GOOD MISSING GOOD GOOD Email -> Blob connection
entry will be recovered by the
attachment header in the
message file

GOOD MISSING MISSING GOOD GOOD Email -> Blob connection
entry as above. Blob entry will
be recovered by the repair
script and FS and reference
count fixed by repair script

MISSING MISSING MISSING GOOD GOOD Email message and Email ->
Blob connection entries can be
recovered by the message file.
Blob entries can be recovered
from the blob

MISSING GOOD GOOD MISSING GOOD The system may not notice
this because there may not be
a consistency check between
Email message and Email ->
Blob connection

GOOD MISSING GOOD MISSING GOOD Recovered by repair script

GOOD GOOD MISSING MISSING GOOD The system may not be able to
recover the Email -> Blob

connection entry

14

WO 2014/028261

MISSING

MISSING

GOOD

MISSING
MISSING

GOOD

GOOD

MISSING

MISSING

GOOD

MISSING

MISSING

GOOD

GOOD

MISSING

GOOD

MISSING

MISSING
GOOD

MISSING

GOOD

MISSING

GOOD

MISSING

MISSING

GOOD

MISSING

GOOD

GOOD

MISSING

MISSING

MISSING
GOOD

GOOD

MISSING

GOOD

MISSING

MISSING

MISSING

GOOD

GOOD

MISSING

MISSING

MISSING

MISSING

MISSING
GOOD

GOOD

GOOD

GOOD

GOOD

GOOD

GOOD

MISSING

MISSING

MISSING

15

GOOD

GOOD

GOOD

GOOD
MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

PCT/US2013/053678

The system may only recover
the Blob entry

The system may not recover
here

The system may only recover
Blob but reference count will
be incorrect

As above

The system may recreate the
Email message entry by
redelivering the message

The system may recreate the
Blob entry to some extent
Email -> Blob connection
entry will be recreated from
the attachments header in the
message file

The system may recreate from
Email -> Blob connection and
the message file

The system may recreate from
the redelivering the message
file and the attachment header
Yes, starts off as AllCorrupt
As above but also with
message redelivery

The system may not check
consistency between Email
message and Email -> Blob
connection

Recover Blob entry from
Email -> Blob connection

Nothing the system may do

10

15

20

25

30

WO 2014/028261 PCT/US2013/053678

MISSING MISSING GOOD MISSING MISSING Nothing the system may do
other than Blob entry

MISSING GOOD MISSING MISSING MISSING Nothing the system may do

GOOD MISSING MISSING MISSING MISSING Nothing the system may do

One Email System Embodiment

[00066] FIG. 3 depicts one email system embodiment as made in accordance with the
principles of the present application. In particular, system 300 depicts an email delivery
flowchart diagram for de-duplication operations. Email system 300 may receive incoming
emails and/or their attachments — and parse the various parts of the email at Parse Message
302. Parse Message 302 may calculate the hashes upon various parts. The hash results
may be used by the system to aid in deciding whether to de-duplicate the message and/or
the attachments.

[00067] The system may decide to Create Each Blob 304 and continue while in the
“Good” State, as shown. If the state of the blob desires a “write”, then the blob may be
written to persistent store at 306. When the system is done with a blob, the system may
engage CommitHBM at 308 and the system may thereafter write a “compact” message at
310. However, if the system detects an “error”, the system may write the “full” message
at 312,

[00068] What has been described above includes examples of the subject innovation. It is,
of course, not possible to describe every conceivable combination of components or
methodologies for purposes of describing the claimed subject matter, but one of ordinary
skill in the art may recognize that many further combinations and permutations of the
subject innovation are possible. Accordingly, the claimed subject matter is intended to
embrace all such alterations, modifications, and variations that fall within the spirit and
scope of the appended claims.

[00069] In particular and in regard to the various functions performed by the above
described components, devices, circuits, systems and the like, the terms (including a
reference to a "means") used to describe such components are intended to correspond,
unless otherwise indicated, to any component which performs the specified function of the
described component (e.g., a functional equivalent), even though not structurally
equivalent to the disclosed structure, which performs the function in the herein illustrated
exemplary aspects of the claimed subject matter. In this regard, it will also be recognized

that the innovation includes a system as well as a computer-readable medium having

16

WO 2014/028261 PCT/US2013/053678

computer-executable instructions for performing the acts and/or events of the various
methods of the claimed subject matter.

[00070] In addition, while a particular feature of the subject innovation may have been
disclosed with respect to only one of several implementations, such feature may be
combined with one or more other features of the other implementations as may be desired
and advantageous for any given or particular application. Furthermore, to the extent that
the terms "includes," and "including" and variants thereof are used in either the detailed
description or the claims, these terms are intended to be inclusive in a manner similar to

the term "comprising."

17

WO 2014/028261 PCT/US2013/053678

CLAIMS

1. A method for de-duplicating data in a file system, said file system
comprising one or more files, each said file comprising a set of data and said set of
data capable of being shared by two or more users, the steps of said method
comprising:

receiving a file to be stored within a file system;

checking whether a set of data within said file has been previously
stored in said file system;

if said set of data has been stored in said file system, checking the
state of the stored sct of data; and

if said state of stored set of data is appropriate for sharing copies of
said file, then providing a reference to said file upon a command to share
said set of data.

2. The method of Claim 1 wherein said file system is an email system, said
files comprise emails and said set of data comprises attachments to said emails and
further wherein said step of receiving a file to be stored within a file system further
comprises:

receiving an email, said email further comprising an attachment.
3. The method of Claim 2 wherein said step of receiving a file to be stored
within a file system further comprises:
storing metadata about said email, said metadata comprising one of
a group, said group comprising: metadata regarding the email, metadata
regarding an attachment to the email, state metadata regarding the email,
state metadata regarding the attachment, metadata regarding how to share
the attachment and metadata regarding duplication of said attachment.

4. The method of Claim 1 wherein said step of checking the state of the stored

set of data further comprises:
assigning a state associated with said attachment.

5. The method of Claim 4 wherein said states associated with said attachment

comprise one of a group, said group comprising: Good, SomeCorrupt, AllCorrupt,

Tentative, Deleting, Orphan and Recovered.

18

WO 2014/028261 PCT/US2013/053678

6. The method of Claim 1 wherein said step of: if said state of stored set of
data is appropriate for sharing copies of said file, then providing a reference to said file
upon a command to share said set of data further comprises:

incrementing a reference count for said stored set of data; and

sending to the target entity a pointer reference to said stored set of
data.

7. The method of Claim 1 wherein said method further comprises the step of:

detecting if a set of data is corrupted; and

if corrupted, transitioning the state associated with said set of data
from good to corrupt.

repairing said corrupt set of data; and

transitioning the state associated with said set of data from corrupt
to good.

8. A system for de-duplicating data in an email system, said email system
comprising:

an email server, said email server in communication with a set of
email clients;

a database for storing emails and associated attachments; said
database storing at least one of group, said group comprising: the email
message, associated attachments, metadata regarding the email message
and metadata regarding said associated attachments;

a module for managing the sharing of attachments between said set
of email clients; and

further wherein said module of managing the sharing of attachments
between said set of email clients is capable of detecting the state of an
attachment and sharing a reference pointer to said attachment depending
upon the state of said attachment.

9. The system of Claim 8 wherein said module for managing the sharing of
attachments further comprises a module for detecting whether an attachment is
corrupt.

10. The system of Claim 9 wherein said module for managing the sharing of

attachments further comprises a module for maintaining the state of an attachment.

19

WO 2014/028261 PCT/US2013/053678

102a 102c

104
100
108
110

e L ___
| |
I 112 :
|

] Metadata |
| |
| |
' 114 '
| Redundant I
: Metadata :
| |
I 116 |
| K_ :
|

| |
[Email message body and '
| |
| attachment I
| 118b |
| [‘ 118a f‘ :
|

I Copy 1 Copyn I
I P I
| |
| |
| |
| |
| |
| |
e e e e o o o o o —— —— — — — — — — — — —— — — —— .

WO 2014/028261 PCT/US2013/053678

2/3

'/ 200

No progress in X days
202 CreateBlob 204 206
/a y l la
Refcount CommitHBM with missing__|
goesto 0 source blob in MoveUser
AllCorrupt Tentative —» Deleting
Recovery . | % z
Completed % ® o
&5 32
S wea B oo
202 5%
553 ® %
cox® gb
S a9 o 3
53
ey g2
CreateBlob o® oo %)
208 e " Z 8 ¢
= Ja Y I)
5 & ~210 §
[%2] o o “n
n Y a
st 3 “h
'S o 3 c
8 e Recovered 2 Orphan =
s 2 :]
[Q.
e < o
= e o)
3 o
3 o 7
g i
o €
£ 3
CommitHBM O
212 v 214 £ 216
o
e | TBI_blob row
SomeCorrupt Corruption Good
l— prion |
Discovered

-———————Fixed by TurboFSSJ

FIG. 2

WO 2014/028261

/ 302

Parse Message

On Error

3/3

300

In a “Good”
State

f 304 q

PCT/US2013/053678

/ 306

Create each blob

*

State Requires
“Write”?

L

Write blob
persistently

Done with
Blobs

308
v [

CommitHBM

/ 310

————————»

Write “compact”

message

/312

L

Write “full” message

FIG.3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/053678

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

paragraph [0001]
paragraph [0015]

figures

[AU]) 4 February 2010 (2010-02-04)

paragraph [0020] - paragraph [0050]

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2610/332401 Al (PRAHLAD ANAND [IN] ET 1-10
AL) 30 December 2010 (2010-12-30)
paragraphs [0145] - [0150]
paragraph [0166]
paragraphs [0188] - [0192]
paragraphs [0329] - [0330]
figures 1, 2, 4, 5, 22
paragraph [0345]
paragraph [0366]
X US 2010/031086 Al (LEPPARD ANDREW CHARLES 1-10

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 November 2013

Date of mailing of the international search report

06/12/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Emander, Kristina

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/053678
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2008/000532 Al (IBM [US]; HEIMES FRANK 1-10

[DE]) 3 January 2008 (2008-01-03)
page 3, lines 3-25

page 7, line 25 - page 11, line 12
figures 1, 2

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/053678
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010332401 Al 30-12-2010 AU 2010266433 Al 19-01-2012
CA 2765624 Al 06-01-2011
EP 2449477 A2 09-05-2012
US 2010332401 Al 30-12-2010
US 2010332454 Al 30-12-2010
US 2010332456 Al 30-12-2010
US 2010332479 Al 30-12-2010
US 2010332818 Al 30-12-2010
US 2010333116 Al 30-12-2010
US 2013024424 Al 24-01-2013
US 2013238572 Al 12-09-2013
WO 2011002777 A2 06-01-2011

US 2010031086 Al 04-02-2010 EP 2307953 A2 13-04-2011
US 2010031086 Al 04-02-2010
WO 2010014360 A2 04-02-2010

WO 2008000532 Al 03-01-2008 AT 438247 T 15-08-2009
CN 101411144 A 15-04-2009
EP 2039089 Al 25-03-2009
US 2009282086 Al 12-11-2009
WO 2008000532 Al 03-01-2008

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report
	Page 27 - wo-search-report

