
USOO9063948B2

(12) United States Patent (10) Patent No.: US 9,063,948 B2
Schneider (45) Date of Patent: Jun. 23, 2015

(54) VERSIONING FILE SYSTEM (56) References Cited

(75) Inventor: James Paul Schneider, Raleigh, NC U.S. PATENT DOCUMENTS
US
(US) 5,761,677 A * 6/1998 Senator et al. 1.1

7,650,341 B1* 1/2010 Oratovsky et al. 707,999.01
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 7,870,356 B1* 1/2011 Veeraswamy et al. T11 162

8,117,160 B1* 2/2012 Tang et al. TO7/639
(*) Notice: Subject to any disclaimer, the term of this 8,285,758 B1 * 10/2012 E. et al. 707/822

patent is extended or adjusted under 35 2001/00 13040 A1* 8, 2001 Baumeister et al. 707/2O1
U.S.C. 154(b) by 609 days. 2002/0078244 A1* 6/2002 Howard TO9,248

* cited by examiner (21) Appl. No.: 12/324,766

(22) Filed: Nov. 26, 2008 Primary Examiner — Tarek Chbouki
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(65) Prior Publication Data
57 ABSTRACT

US 2010/O131477 A1 May 27, 2010 (57)
An apparatus and a method for versioning a file of a file

(51) Int. Cl. system is described. A versioning module stores multiple
G06F 7/30 (2006.01) versions of the file. The file is opened for write access. The
G06F 15/16 (2006.01) versioning module identifies an file mapping structure of a

(52) U.S. Cl. block associated with the file, copies the content of the file
CPC G06F 17/302.3 (2013.01); G06F 17/30067 mapping structure of the file to a new file mapping structure of

(2013.01) the file, and allocates a new block to the file as represented by
(58) Field of Classification Search the file mapping structure.

CPC G06F 17/3023; G06F 17/30067
See application file for complete search history. 14 Claims, 5 Drawing Sheets

IDENTIFY BEOCKS ALLOCATED ONLY TO A PRIOR
VERSION INODE

302

BUILDING A PREVIOUS WERSON OF A FIE
USING THE DENTIFIED BLOCKS

33

ELOCKS OF PROR
'^ WERSION NREGREES.p2

3Q8

YES

DELETE PRIOR VERSION NODE
3C

UPDATE POINTERS TO PRIOR weRSIONS INODE |

U.S. Patent Jun. 23, 2015 Sheet 1 of 5 US 9,063,948 B2

104.

BCCK |
f

NODE W1 DAA W1 k
106 i 108

COPY

| 110 NODE V2 DATAW2

E\ 112 114
--- l PONTER

v2 NODE W1 DATAW1
106 103

COPY

NODE W3 OAA W3
• 118 120

\ y PONTER
TINODE v2 DATAW2

W3 112 114

POINTER

NODE W1 DATAW1
106 108

F.G. 1

U.S. Patent Jun. 23, 2015 Sheet 2 of 5 US 9,063,948 B2

BEGEN

OPEN INODE FOR WRTEACCESS
| 202

—l---m-ul-...---
IDENTIFY NODE OF THE FILE

204

-- -- --

COPY CONTENT OF NODE INTO A NEW
NODE
206

ALOCATE NEW BOCKS TO THE FLEAS
REPRESENTED BY THE ORiGNAL INODE

203

FIG. 2

U.S. Patent Jun. 23, 2015 Sheet 3 of 5

IDENTIFY BOCKSALLOCATED ONLY TO A PROR
VERSION INODE

302

BUILDING A PREVIOUS WERSON OF A FILE
USING THE DENTIFIED BLOCKS

36

1BLOCKS OF PRIOR NO
n WERSION

NREFORES p? 303

YES

DELETE PRIOR version INODE
3C

JPDATE POINTERS TO PRORWERSONS INODE

-- - --------

ENO

FIG. 3

US 9,063,948 B2

U.S. Patent Jun. 23, 2015 Sheet 4 of 5 US 9,063,948 B2

OPERATING SYSTEM KERNEL :

O2 04

VERSIONING PROCESSING
MOE) ULE i MODULE

406 408

F.G. 4

U.S. Patent Jun. 23, 2015 Sheet 5 of 5 US 9,063,948 B2

- 500
510

PROCESSING
DEVICE

502

WDEO DISPLAY PROCESSING
LOGC

O 504 N-153 512

MAN MEMORY
APHA-NUMERC

INSTRUCTions INPUT DEVICE

- 514

tee CURSOR CONTROL
VENG DEVICE

516

NETWORK SIGNAL
INTERFACE GENERATION
DEVICE DEVICE

-
518

W a
1. DATA STORAGE DEVICE

\ MACHINEACCESSBE 530
520 STORAGEMEDIUM

INSTRUCTIONS 522
NETWORK

WERSONNG iODUE

FIG. 5

US 9,063,948 B2
1.

VERSIONING FILE SYSTEM

TECHNICAL FIELD

Embodiments of the present invention relate to computing
systems, and more particularly, to storing multiple versions of
a file.

BACKGROUND

An inode, in a UNIX-based filesystem, is a data structure
used to store information, such as metadata, about a file,
whereas data blocks are structures used to store the actual data
for the file. The information contained in an inode may
include ownership of the file, access permission for the file,
size of the file, file type and references to locations on disk of
the data blocks for the file. The references to the locations of
the file data are provided by pointers in the inode, which may
further reference indirect blocks that, in turn, reference data
blocks, depending on the quantity of data in the file. Changes
to the inodes and data blocks are made “in-place' in accor
dance with the write in-place file system. If an update to a file
extends the quantity of data for the file, an additional data
block is allocated and the appropriate inode is updated to
reference that data block.
The storage of multiple versions of a file can take up a lot

of precious storage space. Conventionally, each versions of
the file is stored separately.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which:

FIG. 1 is a block diagram illustrating one embodiment of a
method for versioning a file in a file system.

FIG. 2 is a flow diagram illustrating one embodiment of a
method for versioning a file in a file system.

FIG. 3 is a flow diagram illustrating one embodiment of a
method for retrieving a previous version of a file in a file
system.

FIG. 4 is a block diagram illustrating one embodiment of
logical components of a computer system.

FIG. 5 is a block diagram illustrating an example of a
computer system.

DETAILED DESCRIPTION

Described herein is an apparatus and a method for version
ing a file of a file system. A versioning module stores multiple
versions of the file. The file is opened for write access. The
versioning module identifies an inode of a block associated
with the file, copies the content of the inode of the file to a new
inode, and allocates a new block to the file as represented by
the inode.

Those of ordinary skills in the art will recognize that the
concept presented in this application is not solely limited to
UNIX-based operating system but may also be applicable to
other operating file systems.

UNIX-type file systems manage files using a structure
called an inode, which contains almost all of the important
information about a file (the only thing not stored in the inode
is the file’s name). To accomplish versioning, the contents of
this inode are copied into a new inode whenever a file is open
for write access. An inode is allocated to the file and blocks
are allocated to the file in separate operations. As blocks are
written, instead of overwriting what is in the existing blocks,

5

10

15

25

30

35

40

45

50

55

60

65

2
new blocks get allocated to the file, as represented by the
original inode. FIG. 1 is a block diagram illustrating one
embodiment of the process of versioning a file in a file system.
A first version 102 of a file is stored in a block 104 including
an inode 106 and a first version of data block 108. When the
file is open for write access, a second version 110 of the file is
created. The content of inode v1 106 is copied into a new
inode V2 112. A new data block 114 is allocated to the file.
Inode V2 112 points to a prior version of the inode: inode V1
106.
The new and old version of the inode are to be associated in

both directions. If this is being implemented as a modification
of an existing file system, either two fields in the existing
inode structure can be repurposed to Support this, or they can
be maintained in a separate mapping structure as described
further below.
When the file is open for write access, another version 116

of the file is created. The content of inode V2 112 is copied
into a new inode V3 118. A new data block 120 is allocated to
the file. Inode V3 118 points to a prior version of the inode:
inode V2 112 which in turn points to inode v1 106.

In the prior art, a pre-existing file is opened by following
these steps:

1) The filesystem driver reads directories until it finds the
file being referenced (for example, opening/varilog/messages
would require that the filesystem find the “var” entry in the “7”
directory, the “log entry in the “/var directory, and, finally,
the “messages' entry in the “/var/log directory).

2) The filesystem driver reads the directory entry and
extracts the inode number (this is typically stored as 32bit or
64 bit unsigned integer in the directory entry).

3) The filesystem driver reads the inode, based on the inode
number found in step #2.

4) The filesystem driver uses the read-in inode information
to create a kernel file structure, and passes an opaque refer
ence to this structure back to the process requesting the file
open operation.

This is the same for both reading and writing the only
difference being how the kernel file structure is set up. For the
versioning filesystem, starting after step 3 (assuming a write
operation), the steps are:

4) The filesystem driver allocates a new, unallocated inode,
and copies the contents of the inode read in step 3 to the new
inode, updating the “previous inode' pointer of the inode
from step 3 to this new inode, and the new inode's “more
recent pointer to the inode from step 3.

5) If the inode from step 3 originally had a previous inode,
that previous inode is read into memory, it’s “more recent
pointer is updated to point to the inode allocated in step 4, and
the inode read in this step is written back to secondary store
(eg, the disk).

6) The filesystem driver uses the read-in inode information
from step 3 to create a kernel file structure, passing an opaque
reference to the requesting process.

FIG. 2 is a flow diagram illustrating one embodiment of a
method for versioning a file in a file system. At 202, the
filesystem driver allocates a new, unallocated inode, and cop
ies the contents of the inode read in step 3 to the new inode,
updating the “previous inode' pointer of the inode from step
3 to this new inode, and the new inode's “more recent pointer
to the inode from step 3. At 204, if the inode from step 3
originally had a previous inode, that previous inode is read
into memory, it’s “amore recent pointer is updated to point to
the inode allocated in step 4, and the inode read in this step is
written back to secondary store (eg. the disk). At 206, the

US 9,063,948 B2
3

filesystem driver uses the read-in inode information from step
3 to create a kernel file structure, passing an opaque reference
to the requesting process.

In another embodiment, a field in the inode is updated to
link the new inode to a previous inode version. Each block is
associated with a corresponding bitmap, with a set bit from
the bitmap indicating that the block belongs only to a prior
version inode.

In another embodiment, a list of pointers to a correspond
ing prior version inode is maintained and ordered by access
time.
When a block belonging to a prior version inode is repur

posed, the prior version inode is deleted. The list of pointers
is updated in response to the deletion of the prior version
inode.

In another embodiment, an open operation on a specific
version of a file is received. The specific version of the file is
tracked using the list of pointers. A version history informa
tion of the file is also provided. Prior versions blocks are
deleted in response to a number of free blocks in the file
system being less than a predetermined threshold.

FIG. 3 is a flow diagram illustrating one embodiment of a
method for retrieving a previous version of a file in a file
system. To Support being able to reuse blocks belonging to
backups, in the event that the filesystem fills up, blocks that
are allocated only to a prior version inode need to be tracked.
One way to do it would be to use a bitmap, with each block
corresponding to a single bit, with a set bit indicating that the
block belongs only to a prior version inode. In concert with
this, pointers to the prior version inodes should be kept in a
list, ordered by access time. If the filesystem needs to find a
block to allocate, it can walkthrough the list of prior version
inodes from least recently to most recently accessed, check
ing the blocks belonging to it against the bitmap

At 302, blocks allocated only to a prior version inode are
identified. At 304, a previous version of a file is built using the
identified blocks.

At 306, a determination is made as to whether blocks
belonging to a prior version inode are repurposed. If they are,
the inode itself is deleted at 310 and its parent is updated to
point to its own prior version inode (if any), which is in turn
updated to point to the parent at 312.

In another embodiment, the filesystem driver can be
extended to allow a specific version of a file to be specified
when an open operation is attempted, and to provide version
history information. This can be extended to any file change
(the inode is always backed up before it is changed), but for
heavily accessed files, this may result in a truly huge number
of inode backups (the time of last access is one of the fields in
a typical inode, and it tracks the last time a file was closed,
whether it was opened for reading or writing).

The freeing of prior version owned blocks probably needs
to be done in a critical section, or perhaps the filesystem could
be locked to a single cpu, in SMP environments. Also, har
vesting blocks from old prior versions can be done by a
daemon process whenever the number of free blocks gets
below a predetermined threshhold.

FIG. 4 is a block diagram illustrating one embodiment of
logical components of a computer system. A UNIX based
operating system 402 includes a file system having Software
for controlling the transfer of data. A kernel module 404
communicates with the OS 402 to maintain various system
services such as memory management, timer, synchroniza
tion, and task creation. A versioning module 406 and a pro
cessing module 408 interact with the kernel module 404 to
carry out block versioning and processing operations as pre
viously described. Versioning module 406 and processing

10

15

25

30

35

40

45

50

55

60

65

4
module 408 may either be integral to OS 402 or operate as
independent modules and may be implemented in hardware
and/or software.

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a client
machine in client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, Switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine' shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.
The exemplary computer system 500 includes a processing

device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM), a static
memory 506 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage device 518, which
communicate with each other via a bus 530.

Processing device 502 represents one or more general
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computing (RISC)
microprocessor, very long instruction word (VLIW) micro
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 502 may also be one or more special
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. The processing device 502 is configured to execute
modules 526 (previously described with respect to FIG. 1) for
performing the operations and steps discussed herein with. In
one embodiment, the modules may be include hardware or
software or a combination of both.
The computer system 500 may further include a network

interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).
The data storage device 518 may include a computer-ac

cessible storage medium 530 on which is stored one or more
sets of instructions (e.g., Software 522) embodying any one or
more of the methodologies or functions described herein. The
software 522 may also reside, completely or at least partially,
within the main memory 504 and/or within the processing
device 502 during execution thereof by the computer system
500, the main memory 504 and the processing device 502 also
constituting computer-accessible storage media. The Soft
ware 522 may further be transmitted or received over a net
work 520 via the network interface device 508.

US 9,063,948 B2
5

The computer-accessible storage medium 530 may also be
used to store the versioning module 524 as presently
described. The versioning module 524 may also be stored in
othersections of computer system 500, such as static memory
SO6.

While the computer-accessible storage medium 530 is
shown in an exemplary embodiment to be a single medium,
the term “computer-accessible storage medium’ should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “computer-accessible storage medium’ shall also
be taken to include any medium that is capable of storing,
encoding or carrying a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present invention. The term
“computer-accessible storage medium’ shall accordingly be
taken to include, but not be limited to, Solid-state memories,
optical and magnetic media.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.
Some portions of the detailed descriptions above are pre

sented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing or “computing or “calculating or “deter
mining or “displaying or the like, refer to the action and
processes of a computer system, or similar electronic com
puting device, that manipulates and transforms data repre
sented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly
represented as physical quantities within the computer sys
tem memories or registers or other Such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or it may comprise a
general purpose computer selectively activated or reconfig
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, Such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic

10

15

25

30

35

40

45

50

55

60

65

6
or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer sys
tem bus.
The algorithms and displays presented hereinare not inher

ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi
ments will be apparent to those of skill in the art upon reading
and understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

What is claimed is:
1. A method comprising:
associating a first version of a file with a first file mapping

structure and a first data block;
creating a second version of the file in response to a first

opening, by a processing device, of the file for write
acceSS,

allocating, by the processing device, a second file mapping
structure and a second data block to the second version
of the file and copying content of the first file mapping
structure to the second file mapping structure;

updating a pointer of the second file mapping structure to
point to the first file mapping structure;

updatingapointer of the first file mapping structure to point
directly to the second file mapping structure, wherein the
first file mapping structure and the second file mapping
structure are associated to each other in two directions
and create two versions of the file;

associating, by the processing device, each of the first data
block and the second data block to a corresponding
bitmap, with a set bit in the corresponding bitmap indi
cating whether the corresponding data block belongs
only to a prior version file mapping structure;

maintaining a list of the pointers ordered by a respective
access time; and

reviewing the list in an order of least recently accessed to
most recently accessed and the bitmap to identify a data
block to repurpose.

2. The method of claim 1 further comprising:
updating a field in the second file mapping structure to link

the second file mapping structure to the first file mapping
Structure.

3. The method of claim 1 further comprising:
repurposing a data block belonging to a prior version file

mapping structure;
deleting the prior version file mapping structure; and
updating the list of pointers in response to the deletion of

the prior version file mapping structure.
4. The method of claim 1, further comprising:
receiving an open operation on a specific version of the file;
tracking the specific version of the file using the list of

pointers; and
providing a version history information of the file.

US 9,063,948 B2
7

5. The method of claim 1, further comprising:
deleting prior version data blocks in response to a number

of free data blocks in the file system being less than a
predetermined threshold, wherein the prior version data
blocks correspond to at least one of the first data block or
the second data block.

6. A non-transitory computer-readable storage medium,
having instructions stored therein, which when executed,
cause a processing device to:

associate a first version of a file with a first file mapping
structure and a first data block;

create a second version of the file in response to a first
opening, by the processing device, of the file for write
acceSS,

allocate, by the processing device, a second file mapping
structure and a second data block to the second version
of the file and copying content of the first file mapping
structure to the second file mapping structure;

update a pointer of the second file mapping structure to
point to the first file mapping structure;

update a pointer of the first file mapping structure to point
directly to the second file mapping structure, wherein the
first file mapping structure and the second file mapping
structure are associated to each other in two directions
and create two versions of the file;

associate, by the processing device, each of the first data
block and the second data block to a corresponding
bitmap, with a set bit in the corresponding bitmap indi
cating whether the corresponding data block belongs to
a prior version file mapping structure;

maintain a list of the pointers ordered by a respective
access time; and

review the list in an order of least recently accessed to most
recently accessed and the bitmap to identify a data block
to repurpose.

7. The non-transitory computer-readable storage medium
of claim 6, the processing device to:

update a field in the second file mapping structure to link
the second file mapping structure to the first file mapping
Structure.

8. The non-transitory computer-readable storage medium
of claim 6, the processing device to:

repurpose a data block belonging to a prior version file
mapping structure;

delete the prior version file mapping structure; and
update the list of pointers in response to the deletion of the

prior version file mapping structure.
9. The non-transitory computer-readable storage medium

of claim 6, the processing device to:
receive an open operation on a specific version of the file;
track the specific version of the file using the list of point

ers; and
provide a version history information of the file.
10. The non-transitory computer-readable storage medium

of claim 6, the processing device to:

5

10

15

25

30

35

40

45

50

8
delete prior version data blocks in response to a number of

free data blocks in the file system being less than a
predetermined threshold, wherein the prior version data
blocks correspond to at least one of the first data block or
the second data block.

11. A computer system comprising:
a memory to store a first file mapping structure and a

second file mapping structure;
a processing device operatively coupled to the memory to:

associate a first version of a file with the first file map
ping structure and a first data block,

create a second version of the file in response to a first
opening of the file for write access,

allocate the second file mapping structure and a second
data block to the second version of the file, copy
content of the first file mapping structure to the second
file mapping structure,

update a pointer of the second file mapping structure to
point directly to the first file mapping structure,

create a third version of the file in response to a second
opening the file for write access update a pointer of the
first file mapping structure to point to the second file
mapping structure, wherein the first file mapping
structure and the second file mapping structure are
associated to each other in two directions and create
two versions of the file,

associate each of the first data block and the second data
block to a corresponding bitmap, with a set bit in the
corresponding bitmap indicating whether the corre
sponding data block belongs to a prior version file
mapping structure;

maintain a list of the pointers ordered by a respective
access time; and

review the list in an order of least recently accessed to
most recently accessed and the bitmap to identify a
data block to repurpose.

12. The computer system of claim 11, the processing
device to update a field in the second file mapping structure to
link the second file mapping structure to the first file mapping
Structure.

13. The computer system of claim 11, the processing
device to repurpose a data block belonging to a prior version
file mapping structure, delete the prior version file mapping
structure, and update the list of pointers in response to the
deletion of the prior version file mapping structure.

14. The computer system of claim 11, the processing
device to receive an open operation on a specific version of
the file, track the specific version of the file using the list of
pointers, provide a version history information of the file, and
delete prior version data blocks in response to a number of
free data blocks in the file system being less than a predeter
mined threshold.

