

MINISTERO DELLO SVILUPPO ECONOMICO
DIREZIONE GENERALE PER LA TUTELA DELLA PROPRIETA INDUSTRIALE
UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	101994900404177	
Data Deposito	22/11/1994	
Data Pubblicazione	22/05/1996	

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	62	D		

Titolo

IMPIANTO PER LA DISTRIBUZIONE DI ENERGIA ELETTRICA A BORDO DI AUTOVEICOLI, PARTICOLARMENTE AUTOVETTURE. DESCRIZIONE dell'invenzione industriale dal titolo:
"Impianto per la distribuzione di energia elettrica
a bordo di autoveicoli, particolarmente autovetture"
Di: FIAT AUTO S.p.A., nazionalità italiana, Corso
Giovanni Agnelli, 200, 10135 Torino

Inventore designato: Ettore PANIZZA

Depositata il: 22 Novembre 1994

TO 94A000930

La presente invenzione si riferisce ad un impianto per la distribuzione di energia elettrica a bordo di autoveicoli, particolarmente autovetture.

Nei moderni autoveicoli, particolarmente autovetture, l'impianto di distribuzione di energia elettrica destinata ai vari gruppi utilizzatori presenti dell'autoveicolo risulta sempre più complesso ed ingombrante, in quanto aumenta sempre di più il numero degli utilizzatori (carichi) che possono essere azionati da parte degli occupanti l'autoveicolo e quindi il numero di fili elettrici necessari. Inoltre, vengono sempre più utilizzati carichi che assorbono potenze elevate, si pensi ad esempio al gruppo riscaldatore, al tergilunotto, al tetto apribile elettricamente, ecc., che richiedono cavi con sezioni sempre maggiori e conseguenti guaine isolanti di maggiore spessore.

Tutto quanto sopra si traduce in cablaggi ingombranti e complicati che, particolarmente nella
zona della plancia, creano problemi non indifferenti
di collocazione fisica, vale a dire che occorre reperire lo spazio necessario al cablaggio in una zona, quella della plancia, già di per sé molto affollata di comandi e funzioni.

Sono già stati proposti sistemi di distribuzione di energia elettrica a bordo di autovetture in cui viene utilizzato un solo cavo di potenza ed un unico cavo di comando, sul quale vengono inviati segnali codificati e multiplexati. Ad ogni carico o gruppo di carichi viene associata un'unità in grado di riconoscere il segnale codificato inviato da un'unità centrale ed abilitare quindi i carichi alla loro funzione.

Sistemi del tipo sopra specificato, benché funzionalmente efficaci, sono relativamente complessi, costosi e di difficile realizzazione.

La presente invenzione si propone di realizzare un sistema per la distribuzione di energia elettrica a bordo di autoveicoli, particolarmente autovetture, che ovvi ai suddetti inconvenienti, che sia di facile costruzione e di basso costo.

La presente invenzione raggiunge gli scopi sud-

detti ed altri scopi grazie ad un impianto per la distribuzione di energia elettrica a bordo di autoveicoli, particolarmente autovetture, avente le caratteristiche richiamate in modo specifico nelle rivendicazioni che seguono.

Ulteriori caratteristiche e vantaggi della presente invenzione risulteranno evidenti nel corso della descrizione dettagliata che segue, fornita a puro titolo di esempio non limitativo, con riferimento ai disegni annessi, in cui:

- la fig.l è una vista schematica in pianta di un impianto secondo l'invenzione montato a bordo di un'autovettura.
- la fig.2 rappresenta un particolare completato
 ed ingrandito della fig.1,
- la fig.3 rappresenta, completato ed ingrandito,
 un dispositivo trasduttore elettro-ottico di fig.1,
- la fig.4 rappresenta, completato ed ingrandito,
 un dispositivo ricevitore ottico di fig.1, e
- la fig.5 rappresenta il dispositivo ricevitore ottico di fig.4 in una seconda forma di attuazione.

Facendo riferimento alla fig.1, con 2 è indicata un'autovettura in vista in pianta schematica, munita di un impianto di distribuzione di energia elettrica secondo l'invenzione. Tale impianto comprende una guida di luce 4 ad esempio un tubo in plastica con pareti interne riflettenti ed un cavo di potenza 6, comprendenti ognuno due tratti sostanzialmente longitudinali, rispettivamente 4' e 4"; 6' e 6".

I tratti longitudinali 4' e 4" della guida di luce 4 sono interconnessi da un tratto di guida di luce sostanzialmente trasversale 4"', mentre i tratti longitudinali 6' e 6" del cavo di potenza 6 sono collegati da un tratto di cavo di potenza 6"'.

I tratti trasversali 4"' e 6"' sono disposti nella zona della plancia porta-strumenti (non illustrata) e vengono alloggiati preferibilmente in canalizzazioni ricavate nella plancia porta-strumenti stessa.

In prossimità di parti mobili, quali ad esempio le portiere P ed il volante V, dai tratti longitudinali 4' e 4" della guida luce 4 si diramano porzioni di guida luce 8 che si affacciano alle parti mobili, senza penetrare in esse, mentre dai tratti longitudinali 6' e 6" del cavo di potenza 6 si dipartono porzioni 9 che penetrano le suddette parti mobili per i motivi che verranno chiariti nel seguito.

I tratti longitudinali 4' e 4" della guida di luce 4 terminano, nella fig.l, sostanzialmente in

corrispondenza dei gruppi ottici anteriori, rispettivamente 10 e 12 e posteriori, rispettivamente 14 e 16.

Altri tratti di guida di luce 18, 20, 22 giungono in prossimità rispettivamente del motore E, del gruppo riscaldatore non illustrato per semplicità e della luce retronebbia R.

Ad ogni dispositivo (non illustrato per semplicità) per il comando elettrico degli attuatori (carichi) presenti sull'autovettura, quali ad esempio gli interruttori per l'accensione delle luci, per l'azionamento degli alzacristalli elettrici, gli interruttori associati al devioguida, all'avvisatore acustico, ecc. sono associati dispositivi trasduttori elettrico-ottici, affacciati alla guida luce 4 e collegati con il cavo di potenza 6, dei quali (nella fig.l) sono solo illustrati per semplicità quelli indicati con 30, 32 e 34, dedicati rispettivamente all'accensione delle luci, all'accensione della luce retronebbia R ed all'avviamento del motore E.

Affacciati alla guida di luce 4 in prossimità degli attuatori (carichi) nella fig.l, cioè i gruppi ottici 10, 12, 14 e 16, il motore E, il gruppo riscaldatore e la luce retronebbia R sono disposti dispositivi ricevitori ottici (sensori) ad esempio fo-

todiodi, connessi al cavo di potenza 6, nella figura indicati rispettivamente come 40, 42, 44, 46, 48, 50 e 52. Altri dispositivi ricevitori ottici sono dispositi nelle portiere affacciate ai tratti 8 nella guida luce associati agli attuatori preposti agli alzacristalli elettrici.

I ricevitori ottici sono atti ad azionare, tramite stadi di potenza non illustrati per semplicità,
gli attuatori cui sono preposti (carichi).

Ogni dispositivo trasduttore associato al relativo dispositivo (interruttore) per il comando elettrico degli utilizzatori (carichi), comprende (fig.3) una unità emettitrice di luce 60, una unità ricevente (sensore) 62, atta a percepire la luce emessa dalle varie unità emettitrici di luce 60 ed un modulatore M specifico per ogni unità emettitrice di luce 60 cui è associato.

L'unità emettitrice di luce 60 comprende tipicamente un led e l'unità ricevente 62 comprende tipicamente un fotodiodo.

I dispositivi ricevitori ottici per il comando elettrico degli attuatori (carichi) comprendono un sensore 62', tipicamente un fotodiodo, ed un demodulatore D specifico per ogni sensore 62'.

Il cavo di potenza 6 è collegato alla batteria

B presente a bordo dell'autovettura.

L'unità emettitrice di luce di ogni trasduttore è atta ad emettere, un suo proprio impulso luminoso modulato, ad esempio in ampiezza, che è demodulato e riconosciuto solo dalla o dalle unità riceventi preposte all'azionamento degli utilizzatori (carichi) comandati da quel particolare trasduttore.

Nell'uso, quando viene azionato un dispositivo di comando elettrico di un carico presente a bordo dell'autovettura, ad esempio il comando per l'accensione delle luci, il led del trasduttore 30 ad esso associato emette un particolare segnale ottico modulato in ampiezza.

Tale segnale ottico percorre la guida di luce fino a pervenire ad una o più unità riceventi associate al/ai carico/carichi che deve/devono essere attivato/attivati, nel caso della fig.l, le unità riceventi 40, 42, 44 e 46.

Solo tali ricevitori ottici sono abilitati a riconoscere un particolare segnale ottico inviato ed una volta riconosciutolo, attivano gli associati carichi rispettivamente 10, 12, 14 e 16 tramite i già citati stadi di potenza (non illustrati).

Il fotodiodo appartenente al gruppo trasduttore abilita il led cui è interfacciato solo in assenza

di segnali luminosi nella guida di luce; in altri termini, solo l'assenza di luce ricevuta dal fotodiodo di un trasduttore abilita l'associato led ad emettere il suo treno di impulsi luminosi.

Nel caso si desideri disattivare un certo carico, tutto avviene come già descritto nel caso dell'attivazione: il led preposto a quel carico invia
il segnale luminoso modulato che indica la funzione
di spegnimento che raggiunge il ricevitore abilitato
a riconoscere il segnale, che disattiva quindi il/
gli stadi di potenza associato/associati al/ai carico/carichi da esso controllato/controllati spegnendo, o comunque disattivando, il carico o i carichi.

Qualora vengano azionati sostanzialmente contemporaneamente i comandi relativi a più carichi, i treni di impulsi luminosi modulati vengono inviati nella guida di luce 4 in sequenza, cominciando dal trasduttore associato al comando azionato temporalmente per primo, poi al trasduttore relativo al comando azionato per secondo e così via.

La segnalazione temporale del comando azionato per primo è fornita dal primo trasduttore, la cui parte fotosensibile segnala assenza di luce nella guida di luce.

Come si può notare dalla fig.l, la guida di lu-

ce 4 non penetra fisicamente nelle parti mobili (portiere, volante), in quanto il segnale ottico emesso dai vari trasduttori raggiunge comunque il ricevitore ottico cui è destinato, essendo sufficiente che questo risulti affacciato alla guida di luce 4.

Il ricevitore ottico deve evidentemente essere collegato al cavo di potenza per poter fornire la potenza necessaria agli stadi di potenza per l'azionamento degli attuatori (carichi) cui è preposto.

Facendo riferimento alla fig.2, con 50 viene indicato un fusibile generale inserito tra il polo di batteria B ed il cavo di potenza 6, mentre fusibili ripristinabili 52, 54 sono inseriti tra ogni utilizzatore ed il cavo di potenza 6: nel caso della fig.2 tra gli utilizzatori 10 e 16 ed il cavo di potenza 6. In questo modo, in caso di cortocircuito, viene momentaneamente escluso dal circuito elettrico solo l'utilizzatore in cortocircuito. Il fusibile si ripristina automaticamente una volta rimosse le cause della sovracorrente.

Naturalmente, fermo restando il principio dell'invenzione i particolari di realizzazione e le forme di attuazione potranno essere ampiamente variati rispetto a quanto descritto ed illustrato, senza per questo uscire dall'ambito della presente invenzione.

Ad esempio, i ricevitori ottici associati ai rispettivi attuatori potranno essere del tipo illustrato in fig.5 in cui oltre al sensore 62' ed allo specifico demodulatore D già illustrati in fig.4, è presente un gruppo formato da un emettitore di luce 60 e da uno specifico modulatore M', risultando in pratica trasduttori del tipo associato al comando degli utilizzatori.

Questa disposizione risulta particolarmente vantaggiosa, quando si desideri una funzione diagnostica degli utilizzatori.

Il cavo di potenza 6 può essere alloggiato all'interno del tubo di guida luce 4: in questo caso, un setto separatore isolante divide la parte di tubo destinata alla guida luce dalla parte contenente il cavo di potenza 6.

RIVENDICAZIONI

- 1. Impianto per la distribuzione di energia elettrica a bordo di autoveicoli, particolarmente autovetture, del tipo comprendente almeno un cavo di potenza (6) destinato alla trasmissione dell'energia elettrica necessaria all'alimentazione degli attuatori (10, 12, 14, 16, E, R) o carichi presenti a bordo dell'autovettura e mezzi (4) atti al trasferimento di segnali di comando codificati per il comando degli attuatori o carichi (10, 12, 14, 16, E, R), caratterizzato dal fatto che detti mezzi (4) atti al trasferimento dei segnali codificati comprendono una guida di luce (4', 4", 4"').
- 2. Impianto per la distribuzione di energia secondo la rivendicazione 1, caratterizzato dal fatto che detta guida di luce (4', 4", 4"') comprende almeno un tubo in materiale plastico, con pareti interne riflettenti.
- 3. Impianto per la distribuzione di energia secondo le rivendicazioni l o 2, caratterizzato dal fatto che detto almeno un tubo comprende una coppia (4', 4") di tubi sostanzialmente longitudinali uniti da un tubo (4"') sostanzialmente trasversale.
- 4. Impianto secondo le rivendicazioni l a 4, caratterizzato dal fatto che a detta guida di luce

(4', 4", 4"') è associata un pluralità di primi mezzi trasduttori (30, 32, 34) associati ognuno ad un relativo comando azionabile a bordo dell'autoveicolo per l'attivazione di un relativo attuatore (10, 12, 14, 16, E, R) ed atti a trasmettere entro detta guida di luce (4', 4", 4"') segnali luminosi codificati indicativi del fatto che è stato azionato il comando relativo per l'attivazione del/dei corrispondente/i attuatore/i (carico/carichi) (10, 12, 14, 16, E, R).

5. Impianto secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che a detta guida di luce (4', 4", 4"') in prossimità di detti attuatori (10, 12, 14, 16, E, R) (carichi) sono associati relativi secondi mezzi trasduttori (40.

6. Impianto secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che ognuno di detti primi mezzi trasduttori (30, 32, 34) comprende una sorgente luminosa (60) interfacciata con un rivelatore di luce (62) ed uno specifico modulatore (M).

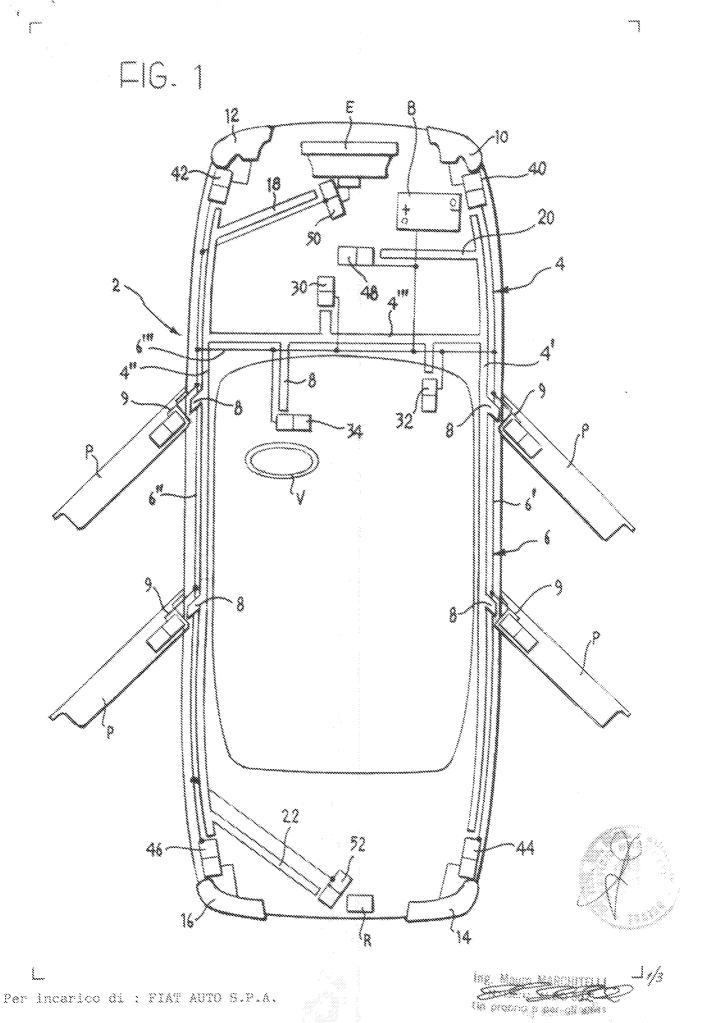
42, 44, 46, 50, 52) atti a riconoscere i segnali lu-

minosi codificati inviati da detti primi mezzi tra-

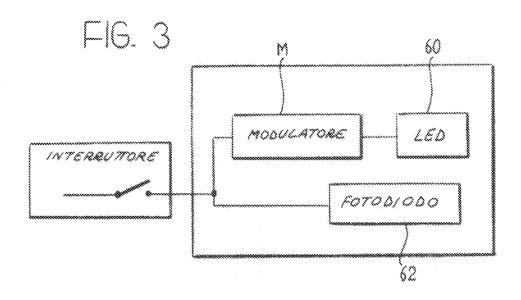
sduttori (30, 32, 34) ed atti ad attivare l'attuato-

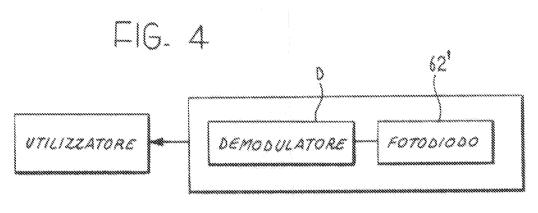
re o gli attuatori (carichi) cui sono collegati (10,

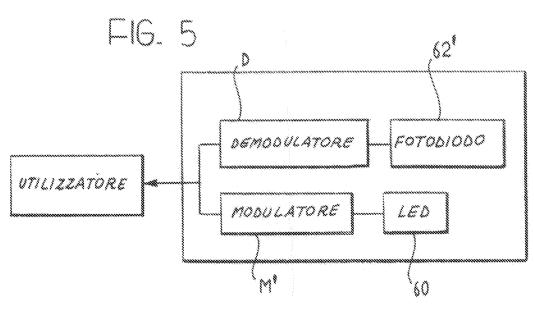
12, 14, 16, E, R).


- 7. Impianto secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che ognuno di detti secondi mezzi trasduttori (40, 42, 44, 46, 50, 52) comprende un rivelatore di luce (62') ed uno specifico demodulatore (D).
- 8. Impianto secondo le rivendicazioni 6 o 7, caratterizzato dal fatto che detto rivelatore di luce (62, 62') comprende un fotodiodo.
- 9. Impianto secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detti secondi mezzi trasduttori comprendono inoltre una sorgente luminosa (60) ed uno specifico modulatore (M').
- 10. Impianto secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detta sorgente luminosa (60) comprende un led.
- 11. Impianto secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto cavo di potenza (6) è contenuto all'interno di detti mezzi (4) atti al trasferimento di segnali luminosi.


Il tutto sostanzialmente come descritto ed illustrato e per gli scopi specificati.


Ing. Lucium BOSDITE
N. Iceriz. ALBO Seg
In preprio o er ell and


INCARIGO



Per incarico di : FIAT AUTO S.P.A.

- 13/s