

US009651559B2

(12) United States Patent Himmler et al.

(54) DISPLAY OF BINDING AGENTS

(71) Applicant: F-star Biotechnologische Forschungsund Entwicklungsges.m.b.H, Vienna

(AT)

(72) Inventors: Gottfried Himmler, Gross-Enzersdorf

(AT); Geert Mudde, Breitenfurt (AT); Gerda Redl, Gross-Enzersdorf (AT); Florian Ruker, Vienna (AT); Gordana Wozniak-Knopp, Vienna (AT)

(73) Assignee: F-star Biotechnologische

Forschungs— und

Entwicklungsges.m.b.H, Vienna (AT)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/556,662

(22) Filed: Dec. 1, 2014

(65) Prior Publication Data

US 2015/0153359 A1 Jun. 4, 2015

Related U.S. Application Data

(63) Continuation of application No. 12/666,618, filed as application No. PCT/AT2008/000232 on Jun. 26, 2008, now Pat. No. 8,921,279.

(Continued)

(51) Int. Cl. *C40B 30/04 G01N 33/68*

(2006.01) (2006.01)

(Continued)

(10) Patent No.: US 9,651,559 B2

(45) **Date of Patent:**

*May 16, 2017

(52) U.S. Cl.

CPC *G01N 33/6857* (2013.01); *C07K 16/005* (2013.01); *C07K 16/32* (2013.01);

(Continued)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

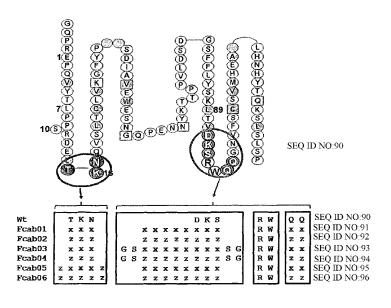
5,223,409 A	6/1993	Ladner et al.	435/69.7
5,395,750 A	3/1995	Dillon et al.	435/5
	(Con	tinued)	

FOREIGN PATENT DOCUMENTS

AU	2006/204459 B2		C07K 16/00
A U	2005/289685 A1	4/2006	A61K 47/48
	(Conti	nued)	

OTHER PUBLICATIONS

Braren et al. (Mar. 21, 2007) Biotechnol Appl Biochem vol. 47 pp. 205 to 214.*


(Continued)

Primary Examiner — Christian Boesen (74) Attorney, Agent, or Firm — Sunstein Kann Murphy & Timbers LLP

(57) ABSTRACT

The present application relates to a method of preparing a genetic package displaying oligomers of modular antibody domains binding to a target and to a scaffold ligand as well as to vectors and libraries of genetic packages produced thereby. The invention further relates to methods of selecting suitable linker sequences for use in such oligomer display.

9 Claims, 2 Drawing Sheets

US 9,651,559 B2

Page 2

	Rela	ted U.S. A	Application Data				1 530/387.3
(60)	26, 2007, provisional application No. 61/049,826,		2012	/0028839 A1 2/2012	Rüker et a		
	filed on Ma	y 2, 2008.				Woisetschl Himmler	lager 424/136.1 et al.
(51)	Int. Cl. <i>C07K 16/00</i>)	(2006.01)		FOREIGN PATE	NT DOCU	JMENTS
(50)	C07K 16/32		(2006.01)	CN	1606566 A	4/2005	C07K 5/08
(52)			/52 (2013.01); C07K 2317/569	EP EP	0 640 130 B1 1 752 471 A1	7/1993 2/2007	
			07K 2318/10 (2013.01); C40B ; G01N 2333/70535 (2013.01)	EP EP	1 772 465 A1 1 797 127 A2	4/2007 6/2007	
(56)	20/01		ices Cited	EP EP	2 028 193 A1 1 699 826 B1	2/2009 3/2009	
(56)	11.0		DOCUMENTS	EP	2 158 220 A1	3/2010	C07K 16/00
				EP EP	2 407 487 A1 2 451 838	1/2012 5/2012	C07K 16/32 C12N 15/09
	5,475,100 A 5,536,814 A		Hashino et al 536/23.53 Ruoslahti et al 530/329	JP JP	2002-58479 A 2003-518377	2/2002 6/2003	C12N 15/09
	5,723,323 A	3/1998	Kaurrman et al 435/172.3	JP	2003-518377 A	6/2003	C12N 15/09
	5,759,817 A 5,763,192 A		Barbas	WO WO	WO 90/07861 WO 92/09690	7/1990 6/1992	C12P 21/00
	5,814,476 A		Kauffman et al	WO	WO 93/08278	4/1993	C12N 15/10
	5,817,483 A 5,824,514 A		Kauffman et al 435/69.1 Kauffman et al 435/91.1	WO WO	WO 93/23537 WO 96/22377	11/1993 7/1996	C12N 15/12 C12N 15/62
	5,844,094 A		Hudson et al 530/387.3 Schlom et al 536/23.53	WO	WO 97/20858	6/1997	
	5,892,019 A 6,057,098 A		Buechler et al	WO	WO 97/34631	9/1997	A61K 39/395
	6,294,654 B1 6,352,842 B1		Bogen et al 530/387.3 Short et al 435/69.1	WO WO	WO 98/39482 WO 00/42561	9/1998 7/2000	C12Q 1/68
	6,358,709 B1	3/2002	Short et al 435/69.1	WO	WO 00/71694	11/2000	C12N 15/06
	6,361,974 B1 6,365,377 B1		Short et al	WO WO	WO 01/01748 WO 01/48145 A2	1/2001 7/2001	
	6,376,246 B1	4/2002	Crameri et al 435/440	WO	WO 01/55366 A1	8/2001	C12N 12/10
	6,562,617 B1 6,602,684 B1		Anderson et al	WO WO	WO 01/57211 A1 WO 01/62908 A2	8/2001 8/2001	
	7,442,778 B2	10/2008	Gegg et al 530/391.7	WO	WO 01/70947	9/2001	C12N 15/10
	7,632,497 B2 7,645,861 B2		Stavenhagen	WO WO	WO 01/83525 WO 01/88159	11/2001 11/2001	C07K 14/00 C12N 15/62
	7,655,764 B2		Gegg et al 530/391.7	WO	WO 02/06469	1/2002	C12N 15/10
	7,655,765 B2 7,662,931 B2		Gegg et al 530/391.7 Gegg et al 530/391.7	WO WO	WO 02/32925 WO 02/44215	4/2002 6/2002	C07K 16/00
	7,750,127 B2 7,750,128 B2		Gegg et al 530/391.7 Gegg et al 530/391.7	wo	WO 02/059263 A2	8/2002	
	7,858,090 B2	12/2010	Koide 424/145.1	WO WO	WO 02/060919 WO 02/066636 A2	8/2002 8/2002	C12N 15/10
	8,008,453 B2 8,580,927 B2	8/2011 11/2013	Gegg et al 530/391.7 Dimitrov 530/387.3	wo	WO 02/088171	11/2002	
	8,859,738 B2	10/2014	Himmler et al.	WO WO	WO 03/012100 WO 03/029456	2/2003 4/2003	C12N 15/10 C12N 15/00
	8,921,279 B2 9,045,528 B2		Himmler et al 506/9 Rüker et al.	WO	WO 03/029430 WO 03/075840	9/2003	
2002	2/0103345 A1		Zhu 530/388.15	WO	WO 2004/018674	3/2004	C12N 15/10
	2/0106370 A1 3/0027213 A1		Cardy et al 424/133.1 Zhu et al 435/7.1	WO WO	WO 2004/033685 A1 WO 2004/041862 A2	4/2004 5/2004	C12N 15/12
	3/0129188 A1 3/0148372 A1		Barbas et al	WO	WO 2004/044004	5/2004	C07K 14/705
	3/0157091 A1	8/2003	Hoogenboom 424/130.1	WO WO	WO 2004/044011 WO 2004/050705	5/2004 6/2004	C07K 14/705
	1/0018508 A1 1/0043424 A1		Friedman	WO	WO 2004/074322	9/2004	C07K 14/725
2004	1/0063924 A1	4/2004	Tang et al 536/23.5	WO WO	WO 2005/021595 WO 2005/113595 A2	3/2005 12/2005	
	1/0071690 A1 1/0082508 A1		Hudon et al	WO	WO 2005/114215	12/2005	G01N 33/68
2004	4/0097711 A1	5/2004	Yue et al 530/387.1	WO WO	WO 2005/116646 A1 WO 2006/033700	12/2005 3/2006	G01N 33/50
	1/0101905 A1 1/0132101 A1		Brekke et al	WO	WO 2006/036834	4/2006	C07K 19/00
2004	1/0146976 A1		Wittrup et al 435/69.1	WO WO	WO 2006/037960 A2 WO 2006/054096 A2	4/2006 5/2006	
	5/0009025 A1 5/0054832 A1		Jakobsen et al 435/6 Lazar et al 530/387.3	wo	WO 2006/056733 A1	6/2006	
	5/0069549 A1 5/0158829 A1		Herman	WO	WO 2006/072620	7/2006	C07K 16/00
2005	5/0244403 A1	11/2005	Lazar et al 424/130.1	WO WO	WO 2006/087637 WO 2008/003103	8/2006 1/2008	C07K 16/32
	5/0255548 A1 5/0266000 A1		Lipovsck et al 435/69.1 Bond et al 424/143.1	WO	WO 2008/003116	1/2008	C12N 15/09
2006	5/0140934 A1	6/2006	Gegg et al 424/133.1	WO WO	WO 2008/119096 WO 2009/000006	10/2008 12/2008	C07K 16/00 C07K 16/00
	8/0227958 A1 9/0298195 A1		Thompson et al 530/387.3 Rüker et al 436/501	wo	WO 2009/000000 WO 2009/099961	8/2009	
)/0048877 A1		Rüker et al 530/387.3	WO	WO 2009/132876 A1	11/2009	A61K 39/395

FOREIGN PATENT DOCUMENTS

WO	WO 2011/003811	1/2011	C07K 16/00
WO	WO 2012/007167	1/2012	C07K 16/32
WO	WO 2015/049537	4/2015	C12Q 1/68

OTHER PUBLICATIONS

Short et al. (Dec. 1, 1995) Journal of Biological Chemistry vol. 270 pp. 28541 to 28550.*

Bird, et al., "Single-Chain Antigen-Binding Proteins," Science, vol. 242, No. 4877, p. 423, Oct. 21, 1988.

Brawley, et al, "Complementarity-Determining Region 1 Sequence Requirements Drive Limited Va Usage in Response to Influenza Hemagglutinin in 307-319 Peptide¹," The Journal of Immunology, vol. 168, No. 8, pp. 3894-3901, Apr. 15, 2002.

Brekke, et al, "Therapeutic antibodies for human diseases at the dawn of the twenty-first century," nature Reviews Drug Discovery, vol. 2, No. 1, pp. 52-62, Jan. 2003.

Bunn, Jr., et al., "Expression of Her-2/ neu in Human Lung Cancer Cell Lines by Immunohistochemistry and Fluorescence in Situ Hybridization," Clinical Cancer Research, vol. 7, pp. 3239-3250, Oct. 2001.

Chlewicki, et al., "High-Affinity, Peptide-Specific T Cell Receptors Can be Generated by Mutations in CDR1, CDR2 or CDR3," Journal of Molecular Biology, vol. 346, No. 1, pp. 223-239, Feb. 11, 2005. DiGiusto, et 1., An Analysis of Sequence Variation in the β Chain Framework and Complementarity Determining Regions of an Allo-Reactive T Cell Receptor, Molecular Immunology, vol. 31, No. 9, pp. 693-699, Jan. 1994.

Dunn, et al, "Directed Evolution of Human T Cell Receptor CDR2 Residues by Phage Display Dramatically Enhances Affinity for Cognate Peptide-MHC Without Increasing Apparent Cross-Reactivity," Protein Science, vol. 15, pp. 710-721, Published by Cold Spring Harbor Laboratory Press, 2006.

Esteva, et al., "Molecular Predictors of Response to Trastuzumab and Lapatinib in Breast Cancer," Nature Reviews, Clinical Oncology, vol. 7, No. 2, Feb. 1, 2010, pp. 98-107.

Fountzilas, et al, "A randomized phase III study comparing three anthracycline-free taxane-based regimens, as first line chemotherapy, in metastatic breast cancer," Breast Cancer Research and Treatment, vol. 115, pp. 87-99, 2009.

Hoogenboom, H.R., "Selecting and screening recombinant antibody libraries," Nature in Biotechnology, vol. 23, No. 9, pp. 1105-1116,

Iyengar, et al., "A Pilot Study of Dose-Dense Paclitaxel With Trastuzumab and Lapatinib for Node-negative HER2-Overexpressed Breast Cancer," Clinical Breast Cancer, vol. 16, No. 2, pp. 87-94, Apr. 2016.

Krebber et al, "Selectively-infective Phage (SIP): A Mechanistic Dissection of a Novel in vivo Selection for Protein-ligand Interactions," Journal of Molecular Biology, vol. 268, No. 9, pp. 607-618, May 9, 1997.

Laugel, et al., "Design of Soluble Recombinant T Cell Receptors for Antigen Targeting and T Cell Inhibition," Theo Journal of Biological Chemistry, vol. 280, No. 3, pp. 1882-1892, Jan. 2005.

Leung, et al, "A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis," Molecular Therapy, vol. 23, No. 11, pp. 1722-1733, Nov. 2015.

Liang, et al, "Cross-species Vascular Endothelial Growth Factor (VEGF)-blocking Antibodies Completely Inhibit the Growth of Human Tumor Xenografts and Measure the Contribution of Stromal VEGF," The Journal of Biological Chemistry, vol. 28, No. 2, pp. 951-961, Jan. 13, 2006.

Molloy, et al, "Soluble T Cell Receptors: Novel Immunotherapies," Current Opinion in Pharmacology, vol. 5, Issue 4, pp. 438-443, Aug.

Nakauchi, et al., "Molecular cloning of Lyt-2, a Membrane Glycoprotein Marking a Subset of Mouse T Lymphocytes: Molecular Homology to its Human Counterpart, Leu-2/T8, and to Immunoglobulin Variable Regions," Proceeding of the National Academy of Science of the United States of America, vol. 82, No. 15, pp. 5126-5130, Aug. 1, 1985.

Philippidis, "Companion Diagnostics: 52 Pick-Up," Genetic Engineering & Biotechnology News, Insight & Intelligence,12 pages, May 13, 2013.

Richman, et al., "Development of a Novel Strategy for Engineering High-Affinity Proteins by Yeast Display," Protein Engineering, Design & Selection, vol. 19, No. 6, pp. 255-264, 2006.

Richman, et al., "Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain VαVβ fragments," Molecular Immunology, vol. 46, Issue 5, pp. 902-916, Feb. 2009 (Abstract).

Stagg, et al., "Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy," Proceedings of the National Academy of Sciences, USA, vol. 108, No. 17, pp. 7142-7147, Apr. 26, 2011.

Tolaney, et al., "Adjuvant Paclitaxel and Trastuzumab for Node-Negative, HER2-Positive Breast Cancer," The New England journal of Medicine, vol. 372, pp. 134-141, Jan. 8, 2015.

Traxlmayr et al., "Directed Evolution of Her2/neu-binding IgG1-Fc for Improved Stability and Resistance to Aggregation by Using Yeast Surface Display," Protein Engineering, Design & Selection, vol. 26, No. 4, pp. 255-265, 2013.

Willcox, et al., "Production of Soluble αβ T-cell Receptor Heterodimers Suitable for Biophysical Analysis of Ligand Binding", Protein Science, vol. 8, No. 11, pp. 2418-2423, Nov. 1999. Wülfing, et al., "Correctly Folded T-cell Receptor Fragments in the

Periplasm of Escherichia coli: Influence of Folding Catalysts," Journal of Molecular Biology, vol. 242, Issue 5, pp. 655-669, Oct.

International Searching Authority, Written Opinion of International Searching Authority, Application No. PCT/GB2014/052994, 6 pages, Jan. 9, 2015.

European Patent Office, International Search Report, Application No. PCT/GB2014/052994, 5 pages, Jan. 9, 2015.

European Patent Office, International Search Report and Written Opinion, Application No. PCT/EP2016/057800, 18 pages, Jun. 24, 2016.

The International Bureau of WIPO, Switzerland, Authorized Officer Athina Nickitas-Etienne, International Preliminary Report on Patentability with Written Opinion of the International Searching Authority, International Application PCT/GB2014/052994, 7 pages, Apr. 5, 2016.

U.S. Appl. No. 11/722,517, filed Jun. 21, 2007.

U.S. Appl. No. 12/307,582, filed Jan. 5, 2009.

U.S. Appl. No. 12/307,578, filed Jun. 26, 2007.

U.S. Appl. No. 12/307,569, filed Sep. 21, 2009.

U.S. Appl. No. 13/086,897, filed Apr. 14, 2011.

U.S. Appl. No. 13/149,871, filed May 31, 2011.

U.S. Appl. No. 13/151,207, filed Jun. 1, 2011.

U.S. Appl. No. 13/228,559, filed Sep. 9, 2011.

U.S. Appl. No. 13/377,817, filed Dec. 12, 2011.

U.S. Appl. No. 13/434,765, filed Mar. 29, 2012.

U.S. Appl. No. 13/482,926, filed May 29, 2012.

U.S. Appl. No. 14/470,425, filed Aug. 27, 2014. U.S. Appl. No. 14/559,662, filed Dec. 1, 2014.

U.S. Appl. No. 14/629,760, filed Feb. 24, 2015.

U.S. Appl. No. 14/853,919, filed Sep. 14, 2015.

U.S. Appl. No. 15/004,692, filed Jan. 22, 2016. U.S. Appl. No. 15/087,272, filed Mar. 31, 2016.

Adachi et al., Interaction Between the Antigen and Antibody Is Controlled by the Constant Domains: Normal Mode Dynamics of the HEL-Hyhel-10 Complex,, Protein Science, vol. 12, No. 10, pp.

2125-2131, Oct. 2003. Adib-Conquy et al., "Effect of Amino Acid Substitutions in the Heavy Chain CDR3 of an Autoantibody On Its Reactivity," Inter-

national Immunology, vol. 10, No. 3, pp. 341-346, Mar. 1998. Altschul et al., "Local Alignment Statistics," Methods in Enzymology vol. 266, pp. 460-480, 1996.

OTHER PUBLICATIONS

Amstutz et al., "In vitro Display Technologies: Novel Developments and Applications," Current Opinion Biotechnology, vol. 12, No. 4, pp. 400-405, Aug. 2001.

Asano et al., "Humanization of the Bispecific Epidermal Growth Factor Receptor×CD3 Diabody and Its Efficacy as a Potential Clinical Reagent," Clinical Cancer Research, vol. 12, No. 13, p. 4036-4042, Jul. 1, 2006.

Auf der Maur et al., "Antigen-Independent Selection of intracellular Stable Antibody Frameworks," Methods, vol. 34, No. 2, pp. 215-224. Oct. 2004.

Barbas III, et al., "Semisynthetic Combinatorial Antibody Libraries: A Chemical Solution to the Diversity Problem," Proceeding of the National Academy of Science. USA, vol. 89, No. 10, pp. 4457-4461, May 15, 1992.

Barclay, "Membrane Proteins With Immunoglobulin-Like Domains—A Master Superfamily of interaction Molecules," Seminars in Immunology, vol. 15, No. 4, pp. 215-223, Aug. 2003.

Batey et al., "Abstract B123: Preclinical Evaluation of FS102: A HER2-Specific Fcab With a Novel Mechanism of Action," Molecular Cancer Therapeutics, vol. 12, Supplement 11, B123, Nov. 2013. Batey et al., Poster: "Pre-Clinical Evaluation of FS102: A HER2 Specific Fcab With a Novel Mechanism of Action," AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, Boston, 1 page, Oct. 21, 2013.

Benhar et al., "Highly Efficient Selection of Phage Antibodies Mediated by Display of Antigen as Lpp-OmpA' Fusions on Live Bacteria," Journal of Molecular Biology, vol. 301, No. 4, pp. 893-904, Aug. 25, 2000.

Berntzen et al., "Prolonged and Increased Expression of Soluble Fc Receptors, IgG and a TCR-Ig Fusion Protein by Transiently Transfected Adherent 293E Cells," Journal Immunological Methods, vol. 298, No. 1-2, pp. 93-104, Mar. 2005.

Berntzen et al., "Characterization of an Fcγ/RI-Binding Peptide Selected by Phage Display," Protein Engineering, Design & Selection, vol. 19, No. 3, pp. 121-128, Jan. 19, 2006.

Berry et al., "Development of Functional Human Monoclonal Single-Chain Variable Fragment Antibody Against HIV-1 from Human Cervical B Cells." Hybrid. Hybridomaics, vol. 22, No. 2, pp. 97-108, Apr. 2003.

Binz et al., "High-Affinity Binders Selected From Designed Ankyrin Repeat Protein Libraries," Nature Biotechnology, vol. 22, No. 5, pp. 575-582, May 2004.

Binz et al., "Engineering Novel Binding Proteins From Nonimmunoglobulin Domains," Nature Biotechnology, vol. 23, pp. 1257-1268, Oct. 6, 2005.

Boder et al., "Yeast Surface Display for Screening Combinatorial Polypeptide Libraries," Nature Biotechnology, vol. 15, No. 6, pp. 553-557, Jun. 1997.

Boder et al., "Yeast Surface Display for Directed Evolution of Protein Expression, Affinity, and Stability," Methods in Enzymology, vol. 328, pp. 430-444, 2000.

Boder et al., "Directed Evolution of Antibody Fragments With Monovalent Femtomolar Antigen-Binding Affinity," Proceedings of the National Academy of Science; vol. 97, No. 20, pp. 10701-10705, Sep. 26, 2000.

Bork et al., "The Immunoglobulin Fold. Structural Classification, Sequence Patterns and Common Core", Journal of Molecular Biology, vol. 242, pp. 309-320, 1994.

Boulter et al., "Stable, Soluble, High-Affinity, Engineered T Cell Receptors: Novel Antibody-Like Proteins for Specific Targeting of Peptide Antigens," Clinical and Experimental Immunology, pp. 454-460, 2005.

Bowie et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions" Science, vol. 247, No. 4948, pp. 1306-1310, Mar. 16, 1990.

Burgess et al., "Possible Dissociation of the Heparin-binding and Mitogenic Activities of Heparin-binding (Acidic Fibroblast) Growth Factor-1 from Its Receptor-binding Activities by Site Directed Mutagenesis of a Single Lysine Residue," Journal of Cell Biology, vol. 111, pp. 2129-2138, Nov. 1990.

Cabilly et al., "Generation of Antibody Activity From Immunoglobulin Polypeptide Chains Produced in *Escherichia coli*," Proceedings of National Academy of Science USA, vol. 81, pp. 3273-3277, Jun. 1984.

Caldas et al., "Humanization of the Anti-CD18 Antibody 6.7: An Unexpected Effect of a Framework Residue in Binding to Antigen," Molecular Immunology, vol. 39, No. 15, pp. 941-952, May 2003. Carter, "Bispecific Human IgG by Design," Journal of Immunological Methods, vol. 248, pp. 7-15, 2001.

Carter et al., "High Level *Escherichia coli* Expression and Production of a Bivalent Humanized Antibody Fragment," Biotechnology , vol. 10, No. 2, pp. 163-167, Feb. 1992.

Chen et al., "Isolation of High-Affinity Ligand-Binding Proteins by Periplasmic Expression With Cytometric Screen (PECS)," Nature Biotechnology vol. 19, pp. 537-542, Jun. 2001.

Chien et al., "Significant Structural and Functional Change of an Antigen-Binding Site by a Distant Amino Acid Substitution: Proposal of a Structural Mechanism," Proceeding of the National Academy of Science USA, vol. 86, No. 14, pp. 5532-5536, Jul. 1989.

Chirino et al., "Minimizing the Immunogenicity of Protein Therapeutics," Drug Discovery Today, vol. 9, No. 2, pp. 82-90, Jan. 2004. Cho et al., "Structure of the Extracellular Region of HER2 Alone and in Complex with the Herceptin Fab," Nature, vol. 421, pp. 756-760, Feb. 13, 2003.

Coco et al., "DNA Shuffling Method for Generating Highly Recombined Genes and Evolved Enzymes", Nature Publishing Group, vol. 19, pp. 354-359, Apr. 2001.

Conrath et al., "Antigen Binding and Solubility Effects upon the Veneering of a Camel VHH in Framework-2 to Mimic a VH", Journal of Molecular Biology, vol. 350, pp. 112-125, 2005.

Cornish-Bowden, "Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences: Recommendations 1984," Nucleic Acids Research, vol. 3, No. 9, pp. 3021-3030, May 10, 1985.

Cortez-Retamozo et al., "Efficient Tumor Targeting by Single-Domain Antibody Fragments of Camels", International Journal of Cancer, vol. 98, pp. 456-462, 2002.

Crameri et al., "DNA Shuffling of a Family of Genes From Diverse Species Accelerates Directed Evolution," Nature vol. 391, pp. 288-291, Jan. 15, 1998.

Dall' Acqua et al., "Increasing the Affinity of a Human IgG1 for the Neonatal Fc Receptor: Biological Consequences," The Journal of Immunology, vol. 169, pp. 5171-5180, 2002.

Dall' Acqua et al., "Modulation of the Effector Functions of a Human IgG1 through Engineering of Its Hinge Region," The Journal of Immunology, vol. 177, pp. 1129-1138, 2006.

de Jager et al., "Simultaneous Detection of 15 Human Cytokines in a Single Sample of Stimulated Peripheral Blood Mononuclear Cells," Clinical Diagnostic Laboratory Immunology, vol. 10, No. 1, pp. 133-139, 2003.

Doi et al., "Screening of Conformationally Constrained Random Polypeptide Libraries Displayed on a Protein Scaffold," Cellular and Molecular Life Sciences, vol. 54, No. 5, pp. 394-404, May 1998.

Dottorini et al., "Crystal Structure of a Human VH: Requirements for Maintaining a Monomeric Fragment," Biochemistry, vol. 43, No. 3, pp. 622-628, Jan. 27, 2004.

Ewert et al., "Stability Improvement of Antibodies for Extracellular and Intracellular Applications: CDR Grafting to Stable Frameworks and Structure-Based Framework Engineering," Methods, vol. 34, pp. 184-199, 2004.

F-star, "F-star Alpha: A New Asset Centric Company," 15 pages, Feb. 11, 2014.

Felgenhauer et al., "Nucleotide Sequences of the Cdnas Encoding the V-Regions of H- and L-Chains of a Human Monoclonal Antibody Specific to HIV-1-gp41," Nucleic Acids Research, vol. 18, No. 16, pp. 4927, 1990.

Fellouse et al., "Synthetic Antibodies From a Four-Amino-Acid Code: A Dominant Role for Tyrosine in Antigen Recognition," Proceeding of the National Academy of Science, vol. 101, No. 34, pp. 12467-12472, Aug. 24, 2004.

OTHER PUBLICATIONS

Fellouse et al., "Molecular Recognition by a Binary Code," The Journal of Molecular Biology, vol. 348, No. 5, pp. 1153-1162, May 20, 2005.

Fellouse et al., "Tyrosine Plays a Dominant Functional Role in the Paratope of a Synthetic Antibody Derived from a Four Amino Acid Code," The Journal of Molecular Biology, vol. 357, pp. 100-114, 2006.

Fields et al., "A Novel Genetic System to Detect Protein-Protein Interactions," Nature vol. 340, pp. 245-246, Jul. 20, 1989.

Fitzgerald, "In vitro Display Technologies—New Tools for Drug Discovery," vol. 5, No. 6, pp. 253-258, Jun. 2000.

Foote, "Antibody Framework Residues Affecting the Conformation of the Hypervariable Loops," Journal of Molecular Biology, vol., No. 2, pp. 487-499, Mar. 20, 1992.

Gao et al., "Making Artificial Antibodies: A Format for Phage Display of Combinatorial Heterodimeric Arrays," Proceedings of the National Academy of Sciences of USA, vol. 96, No. 11 pp. 6025-6030, May 25, 1999.

Georgiou et al., "Practical Applications of Engineering Ggram-Negative Bacterial Cell Surfaces," Trends in Biotechnology, vol. 11, No. 1, pp. 6-10, Jan. 1993.

Georgiou et al., "Display of Heterologous Proteins on the Surface of Microorganisms: From the Screening of Combinatorial Libraries to Live Recombinant Vaccines," Nature Biotechnology vol. 15, No. 1, pp. 29-34, Jan. 1997.

Ghahroudi et al., "Selection and Identification of Single Domain Antibody Fragments from Camel Heavy-Chain Antibodies," FEBS Letters, vol. 414, No. 3, pp. 521-526, Sep. 15, 1997.

Giusti et al., "Somatic Diversification of S107 from an Antiphosphocholine to an Anti-DNA Autoantibody is Due to a Single Base Change in its Heavy Chain Variable Region," Proceedings of the National Academy of Science, USA, vol. 84, No. 9, pp. 2926-2930, May 1987.

Goncalves, "Fluorescent Labeling of Biomolecules with Organic Probes," Chemical Review, vol. 109, No. 1, pp. 190-212, 2009. Gram et al., "In vitro Selection and Affinity Maturation of Antibodies from a Naive Combinatorial Immunoglobulin Library," Proceedings of the National Academy of Sciences of the United States of America, vol. 89, No. 8, pp. 3576-3580, Apr. 15, 1992. Halaby et al., "The Immunoglobulin Fold Family: Sequence Analysis and 3D Structure Comparisons," Protein Engineering, vol. 12, No. 7, pp. 563-571, Jul. 1999.

Hanes et al., "In vitro Selection and Evolution of Functional Proteins by Using Ribosome Display," Proceedings of the National Academy of Science, USA, vol. 94, No. 19, pp. 4937-4942, May 1997.

Harriman et al., "Multiplexed Elispot Assay," Journal Immunology Methods, vol. 341, No. 1-2, pp. 127-134, Feb. 28, 2009.

Hasenhindl et al., "Stability Assessment on a Library Scale: A Rapid Method for the Evaluation of the Commutability and Insertion of Residues in C-Terminal Loops of the CH3 domains of IgG1-Fc," Protein Engineering, Design and Selection, vol. 26, issue 10, pp. 675-682, Oct. 2013.

Hasenhindl et al., "Creating Stable Stem Regions for Loop Elongation in Fcabs—Insights from Combining Yeast Surface Display, in Sihco Loop Reconstruction and Molecular Dynamics Simulations", Biochimica et Biophysica Acta, vol. 1844, No. 9, pp. 1530-1540, Sep. 2014.

Haurum, "How to Leverage Oncogene Addiction: Targetd Biological Therapy Inducing Growth Factor Receptor Internalization and Degradation," PEPtalk: The Protein Science Week Jan. 19, 2015. Hayhurst et al., "High-throughput Antibody Isolation," Current Opinion in Chemical Biology, vol. 5, No. 6, pp. 683-689, Dec. 2001. He et al., "Structure of a Human Monoclonal Antibody Fab Fragment Against gp41 of Human Immunodeficiency Virus Type 1," Proceedings of the National Academy of Science, USA vol. 89, No. 15, pp. 7154-7158, Aug. 1, 1992.

Hermeling et al., "Structure-Immunogenicity Relationships of Therapeutic Proteins," Pharmaceutical Research, vol. 21, No. 6, pp. 897-903, Jun. 2004.

Holler et al., "In vitro Evolution of a T Cell Receptor with High Affinity for Peptide/MHC," Proceedings of the National Academy of Science, USA, vol. 97, No. 10, pp. 5387-5392, May 9, 2000.

Holliger et al., "Engineered Antibody Fragments and the Rise of Single Domains," Nature Biotechnology, vol. 23, No. 9, pp. 1126-1136, Sep. 2005.

Hoogenboom et al., "Multi-Subunit Proteins on the Surface of Filamentous Phage: Methodologies for Displaying Antibody (Fab) Heavy and Light Chains," Nucleic Acids Research, vol. 19, No. 15, pp. 4133-4137, Aug. 11, 1991.

Hoover et al., "DNAWorks: An Automated Method for Designing Oligonucleotides for PCR-based Gene Synthesis," Nucleic Acids Research, vol. 30, No. 10, May 15, 2002.

Hosse et al., "A New Generation of Protein Display Scaffolds for Molecular Recognition," Protein Science, vol. 15, No. 1, pp. 14-27, Jan. 2006.

Hufton et al., "Development and Application of Cytotoxic T Lymphocyte-Associated Antigen 4 As a Protein Scaffold for the Generation of Novel Binding Ligand," FEBS Letters, vol. 465, No. 3, pp. 225-231, Jun. 23, 2000.

Huston et al., "Protein Engineering of Antibody Binding Sites: Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in *Escherichia coli*," Proceedings of the National Academy of Science, USA, vol. 85, No. 16, pp. 5879-5883, Aug. 1988.

Isaac et al., Poster: "Pre-Clinical Evaluation of FS102: A HER2-Specific Fcab with a Novel Mechanism of Action," AstraZeneca-MedImmune—Cambridge Cancer Centre Symposium, 1 page, Mar. 25, 2014.

Janeway et al., "Immunobiology, the Immune System in Health and Disease," 6th Edition, Garland Science, 2005.

Jez et al., "Significant Impact of Single N-Glycan Residues on the Biological Activity of Fc-Based Antibody-Like Fragments," The Journal of Biological Chemistry, vol. 287, No. 9, pp. 24313-24319, Jul. 13, 2012.

Johnsson et al., "Split Ubiquitin As a Sensor of Protein interactions in vivo," Proceedings of the National Academy of Science, USA vol. 91, No. 22, pp. 10340-10344, Oct. 1994.

Jones et al., "Replacing the Complementarity-Determining Regions in a Human Antibody With Those From a Mouse," Nature, vol. 321, No. 6069, pp. 522-525, May 29, 1986.

Jung et al., "Surface Display of Zymomonas Mobilis Levansucrase by Using the Ice-Nucleation Protein of Pseudomonas Syringae," Nature Biotechnology vol. 16, No. 6, 576-580, Jun. 1998.

Kainer et al., "Correlation Between CD16a Binding and Immuno Effector Functionality of an Antigen Specific Immunoglobulin Fc Fragment (Fcab)," Archives of Biochemistry and Biophysics, vol. 526, No. 2, pp. 154-158, Oct. 23, 2012.

Kang et al., "Linkage of Recognition and Replication Functions by Assembling Combinatorial Antibody Fab Libraries Along Phage Surfaces," Proceedings of the National Academy of Science, USA, vol. 88, No. 10, pp. 4363-4366, May 15, 1991.

Kang et al., "Human Neutralizing Fab Molecules against Severe Acute Respiratory Syndrome Coronavirus Generated by Phage Display," Clinical and Vaccine Immunology, vol. 13, No. 8, pp. 953-957, Aug. 2006.

Kashmiri et al., "SDR Grafting—A New Approach to Antibody Humanization," Methods, vol. 36, No. 1, pp. 25-34, May 2005.

Kay et al., "Phage Display of Peptides and Proteins: A Laboratory Manual," Academic Press, 1996.

Kettleborough et al., "Humanization of a Mouse Monoclonal Antibody by CDR-Grafting: the importance of Framework Residues on Loop Conformation," Protein Engineering, vol. 4, No. 7, pp. 773-783, Oct. 1991.

Kieke et al., "Selection of Functional T Cell Receptor Mutants From a Yeast Surface-Display Library," Proceedings of the National Academy of Science, USA, vol. 96, No. 10, pp. 5651-5656, May 1999.

OTHER PUBLICATIONS

Kikuchi et al., "Novel Family Shuffling Methods for the in vitro Evolution of Enzymes," Gene, vol. 236, No. 1, pp. 159-167, Aug. 5, 1999.

Kikuchi et al., "An Effective Family Shuffling Method Using Single-Stranded DNA," Gene, vol. 243, No. 1-2, pp. 133-137, Feb. 8, 2000

Kohl et al., "Cloning and Expression of an HIV-1 Specific Single-Chain Fv Region Fused to *Escherichia coli* Alkaline Phosphatase," Annals of the New York Academy of Science, vol. 646, pp. 106-114, Dec. 27, 1991.

Koide et al., "High-Affinity Single-Domain Binding Proteins with a Binary-Code Interface," Proceedings of the National Academy of Science, USA, vol. 104, No. 16, pp. 6632-6637, Apr. 17, 2007.

Koivunen et al., "Selection of Peptides Binding to the α5β1 Integrin from Phage Display Library", The Journal of Biological Chemistry, vol. 268, No. 27, pp. 20205-20210, Sep. 25, 1993.

Kolkman et al., "Directed Evolution of Proteins by Exon Shuffling, Nature Biotechnology," vol. 19, pp. 423-428, May 2001.

Konig, "Interactions Between MHC Molecules and Co-Receptors of the TCR," Current Opinion in Immunology, pp. 75-83, Mar. 2002.

Kontermann, "Dual Targeting Strategies With Bispecific Antibodies," MAbs, vol. 4, No. 2, pp. 182-197, Mar. 2012.

Koren et al., "Immune Responses to Therapeutic Proteins in Humans—Clinical Significance, Assessment and Prediction," Current Pharmaceutical Biotechnology, vol. 3, pp. 349-360, 2002.

Kufer et al., "A Revival of Bispecific Antibodies," Trends in Biotechnology, vol. 22, No. 5, pp. 238-244, May 2004.

Kunkel et al., "Rapid and Efficient Site-Specific Mutagenesis Without Phenotype Selection," Proceedings of National Academy of Sciences, vol. 82, pp. 488-492, Jan. 1985.

Laffly et al., "Monoclonal and Recombinant Antibodies, 30 years after . . . ," Human Antibotics, vol. 14, pp. 33-55, 2005.

Lauvrak et al., "Identification and Characterisation of C1q-Binding Phage Displayed Peptides," Biology Chemistry, vol. 378, No. 12, pp. 1509-1519, Dec. 1997.

Lazar et al., "Transforming Growth Factor α: Mutation of Aspartic Acid 47 and Leucine 48 Results in Different Biological Activities," Molecular and Cellular Biology, pp. 1247-1252, Mar. 1988.

Le Gall et al., "Effect of Linker Sequences Between the Antibody Variable Domains on the Formation, Stability and Biological Activity of a Bispecific Tandem Diabody," Protein Engineering, Design & Selection, vol. 17, No. 44, pp. 357-366, 2004.

Lea et al., "Analysis of Antigenic Surfaces of Proteins," Federation of American Societies for Experimential Biology, vol. 9, No. 1, pp. 87-93, Jan. 1995.

Lederman et al., "A Sinlge Amino Acid Substitution in a Common African Allele of the CD4 Molecule Ablates Binding of the Monoclonal Antibody, OKT4," Molecular Immunology vol. 28, No. 11, pp. 1171-1181, Nov. 1991.

Lee et al., "Surface-Displayed Viral Antigens on Salmonella Carrier Vaccine," Nature Biotechnology, vol. 18, No. 6, pp. 645-648, Jun. 2000.

Lefranc et al., "IMGT, the International ImMunoGeneTics Database," Nucleic Acids Research, vol. 27, No. 1, pp. 209-212, Jan. 1, 1000

Lefranc, "IMGT, the International ImMunoGeneTics database," Nucleic Acids Research, vol. 29, No. 1, pp. 207-209, 2001.

Lefranc, "IMGT, the International ImMunoGeneTics database," Nucleic Acids Research, vol. 31, No. 1, pp. 307-310, 2003.

Lefranc et al., "IMGT Unique Numbering for Immunoglobulin and T Cell Receptor Constant Domains and Ig Superfamily C-like Domains," Developmental and Comparative Immunology vol. 27, pp. 55-77, 2003.

Lefranc et al., "IMGT Unique Numbering for immunoglobulin and T Cell Receptor Constant Domains and Ig Superfamily C-like Domains," Developmental and Comparative Immunology, vol. 29, pp. 185-203, 2005.

Lefranc et al., "IMGT, the International 1mMunoGeneTics Information System," Nucleic Acids Research, vol. 33, Database issue, pp. D593-D597, 2005.

Li et al., "Beta-Endorphin Omission Analogs: Dissociation of Immunoreactivity From Other Biological Activities," Proceedings of the National Academy of Science, USA, vol. 77, No. 6, pp. 3211-3214, Jun. 1980.

Li et al., "Directed Evolution of Human T-Cell Receptors With Picomolar Affinities by Phage Display," Nature Biotechnology, vol. 23, No. 3, pp. 349-354, Mar. 2005.

Lo Conte et al., "The Atomic Structure of Protein-Protein Recognition Sites," Journal of Molecular Biology, vol. 285, pp. 2177-2198, 1999.

Lowman et al., "Selecting High-Affinity Binding Proteins by Monovalent Phage Display," Biochemistry, vol. 30, pp. 10832-10838, 1991.

Lutz et al., "Creating Multiple Crossover DNA Libraries Independent of Sequence Identity," Proceedings of the National Academy of Science, USA, vol. 98, No. 20, pp. 11248-11253, Sep. 25, 2001.

Malborg et al., "Selective Phage Infection Mediated by Epitope Expression on F Pilus," Journal of Molecular Biology, vol. 273, pp. 544-551, 1997.

Marvin et al., "Recombinant Approaches to IgG-like Bispecific Antibodies," Acta Pharmacologica Sinica, vol. 6, pp. 649-658, Jun. 2005.

Masuda et al., "The Role of Interface Framework Residues in Determining Antibody VH/VL, Interaction Strength and Antigen-Binding Affinity," The FEBS Journal, vol. 273, pp. 2184-2194, 2006.

Mattheakis et al., "An in vitro Polysome Display System for Identifying Ligands From Very Large Peptide Libraries," Proceedings of the National Academy of Science, USA, vol. 91, pp. 9022-9026, Sep. 1994.

Maynard et al., "Antibody Engineering;" Annual Review of Biomedical Engineering, vol. 2, pp. 339-376, 2000.

McCall et al., "Isolation and Characterization of an Anti-CD16 Single-chain Fv Fragment and Construction of an Anti-HER2/neu/anti-CD16 Bispecific scFv that Triggers CD16-dependent Tumor Cytolysis," Molecular Immunology, vol. 36, pp. 433-446, 1999.

McCall et al., "Increasing the Affinity for Tumor Antigen Enhances Bispecific Antibody Cytotoxicity," The Journal of immunology, vol. 166, pp. 6112-6117, 2001.

Merz et al., "The Protein Folding Problem and Tertiary Structure Prediction," Chapter 1, Authors Adrian Roitberg and Ron Elber, "Modeling Side Chains in Peptides and Proteins with Locally Enhanced Sampling/Simulated Annealing Method", Birkhauser, 584 pages, 1994.

Merz et al., "The Protein Folding Problem and Tertiary Structure Prediction," Chapter 14, Authors J. Thomas Ngo, Joe Marks and Martin Karplus, "Computational Complexity Protein Structure Prediction, and the Levinthal Paradox", Birkhauser, 9 pages, 1994.

Miyazaki et al., "Changes in the Specificity of Antibodies by Site-Specific Mutagenesis Followed by Random Mutagenesis," Protein Engineering, vol. 12, No. 5, pp. 407-415, 1999.

Moza et al., "Long-Range Cooperative Binding Effects in a T Cell Receptor Variable Domain," Proceedings of the National Academy of Science, USA, vol. 103, No. 26, pp. 9867-9872, Jun. 27, 2006. Munoz-Olaya, "Advancing Novel Modular Antibody Technology for Generating Bispecific Antibodies," PEGS Lisbon, Nov. 3-4, 2014.

Nemoto et al., "In vitro virus: Bonding of mRNA Bearing Puromycin at the 3'-Terminal End to the C-terminal End of its Encoded Protein on the Robosome in vitro," FEBS Letters, vol. 414, pp. 405-408, 1997.

Nygren et al., "Scaffold for Engineering Novel Binding Sites in Proteins," Current Biology, Engineering and Design, vol. 7, pp. 463-469, 1997.

Park et al., "Rationally Designed Anti-HER2/neu Peptide Mimetic Disables P185 HER2/neu Tyrosine Kinases in vitro and in vivo," Nature Biotechnology, vol. 18, pp. 194-198, Feb. 2000.

Paul, Fundamental Immunology, Chapter 9, "Structure and Function of Imunoglobulins", Third Edition, Raven Press, pp. 292-295, 1993

OTHER PUBLICATIONS

Pelletier et al., "Oligomerization Domain-Directed Reassembly of Active Dihydrofolate Reductase From Rationally Designed Fragments," Proceedings of the National Academy of Science, USA, vol. 95, pp. 12141-12146, Oct. 1998.

Perosa et al., "CD20 Mimicry by a MAb Rituximab-Specific Linear Peptide, A Potential Tool for Active Immunotherapy of Autoimmune Diseases," Annals New York Academy of Sciences, pp. 672-683, 2005.

Presta et al., "Engineering Therapeutic Antibodies for Improved Function," Biochemical Society, vol. 30, No. 4, pp. 487-490, Mar. 2002.

Privezentzev, Poster: "F-star: Advancing Novel Bispecific Antibody Biologics," Gordon Research Conference; Antibody Biology & Engineering, 1 page, Mar. 2014.

Riechmann et al., "Single Domain Antibodies: Comparison of Camel VH and Camelised Human VH Domains," Journal of Immunological Methods, vol. 231, pp. 25-38, 1999.

Roberts et al., "RNA-Peptide Fusions for the in vitro Selection of Peptides and Proteins," Proceedings of the National Academy of Sciences, USA, vol. 94, pp. 12297-12302, Nov. 1997.

Rondot et al., "A Helper Phage to Improve Single-Chain Antibody Presentation in Phage Display," Nature Biotechnology, vol. 19, pp. 75-78, Jan. 2001.

Roovers et al., "Efficient Inhibition of EGFR Signalling and of Tumour Growth by Antagonistic Anti-EGFR Nanobodies," Cancer Immunology Immunotherapy, vol. 56, pp. 303-317, 2007.

Rudikoff et al., "Single Amino Acid Substitution Altering Antigen-Binding Specificity," Proceedings of the National Academy of Sciences, vol. 79, pp. 1979-1983, Mar. 1982.

Ruiz et al., "IMGT, the International ImMunoGeneTics database," Nucleic Acids Research, vol. 28, No. 1, pp. 219-221, 2000.

Rüker et al., "Expression of a Human Monoclonal Anti-HIV-1 Antibody in CHO Cells" Annals of New York Academy of Sciences, vol. 646, pp. 212-219, Dec. 27, 1991.

Saerens et al., "Identification of a Universal VHH Framework to Graft Non-canonical Antigen-binding Loops of Camel Single-domain Antibodies," Journal of Molecular Biology, vol. 352, pp. 597-607, 2005.

Salfield, "Isotype Selection in Antibody Engineering," Nature Biotechnology, vol. 25, No. 12, pp. 1369-1372, 2007.

Schaffitzel et al., "Ribosome Display: an in vitro Method for Selection and Evolution of Antibodies From Libraries," Journal of Immunological Methods, vol. 231, pp. 119-135, 1999.

Schmittel et al., "Application of the IFN-γ ELISPOT Assay to Quantify T Cell Responses Against Proteins", Journal of Immunological Methods, vol. 247, pp. 17-24, 2001.

Shao et al., "Random-priming in vitro Recombination: An Effective Tool for Directed Evolution," Nucleic Acids Research, vol. 26, No. 2, pp. 681-683, 1998.

Shields et al., "High Resolution Mapping of the Binding Site on Human IgG1 for FcyRI, FcyRII, FcyRIII, and FcRn and Design of IgG1 Variants with Improved Binding to the FFcyR," The Journal of Biological Chemistry, vol. 276, No. 9, pp. 6591-6604, 2001.

Shusta et al., "Directed Evolution of a Stable Scaffold for T-cell Receptor Engineering," Nature Biotechnology, vol. 19, 6 pages, Jul. 2000

Sidhu et al., "Synthetic Therapeutic Antibodies," Nature Chemical Biology, vol. 2, No. 12, pp. 682-688, Dec. 2006.

Simon et al., "A Functional Antibody Mutant With an Insertion in the Framework Region 3 Loop of the VH Domain: Implications for Antibody Engineering," Protein Engineering, vol. 5, No. 3, pp. 229-234, 1992.

Skolnick et al., "From Genes to Protein Structure and Function: Novel Applications of Computational Approaches in the Genomic Era," Trends in Biotechnology, vol. 18, pp. 34-39, Jan. 2000.

Smith, "Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface," Science, vol. 228, No. 4705, pp. 1315-1317, Jun. 14, 1985.

Spiridon et al., "Targeting Multiple Her-2 Epitopes with Monoclonal Antibodies Results in Improved Antigrowth Activity of a Human Breast Cancer Cell Line in Vvitro and in Vivo,": Clinical Cancer Research, vol. 8, pp. 1720-1730, Jun. 2002.

Tangri et al., "Rationally Engineered Therapeutic Proteins with Reduced Immunogenicity," The Journal of Immunology, pp. 3187-3196, 2005.

Traxlmayr et al., "Construction of pH-Sensitive Her2-binding IgG1-Fc by Directed Evolution," Biotechnology, vol. 9, pp. 1013-1022, 2014.

Uhlenbroich, "F-star: Advancing Novel Bispecific Antibody Biologics," Empowered Antibodies Congress, 1 page, Jun. 18-19, 2014—Abstract.

Vajdos et al., "Comprehensive Functional Maps of the Antigenbinding Site of an Anti-ErbB2 Antibody Obtained with Shotgun Scanning Mutagenesis," Journal of Molecular Biology, vol. 320 pp. 416-428, 2002.

Virnekas et al., "Trinucleotide Phosphoramidites: Ideal Reagents for the Synthesis of Mixed Oligonucleotides for Random Mutagenesis," Nucleic Acids Research, vol. 22, No. 25, pp. 5600-5607, 1994.

Visintin et al., Selection of Antibodies for Intracellular Function Using a Two-hybrid in vivo System, Proceedings of the National Academy of Science, USA, vol. 96, No. 21, pp. 11723-11728, Oct. 12, 1999

Vogt et al., "Construction of an Artificial Receptor Protein ("Anticalin") Based on the Human Apolipoprotein D," ChemBioc-Cem, vol. 5, No. 2, pp. 191-199, Feb. 6, 2004.

Wang et al., "Expression Patterns and Transcript Processing of ftt-1 and ftt-2, two C. elegans 14-3-3 Homologues," Journal of Molecular Biology, vol. 268, pp. 619-630, 1997.

Wang et al., "Retargeting T Cells for HER2-Positive Tumor Killing by a Bispecific Fv-Fc Antibody," PLOS One, vol. 8, No. 9, pp. e75589-1-e75589-11, Sep. 23, 2013.

Weaver-Feldhaus et al., "Yeast Mating for Combinatorial Fab Library Generation and Surface Display," FEBS Letters, vol. 564, No. 1-2, pp. 24-34, Apr. 23, 2004.

Weber et al., "Class II-Restricted T Cell Receptor Engineered In Vitro for Higher Affinity Retains Peptide Specificity and Function," Proceedings of the National Academy of Sciences, vol. 102, No. 52, pp. 19033-19038, Dec. 27, 2005.

Weiner et al., "Site-Directed Mutagenesis of Double-Stranded DNA by the Polymerase Chain Reaction," Gene, vol. 151, No. 1-2, pp. 119-124, Dec. 30, 1994.

Whitehorn et al., "A Generic Method for Expression and Use of "Tagged" Soluble Versions of Cell Surface Receptors," BioTechnology, vol. 13, No. 11, pp. 1215-1219, Nov. 1995.

Winkler et al., "Changing the Antigen Binding Specificity by Single Point Mutations of an Anti-p24 (HIV-1) Antibody," The Journal of Immunology, vol. 165, No. 8, pp. 4505-4514, Oct. 15, 2000.

Winter et al., "Humanized Antibodies," Immunology Today, vol. 14, No. 6, pp. 243-246, 1993.

Wittrup, "Protein Engineering by Cell-Surface Display," Current Opinion in Biotechnology, vol. 12, No. 4, pp. 395-399, Aug. 2001. Woisetschlager et al., "In vivo and in vitro Activity of an Immunoglobulin Fc Fragment (Fcab) with Engineered Her-2/neu Binding Sites," Biotechnology Journal, vol. 9, No. 6, pp. 844-851, Jun. 2014. Wozniak-Knopp et al., "Introducing Antigen-Binding Sites in Structural Loops of Immunoglobulin Constant Domains: Fc Fragments with Engineered HER2/neu-binding Sites and Antibody Properties," Protein Engineering, Design & Selection, vol. 23, No. 4, pp. 289-297, Apr. 2010.

Wu et al., "Humanization of a Murine Monoclonal Antibody by Simultaneous Optimization of Framework and CDR Residues," Journal of Molecular Biology, vol. 294, No. 1, pp. 151-162, Nov. 19, 1999

Xiao et al., "A Large Library Based on a Novel (CH2) Scaffold: identification of HIV-1 Inhibitors," Biochemical and Biophysical Research Communications, vol. 387, No. 2, pp. 387-392, Sep. 18, 2009.

Yanez et al., "Combinatorial Condon-Based Aminio Acid Substitutions," Nucleic Acids Research, vol. 32, No. 20, pp. 1-10, 2004.

OTHER PUBLICATIONS

Yau et al., "Affinity Maturation of a VhH by Mutational Hotspot Randomization," Journal of Immunological Methods, vol. 297, No. 1-2, pp. 213-224, Feb. 2005.

Zemlin et al., "Expressed Murine and Human CDR-H3 Intervals of Equal Length Exhibit Distinct Repertoires that Differ in their Amino Acid Composition and Predicted Range of Structures," Journal of Molecular Biology, vol. 334, No. 4, pp. 733-749, Dec. 5, 2003. Zhao et al., "A Novel Strategy by the Action of Ricin that Connects Phenotype and Genotype without Loss of the Diversity of Libraries," Journal of American Chemical Society vol. 124, No. 4, pp. 538-543, Jan. 30, 2002.

Zhou et al., "A Novel Strategy by the Action of Ricin that Connects Phenotype and Genotype without Loss of the Diversity of Libraries," Journal of American Chemical Society vol. 124, No. 4, pp. 538-543, Jan. 30, 2002.

European Patent Office—Munich, Extended European Search Report, Application No. EP 14191631.2-1405, 12 pages, dated Jun. 16, 2015.

European Patent Office, Authorized Officer, Isabel Perez-Mato, International Searching Report, Application No. PCT/AT2008/000232, 4 pages, dated Oct. 13, 2008, 4 pages.

International Bureau of WHIPO, Authorized officer Yolaine Cussac, International Preliminary Report on Patentability, International Application PCT/AT2008/000232, 10 pages, dated Jan. 5, 2010. International Searching Authority, Written Opinion pertaining to International Application PCT/AT2008/000232, dated Oct. 12, 2008.

European Patent Office—Rijswijk Authorized Officer Rebecca Hix, International Search Report, dated Feb. 1, 2008, Application No. PCT/AT2007/000313, 3 pages.

International Searching Authority, Authorized Officer, Yolaine Cussac, Written Opinion pertaining to Application No, PCT/EP2009/052506, 8 pages, dated Nov. 2, 2010.

International Searching Authority, Authorized Officer Marie-Paul Toussaint, International Search Report and Written Opinion, Application No. PCT/EP2009/052509, 17 pages, dated Jun. 3, 2009. European Patent Office, Communication pursuant to Article 94(3) EPC, European Patent Application No. 08 756 842.4, dated Jun. 14, 2010.

Rüker, F. "Modular Antibody Technology", F-Star Fact Sheet, online, Feb. 2008, www.boku.ac.at/fileadmin/BOKU-Topstories/ 20080702_Rueker_Factsheet.pdf.

* cited by examiner

Figure 1.

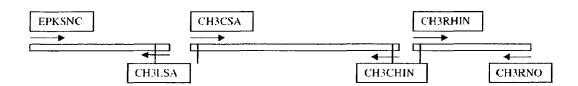
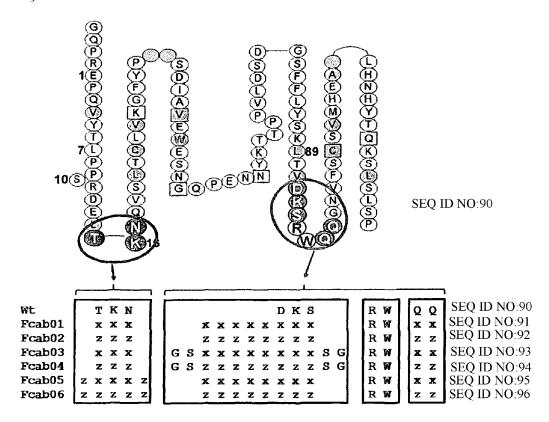



Figure 2

DISPLAY OF BINDING AGENTS

CROSS REFERENCE

This application is a continuation of U.S. application Ser. No. 12/666,618 filed Dec. 23, 2009, which is a 371 U.S. national phase application of International Application No. PCT/AT08/00232 filed Jun. 26, 2008, which claims the benefit of U.S. Provisional Application No. 60/946,287 filed Jun. 26, 2007 and U.S. Provisional Application No. 61/049, 826 filed May 2, 2008. The contents of all of the above applications are hereby incorporated by reference in their entirety.

SEQUENCE LISTING

The attached sequence listing "3906_1029_revised_seq_ listing_2_23" created Feb. 24, 2016, size 128 kb) is hereby incorporated by reference in its entirety.

The invention relates to a method of preparing a genetic package displaying oligomers of modular antibody domains binding to a target and to a scaffold ligand and vectors and libraries of bivalent genetic packages produced by these ing suitable linker sequences for use in such oligomer display.

Monoclonal antibodies have been widely used as a scaffold for binding agents. The basic antibody structure will be explained here using as example an intact IgG1 immuno- 30 globulin.

Two identical heavy (H) and two identical light (L) chains combine to form the Y-shaped antibody molecule. The heavy chains each have four domains. The amino terminal variable domains (VH) are at the tips of the Y. These are followed by three constant domains: CH1, CH2, and the carboxy-terminal CH3, at the base of the Y's stem. A short stretch, the switch, connects the heavy chain variable and constant regions. The hinge connects CH2 and CH3 (the Fc 40 fragment) to the remainder of the antibody (the Fab fragments). One Fc and two identical Fab fragments can be produced by proteolytic cleavage of the hinge in an intact antibody molecule. The light chains are constructed of two domains, variable (VL) and constant (CL), separated by a 45 switch.

Disulfide bonds in the hinge region connect the two heavy chains. The light chains are coupled to the heavy chains by additional disulfide bonds. Asn-linked carbohydrate moieties are attached at different positions in constant domains 50 depending on the class of immunoglobulin. For IgG1 two disulfide bonds in the hinge region, between Cys235 and Cys238 pairs, unite the two heavy chains. The light chains are coupled to the heavy chains by two additional disulfide bonds, between Cys229s in the CH1 domains and Cys214s 55 in the CL domains. Carbohydrate moieties are attached to Asn306 of each CH2, generating a pronounced bulge in the stem of the Y.

These features have profound functional consequences. The variable regions of both the heavy and light chains (VH) 60 and (VL) lie at the "tips" of the Y, where they are positioned to react with antigen. This tip of the molecule is the side on which the N-terminus of the amino acid sequence is located. The stem of the Y projects in a way to efficiently mediate effector functions such as the activation of complement and interaction with Fc receptors, or ADCC and ADCP. Its CH2 and CH3 domains bulge to facilitate interaction with effector

2

proteins. The C-terminus of the amino acid sequence is located on the opposite side of the tip, which can be termed "bottom" of the Y.

Two types of light chain, termed lambda (λ) and kappa (κ) , are found in antibodies. A given immunoglobulin either has K chains or λ chains, never one of each. No functional difference has been found between antibodies having λ or κ light chains.

Each domain in an antibody molecule has a similar structure of two beta sheets packed tightly against each other in a compressed antiparallel beta barrel. This conserved structure is termed the immunoglobulin fold. The immunoglobulin fold of constant domains contains a 3-stranded sheet packed against a 4-stranded sheet. The fold is stabilized by hydrogen bonding between the beta strands of each sheet, by hydrophobic bonding between residues of opposite sheets in the interior, and by a disulfide bond between the sheets. The 3-stranded sheet comprises strands C, F, and G, and the 4-stranded sheet has strands A, B, E, and D. The letters A through G denote the sequential positions of the beta strands along the amino acid sequence of the immunoglobulin fold.

The fold of variable domains has 9 beta strands arranged methods. The invention further relates to methods of select- 25 in two sheets of 4 and 5 strands. The 5-stranded sheet is structurally homologous to the 3-stranded sheet of constant domains, but contains the extra strands C' and C". The remainder of the strands (A, B, C, D, E, F, G) have the same topology and similar structure as their counterparts in constant domain immunoglobulin folds. A disulfide bond links strands B and F in opposite sheets, as in constant domains.

> The variable domains of both light and heavy immunoglobulin chains contain three hypervariable loops, or complementarity-determining regions (CDRs). The three CDRs of a V domain (CDR1, CDR2, CDR3) cluster at one end of the beta barrel. The CDRs are loops that connect beta strands B-C, C'-C", and F-G of the immunoglobulin fold. The residues in the CDRs vary from one immunoglobulin molecule to the next, imparting antigen specificity to each

> The VL and VH domains at the tips of antibody molecules are closely packed such that the 6 CDRs (3 on each domain) cooperate in constructing a surface (or cavity) for antigenspecific binding. The natural antigen binding site of an antibody thus is composed of the loops which connect strands B-C, C'-C", and F-G of the light chain variable domain and strands B-C, C'-C", and F-G of the heavy chain variable domain.

> The loops which are not CDR-loops in a native immunoglobulin, or not part of the antigen-binding pocket as determined by the CDR loops and optionally adjacent loops within the CDR loop region, do not have antigen binding or epitope binding specificity, but contribute to the correct folding of the entire immunoglobulin molecule and/or its effector or other functions and are therefore called structural loops for the purpose of this invention.

> Prior art documents show that the immunoglobulin-like scaffold has been employed so far for the purpose of manipulating the existing antigen binding site, thereby introducing novel binding properties. In most cases the CDR regions have been engineered for antigen binding, in other words, in the case of the immunoglobulin fold, only the natural antigen binding site has been modified in order to change its binding affinity or specificity. A vast body of literature exists which describes different formats of such manipulated immunoglobulins, frequently expressed in the form of single-chain Fv fragments (scFv) or Fab fragments,

either displayed on the surface of phage particles or solubly expressed in various prokaryotic or eukaryotic expression systems.

W006072620A1 describes a method of engineering an immunoglobulin which comprises a modification in a structural loop region to obtain new antigen binding sites. This method is broadly applicable to immunoglobulins and may be used to produce a series of immunoglobulins targeting a variety of antigens. A CH3 library has been shown to be useful for selecting specific binders to an antigen.

Although multivalent display of proteins on genetic packages has been described (such as direct phage cloning and display, bacterial display, yeast display), prior art refers to monomeric monovalent display of binding domains, in general. W09209690 describes phagemid particles displaying a single copy of a fusion protein on the surface of the particle. Thereby it was described to obtain high affinity binders from a library of phagemid particles, also called bacteriophages. Replicable expression vectors comprising genes encoding a binding polypeptide and a phage coat protein are provided so to form a gene fusion encoding a fusion protein, which is a chimeric protein of a phagemid particle, the phage coat protein and the binding polypeptide.

U.S. Pat. No. 5,223,409 generally describes the method of fusing a gene encoding a protein of interest to the N-terminal 25 domain of the gene III coat protein of the filamentous phage M13. The gene fusion is mutated to form a library of structurally related fusion proteins that are expressed in low quantity on the surface of a phagemid particle. Biological selection and screening is employed to identify novel 30 ligands useful as drug candidates.

However, there are some limitations in using such "fusion phage" or monovalent phage display and respective single fusion proteins. Many biologicals naturally occur in oligomeric form. For the purpose of the present invention oligomeric means dimeric, trimeric or even higher polymeric forms, up to 24 monomers.

The fusion phages according to the prior art are described to display monomeric fusion proteins, mainly because it was believed that binders of highest affinity could only be 40 selected from a library if single fusion proteins are displayed by the phagemid particles. Native proteins are however often assembled as a dimer or even at a higher degree of oligomerization. To obtain dimeric display with a single fusion protein, some techniques have been developed that involve 45 conditional stop codons located between the coat protein and the binding polypeptide (Dall'Acqua et al The Journal of Immunology, 2002, 169: 5171-5180). Thereby soluble monomers of the polypeptides in addition to those fused to the phage are expressed, thus enabling the formation of a 50 dimer. However, such stop codons requires propagation in specific suppressor host cells that may translate a stop codon in an amino acid, to provide an appropriate amount of fusion proteins in addition to the soluble binding polypeptides. WO 03/029456 describes the use of multi-chain eukaryotic dis- 55 play vectors for the selection of immunoglobulin Fab fragments on the surface of yeast cells.

Prior art fusion proteins involve in some cases linker sequences to display larger binding polypeptides. Linker sequences of up to 24 amino acids are usually employed for 60 standard purposes of displaying variable domains of an antibody. See for example, the display vector pCOMB3× (Hybrid. Hybridomics. 2003 April; 22(2):97-108. Development of functional human monoclonal single-chain variable fragment antibody against HIV-1 from human cervical B 65 cells. Berry J D, Rutherford J, Silverman G J, Kaul R, Elia M, Gobuty S, Fuller R, Plummer F A, Barbas C F.)

4

It is an object of this invention to provide an effective method for the preparation of oligomers of modular antibody domains and to prepare such oligomers displayed on the surface of a replicable genetic package.

BRIEF DESCRIPTION OF THE INVENTION

The objects are solved by the subject matter of the present invention.

According to the invention a method of preparing a genetic package displaying oligomers of modular antibody domains binding to a target and to a scaffold ligand comprising

providing a genetic package, and

displaying at least two of the antibody modular domains by fusing to the outer surface of the package is covered.

The genetic package can be displayed in a mobilized or cellular system, wherein according to the invention the mobilized system can be selected from viruses, phages, phagemids, in-vitro display systems, mRNA systems and ribosomal display systems. Alternatively, a cellular system can be selected using yeast, mammalian cells, bacterial cells, bacterial spores or insect cells.

Oligomers are possibly formed by oligomerization motifs associated with the structure of said agents, such as leucine zipper, disulfide bonds, electrostatic or hydrophobic motifs.

According to one embodiment of the invention the oligomers can be dimers, trimers or tetramers, involving the same type of monomers (homomers) or different types (heteromers). The preferred method according to the invention is specifically useful for providing homomers, in particular homodimers of oligonucleotides on a genetic package, such as a phagemid particle or a phage or yeast.

The method according to the invention can be applied to oligomers which are polypeptides with a target binding site that directs towards the surface of the genetic package and is close to said surface that are biologicals, such as polypeptides.

Alternatively, the appropriate design of such a polypeptide is employed with a binding site that is closer to the surface of the genetic package than to the surrounding environment of the genetic package. This may be advantageous for a binding polypeptide with a potential binding site that is closer to the C-terminus than to the N-terminus of the polypeptide, in particular when the binding site is engineered in a C-terminal loop position. When the potential binding site is engineered at a position that is adjacent to the site where the genetic package particle is bound, for instance to a surface structure of a cell or a virus, it is advantageous to choose a stable construct with defined accessibility of the binding partner of said binding agent. C-terminal loop positions are, for instance, less accessible than N-terminal loop positions, when they are fused to the N-terminus of the protein 3 of a filamentous phage because they are exposed and in sterical proximity to the genetic package.

According to a preferred embodiment of the invention, however, a defined structure, such as a true oligomeric or dimeric fusion protein is provided to enable the efficient engineering of the potential binding site at an N-terminal loop position. One embodiment of the invention refers to polypeptides with at least two target binding sites, possibly engineered at the monomeric or the oligomeric target binding agent. In some cases the interaction between the monomeric structures enables additional variations of structures and thus additional potential binding sites.

According to a preferred embodiment of the invention the modular antibody is an antibody, Fc fragment, an antibody fragment with a CDR region and combinations thereof, possibly also comprising a fragment with a binding site at a structural loop position.

It can also be an antibody fragment with a CDR region like for example Fab, dAb, scFv, diabody, unibody, SMIPs, TANDABS, Fc fusion proteins and combinations thereof.

In case the genetic package is a filamentous bacteriophage, the preferred fusion structure employed with a bacteriophage involves at least part of an outer surface protein, such as p3, p6, or p8, however, p9 or p10 may also be used for the purpose of the invention.

In case the genetic package is yeast it is preferred that the oligomer is a fusion protein comprising one of the proteins 15 of yeast cell surface receptors selected from the group consisting of alpha-agglutinin, a-agglutinin, Aga1p, Aga2p or FL01.

The appropriate genetic package is preferably provided in a particular form, and containing a vector encoding at least 20 one of said fusion proteins. According to the invention there is, for example, provided a cassette vector, containing sequences encoding one or more than one fusion protein operatively linked to the genetic package. Thus, at least two of the chimeric fusion proteins are bound at the surface of 25 the vector particle. The vector can be, for example, a phagemid.

An expression system for expressing oligomers of modular antibody domains bound at the surface of a genetic package produced according to the inventive method is also 30 covered wherein the oligomers are encoded by a single gene and the fusion protein is displayed with at least two copies on the surface of the genetic package.

By using the method and means according to the invention it is possible to display oligomers of modular antibodies 35 without the need of controlled expression of a soluble form of one of the oligomerization partners. The technique can be utilized for molecules such as antibody fragments, even those containing more than two immunoglobulin domains, e.g. at least four immunoglobulin domains. Thus difficult 40 constructs involving stop codons, such as amber stop codons, can be avoided. There will be no need to get a mixture of fusion proteins and soluble monomers for the dimer display. Thus, a preferred technique of managing mixtures of a variety of binding agents can easily be 45 employed, while the risk of insufficient matching of the monomers is reduced. It is also possible to avoid the suppressor strains as a host cell. Conventional host cells, with non-suppressor function, can serve in a standard way to propagate the oligomeric fusion proteins.

In another embodiment according to the invention, the fusion between the binding partner and the surface protein of the genetic package is such that no conditional stop codon (i.e. no amber, ochre, opal or other similar conditional stop codon) is present in between. In such a situation, upon 55 infection with helper phage, the binding partner is present only as a fusion protein and not in soluble form. In order for the dimer (trimer or higher) to form on the surface of the genetic package, the linker which connects the binding partner to the genetic package needs to be of sufficient length 60 and sufficient flexibility. Linkers that fulfil this requirement can be selected using the method described above.

In another embodiment according to the invention, a helper phage can be used that has specific properties that favour the display of more than one copy of the fusion 65 protein on the surface of the genetic package. An example for such a helper phage is the so-called hyperphage (Rondot

6

S, Koch J, Breitling F, Dubel S. A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol. 2001 January; 19(1):75-78), which itself is devoid of p3, and therefore depends totally on the p3 fusion protein provided by the phagmid in order to be infective. Using such helper phage leads preferentially to phage particles that carry more than one copies of the fusion protein on their surface, and thus favors the formation of dimers of the binding protein on the surface of the genetic package.

According to a preferred embodiment of the invention each of the fusion protein monomers are prepared in the context of an oligomer, so that the portion of soluble binding agents is less than 20%, more preferably less than 10%, most preferably less than 1%.

According to the inventive method a genetic package can be prepared preferably displaying at least two fusion proteins. In a specific embodiment each monomer of the inventive oligomer is bound to the outer surface of the genetic package. The invention also provides bivalent phage displaying two fusion proteins from oligomers each containing an oligomer that dimerizes upon expression.

A library of genetic packages is also claimed, which can exemplarily comprise at least 10 variant genetic packages, wherein said variant genetic packages can display heteromers of modular antibody domains. The heteromer can be based on a scaffold comprising a target binding site. According to a specific embodiment of the invention the target binding site and the scaffold binding site can be similar or identical. A scaffold ligand according to the invention can also be a CDR target. For example, the scaffold can be a parent Fab and at least 20%, preferably at least 30%, more preferred at least 40% of the parent Fab variants are binding to the CDR-target of said parent Fab.

The inventive library can also contain variants of the oligomer produced according to the invention having differences in the amino acid sequence.

This can be provided by modifying the amino acid sequences by at least one insertion or substitution to introduce at least one foreign amino acid, and by a deletion. Foreign amino acids can be introduced by a randomization technique. The foreign amino acids can also be selected from a specific group of amino acids to obtain a library enriched with specific amino acids at the randomized positions. When the foreign amino acids is selected from a specific group of amino acids, such as amino acids with specific polarity, or hydrophobicity, a library enriched in the specific group of amino acids at the randomized positions can be obtained according to the invention. Such libraries are also called "focused" libraries.

According to the invention there is further provided a method of selecting a linker for binding a polypeptide to the outer surface of a genetic package, comprising

- a. providing a library of genetic packages containing a variety of linkers to connect a first polypeptide to the genetic package,
- b. determining the member of the library containing a linker that does not significantly interfere with the function of said first polypeptide, and
- selecting said linker for connecting a second polypeptide to said genetic package.

Thereby suitable linkers to be used for fusion proteins of the same type can be obtained. By the same type of fusion proteins those are meant that link the same formats of genetic packages and binding agent to each other.

Such a method according to the invention can further be used to prepare enriched libraries containing a preselected group of linker variants that fulfil at least one selection

criterion, such as flexibility and sterical accessibility of the binding site to the binding partner. This can be determined by measuring the binding properties of a well-known binding agent in the presence of a variety of linker sequences. The enriched library may thus be further selected for another 5 criterion, such as protease resistance, which is e.g. important for the stability in a medium containing bacterial proteases.

The selected specific linker sequence can then be used to prepare libraries of fusion proteins of the same format, however, with variants of the binding agents, thus enabling the identification, selection and preparation of those agents with the best binding properties in predetermined test sys-

In a preferred embodiment according to the invention such a linker is at least 20 amino acids long, preferably at least 25 amino acid residues, more preferably at least 30 amino acid residues, up to 50 amino acid residues. Especially when amino acids such as Gly, Ser or Ala are involved, which are responsible for the flexibility of a linker, 20 such a linker is advantageously used for the display of a potential binding site, which is close to the surface of the genetic package and which potential binding site may not be able to bind to its partner for sterical reasons.

The linker between the protein to be displayed and the 25 anchor protein of the genetic package (in case of filamentous phage e.g. p3, p8, pX, pIX, pVII) is especially important if the potential binding site of the displayed molecule is in spatial vicinity of the phage particle. In antibody libraries utilizing variable domains and antigen binding sites formed by CDR-loops and display of the library members as aminoterminal fusion to p3 the potential antigen binding site is directed away from the phage particle. Therefore, the linker structure between library members and the phage coat protein is not important. Engineering the bottom loops of immunoglobulin domains and performing phage display may however be an inefficient process and decrease yields of antigen binding clones or even preclude it. Varying the linker between a library member protein and its fusion 40 partner on the surface can solve or may at least reduce this problem.

In order to select for optimal linker sequences (in terms of length and flexibility as well as stability) a library of linkers can be prepared in which the anchor protein at the surface of 45 the genetic replicable package is fused to a known binding protein which is for sterical reasons notoriously difficult to select for.

This library of sequences can be varied in length and amino acid content.

Selection methods of the linker library for optimal linkers depend on the application but basically it should be for selecting all properties one wishes to have in a certain methodology. Enrichment against an antigen that is difficult to select may yield linker sequences which allow library 55 antibody domains that are binding to a target and to a members a good access to the antigen. Incubation in protease solutions or under other harsh conditions or frequent passaging through host cells under proteolytic conditions (e.g. old microbial cultures) may be an appropriate selection for stable display linkers.

A library of linkers may be produced by any well known library technology. Synthetic linker sequence lengths may vary between 10-500 amino acids. Alternatively, linker can be complete proteins known to be of flexible nature.

The invention also provides a method of producing an 65 oligomer of modular antibody domains binding to a target comprising the steps of:

providing a library of oligomers of modular antibody domains produced according to the inventive method as described

contacting said library with said target in the presence of a scaffold ligand,

selecting a library member binding to said target in the presence of a scaffold ligand, and

manufacturing a preparation of the functional oligomer. The scaffold ligand can be selected from the group 10 consisting of an effector molecule, FcRn, serum albumin,

Protein A, Protein G, Protein L or a CDR target. As an example, the effector molecule can be selected from the group consisting of CD64, CD16, CD32, Fc receptors.

The oligomers can be dimers selected from the group of VH/VL, CH1/CL, CH2/CH2, CH3/CH3, Fc and Fab, or single chains thereof.

The method according to the invention can provide a library containing at least 10² independent clones expressing functional oligomers of modular antibody domains or variants thereof. The library member can then be selected according to the requested binding affinity, preferably it has a target binding affinity of Kd<10⁻⁸M. According to the invention it is also provided a pool of preselected independent clones, which is e.g. affinity maturated, which pool comprises preferably at least 10, more preferably at least 100, more preferably at least 1000, more preferably at least 10000, even more than 100000 independent clones. Those libraries, which contain the preselected pools, are preferred sources to select the high affinity modular antibodies according to the invention.

Preferably the library is a yeast library and the yeast host cell exhibits at the surface of the cell the oligomers with the biological activity. The yeast host cell is preferably selected from the genera Saccharomyces, Pichia, Hansenula, Schizisaccharomyces, Kluyveromyces, Yarrowia and Candida. Most preferred, the host cell is Saccharomyces cerevisiae.

According to a specific embodiment of the invention, the target is a receptor of the erbB class. In this case, by the method of the invention an immunoglobulin can be obtained that binds to a receptor of the erbB class.

The invention further provides a high quality library containing at least 10⁶ independent clones of functional dimers of modular antibody domains or variants thereof, or the pools of optimized or preselected clones, e.g. the affinity matured clones, which pools are containing at least 10 independent clones that are binding to a target and to a scaffold ligand. The target can be a ligand binding to a parent molecule subject to amino acid variation. The parent molecule can be a functional Fc or a functional Fab, or part 50 thereof.

According to a specific embodiment of the invention the parent molecules can be varied by random or site specific mutagenesis.

The library can contain functional dimers of modular scaffold ligand, and at least 20%, preferably at least 30%, more preferred at least 40% of the functional dimers are binding to CD64. This is particularly preferred with a modular antibody that contains CH2 domains, such as an Fc scaffold.

60

Alternatively, the library can contain functional dimers of modular antibody domains that are binding to a target and to a scaffold ligand, and at least 20%, preferably at least 30%, more preferred at least 40% of the functional dimers are binding to protein A. This is particularly preferred with a modular antibody that contains CH2 and CH3 domains, such as an Fc scaffold.

Alternatively, the library can contain functional dimers of modular antibody domains that are binding to a target and to a scaffold ligand, and at least 20%, preferably at least 30%, more preferred at least 40% of the functional dimers are binding to the same CDR target. This is particularly preferred with modular antibodies containing a variable region, such as an Fab scaffold with specificity to a single CDR target.

FIGURES

FIG. 1:

Schematic presentation of the PCRs used for production of the fragments used for assembly of the library FcabO1. PCR primers are indicated by arrows with their respective 15 5'-3' orientation, and vertical lines indicate the approximate positions of the introduced restriction sites which were used for assembly of the mutated gene. The restriction sites are contained on the primers for ligations of the PCR fragments.

FIG. 2:

Amino acid sequence and secondary structure of a CH3 domain (IMGT numbering). The randomization scheme is provided for the libraries FcabO1 to FcabO6.

Randomized positions in the AB and EF loop are marked with a circle. X stands for all 20 amino acids (encoded by 25 NNB), z only for Ala, Asp, Ser, Tyr (encoded by KMT; focused library).

DETAILED DESCRIPTION OF THE INVENTION

The oligomers of the modular antibody domains according to the present invention will be useful as stand-alone molecules, as well as fusion proteins or derivatives, most typically fused before or after modification in such a way as 35 to be part of larger structures, e.g. of complete antibody molecules, or parts thereof. Immunoglobulins or fusion proteins as produced according to the invention thus also comprise Fc fragments, Fab fragments, Fv fragments, single domain antibodies, single chain antibodies, in particular 40 single-chain Fv fragments, bior multispecific scFv, diabodies, unibodies, multibodies, multivalent or multimers of immunoglobulin domains and others. It will be possible to use the engineered proteins to produce molecules which are monospecific, bispecific, trispecific, and may even carry 45 more specificities. By the invention it is possible to control and preselect the valency of binding at the same time according to the requirements of the planned use of such molecules.

Specific terms as used throughout the specification have 50 the following meaning.

The term "immunoglobulin" as used according to the present invention is defined as polypeptides or proteins that may exhibit mono- or bi- or multi-specific, or mono-, bi- or multivalent binding properties, preferably at least two, more 55 preferred at least three specific binding sites for epitopes of e.g. antigens, effector molecules or proteins either of pathogen origin or of human structure, like self-antigens including cell-associated or serum proteins. The term immunoglobulin as used according to the invention also includes functional 60 fragments of an antibody, such as Fc, Fab, scFv, single chain dimers of CH1/CL domains, Fv, dimers like VH/VL, CH1/ CL, CH2/CH2, CH3/CH3, or other derivatives or combinations of the immunoglobulins, like single chains of pairs of immunoglobulin domains. The definition further includes domains of the heavy and light chains of the variable region (such as dAb, Fd, V1, Vk, Vh, VHH) and the constant region

10

or individual domains of an intact antibody such as CH1, CH2, CH3, CH4, C1 and Ck, as well as mini-domains consisting of at least two beta-strands of an immunoglobulin domain connected by a structural loop.

"Modular antibodies" as used according to the invention are defined as antigen-binding molecules, like human antibodies, composed of at least one polypeptide module or protein domain, preferably in the natural form. The term "modular antibodies" includes antigen-binding molecules
 that are either immunoglobulins, immunoglobulin-like proteins, or other proteins exhibiting modular formats and antigen-binding properties similar to immunoglobulins or antibodies, which can be used as antigen-binding scaffolds, preferably based on human proteins.

The term "immunoglobulin-like molecule" as used according to the invention refers to any antigen-binding protein, in particular to a human protein, which has a domain structure that can be built in a modular way. Immunoglobulin-like molecules as preferably used for the present invention are T-cell receptors (TCR), fibronectin, transferrin, CTLA-4, single-chain antigen receptors, e.g. those related to T-cell receptors and antibodies, antibody mimetics, adnectins, anticalins, phylomers, repeat proteins such as ankyrin repeats, avimers, VersabodiesTM, scorpio toxin based molecules, and other non-antibody protein scaffolds with antigen binding properties.

Ankyrin repeat (AR), armadillo repeat (ARM), leucinerich repeat (LRR) and tetratricopeptide repeat (TPR) proteins are the most prominent members of the protein class of repeat proteins. Repeat proteins are composed of homologous structural units (repeats) that stack to form elongated domains. The binding interaction is usually mediated by several adjacent repeats, leading to large target interaction surfaces.

Avimers contain A-domains as strings of multiple domains in several cell-surface receptors. Domains of this family bind naturally over 100 different known targets, including small molecules, proteins and viruses. Truncation analysis has shown that a target is typically contacted by multiple A-domains with each domain binding independently to a unique epitope. The avidity generated by combining multiple binding domains is a powerful approach to increase affinity and specificity, which these receptors have exploited during evolution

Anticalins are engineered human proteins derived from the lipocalin scaffold with defined binding properties typical for humanized antibodies. Lipocalins comprise 160-180 amino acids and form conical beta-barrel proteins with a ligand-binding pocket surrounded by four loops. Small hydrophobic compounds are the natural ligands of lipocalins, and different lipocalin variants with new compound specificities (also termed 'anticalins') could be isolated after randomizing residues in this binding pocket.

Single chain or single domain antigen receptors contain a single variable domain and are 20% smaller than camelid single domain antibodies.

Phylomers are peptides derived from biodiverse natural protein fragments.

It is understood that the term "modular antibody", "immunoglobulin", "immunoglobulin-like proteins" includes a derivative thereof as well. A derivative is any combination of one or more modular antibodies of the invention and or a fusion protein in which any domain or minidomain of the modular antibody of the invention may be fused at any position of one or more other proteins (such as other modular antibodies, immonoglobulins, ligands, scaffold proteins, enzymes, toxins and the like). A derivative of the

modular antibody of the invention may also be obtained by association or binding to other substances by various chemical techniques such as covalent coupling, electrostatic interaction, di-sulphide bonding etc. The other substances bound to the immunoglobulins may be lipids, carbohydrates, nucleic acids, organic and inorganic molecules or any combination thereof (e.g. PEG, prodrugs or drugs). A derivative would also comprise an antibody with the same amino acid sequence but made completely or partly from non-natural or chemically modified amino acids.

A "structural loop" or "non-CDR-loop" according to the present invention is to be understood in the following manner: modular antibodies, immunoglobulins or immunoglobulin-like substances are made of domains with a so 15 called immunoglobulin fold. In essence, strands of antiparallel beta sheets are connected by loops to form a compressed antiparallel beta barrel. In the variable region, some of the loops of the domains contribute essentially to the specificity of the antibody, i.e. the binding to an antigen by 20 the natural binding site of an antibody. These loops are called CDR-loops. The CDR loops are located within the CDR loop region, which may in some cases include also the variable framework region (called "VFR") that is adjacent to the CDR loops. It is known that VFRs may contribute to the 25 antigen binding pocket of an antibody, which generally is mainly determined by the CDR loops. Thus, those VFRs are considered as part of the CDR loop region, and would not be appropriately used for engineering new antigen binding sites. Contrary to those VFRs within the CDR loop region or 30 located proximal to the CDR loops, other VFRs of variable domains would be particularly suitable for use according to the invention. Those are the structural loops of the VFRs located opposite to the CDR loop region, or at the C-terminal side of a variable immunoglobulin domain.

The term "antigen" or "target" as used according to the present invention shall in particular include all antigens and target molecules capable of being recognised by a binding site of a modular antibody. Specifically preferred antigens as targeted by the receptor molecule according to the invention 40 are those antigens or molecules, which have already been proven to be or are capable of being immunologically or therapeutically relevant, especially those, for which a clinical efficacy has been tested.

The term "target" or "antigen" as used herein shall 45 comprise molecules selected from the group consisting of allergens, tumor associated antigens, self antigens including cell surface receptors, enzymes, Fc-receptors, FcRn, RSA, IgG, interleukins or cytokines, proteins of the complement system, transport proteins, serum molecules, bacterial antigens, fungal antigens, protozoan antigens and viral antigens, also molecules responsible for transmissible spongiform encephalitis (TSE), such as prions, infective or not, and markers or molecules that relate to inflammatory conditions, such as pro-inflammatory factors, multiple sclerosis or 55 alzheimer disease, or else haptens.

The term "cell surface antigens" shall include all antigens capable of being recognised by an antibody structure on the surface of a cell, and fragments of such molecules. Preferred cell surface antigens are those antigens, which have already 60 been proven to be or which are capable of being immunologically or therapeutically relevant, especially those, for which a preclinical or clinical efficacy has been tested. Those cell surface molecules are specifically relevant for the purpose of the present invention, which mediate cell killing 65 activity. Upon binding of the immunoglobulin according to the invention to preferably at least two of those cell surface

12

molecules the immune system provides for cytolysis or cell death, thus a potent means for attacking human cells may be provided.

The antigen is either recognized as a whole target molecule or as a fragment of such molecule, especially substructures of targets, generally referred to as epitopes.

Substructures of antigens are generally referred to as "epitopes" (e.g. B-cell epitopes, T-cell epitopes), as long as they are immunologically relevant, i.e. are also recognisable by natural or monoclonal antibodies. The term "epitope" as used herein according to the present invention shall mean a molecular structure which may completely make up a specific binding partner or be part of a specific binding partner to a binding site of a modular antibody or an immunoglobulin of the present invention. The term epitope may also refer to haptens. Chemically, an epitope may either be composed of a carbohydrate, a peptide, a fatty acid, an organic, biochemical or inorganic substance or derivatives thereof and any combinations thereof. If an epitope is a polypeptide, it will usually include at least 3 amino acids, preferably 8 to 50 amino acids, and more preferably between about 10-20 amino acids in the peptide. There is no critical upper limit to the length of the peptide, which could comprise nearly the full length of a polypeptide sequence of a protein. Epitopes can be either linear or conformational epitopes. A linear epitope is comprised of a single segment of a primary sequence of a polypeptide chain. Linear epitopes can be contiguous or overlapping. Conformational epitopes are comprised of amino acids brought together by folding of the polypeptide to form a tertiary structure and the amino acids are not necessarily adjacent to one another in the linear sequence. Specifically, epitopes are at least part of diagnostically relevant molecules, i.e. the absence or presence of an epitope in a sample is qualitatively or quantitatively correlated to either a disease or to the health status of a patient or to a process status in manufacturing or to environmental and food status. Epitopes may also be at least part of therapeutically relevant molecules, i.e. molecules which can be targeted by the specific binding domain which changes the course of the disease.

As used herein, the term "specifically binds" or "specific binding" refers to a binding reaction which is determinative of the cognate ligand of interest in a heterogeneous population of molecules. Thus, under designated conditions (e.g. immunoassay conditions), the modular antibody binds to its particular target and does not bind in a significant amount to other molecules present in a sample. The specific binding means that binding is selective in terms of target identity, high, medium or low binding affinity or avidity, as selected. Selective binding is usually achieved if the binding constant or binding dynamics is at least 10 fold different, preferably the difference is at least 100 fold, and more preferred a least 1000 fold.

The term "expression system" refers to nucleic acid molecules containing a desired coding sequence and control sequences in operable linkage, so that hosts transformed or transfected with these sequences are capable of producing the encoded proteins. In order to effect transformation, the expression system may be included on a vector; however, the relevant DNA may also be integrated into the host chromosome.

Alternatively, an expression system can be used for in vitro transcription/translation. The expression system preferably is employing a host cell that is either a eukaryotic or prokaryotic host cell, preferably a mammalian or yeast host cell, as well as a bacterial host cell.

The preferred expression system for the fusion proteins is a non-suppressor host cell, which would be sensitive to a stop codon, such as an amber stop codon, and would thus stop translation thereafter. In the absence of such a stop codon such non-suppressor host cells, preferably *E. coli*, are 5 preferably used. In the presence of such a stop codon supressor host cells would be used.

All numbering of the amino acid sequences of the immunoglobulins is according to the IMGT numbering scheme (IMGT, the international ImMunoGeneTics, Lefranc et al., 10 1999, Nucleic Acids Res. 27: 209-212).

For the purposes of this invention, the term "binding agent" or "ligand" refers to a member of a binding pair, in particular binding polypeptides having the potential of serving as a binding domain for a binding partner. Examples of 15 binding partners include pairs of binding agents with functional interactions, such as receptor binding to ligands, antibody binding to antigen or receptors, a drug binding to a target, and enzyme binding to a substrate

The term "fusion protein" or "chimeric fusion protein" as 20 used for the purpose of the invention shall mean the molecule composed of a genetic package, at least part of an outer surface structure, such as a coat protein or part thereof, optionally a linker sequence, and a binding agent. The fusion protein is encoded by a vector with the gene of the binding 25 agent and information to display a copy of the binding agent at the surface of the genetic package.

The term "cytotoxic activity" as used for the purpose of the invention shall mean the activity on effector cells resulting in activation of cytotoxic T-cells or on cells, which 30 mediate antibody-dependent cell cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) and/or antibody-dependent cellular phagocytosis (ADCP). Modular antibodies according to the invention thus kill antibody-coated target cells, which they optionally bind with their Fc receptors.

"Scaffold" shall mean a temporary framework either natural or artificial used to support the molecular structure of a polypeptide in the construction of variants or a repertoire of the polypeptide. It is usually a modular system of polypeptide domains that maintains the tertiary structure or the function of the parent molecule. Exemplary scaffolds are modular antibodies, which may be mutagenized to produce variants within said scaffold, to obtain a library.

The term 'scaffold ligand" as used for the purpose of the 45 invention shall mean a ligand that binds to a scaffold or the backbone of modular antibodies, thus determining the molecular structure or primary function and specificity of said modular antibody. In preferred cases the scaffold ligand is a functional ligand, mediating a biological function upon 50 binding, like an effector ligand. In an alternative embodiment the scaffold ligand is a functional ligand, which is a specific target bound by the CDR region, non-structural loop region or structural loop region. The same scaffold ligand can bind many variants of a modular antibody regardless of 55 their target specificities. In general, the presence of scaffold ligand binding site indicates that the variant is expressed and folded correctly. Thus, binding of the scaffold ligand to its binding site provides a method for preselecting functional polypeptides from a repertoire of polypeptides. Designing 60 variants of modular antibodies that keep the binding property to a scaffold ligand avoids the preparation of variants that are non-functional, for example as a result of the introduction of mutations, folding mutants or expression mutants which would be or are incapable of binding to 65 substantially any target or effector ligand. Such non-functional mutants sometimes are generated by the normal

14

randomisation and variation procedures employed in the construction of polypeptide repertoires. Providing functional mutants that bind to a scaffold ligand permits the person skilled in the art to prepare a library of modular antibodies which is enriched in functional, well folded and highly expressed library members.

The term "effector ligand" as used for the purpose of the invention shall mean a ligand mediating effector functions, like an effector molecule. Exemplary effector ligands are Pc receptors or Pc receptor-like molecules interfering with immunoglobulins. An Pc receptor is a protein found on the surface of certain cells-including natural killer cells, macrophages, neutrophils, and mast cells—that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc (Fragment-crystallizable) region. Pc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated cellular phagocytosis (ADCP) or antibody-dependent cell-mediated cytotoxicity (ADCC). There are several different types of Pc receptors, which are classified based on the type of antibody that they recognize; those that bind the most common class of antibody, IgG, are called Pc-gamma receptors (FcyR), those that bind IgA are called Pc-alpha receptors (FcaR) and those that bind IgE are called Pc-epsilon receptors (FcER). Equivalent to an effector ligand and thus incorporated into the definition is any surrogate ligand that recognizes the same or similar binding site within the modular antibody, such as Protein A.

All FcyRs belong to the immunoglobulin superfamily and are the most important Fc receptors for inducing phagocytosis of opsonized (coated) microbes. This family includes several members that differ in their antibody affinities due to their different molecular structure: FcyRI (CD64), FcyRIIA (CD32a), FcyRIIB (CD32b), FcyRIIIA (CD16a), FcyRIIB (CD16b. For instance, FcyRI binds to IgG more strongly than FcyRII and FcyRIII, and has an extracellular portion composed of three immunoglobulin (Ig)-like domains, one more domain than FcyRII and FcyRIII. These properties allow activation of FcyRI by a sole IgG molecule (or monomer), while the latter two Fcy receptors must bind multiple IgG molecules within an immune complex to be activated.

Another FcR is expressed on multiple cell types and is similar in structure to MHC class I. This receptor also binds IgG and is involved in preservation of this antibody in order to increase its biological half-life in vivo. However, since this Fc receptor is also involved in transferring IgG from a mother either via the placenta to her fetus or in milk to her suckling infant, it is called the neonatal Fc receptor (FcRn). Recently this receptor has been implicated in being involved in homeostasis of IgG serum levels.

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) is a mechanism of cell-mediated immunity whereby an effector cell of the immune system actively lyses a target cell that has been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection. Classical ADCC is mediated by natural killer (NK) cells; monocytes and eosinophils can also mediate ADCC. For example Eosinophils can kill certain parasitic worms known as helminths through ADCC. ADCC is part of the adaptive immune response due to its dependence on a prior antibody response.

The term "foreign" in the context of amino acids shall mean the newly introduced amino acids being naturally

occurring, but foreign to the site of modification, or substitutes of naturally occurring amino acids. "Foreign" with reference to an antigen binding sites means that the antigen binding site is not naturally formed by the specific binding region of the agent, and a foreign binding partner, but not the 5 natural binding partner of the agent, is bound by the newly engineered binding site.

The term "variable binding region" sometimes called CDR region" as used herein refers to molecules with varying structures capable of binding interactions with antigens. Those molecules can be used as such or integrated within a larger protein, thus forming a specific region of such protein with binding function. The varying structures can be derived from natural repertoires of binding proteins such as immunoglobulins or phylomers or synthetic diversity, 15 including repeat-proteins, avimers and anticalins. The varying structures can as well be produced by randomization techniques, in particular those described herein. These include mutagenized CDR or non-CDR regions, loop regions of immunoglobulin variable domains or constant 20

Modified binding agents with different modifications at specific sites are referred to as "variants". Variants of a scaffold are preferably grouped to form libraries of binding agents, which can be used for selecting members of the 25 library with predetermined functions. In accordance therewith, a loop region of a binding agent comprising positions within one or more loops potentially contributing to a binding site, is preferably mutated or modified to produce libraries, preferably by random, semi-random or, in particular, by site-directed random mutagenesis methods, in particular to delete, exchange or introduce randomly generated inserts into loops, preferably into structural loops. Alternatively preferred is the use of combinatorial approaches. Any of the known mutagenesis methods may be employed, 35 among them cassette mutagenesis. These methods may be used to make amino acid modifications at desired positions of the immunoglobulin of the present invention. In some cases positions are chosen randomly, e.g. with either any of acids to randomize loop sequences, or amino acid changes are made using simplistic rules. For example all residues may be mutated preferably to specific amino acids, such as alanine, referred to as amino acid or alanine scanning. Such methods may be coupled with more sophisticated engineer- 45 ing approaches that employ selection methods to screen higher levels of sequence diversity.

The preferred cytotoxic modular antibody according to the invention with a molecular weight of less than 60 kD or up to 60 kD has a small size as compared to full length 50 antibodies. The preferred size is up to 55 kD. Modular antibody single domains usually have a molecular size of 10-15 kD, thus a molecule based on 4 modular antibody domains would have a molecular size of 40-60 kD, depending on the glycosylation or any additional conjugation of 55 pharmacologically active substances, like toxins or peptides.

The preferred format is an oligomer, composed of modular antibody domains, preferably up to 4 domains, more preferred 3 domains, and even more preferred made up of 2 domains. Formats based on the combination of 5 modular 60 antibody domains or more are commonly thought not to exert the specific advantages of small sized antibody fragments, which are e.g. ease of expression in various expression systems and tissue penetration.

It is feasible to provide the preferred modular antibody of 65 the invention as a single domain antibody. However, antibody domains tend to dimerize upon expression, either as a

16

homodimer, like an Fc, or a heterodimer, like an Fab. The dimeric structure is thus considered as a basis for the preferred stable molecule. The preferred dimers of immunoglobulin domains are selected from the group consisting of single domain dimers, like VH/VL, CH1/CL (kappa or lambda), CH2/CH2 and CH3/CH3. Dimers or oligomers of modular antibody domains can also be provided as single chain or two chain molecules, in particular those linking the C-terminus of one domain to the N-terminus of another.

Binding partners are agents that specifically bind to one another, usually through non-covalent interactions. Examples of binding partners include pairs of binding agents with functional interactions, such as receptor binding to ligands, antibody binding to antigen, a drug binding to a target, and enzyme binding to a substrate. Binding partners have found use in many therapeutic, diagnostic, analytical and industrial applications. Most prominent binding partners, also called binding pairs, are antibodies or immunoglobulins, fragments or derivatives thereof. In most cases the binding of such binding agents is required to mediate a biological effect or a function, a "functional interaction".

According to a specific embodiment of the present invention the binding agent is an immunoglobulin of human or murine origin, and may be employed for various purposes, in particular in pharmaceutical compositions. Of course, the modified immunoglobulin may also be a humanized or chimeric immunoglobulin.

The binding agent which is a human immunoglobulin is preferably selected or derived from the group consisting of IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4 and IgM. The murine immunoglobulin binding agent is preferably selected or derived from the group consisting of IgA, IgD, IgE, IgG1, IgG2A, IgG2B, IgG2C, IgG3 and IgM.

Such a binding agent comprises preferably a heavy and/or light chain or a part thereof. A modified immunoglobulin according to the invention may comprise a heavy and/or light chain, at least one variable and/or constant domain, or a part thereof including a minidomain.

A constant domain is an immunoglobulin fold unit of the the possible amino acids or a selection of preferred amino 40 constant part of an immunoglobulin molecule, also referred to as a domain of the constant region (e.g. CH1, CH2, CH3, CH4, Ck, Cl).

> A variable domain is an immunoglobulin fold unit of the variable part of an immunoglobulin, also referred to as a domain of the variable region (e.g. Vh, Vk, V1, Vd)

> An exemplary modular antibody according to the invention consists of a constant domain selected from the group consisting of CH1, CH2, CH3, CH4, Igk-C, Igl-C, combinations, derivatives or a part thereof including a minidomain, with at least one loop region, and is characterised in that said at least one loop region comprises at least one amino acid modification forming at least one modified loop region, wherein said at least one modified loop region binds specifically to at least one epitope of an antigen.

> Another modular antibody according to the invention can consist of a variable domain of a heavy or light chain, combinations, derivatives or a part thereof including a minidomain, with at least one loop region, and is characterised in that said at least one loop region comprises at least one amino acid modification forming at least one modified loop region, wherein said at least one modified loop region binds specifically to at least one epitope of an antigen.

> The modular antibody according to the present invention may comprise one or more domains (e.g. at least two, three, four, five, six, ten domains). If more than one domain is present in the modular antibody these domains may be of the same type or of varying types (e.g. CH1-CH1-CH2, CH3-

CH3, (CH2)2-(CH3)2, with or without the hinge region). Of course also the order of the single domains may be of any kind (e.g. CH1-CH3-CH2, CH4-CH1-CH3-CH2).

17

The invention preferably refers to parts of antibodies, such as IgG, IgA, IgM, IgD, IgE and the like. The modular 5 antibodies of the invention may also be a functional antibody fragment such as Fab, Fab2, scFv, Fv, Fc, FcabTM, an antigen-binding Fc, or parts thereof, or other derivatives or combinations of the immunoglobulins such as minibodies, domains of the heavy and light chains of the variable region 10 (such as dAb, Fd (binding site made up of one or more single domains), VL, including Vlambda (V1) and Vkappa (Vk), VH, VHH) as well as mini-domains consisting of two beta-strands of an immunoglobulin domain connected by at least two structural loops, as isolated domains or in the 15 context of naturally associated molecules. A particular embodiment of the present invention refers to the Fc fragment of an antibody molecule, either as antigen-binding Fc fragment (FcabTM) through modifications of the amino acid sequence or as conjugates or fusions to receptors, peptides 20 or other antigen-binding modules, such as scFv.

The modular antibodies can be used as isolated polypeptides or as combination molecules, e.g. through recombination, fusion or conjugation techniques, with other peptides or polypeptides. The peptides are preferably homologous to 25 immunoglobulin domain sequences, and are preferably at least 5 amino acids long, more preferably at least 10 or even at least 50 or 100 amino acids long, and constitute at least partially the loop region of the immunoglobulin domain. The preferred binding characteristics relate to predefined epitope 30 binding, affinity and avidity.

The modular antibody according to the invention is possibly further combined with one or more modified modular antibodies or with unmodified modular antibodies, or parts thereof, to obtain a combination modular antibody. Combinations are preferably obtained by recombination techniques, but also by binding through adsorption, electrostatic interactions or the like, or else through conjugation or chemical binding with or without a linker. The preferred linker sequence is either a natural linker sequence or a 40 functionally suitable artificial sequence.

In general the modular antibody according to the invention may be used as a building block to molecularly combine other modular antibodies or biologically active substances or molecules. It is preferred to molecularly combine at least 45 one antibody binding to the specific partner via the variable or non-variable sequences, like structural loops, with at least one other binding molecule which can be an antibody, antibody fragment, a soluble receptor, a ligand or another antibody domain, or a binding moiety thereof. Other combinations refer to proteinaceous molecules, nucleic acids, lipids, organic molecules and carbohydrates.

The engineered molecules according to the present invention will be useful as stand-alone proteins as well as fusion proteins or derivatives, most typically fused in such a way 55 as to be part of larger antibody structures or complete antibody molecules, or parts or fragments thereof, such as Fab fragments, Fc fragments, Fv fragments and others. It will be possible to use the engineered proteins to produce molecules which are monospecific, bispecific, trispecific, and maybe even carry more specificities at the same time, and it will be possible at the same time to control and preselect the valency of binding at the same time according to the requirements of the planned use of such molecules.

According to the present invention, the modular antibody 65 optionally exerts one or more binding regions to antigens, including the binding site binding specifically to the cell

18

surface target and the binding sites mediating effector function. Antigen binding sites to one or more antigens may be presented by the CDR-region or any other natural receptor binding structure, or be introduced into a structural loop region of an antibody domain, either of a variable or constant domain structure. The antigens as used for testing the binding properties of the binding sites may be naturally occurring molecules or chemically synthesized molecules or recombinant molecules, either in solution or in suspension, e.g. located on or in particles such as solid phases, on or in cells or on viral surfaces. It is preferred that the binding of an immunoglobulin to an antigen is determined when the antigen is still adhered or bound to molecules and structures in the natural context. Thereby it is possible to identify and obtain those modified immunoglobulins that are best suitable for the purpose of diagnostic or therapeutic use.

Modular antibody or immunoglobulin domains may be modified according to the present invention (as used herein the terms immunoglobulin and antibody are interchangeable) which modifications are preferably effected in immunoglobulin domains or parts thereof that contain a loop, either a CDR-loop or a non-CDR loop, structural loops being the preferred sites of modifications or mutagenesis. In some cases it is preferable to use a defined modified structural loop or a structural loop region, or parts thereof, as isolated molecules for binding or combination purposes.

It is particularly preferred that the modular antibody according to the invention is binding to said cell surface target through at least part of a structural loop and/or CDR loop.

In an alternate embodiment it is preferred that the modular antibody according to the invention is binding to said effector ligand, or a surrogate ligand for such an effector ligand, like protein A, through at least part of a structural loop and/or CDR loop, thus mediating the effector function.

In a preferred embodiment the binding agent is binding with its native or modified binding structure or newly formed binding site, specifically to at least two such epitopes that are identical or differ from each other, either of the same antigen or of different antigens.

In a preferred domain structure of a binding agent it is preferred to modify at least one loop region resulting in a substitution, deletion and/or insertion of one or more nucleotides or amino acids, preferably a point mutation, or even the exchange of whole loops, more preferred the change of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15, up to 30 amino acids. Thereby the modified sequence comprises amino acids not included in the conserved regions of the loops, the newly introduced amino acids being naturally occurring, but foreign to the site of modification, or substitutes of naturally occurring amino acids.

However, the maximum number of amino acids inserted into a loop region of a binding agent preferably may not exceed the number of 30, preferably 25, more preferably 20 amino acids at a maximum. The substitution and the insertion of the amino acids occurs preferably randomly or semi-randomly using all possible amino acids or a selection of preferred amino acids for randomization purposes, by methods known in the art and as disclosed in the present patent application.

The site of modification may be at a specific single loop or a loop region, in particular a structural loop or a structural loop region. A loop region usually is composed of at least one, preferably at least two, preferably at least 3 or at least 4 loops that are at the tip or the bottom of a domain, in proximity or adjacent to each other, and which may contribute to the binding of an antigen through forming an

antigen binding site or antigen binding pocket. It is preferred that the one or more sites of modification are located within the area of 10 amino acids, more preferably within 20, 30, 40, 50, 60, 70, 80, 90 up to 100 amino acids, in particular within a structural region to form a surface or pocket where 5 the antigen can sterically access the loop regions.

In this regard the preferred modifications are engineered in the loop regions of CH1, CH2, CH3 and CH4, in particular in the range of amino acids 7 to 21, amino acids 25 to 39, amino acids 41 to 81, amino acids 83 to 85, amino 10 acids 89 to 103 and amino acids 106 to 117.

In another preferred embodiment a modification in the structural loop region comprising amino acids 92 to 98 is combined with a modification in the structural loop region comprising amino acids 8 to 20.

The above identified amino acid regions of the respective immunoglobulins comprise loop regions to be modified. Preferably, a modification in the structural loop region comprising amino acids 92 to 98 is combined with a modification in one or more of the other structural loops.

In a preferred embodiment a modification in the structural loop region comprising amino acids 92 to 98 is combined with a modification in the structural loop region comprising amino acids 41 to 45.2.

Most preferably each of the structural loops comprising 25 amino acids 92 to 98, amino acids 41 to 45.2 and amino acids 8 to 20 contain at least one amino acid modification.

In another preferred embodiment each of the structural loops comprising amino acids 92 to 98, amino acids 41 to 45.2, and amino acids 8 to 20 contain at least one amino acid 30 modification.

According to another preferred embodiment the amino acid residues in the area of positions 15 to 17, 29 to 34, 41 to 45.2, 84 to 85, 92 to 100, and/or 108 to 115 of CH3 are modified.

The preferred modifications of Igk-C and Igl-C of human origin are engineered in the loop regions in the area of amino acids 8 to 20, amino acids 26 to 36, amino acids 41 to 82, amino acids 83 to 88, amino acids 92 to 100, amino acids 107 to 124 and amino acids 123 to 126.

The preferred modifications of loop regions of Igk-C and Igl-C of murine origin are engineered at sites in the area of amino acids 8 to 20, amino acids 26 to 36, amino acids 43 to 79, amino acids 83 to 85, amino acids 90 to 101, amino acids 108 to 116 and amino acids 122 to 126.

Another preferred immunoglobulin preferably used as a therapeutic according to the invention consists of a variable domain of a heavy or light chain, or a part thereof including a minidomain, with at least one loop region, preferably a structural loop region, and is characterised in that said at 50 least one loop region comprises at least one amino acid modification forming at least one modified loop region, wherein said at least one modified loop region forms a relevant binding site as described above.

According to a specific embodiment the immunoglobulin 55 preferably used according to the invention may contain a modification within the variable domain, which is selected from the group of VH, Vkappa, Vlambda, VHH and combinations thereof. More specifically, they comprise at least one modification within amino acids 7 to 22, amino acids 39 to 55, amino acids 66 to 79, amino acids 77 to 89 or amino acids 89 to 104, where the numbering of the amino acid position of the domains is that of the IMGT.

In a specific embodiment, the immunoglobulin preferably used according to the invention is characterised in that the 65 loop regions of VH or Vkappa or Vlambda of human origin comprise at least one modification within amino acids 7 to

20

22, amino acids 43 to 51, amino acids 67 to 77, amino acids 77 to 88, and amino acids 89 to 104, most preferably amino acid positions 12 to 17, amino acid positions 45 to 50, amino acid positions 68 to 77, amino acids 79 to 88, and amino acid positions 92 to 99, where the numbering of the amino acid position of the domains is that of the IMGT.

The structural loop regions of the variable domain of the immunoglobulin of human origin, as possible selected for modification purposes are preferably located in the area of amino acids 8 to 20, amino acids 44 to 50, amino acids 67 to 76, amino acids 78 to 87, and amino acids 89 to 101.

According to a preferred embodiment the structural loop regions of the variable domain of the immunoglobulin of murine origin as possible selected for modification purposes are preferably located in the area of amino acids 6 to 20, amino acids 43 to 52, amino acids 67 to 79, amino acids 79 to 87, and amino acids 91 to 100.

The immunoglobulin preferably used as a therapeutic
20 according to the invention may also be of camelid origin.
Camel antibodies comprise only one heavy chain and have
the same antigen affinity as normal antibodies consisting of
light and heavy chains. Consequently camel antibodies are
much smaller than, e.g., human antibodies, which allows
25 them to penetrate dense tissues to reach the antigen, where
larger proteins cannot. Moreover, the comparative simplicity, high affinity and specificity and the potential to reach and
interact with active sites, camel's heavy chain antibodies
present advantages over common antibodies in the design,
30 production and application of clinically valuable compounds.

According to another preferred embodiment of the present invention the structural loop regions of a modular antibody or an immunoglobulins of camelid origin are modified, e.g. within a VHH, in the region of amino acids 7 to 19, amino acids 43 to 55, amino acids 68 to 76, amino acids 80 to 87 and amino acids 91 to 101.

The preferred method of producing the modular antibody according to the invention refers to engineering a modular antibody that is binding specifically to at least one first epitope and comprising modifications in each of at least two structural loop regions, and determining the specific binding of said at least two loop regions to at least one second epitope, wherein the unmodified structural loop region (non-CDR region) does not specifically bind to said at least one second epitope. Thus, an antibody or antigen-binding structure specific for a first antigen may be improved by adding another valency or specificity against a second antigen, which specificity may be identical, either targeting different epitopes or the same epitope, to increase valency or to obtain bi-, oligo- or multispecific molecules.

On the other hand it is preferred to make use of those modular antibodies that contain native structures interacting with effector molecules or immune cells. Those native structures either remain unchanged or are modulated for an increased effector function. Binding sites for e.g. Fc receptors are described to be located in a CH2 and/or CH3 domain region, and may be mutagenized by well known techniques.

ADCC, antibody-dependent cell-mediated cytotoxicity is the killing of antibody-coated target cells by cells with Fc receptors that recognize the constant region of the bound antibody. Most ADCC is mediated by NK cells that have the Fc receptor FcgammaRIII or CD16 on their surface. Typical assays employ target cells, like Ramos cells, incubated with serially diluted antibody prior to the addition of freshly isolated effector cells. The ADCC assay is then further incubated for several hours and % cytotoxicity detected.

Usually the Target: Effector ratio is about 1:16, but may be 1:1 up to 1:50.

Complement-dependent cytotoxicity (CDC) is a mechanism of killing cells in which antibody bound to the target cell surface fixes complement, which results in assembly of the membrane attack complex that punches holes in the target cell membrane resulting in subsequent cell lysis. The commonly used CDC assay follows the same procedure as for ADCC determination, however, with complement containing serum instead of effector cells.

The cytotoxic activity as determined by either of ADCC and CDC assay is proven for a modular antibody according to the invention, if there is a significant increase in the percentage of cytolysis as compared to a control The absolute percentage increase preferably is higher than 5%, more preferably higher than 10%, even more preferred higher than 20%.

The antibody-dependent cellular phagocytosis, ADCP sometimes called ADPC, is usually investigated side by side 20 with cytolysis of cultured human cells. Phagocytosis by phagocytes, usually human monocytes or monocyte-derived macrophages, as mediated by an antibody can be determined as follows. Purified monocytes may be cultured with cytokines to enhance expression of FcyRs or to induce differentiation into macrophages. ADCP and ADCC assays are then performed with target cells. Phagocytosis is determined as the percentage of positive cells measured by flow cytometry. The positive ADCP activity is proven with a significant uptake of the antibody-antigen complex by the phagocytes. 30 The absolute percentage preferably is higher than 5%, more preferably higher than 10%, even more preferred higher than 20%.

In a typical assay PBMC or monoycytes or monocyte derived macrophages are resuspended in RF2 medium 35 (RPMI 1640 supplemented with 2% FCS) in 96-well plates at a concentration of 1×10⁵ viable cells in 100 ml/well. Appropriate target cells, expressing the target antigen, e.g. Her2/neu antigen and SKBR3 cells, are stained with PKH2 green fluorescence dye. Subsequently 1×10⁴ PKH2-labeled 40 target cells and an Her 2 specific (IgG1) antibody (or modular antibody) or mouse IgG1 isotype control (or modular antibody control) are added to the well of PBMC's in different concentrations (e.g. 1-100 pg/ml) and incubated in a final volume of 200 ml at 37° C. for 24 h. Following the 45 incubation, PBMCs or monoycytes or monocyte derived macrophages and target cells are harvested with EDTA-PBS and transferred to 96-well V-bottomed plates. The plates are centrifuged and the supernatant is aspirated. Cells are counterstained with a 100-ml mixture of RPE-conjugated anti- 50 CD11b, anti-CD14, and human IgG, mixed and incubated for 60 min on ice. The cells are washed and fixed with 2% formaldehyde-PBS. Two-color flow cytometric analysis is performed with e.g. a FACS Calibur under optimal gating. PKH2-labeled target cells (green) are detected in the FL-1 55 channel (emission wavelength, 530 nm) and RPE-labeled PBMC or monocytes or monocyte derived macrophages (red) are detected in the FL-2 channel (emission wavelength, 575 nm). Residual target cells are defined as cells that are PKH2+/RPE- Dual-labeled cells (PKH2+/RPE-) are con- 60 sidered to represent phagocytosis of targets by PBMC or monoycytes or monocyte derived macrophages. Phagocytosis of target cells is calculated with the following equation: percent phagocytosis=100×[(percent dual positive)/(percent dual positive+percent residual targets)]. All tests are usually performed in duplicate or triplicate and the results are expressed as mean 6 SD.

22

The effector function of the modular antibody according to the invention usually differs from any synthetic cytotoxic activity, e.g. through a toxin that may be conjugated to an immunoglobulin structure. Toxins usually do not activate effector molecules and the biological defence mechanism. Thus, the preferred cytotoxic activity of the modular antibodies according to the invention is a biological cytotoxic activity, which usually is immunostimulatory, leading to effective cytolysis.

The modular antibody according to the invention may specifically bind to any kind of binding molecules or structures, in particular to antigens, proteinaceous molecules, proteins, peptides, polypeptides, nucleic acids, glycans, carbohydrates, lipids, organic molecules, in particular small organic molecules, anorganic molecules, or combinations or fusions thereof, including PEG, prodrugs or drugs. The preferred modular antibody according to the invention may comprise at least two loops or loop regions whereby each of the loops or loop regions may specifically bind to different molecules or epitopes.

Preferably the target antigen is selected from cell surface antigens, including receptors, in particular from the group consisting of erbB receptor tyrosine kinases (such as EGFR, HER2, HER3 and HER4, in particular those epitopes of the extracellular domains of such receptors, e.g. the 4D5 epitope), molecules of the TNF-receptor superfamily, such as Apo-1 receptor, TNFR1, TNFR2, nerve growth factor receptor NGFR, CD40, T-cell surface molecules, T-cell receptors, T-cell antigen 0×40, TACI-receptor, BCMA, Apo-3, DR4, DR5, DR6, decoy receptors, such as DcR1, DcR2, CAR1, HVEM, GITR, ZTNFR-5, NTR1, TNFL1 but not limited to these molecules, B-cell surface antigens, such as CD10, CD19, CD20, CD21, CD22, antigens or markers of solid tumors or hematologic cancer cells, cells of lymphoma or leukaemia, other blood cells including blood platelets, but not limited to these molecules.

According to a further preferred embodiment the target antigen is selected from those antigens presented by cells, like epithelial cells, cells of solid tumors, infected cells, blood cells, antigen-presenting cells and mononuclear cells. Those target antigens expressed or overexpressed by cells are preferably targeted, which are selected from the group consisting of tumor associated antigens, in particular EpCAM, tumor-associated glycoprotein-72 (TAG-72), tumor-associated antigen CA 125, Prostate specific membrane antigen (PSMA), High molecular weight melanomaassociated antigen (HMW-MAA), tumor-associated antigen expressing Lewis Y related carbohydrate, Carcinoembryonic antigen (CEA), CEACAM5, HMFG PEM, mucin MUC1, MUC18 and cytokeratin tumor-associated antigen, bacterial antigens, viral antigens, allergens, allergy related molecules IgE, cKIT and Fc-epsilon-receptor1, IRp60, IL-5 receptor, CCR3, red blood cell receptor (CR1), human serum albumin, mouse serum albumin, rat serum albumin, Fc receptors, like neonatal Fc-gamma-receptor FcRn, Pc-gamma-receptors Pc-gamma RI, Pc-gamma-Rh, Pc-gamma Rill, Pcalpha-receptors, Pc-epsilon-receptors, lysozyme, toll-like receptor 9, erythropoietin, CD2, CD3, CD3E, CD4, CD11, CD11a, CD14, C016, CD18, CD19, CD20, CD22, CD23, CD25, CD28, CD29, CD30, CD32, CD33 (p67 protein), CD38, CD40, CD40L, CD52, CD54, CD56, CD64, CD80, CD147, GD3, IL-1, IL-1R, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-6R, IL-8, IL-12, IL-15, IL-17, IL-18, IL-23, LIE, CSM, interferon alpha, interferon beta, interferon gamma; TNF-alpha, TNFbeta2, TNFalpha, TNFalphabeta, TNF-R1, TNF-RII, FasL, CD27L, CD30L, 4-1BBL, TRAIL, RANKL, TWEAK, APRIL, BAFF,

LIGHT, VEG1, OX4OL, TRAIL Receptor-1, Al Adenosine Receptor, Lymphotoxin Beta Receptor, TACI, BAFF-R, EPO; LFA-3, ICAM-1, ICAM-3, integrin beta1, integrin beta2, integrin alpha4/beta7, integrin alpha2, integrin alpha3, integrin alpha4, integrin alpha5, integrin alpha6, integrin alphav, alphaVbeta3 integrin, FGFR-3, Keratinocyte Growth Factor, GM-CSF, M-CSF, RANKL, VLA-1, VLA-4, L-selectin, anti-Id, E-selectin, HLA, HLA-DR, CTLA-4, T cell receptor, B7-1, 87-2, VNRintegrin, TGEbeta1, TGFbeta2, eotaxin1, BLyS (B-lymphocyte Stimulator), complement C5, IgE, IgA, IgD, IgM, IgG, factor VII, CBL, NCA 90, EGFR (ErbB-1), Her2/neu (ErbB2), Her3 (ErbB-3), Her4 (ErbB4), Tissue Factor, VEGF, VEGFR, endothelin receptor, VLA-4, carbohydrates such as blood group antigens and related carbohydrates, Galili-Glycosylation, Gastrin, Gastrin receptors, tumor associated carbohydrates, Hapten NP-cap or NIP-cap, T cell receptor alpha/ beta, E-selectin, P-glycoprotein, MRP3, MRP5, glutathione-S-transferase pi (multi drug resistance proteins), alpha- 20 granule membrane protein (GMP) 140, digoxin, placental alkaline phosphatase (PLAP) and testicular PLAP-like alkaline phosphatase, transferrin receptor, Heparanase I, human cardiac myosin, Glycoprotein IIb/IIIa (GPIIb/IIIa), human cytomegalovirus (HCMV) gH envelope glycoprotein, HIV gp120, HCMV, respiratory syncital virus RSV F, RSVF Fgp, VNRintegrin, Hep B gp120, CMV, gpIIbIIIa, HIV IIIB gp120 V3 loop, respiratory syncytial virus (RSV) Fgp, Herpes simplex virus (HSV) gD glycoprotein, HSV gB glycoprotein, 30 glycoprotein, HCMV gB envelope

Preferred modular antibodies according to the invention are binding said target antigen with a high affinity, in particular with a high on and/or a low off rate, or a high avidity of binding. Usually a binder is considered a high 35 affinity binder with a Kd of $<10^{-9}$ M. Medium affinity binders with a Kd of less than 10^{-6} up to 10^{-9} M may be provided according to the invention as well, preferably in conjunction with an affinity maturation process.

Clostridium perfringens toxin and fragments thereof.

Affinity maturation is the process by which antibodies 40 with increased affinity for antigen are produced. With structural changes of an antibody, including amino acid mutagenesis or as a consequence of somatic mutation in immunoglobulin gene segments, variants of a binding site to an antigen are produced and selected for greater affinities. 45 Affinity matured modular antibodies may exhibit a several logfold greater affinity than a parent antibody. Single parent antibodies may be subject to affinity maturation. Alternatively pools of modular antibodies with similar binding affinity to the target antigen may be considered as parent 50 structures that are varied to obtain affinity matured single antibodies or affinity matured pools of such antibodies.

The preferred affinity maturated variant of a modular antibody according to the invention exhibits at least a 10 fold increase in affinity of binding, preferably at least a 100 fold 55 increase. The affinity maturation may be employed in the course of the selection campaigns employing respective libraries of parent molecules, either with modular antibodies having medium binding affinity to obtain the modular antibody of the invention having the specific target binding property of a Kd<10⁻⁸ M and/or a potency of IC50<10⁻⁸ M. Alternatively, the binding potency or affinity may be even more increased by affinity maturation of the modular antibody according to the invention to obtain the high values corresponding to a Kd or IC50 of less than 10⁻⁹ M, preferably less than 10⁻¹⁰ M or even less than 10⁻¹¹ M, most preferred in the picomolar range.

24

The IC50, also called 50% saturation concentration, is a measure for the binding potency of a modular antibody. It is the molar concentration of a binder, which produces 50% of the maximum possible binding at equilibrium or under saturation. The potency of an antagonist is usually defined by its IC50 value. This can be calculated for a given antagonist by determining the concentration of antagonist needed to elicit half saturation of the maximum binding of an agonist. Elucidating an IC50 value is useful for comparing the potency of antibodies or antibody variants with similar efficacies; however the dose-response curves produced by both drug antagonists must be similar. The lower the IC50, the greater the potency of the antagonist, and the lower the concentration of drug that is required to inhibit the maximum biological response, like effector function or cytotoxic activity. Lower concentrations of drugs may also be associated with fewer side effects.

Usually the affinity of an antibody correlates well with the IC50. The affinity of an antagonist for its binding site (Ki), is understood as its ability to bind to a receptor, which determines the duration of binding and respective agonist activity. Measures to increase the affinity by affinity maturation usually also increase the potency of binding, resulting in the respective reduction of IC50 values in the same range of the Kd values.

The IC50 and Kd values may be determined using the saturation binding assays well-known in the art.

The modular antibody according to the invention is preferably conjugated to a label or reporter molecule, selected from the group consisting of organic molecules, enzyme labels, radioactive labels, colored labels, fluorescent labels, chromogenic labels, luminescent labels, haptens, digoxigenin, biotin, metal complexes, metals, colloidal gold and mixtures thereof. Modified immunoglobulins conjugated to labels or reporter molecules may be used, for instance, in assay systems or diagnostic methods.

The modular antibody according to the invention may be conjugated to other molecules which allow the simple detection of said conjugate in, for instance, binding assays (e.g. ELISA) and binding studies.

In a preferred embodiment, antibody variants are screened using one or more cell-based or in vivo assays. For such assays, purified or unpurified modified immunoglobulins are typically added exogenously such that cells are exposed to individual immunoglobulins or pools of immunoglobulins belonging to a library. These assays are typically, but not always, based on the function of the immunoglobulin; that is, the ability of the antibody to bind to its target and mediate some biochemical event, for example effector function, ligand/receptor binding inhibition, apoptosis, and the like. Such assays often involve monitoring the response of cells to the antibody, for example cell survival, cell death, change in cellular morphology, or transcriptional activation such as cellular expression of a natural gene or reporter gene. For example, such assays may measure the ability of antibody variants to elicit ADCC, ADCP, or CDC. For some assays additional cells or components, that is in addition to the target cells, may need to be added, for example serum complement, or effector cells such as peripheral blood monocytes (PBMCs), NK cells, macrophages, and the like. Such additional cells may be from any organism, preferably humans, mice, rat, rabbit, and monkey. Modular antibodies may cause apoptosis of certain cell lines expressing the target, or they may mediate attack on target cells by immune cells which have been added to the assay. Methods for monitoring cell death or viability are known in the art, and include the use of dyes, immunochemical, cytochemical,

and radioactive reagents. For example, caspase staining assays may enable apoptosis to be measured, and uptake or release of radioactive substrates or fluorescent dyes such as alamar blue may enable cell growth or activation to be monitored.

In a preferred embodiment, the DELFIART EuTDAbased cytotoxicity assay (Perkin Elmer, MA) may be used.

Alternatively, dead or damaged target cells may be monitored by measuring the release of one or more natural intracellular components, for example lactate dehydroge- 10 nase.

Transcriptional activation may also serve as a method for assaying function in cell-based assays. In this case, response may be monitored by assaying for natural genes or immunoglobulins which may be upregulated, for example the 15 release of certain interleukins may be measured, or alternatively readout may be via a reporter construct. Cell-based assays may also involve the measure of morphological changes of cells as a response to the presence of modular antibodies. Cell types for such assays may be prokaryotic or 20 eukaryotic, and a variety of cell lines that are known in the art may be employed. Alternatively, cell-based screens are performed using cells that have been transformed or transfected with nucleic acids encoding the variants. That is, antibody variants are not added exogenously to the cells. For 25 example, in one embodiment, the cell-based screen utilizes cell surface display. A fusion partner can be employed that enables display of modified immunoglobulins on the surface of cells (Wittrup, 2001, Curr Opin Biotechnol, 12:395-399).

In a preferred embodiment, the immunogenicity of the modular antibodies may be determined experimentally using one or more cell-based assays. In a preferred embodiment, ex vivo T-cell activation assays are used to experimentally quantitate immunogenicity. In this method, antigen presenting cells and naive T cells from matched donors are challenged with a peptide or whole antibody of interest one or more times. Then, T cell activation can be detected using a number of methods, for example by monitoring production of cytokines or measuring uptake of tritiated thymidine. In the most preferred embodiment, interferon gamma production is monitored using Elispot assays.

The biological properties of the modular antibody according to the invention may be characterized ex vivo in cell, tissue, and whole organism experiments. As is known in the art, drugs are often tested in vivo in animals, including but 45 not limited to mice, rats, rabbits, dogs, cats, pigs, and monkeys, in order to measure a drug's efficacy for treatment against a disease or disease model, or to measure a drug's pharmacokinetics, pharmacodynamics, toxicity, and other properties. The animals may be referred to as disease 50 models. Therapeutics are often tested in mice, including but not limited to nude mice, SCID mice, xenograft mice, and transgenic mice (including knockins and knockouts). Such experimentation may provide meaningful data for determination of the potential of the antibody to be used as a 55 therapeutic with the appropriate half-life, effector function, apoptotic activity, cytotoxic or cytolytic activity. Any organism, preferably mammals, may be used for testing. For example because of their genetic similarity to humans, primates, monkeys can be suitable therapeutic models, and 60 thus may be used to test the efficacy, toxicity, pharmacokinetics, pharmacodynamics, half-life, or other property of the modular antibody according to the invention. Tests of the substances in humans are ultimately required for approval as drugs, and thus of course these experiments are contemplated. Thus the modular antibodies of the present invention may be tested in humans to determine their therapeutic

26

efficacy, toxicity, immunogenicity, pharmacokinetics, and/or other clinical properties. Especially those modular antibodies according to the invention that bind to single cell or a cellular complex through at least two binding motifs, preferably binding of at least three structures cross-linking target cells, would be considered effective in effector activity or preapoptotic or apoptotic activity upon cell targeting and cross-linking. Multivalent binding provides a relatively large association of binding partners, also called cross-linking, which is a prerequisite for apoptosis and cell death.

The modular antibody of the present invention may find use in a wide range of antibody products. In one embodiment the modular antibody of the present invention is used for therapy or prophylaxis, e.g. as an active or passive immunotherapy, for preparative, industrial or analytic use, as a diagnostic, an industrial compound or a research reagent, preferably a therapeutic The modular antibody may find use in an antibody composition that is monoclonal or polyclonal. In a preferred embodiment, the modular antibodies of the present invention are used to capture or kill target cells that bear the target antigen, for example cancer cells. In an alternate embodiment, the modular antibodies of the present invention are used to block, antagonize, or agonize the target antigen, for example by antagonizing a cytokine or cytokine receptor.

In an alternately preferred embodiment, the modular antibodies of the present invention are used to block, antagonize, or agonize growth factors or growth factor receptors and thereby mediate killing the target cells that bear or need the target antigen.

In an alternately preferred embodiment, the modular antibodies of the present invention are used to block, antagonize, or agonize enzymes and substrate of enzymes.

In a preferred embodiment, a modular antibody is administered to a patient to treat a specific disorder. A "patient" for the purposes of the present invention includes both humans and other animals, preferably mammals and most preferably humans. By "specific disorder" herein is meant a disorder that may be ameliorated by the administration of a pharmaceutical composition comprising a modified immunoglobulin of the present invention.

In one embodiment, a modular antibody according to the present invention is the only therapeutically active agent administered to a patient. Alternatively, the modular antibody according the present invention is administered in combination with one or more other therapeutic agents, including but not limited to cytotoxic agents, chemotherapeutic agents, cytokines, growth inhibitory agents, antihormonal agents, kinase inhibitors, anti-angiogenic agents, cardioprotectants, or other therapeutic agents. The modular antibody may be administered concomitantly with one or more other therapeutic regimens. For example, a modular antibody of the present invention may be administered to the patient along with chemotherapy, radiation therapy, or both chemotherapy and radiation therapy. In one embodiment, the modular antibody of the present invention may be administered in conjunction with one or more antibodies, which may or may not comprise a modular antibody of the present invention. In accordance with another embodiment of the invention, the modular antibody of the present invention and one or more other anti-cancer therapies is employed to treat cancer cells ex vivo. It is contemplated that such ex vivo treatment may be useful in bone marrow transplantation and particularly, autologous bone marrow transplantation. It is of course contemplated that the antibodies of the invention can be employed in combination with still other therapeutic techniques such as surgery.

A variety of other therapeutic agents may find use for administration with the modular antibody of the present invention. In one embodiment, the modular antibody is administered with an anti-angiogenic agent, which is a compound that blocks, or interferes to some degree, the development of blood vessels. The anti-angiogenic factor may, for instance, be a small molecule or a protein, for example an antibody, Fc fusion molecule, or cytokine, that binds to a growth factor or growth factor receptor involved in promoting angiogenesis. The preferred anti-angiogenic factor herein is an antibody that binds to Vascular Endothelial Growth Factor (VEGF). In an alternate embodiment, the modular antibody is administered with a therapeutic agent that induces or enhances adaptive immune response, for example an antibody that targets CTLA-4. In an alternate embodiment, the modified immunoglobulin is administered with a tyrosine kinase inhibitor, which is a molecule that inhibits to some extent tyrosine kinase activity of a tyrosine kinase. In an alternate embodiment, the modular antibody of 20 the present invention are administered with a cytokine. By "cytokine" as used herein is meant a generic term for proteins released by one cell population that act on another cell as intercellular mediators including chemokines.

Pharmaceutical compositions are contemplated wherein modular antibodies of the present invention and one or more therapeutically active agents are formulated. Stable formulations of the modular antibodies of the present invention are prepared for storage by mixing said immunoglobulin having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers, in the form of lyophilized formulations or aqueous solutions. The formulations to be used for in vivo administration are preferably sterile. This is readily accomplished by filtration through sterile filtration membranes or other methods. The modular antibody and other therapeutically active agents disclosed herein may also be formulated as immunoliposomes, and/or entrapped in microcapsules.

Administration of the pharmaceutical composition comprising a modular antibody of the present invention, preferably in the form of a sterile aqueous solution, may be done in a variety of ways, including, but not limited to, orally, subcutaneously, intravenously, intranasally, intraotically, transdermally, mucosal, topically (e.g., gels, salves, lotions, 45 creams, etc.), intraperitoneally, intramuscularly, intrapulmonary (e.g., *AERX*TM* inhalable technology commercially available from Aradigm, or I_nh_ance*TM* pulmonary delivery system commercially available from Inhale Therapeutics), vaginally, parenterally, rectally, or intraocularly.

A preferred method according to the invention refers to a randomly modified nucleic acid molecule coding for an immunoglobulin, immunoglobulin domain or a part thereof which comprises at least one nucleotide repeating unit within a structural loop coding region having the sequence 55 T-NNS-3', 5T-NNN-3', 5'-NNB-3' or 5'-NNK-3'. In some embodiments the modified nucleic acid comprises nucleotide codons selected from the group of TNT, WMT, BMT, RMC, RMG, MRT, SRC, KMT, RST, YMT, MKC, RSA, RRC, NNK, NNN, NNS or any combination thereof (the 60 coding is according to IUPAC).

The modification of the nucleic acid molecule may be performed by introducing synthetic oligonuleotides into a larger segment of nucleic acid or by de novo synthesis of a complete nucleic acid molecule. Synthesis of nucleic acid 65 may be performed with tri-nucleotide building blocks which would reduce the number of nonsense sequence combina-

28

tions if a subset of amino acids is to be encoded (e.g. Yanez et al. Nucleic Acids Res. (2004) 32:e158; Virnekas at al. Nucleic Acids Res. (1994) 22:5600-5607)

The randomly modified nucleic acid molecule may comprise the above identified repeating units, which code for all known naturally occurring amino acids or a subset thereof. Those libraries that contain modified sequences wherein a specific subset of amino acids are used for modification purposes are called "focused" libraries. The members of such libraries have an increased probability of an amino acid of such a subset at the modified position, which is at least two times higher than usual, preferably at least 3 times or even at least 4 times higher. Such libraries have also a limited or lower number of library members, so that the number of actual library members reaches the number of theoretical library members. In some cases the number of library members of a focused library is not less than 10³ times the theoretical number, preferably not less than 10² times, most preferably not less than 10 times.

Usually libraries according to the invention comprise at least 10 fusion proteins or potential binding agents or variants of scaffold proteins, preferably at least 100, more preferred at least 1000, more preferred at least 10⁴, more preferred at least 10⁵, more preferred at least 10⁶, more preferred at least 10⁸, more preferred at least 10¹⁰, more preferred at least 10¹⁰, more preferred at least 10¹¹, up to 10¹², in cases of in vitro display methods, such as ribosomal display, even higher number are feasible.

Various alternatives are available for the manufacture of the gene encoding the randomized library. It is possible to produce the DNA by a completely synthetic approach, in which the sequence is divided into overlapping fragments which are subsequently prepared as synthetic oligonucleotides. These oligonucleotides are mixed together, and annealed to each other by first heating to ca. 100° C. and then slowly cooling down to ambient temperature. After this annealing step, the synthetically assembled gene can be either cloned directly, or it can be amplified by PCR prior to cloning.

Alternatively, other methods for site directed mutagenesis can be employed for generation of the library insert, such as the Kunkel method (Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA. 1985 January; 82(2):488-92) or the DpnI method (Weiner M P, Costa G L, Schoettlin W, Cline J, Mathur E, Bauer J C. Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene. 1994 Dec. 30; 151(1-2):119-23.).

For various purposes, it may be advantageous to introduce silent mutations into the sequence encoding the library insert. For example, restriction sites can be introduced which facilitate cloning or modular exchange of parts of the sequence. Another example for the introduction of silent mutations is the ability to "mark" libraries, that means to give them a specific codon at a selected position, allowing them (or selected clones derived from them) e.g. to be recognized during subsequent steps, in which for example different libraries with different characteristics can be mixed together and used as a mixture in the selection or panning procedure.

The invention also provides a method of producing an oligomer of modular antibody domains binding to a target comprising the steps of:

providing a library of oligomers of modular antibody domains produced according to the inventive method as described

contacting said library with said target in the presence of a scaffold ligand,

selecting a library member binding to said target in the presence of a scaffold ligand, and

manufacturing a preparation of the functional oligomer.

The scaffold ligand can be selected from the group consisting of an effector molecule, FcRn, Protein A and CDR target. As an example, the effector molecule can be selected from the group consisting of CD64, CD32, CD16, Fc receptors.

The oligomers can be dimers selected from the group of VH/VL, CH1/CL, CH2/CH2, CH3/CH3, Fc and Fab, or single chains thereof

The method according to the invention can provide a library containing at least 10^2 independent clones expressing 15 functional oligomers of modular antibody domains or variants thereof.

Libraries as used according to the invention preferably comprise at least 102 library members, more preferred at least 10^3 , more preferred at least 10^4 , more preferred at least 10^5 , 20 more preferred at least 106 librarymembers, more preferred at least 10^7 , more preferred at least 10^8 , more preferred at least 10^8 , more preferred at least 10^8 , more preferred at least 10^{10} , more preferred at least 10^{11} , up to 10^{12} members of a library, preferably derived from a parent molecule, which is a functional 25 modular antibody as a scaffold containing at least one specific function or binding moiety, and derivatives thereof to engineer a new binding site apart from the original functional binding region of said parent moiety.

Usually the libraries according to the invention further 30 contain variants of the modular antibody, resulting from mutagenesis or randomization techniques. These variants include inactive or non-functional antibodies. Thus, it is preferred that any such libraries be screened with the appropriate assay for determining the functional effect. Preferred 35 libraries, according to the invention, comprise at least 10² variants of such modular antibodies, more preferred at least 10³, more preferred at least 10⁴, more preferred at least 10⁵, more preferred at least 10⁶, more preferred at least 10⁷, more preferred at least 108, more preferred at least 10% more 40 preferred at least 1010, more preferred at least 1011, up to 10¹² variants or higher to provide a highly diverse repertoire of antibodies for selecting the best suitable binders. Any such synthetic libraries may be generated using mutagenesis methods as disclosed herein.

Preferably the library is a yeast library and the yeast host cell exhibits at the surface of the cell the oligomers, or monomers that form oligomers, with the biological activity. The yeast host cell is preferably selected from the genera Saccharomyces, Pichia, Hansenula, Schizisaccharomyces, 50 Kluyveromyces, Yarrowia and Candida. Most preferred, the host cell is Pichia or Saccharomyces cerevisiae.

The invention further provides a high quality library containing at least 10^2 independent clones of functional dimers of modular antibody domains or variants thereof that 55 are binding to a target and to a scaffold ligand. The target can be a ligand binding to a parent molecule subject to amino acid variation. The parent molecule can be a functional oligomer, in particular a functional Pc or a functional Fab, or part thereof.

As is well-known in the art, there is a variety of display and selection technologies that may be used for the identification and isolation of proteins with certain binding characteristics and affinities, including, for example, display technologies such as cellular and non-cellular, in particular 65 mobilized display systems. Among the cellular systems the phage display, virus display, yeast or other eukaryotic cell

30

display, such as mammalian or insect cell display, may be used. Mobilized systems are relating to display systems in the soluble form, such as in vitro display systems, among them ribosome display, mRNA display or nucleic acid display.

Methods for production and screening of antibody variants are well-known in the art. General methods for antibody molecular biology, expression, purification, and screening are described in Antibody Engineering, edited by Duebel & Kontermann, Springer-Verlag, Heidelberg, 2001; and Hayhurst & Georgiou, 2001, Curr Opin Chem Biol 5:683-689; Maynard & Georgiou, 2000, Annu Rev Biomed Eng 2:339-76.

A library according to the invention may be designed as a dedicated library that contains at least 50% specific formats, preferably at least 60%, more preferred at least 70%, more preferred at least 80%, more preferred at least 90%, or those that mainly consist of specific antibody formats. Such a preferred library mainly contains the same kind of library members having similar structural features. Specific antibody formats are preferred, such that the preferred library according to the invention is selected from the group consisting of a VH library, VHH library, Vkappa library, Vlambda library, Fab library, a CH1/CL library, an Fe library and a CH3 library. Libraries characterized by the content of composite molecules containing more than one antibody domains, such as an IgG library or Fe library are specially preferred. Other preferred libraries are those containing T-cell receptors, forming T-cell receptor libraries. Further preferred libraries are epitope or peptide libraries, wherein the fusion protein comprises a molecule with a variant of an epitope, also enabling the selection of competitive molecules having similar binding function, but different functionality. Exemplary is a TNFalpha library, wherein trimers of the TNFalpha fusion protein are displayed by a single genetic package.

Another important aspect of the invention is that each potential binding domain remains physically associated with the particular DNA or RNA molecule which encodes it, and in addition, the fusion proteins oligomerize at the surface of a genetic package to present the binding polypeptide in the native and functional oligomeric structure. Once successful binding domains are identified, one may readily obtain the gene for expression, recombination or further engineering purposes. The form that this association takes is a "replicable genetic package", such as a virus, cell or spore which replicates and expresses the binding domain-encoding gene, and transports the binding domain to its outer surface. Another form is an in-vitro replicable genetic package such as ribosomes that link coding RNA with the translated protein. In ribosome display the genetic material is replicated by enzymatic amplification with polymerases.

Those cells or viruses or nucleic acid bearing the binding agents which recognize the target molecule are isolated and, if necessary, amplified. The genetic package preferably is M13 phage, and the protein includes the outer surface transport signal of the M13 gene III protein.

Preferably in the method of this invention the vector or plasmid of the genetic package is under tight control of the transcription regulatory element, and the culturing conditions are adjusted so that the amount or number of vector or phagemid particles displaying less than two copies of the fusion protein on the surface of the particle is less than about 20%. More preferably, the amount of vector or phagemid particles displaying less than two copies of the fusion

protein is less than 10% the amount of particles displaying one or more copies of the fusion protein. Most preferably the amount is less than 1%.

The expression vector preferably used according to the invention is capable of expressing a binding polypeptide, and may be produced as follows: First a binding polypeptide gene library is synthesized by introducing a plurality of polynucleotides encoding different binding sequences. The plurality of polynucleotides may be synthesized in an appropriate amount to be joined in operable combination into a 10 vector that can be propagated to express a fusion protein of said binding polypeptide. Alternatively the plurality of polynucleotides can also be amplified by polymerase chain reaction to obtain enough material for expression. However, this would only be advantageous if the binding polypeptide would be encoded by a large polynucleotide sequence, e.g. longer than 200 base pairs or sometimes longer than 300 base pairs. Thus, a diverse synthetic library is preferably formed, ready for selecting from said diverse library at least one expression vector capable of producing binding poly- 20 peptides having the desired preselected function and binding property, such as specificity.

The foregoing description will be more fully understood with reference to the following examples. Such examples are, however, merely representative of methods of practicing 25 one or more embodiments of the present invention and should not be read as limiting the scope of invention.

EXAMPLES

Example 1

Construction of the Non-Focussed Fcab Library (Fcab01) and Phage Surface Display

The crystal structure of an IgG1 Fc fragment, which is published in the Brookhaven Database as entry 10Q0.pdb was used to aid in the design of the Fcab library.

The sequence which was used as the basis for construction of the Fcab library is given in SEQ ID No. 1. In this 40 sequence, the first amino acid corresponds to Glu 216 of human IgG1 (EU numbering; according to the IMGT database (http://imgt.cines.fr/textes/IMGTrepertoire/Proteins/protein/human/IGH/IGHC/Hu_IGHCallgenes.html; lookup 2007 06 25), it is the first residue of the human IgG1 hinge 45 region, which is given as: (E) PKSCDKTHTCPPCP) of the heavy constant chain hinge region of human IgG1.) The second-last residue of SEQ ID No. 1 corresponds to Gly 446 of human IgG1 (EU numbering; IMGT: residue number 129 of the CH3 domain of human IgG1).

After detailed analysis of the structure of logo.pdb and by visual inspection of the residues forming the loops which connect the beta strands, it was decided to randomize residues 144, 145 and 146, which are part of the loop connecting beta strand A-B as well as 198, 199, 200, 203 and 55 204, which are part of the loop connecting beta strand E-F of SEQ ID No.1. In addition to the mutated residues, 5 residues were inserted at residue number 198 of SEQ ID No.1. In SEQ ID No. 2, the sequence of the library insert of library FcabO1 is given in which all randomized residue positions as well as the 5 inserted residues are designated with the letter X.

The engineered gene was produced by a series of PCR reactions using degenerate primers followed by ligation of the resulting PCR products. To facilitate ligation, some of 65 the codons of the nucleotide sequence coding for SEQ ID No. 1 were modified to produce restriction sites without

32

changing the amino acid sequences (silent mutations). For insertion into the cloning vector pHEN1 (Nucleic Acids Res. 1991 Aug. 11; 19(15):4133-7. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Hoogenboom H R, Griffiths A D, Johnson K S, Chiswell D J, Hudson P, Winter G.) in frame with the pelB secretion signal, the NcoI restriction site close to the 3' end of the pelB secretion signal was used. For the randomized residues, the codon NNS (IUPAC code, where S means nucleotides C and G) was chosen which encodes all 20 naturally occurring amino acids, but avoids 2 out of 3 stop codons. Other codons such as for example the NNB (B meaning nucleotides T, C and G) can also be used. The engineered sequence is given as a nucleotide sequence in SEQ ID No. 3. This sequence also includes the restriction sites used for cloning into the phagmid display vector pHEN1, namely an NcoI site at the 5' end and a Notl site at the 3' end.

The sequences of the PCR primers used for assembly of the mutated CH3 domain are given in SEQ ID No. 4 through SEQ ID No. 9.

SEQ ID No. 4 (PCR primer EPKSNCO) ccatggccgagcccaaatcttgtgacaaaactc

SEQ ID No. 5 (PCR primer CH3LSAC) agtcgagctcgt-cacgggatggggcaggg

SEQ ID No. 6 (PCR primer CH3CSAC) gtacgagetennsnnscaagteageetgacetgeetgg

SEQ ID No. 7 (PCR primer CH3CHIN) tgccaagcttgctgtagaggaagaaggagccg

SEQ ID No. 8 (PCR primer CH3RHIN) tgccaagettaccgt-gnnsnnsnnsaggtggnnsnnsgggaacgtetteteatgeteeg

SEQ ID No. 9 (PCR primer CH3RNOT) agttgeggccgctttaccoggagacagggagag

FIG. 1 shows a schematic presentation of the PCR fragments generated for assembly of the mutated gene, and the primers used therefore.

cDNA of the heavy chain of the human monoclonal antibody 3D6 (Felgenhauer M, Kohl J, RUker F. Nucleotide sequences of the cDNAs encoding the V-regions of H- and L-chains of a human mono-clonal antibody specific to HIV-1-gp41. Nucleic Acids Res. 1990 Aug. 25; 18(16): 4927.) was used as template for the PCR reactions. The 3 PCR products were digested with Sac' and/or HindIII respectively and ligated together. The ligation product was further digested with NcoI and NotI and ligated into the surface display phagmid vector pHEN1, which had previously been digested with NcoI and NotI. The ligation product was then transformed into *E. coli* by electroporation. A number of selected clones were controlled by restriction analysis and by DNA sequencing and were found to contain the insert as planned, including the correctly inserted randomized sequences. For the following steps of phage preparation, standard protocols were followed. Briefly, the ligation mixture was transformed into E. coli TG1 cells by electroporation. Subsequently, phage particles were rescued from E. coli TG1 cells with helper phage M13-K07. Phage particles were then precipitated from culture supernatant with PEG/NaC1 in 2 steps, dissolved in water and used for selection by panning or, alternatively, they were stored at minus 80° C.

Example 2

Construction of the Focussed Fcab Library (Fcab02) and Phage Surface Display

As described in example 1, an Fcab library was prepared in which the randomized library positions are fully random-

ized, i.e. they are encoded by a codon such as NNS, NNB, NNK, NNN or others are used.

For clarity, the meaning of the letters such as N, B, S or K is defined by the IUPAC nucleotide ambiguity code, which is given in the following table:

TABLE 1

	IUPAC nucleotide ambiguity	ode code
Symbol	Meaning	Nucleic Acid
A C G T U M R W S Y K V H D B X N	A C G G A or C A or G A or T C or G C or T A or C or G A or C or T A or C or T C or G or T C or G or T C or G or T	Adenine Cytosine Guanine Thymine Uracil

Source: Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. A Cornish-Bowden, Nucleic Acids Res. 1985 May 10; 13(9): 3021-3030.

These codons given above are designed such that all 20 amino acids are encoded by them. It may be preferable to 30 choose subsets out of the possible amino acids. Examples can be found in the literature (Fellouse F A, Li B, Compaan D M, Peden A A, Hymowitz S G, Sidhu S S. Molecular recognition by a binary code. J Mol Biol. 2005 May 20; 348(5):1153-62. Epub 2005 Apr. 1.; Fellouse F A, Wiesmann 35 C, Sidhu S S. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci USA. 2004 Aug. 24; 101(34):12467-72. Epub 2004 Aug. 11.). Focused libraries which for example allow for only 4 different amino acid types can be constructed e.g. by employing the codon KMT, which codes for the amino acids Ser, Tyr, Ala and Asp.

A focused Fcab library, designated Fcab02, has been constructed in the same way as described in example 1, except that the NNS codons were replaced by KMT codons. 45

Therefore, the letter "X" in SEQ ID No. 2 now means "S, Y, A and D" (Ser, Tyr, Ala and Asp) in order to describe the focused library Fcab02

Example 3

Construction of a Phage Surface Display Library with Additional Amino Acid Residues Between the Library Insert (Binding Partner) and p3

In order to investigate accessibility of the potential binding site of the displayed protein a binding assay is performed: the phage suspension is reacted with anti-myc mAb 9E10-coated microplates (or immunotubes). After washing, the bound phages are detected with anti-M13-enzyme conjugate. As a control, helper phage—which does not display the protein fusion and the myc-tag is reacted with the plates. Other controls are reaction of phages with non-coated plates and reaction of phages with antiserum recognizing the p3-fusion partner of the phages.

Ideally, the anti-myc-reactivity of phages displaying the p3-fusion protein should give very clear ELISA readouts

whereas helper phage reactions to anti-myc-mAb should not be above background (non-coated plates). The structure of a CH3 dimer displayed at the surface of an M13 phage through binding to protein III as an anchor is such, that each CH3 is anchored to protein III using various linker length and compositions. Thus, the CH3 dimer is preferably displayed by two anchors.

Linker Optimization:

The linker between the protein to be displayed and the anchor protein of the genetic package (in case of filamentous phage e.g. p3, p8, pX, pIX, pVII) is especially important if the potential binding site of the displayed molecule is in spatial vicinity of the phage particle. In antibody libraries utilizing variable domains and antigen binding sites formed by CDR-loops and display of the library members as aminoterminal fusion to p3 the potential antigen binding site is directed away from the phage particle. Therefore, the linker structure between library members and the phage coat 20 protein is less important. Engineering the bottom loops of immunoglobulin domains and performing phage display may however be an inefficient process and decrease yields of antigen binding clones or even preclude it. Varying the linker between a library member protein and its fusion partner on the surface can solve or may at least reduce this problem.

In order to select for optimal linker sequences (in terms of length and flexibility as well as stability) a library of linkers can be prepared in which the anchor protein at the surface of the genetic replicable package is fused to a known binding protein which is for sterical reasons notoriously difficult to select for.

This library of sequences can be varied in length and amino acid content.

Selection methods of the linker library for optimal linkers depend on the application but basically it should be for selecting all properties one wishes to have in a certain methodology. Enrichment against a difficult to select for antigen may yield linker sequences which allow library members a good access to the antigen. Incubation in protease solutions or under other harsh conditions or frequent passaging through host cells under proteolytic conditions (e.g. old microbial cultures) may be an appropriate selection for stable display linkers.

A library of linkers may be produced by any well known library technology. Synthetic linker sequence lengths may vary between 10-500 amino acids. Alternatively, linker can be complete proteins known to be of flexible nature.

50 Linker Optimization FcabO1:

As an example, library FcabO1 (as described in example 1) can be used. Originally, this library is cloned in the phagmid display vecor pHEN1, using NcoI and NotI restriction sites. When cloned in this manner, 18 amino acid 55 residues are in between the C-terminal amino acid residue of the FcabO1 library insert and the N-terminal amino acid residue of phage M13 p3. The sequence of this junction region is given in SEQ ID No. 10 SPGKAAAEQKLISEED-LNGAATVES—and is explained as follows: the first 4 residues, SPGK (SEQ ID No. 83), are the 4 C-terminal residues of the FcabO1 library insert, followed by the amino acid sequence AAA, which is the amino acid residues encoded by the NotI restriction site, followed by the sequence EQKLISEEDL (SEQ ID No. 84), which is the myc epitope, followed by NGAA (SEQ ID No. 85), after which there is an amber stop codon, which is translated to Glutamine (Q) in amber suppressor strains of E. coli such as TG1.

The C-terminal 4 residues of SEQ ID No. 10, TVES (SEQ ID No. 86), are the N-terminal 4 residues of phage M13 p3 as present in the vector pHEN1.

In order to construct a phage which displays an Fcab insert with an increased distance between the Fcab (the binding partner) and the body of the phage (the genetic package), 5 additional residues were inserted at the C-terminus of the Fcab insert FcabRGD4, directly upstream of the NotI cloning site, resulting in the clone FcabRGD4L. FcabRGD4 is an Fcab that has an integrin-binding RGD motif inserted in the EF-loop of the CH3 domain and which binds to ανβ-integrin in ELISA. As an increased-length linker sequence, the amino acid sequence EGGGS (SEQ ID No.89), which appears 8 times in the phage M13 p3 sequence was used. The resulting amino acid sequence of FcabRGD4L as expressed after cloning in pHEN1 is given in SEQ ID No.11. In SEQ ID No.11, amino acid residues 198-204 represent the RGD motif, amino acid residue 237 is the C-terminal residue of the Fcab insert, residues 238-242 20 represent the inserted linker sequence (which is the difference to unmodified pHEN1), which is followed by myc tag, amber stop codon and the p3 sequence.

For cloning of the construct, the FcabRGD4 sequence was amplified from pHENFcabRGD4 (SEQ ID No. 12) using 25 PCR primers EPKSNCO (SEQ ID No. 4) and CH3rlink actageggeegeagagecaccaccetecttacceggagacagggagag (SEQ ID No. 13) and cloned via NcoI and NotI restriction sites into the vector pHEN1. The resulting vector, pHENFcabRGD4L (SEQ ID. No. 14) has the additional 30 linker sequence at nucleotide positions 3057-3071.

The two phagemid vectors, pHENFcabRGD4 and pHENFcabRGD4L were transformed into *E. coli* TG1. Subsequently, phage particles were rescued from *E. coli* TG1 cells with helper phage M13-1K07. Phage particles ³⁵ were then precipitated from culture supernatant with PEG/NaC1 in 2 steps, dissolved in water and used for ELISA.

Phage ELISA was performed as follows: The phage suspension is reacted with aV133-integrin-coated microplates (or immunotubes). After washing, the bound 40 phages are detected with anti-M13-enzyme conjugate. As controls, helper phage—which does not display the protein fusion and the myc-tag is reacted with the plates as well as phage particles carrying wtFcab on their surface. Other controls are reaction of phages with non-coated plates and 45 reaction of phages with antiserum recognizing the Fcabfusion partner of the phages. Phage particles with the increased-length linker resulting from pHENFcabRGD4L react more readily with avp3 integrin than phage particles with the original linker as contained in pHENFcabRGD4, 50 and therefore give a stronger signal in ELISA.

Phage selections can be performed in which phage particles with wtFcab are mixed with small amounts of phage particles carrying either FcabRGD4 or FcabRGD4L. After several (typically 3-5) rounds of panning, preferentially 55 phages displaying FcabRGD4L are selected.

Example 4

Fcab Library Design

("Fcab" is a registered trademark of f-star Biotechnologische Forschungs- and Entwicklungsges.m.b.H.)

Design of Fcab Libraries (illustrated in FIG. 2): amino acid positions in non CDR-loops of CH3 constant domains 65 of antibodies are considered for randomization. Especially loops A-B, C-D and E-F are considered as they are on one

36

side of the domain. Some of the design criteria for randomization at a certain position are described herein.

Amino acids frequently involved in antigen antibody interactions are described herein to be included in a focused library. Here the amino acids Ala, Asp, Ser and Tyr are used to design the focused library.

Libraries with restricted amino acid utilization have been shown to be sufficient to generate binders against virtually any antigen (Sidhu & Fellhouse, NATURE CHEMICAL BIOLOGY VOLUME 2 page 682ff; Koide et al PNAS, volume 104 p6632-6637). The advantage of such restricted (or focused) libraries is that they can be covered completely by current technologies. Ideally, the amino acid utilization reflects a natural amino acid utilization of ligand receptor binding. However, even libraries utilizing only 2 amino acids (Tyrosine and Serine) have been reported to yield good selection results (in terms of frequency of binders against different binders and in terms of affinity).

Loop Flexibility:

Certain loop structures may be required by the scaffold protein in order to keep the overall natural structure. Randomizing many amino acid positions in loops and even elongation of loops may be facilitated by building certain sequences either on one or on both sides of the randomized positions. These sequences may be flexible sequences in order to allow to compensate for any tensions with certain library sequences in such a position.

TABLE 2

Exe	emplary Fcabm lib	oraries, focused and no	on-focused
	# of randomized positions	Theoretical diversity on amino acid level	Number of independent bacterial clones
FcabOl	13	8.2×10^{16}	0.6×10^{9}
Fcab02	13, focused	6.7×10^{7}	0.6×10^{9}
Fcab03	13	8.2×10^{16}	1.0×10^{9}
Fcab04	13, focused	6.7×10^{7}	0.8×10^{9}
Fcab05	15	1.3×10^{18}	0.8×10^{9}
Fcab06	15, focused	1.3×10^{9}	1.0×10^{9}

FcabO1 library is described in the examples above. The sequence space of the focused library designs FcabO2, FcabO4 and FcabO6 are covered by the actual bacterial library sizes of approximately 10e9. In contrast, the completely randomized libraries FcabO1, FcabO3 and FcabO5 are actually grossly underrepresented.

Example 5

Cloning of Yeast Display Libraries by Homologous Recombination

Vector

pYD1 (Invitrogen) is used as the basic vector. The vector is modified as follows, in order to remove an XhoI site: pYD1 is cleaved with XhoI, treated with Klenow fragment of DNA polymerase and religated. The resulting sequence is given in pYD1dX (SEQ ID No. 15).

pYD1dX contains a unique BamEI restriction site at position 921/925 and a unique NotI restriction site at position 963/967. It is opened with these two restriction enzymes.

An insert encoding CH1-hinge-CH2-CH3 from human IgG1 is prepared by PCR from cDNA encoding the heavy chain of a human IgG1 monoclonal antibody. In this insert, a point mutation is introduced using standard procedures to

mutate the C-terminal Cystein residue of the CH1 domain to a Serine. The insert is amplified using PCR primers that attached a BamHI and a Not restriction site to both ends respectively. These restriction sites are then used for cloning the insert into pYD1dX to yield the display vector 5 pYD1dXFc (SEQ Id No. 16). The mutated codon at the C-terminus of the CH1 domain (Cys to Ser) is at positions 1233-1235 in the sequence pYD1DxFc. The stop codon of the insert is at position 1917/1919.

This vector is used as a positive control for the display of 10 human CH1-hinge-CH2-CH3 on the surface of yeast and as a starting point for the construction of the vector pYD1CH12 (see below).

Cloning of Libraries

Cloning of libraries in which mutations are introduced 15 into structural loops of CH3 domains is performed in yeast by homologous recombination (gap repair). For this purpose, a recipient vector is prepared that lacks the CH3 domain: pYD1dXFc is cleaved with XhoI (position 1603/1607) and NotI (position 1921/1925), the large fragment is 20 prepared by preparative gel electrophoresis, treated with Klenow fragment of DNA polymerase and re-ligated. This procedure reconstitutes a unique XhoI site (position 1603/1607) and yielded vector pYD1CH12 (SEQ ID No. 17). pYD1CH12 is subsequently cleaved with XhoI and is used 25 as recipient vector for gap repair in yeast.

As a source of insert, Fcab libraries FcabO1 (SEQ ID No. 18), Fcab02 (SEQ ID No. 19), Fcab03 (SEQ ID No. 20), Fcab04 (SEQ ID No. 21), Fcab05 (SEQ ID No. 22) and Fcab06 (SEQ ID No. 23) are used. These libraries are 30 prepared by standard DNA synthesis, and contain randomized residues as well as inserted residues in the AB loop (between residues 359 and 361 (EU numbering)) as well as in the EF loop (between residues 413 and 419 (EU numbering)) of the CH3 domain of human IgG1. From this 35 synthetic DNA, the insert for gap repair in yeast is amplified by PCR using PCR primer pair gapch35 caacaaggccatgcctgcctgccccat cgagaagaccatctccaaggccaaggccaagcctcgagaaccacaggtgtacaccctgccc (SEQ ID No. 24) and gapfcs3 gagaccgagagagagggttagggataggcttacct

tcgaagggcctctagactcgatcgageggccgctcatttacccggagacagggagagete tte (SEQ ID No. 25). 100 pg of XhoI cleaved vector pYD1CH12 and 100 pg of insert are mixed and transformed in Saccharomyces strain EBY100 (Invitrogen) using the Lithium acetate procedure according to the fol- 45 lowing protocol, which is upscaled by a factor 100 to transform the required amount of cells and of DNA. Briefly, for a single transformation of 1 pg vector DNA and 1 pg insert DNA, 10 ml of YPD (2% peptone, 2% dextrose (D-glucose)) are inoculated with a yeast colony and shaken 50 overnight at 30° C. The 0D600 of the overnight culture is determined and the culture diluted to an 0D600 of 0.4 in 50 ml of YPD and grown for an additional 6 hours. Cells are pelleted at 2500 rpm and resuspended in 40 ml distilled water. Cells are pelleted again at 2500 rpm and resuspended 55 in 100 mM LiAc, followed by incubation at 30° C. for 30 minutes. 1 pg vector DNA, 1 pg insert and 50 pl denatured sheared salmon sperm DNA (2 mg/ml) are mixed with 300 pl of the yeast suspension. 700 pl of a solution of 200 mM Li-acetate and 40% PEG-3350 are added and mixed with the 60 yeast/DNA suspension, followed by incubation at 30° C. for 30 minutes. 88 pl DMSO are added, mixed and the mixture is incubated at 42° C. for 40 minutes, followed by centrifugation in a microcentrifuge for 10 seconds. The supernatant is then removed, the cell pellet is resuspended in 1 ml distilled water. The pellet is then resuspended in 50-100 pl TE and plated on minimal dextrose plates containing leucine

38

(10 g/l yeast nitrogen base, 20 g/l dextrose, 0.1 g/l leucine, 15 g/l agar). After incubation of the plates at 30° C. for 2 to 4 days single colonies appeared that are subsequently harvested.

Cultivation—Induction

The harvested yeast libraries (yFcab libaries) are inoculated in 10 ml SD-CAA medium (10 g/l yeast nitrogen base, 10 g/l casamino acids, and 20 g/l dextrose, 0.1 g/l leucine, 9.67 g/l NaH2PO4-2H20 and 10.19 g/l Na2HPO4.7H20) and grown on a shaker at 250 rpm at 28° C. for 6-8 hours. The 0D600 of the culture is determined, and the culture is diluted to an 0D600 of 0.2, and grown under the same conditions until an 0D600 of 1-2 is reached. Cells are harvested by centrifugation (3000 rpm 5 min/4° C.) and resuspended in induction medium SG/R-CAA (10 g/l yeast nitrogen base, 10 g/l casamino acids, and 20 g/l galactose, 10 g/l raffinose, 0.1 g/l leucine, 9.67 g/l NaH2PO4-2H20 and 10.19 g/l Na2HPO4-7H20). Cultures are induced by incubation for 2 days on a shaker at 250 rpm at 20° C. and subsequently analysed and sorted.

Quality Control of yFcab Libraries.

yFcab libraries are tested for their expression level and quality of expressed Fcab's two days after induction with SD-CAA medium. The expression level is tested using a polyclonal anti human IgG-Fc antiserum (Sigma). For this purpose 0.5×10e6 library cells are diluted in 1 ml staining buffer (SB), which comprises PBS with 2% BSA. Cells are pelleted and stained with 100 pl SB containing ½000 diluted anti human IgG-Pc-PE antiserum (Sigma) for 30 min on ice, washed twice with SB and subsequently analyzed in the FACS. In general 70%-80% of all cells in each library express Fcabs on their cell surface. To test correct folding of Fcabs, staining with Protein A is performed. Again 0.5×10e6 library cells are diluted in 1 ml staining buffer SB, cells are pelleted and stained with 100 pl SB containing 1 pg/ml Prot-A-FITC (Fluka) for 30' on ice, washed twice with SB and subsequently analyzed in the FACS. In general, the yFcab libraries as described above show >40% Prot A positive cells. In order to test whether the Fcabs are expressed as dimers on the surface of the cells a staining with human CD64 is performed. The affinity of CD64 is too low for efficient monomeric binding therefore CD64 complexes with dimers are used. For this purpose e.g. lug recombinant CD64 from R&D Systems (containing a HIStag) is mixed with 1 ug anti Penta HIS-alexafluor 488 (from Qiagen) in 1 ml SB (total volume). yFcab libraries are tested for binding to CD64 by incubating the 5×10e5 cells with 100 pl of the complex-mixture for 30 minutes on ice, as control the cells are incubated with equivalent of the anti HISalexafluor 488 alone (1/200 dilution in SB). After incubation the cells are washed twice with ice cold SB and analysed in the FACS. In general >50% of all cells in each library express dimeric Fcabs on their cell surface.

Biotinylation of Antigen (her2)

Recombinant antigen e.g. Her2 (Bendermedsystems) was done with he EZ link system of Pierce according to the manufacturers instruction. In short, the antigen is dialyzed against PBS, diluted to 1 mg/ml in PBS and mixed with 10 m'l sulfo-LC-LC⁻ biotin (EZ link, Pierce), which was predisolved in water. The final ratio between antigen and biotin is 1:3 and the mixture is incubated at room temperature from 30'. Afterwards the mixture is "dialyzed" against PBS using Vivaspin MWC03000 (Sartorius) columns (5×8', 4000 rpm). Finally the concentration of the biotinylated antigen (Her2) is tested by HPLC and aliquots are stored at -20° C.

The quality of the biotinylated antigen is tested by ELISA. First the plates are coated with an anti-Her2 antibody (e.g. Herceptin) at 10 pg/ml in PBS, 100 pl/well overnight at 4° C., after this the plate is washed 3× with washing buffer (WB)(PBS+0.05% Tween20) and blocked by blocking buffer (BB) (PBS+2% BSA) 1 h at room temperature. After 3× washing with WB, different concentrations of Her2-biotin are added in 100 pl/well BB for 1 h at room temperature, followed by 3× washing with WB. Finally the plate is incubated with 1:25000 streptavidin-HRP (GE healthcare) in 10 BB for 1 h at room temperature and washed 3× with WB. Colour is developed by adding 100 pl/well of the substrate TMB (Sigma) after –10 minutes the reaction is stopped by adding 100 pl/well of 30% H2504. The results is analysed with an ELISA reader at 450-630 nm.

Example 6

Production of Antigen Specific (her2) Fcabs

Selection of antigen specific (Her2) Fcabs using FACS First Selection Round:

Two days before FACSorting a yeast library containing 2.5×10e 8 individual Fcab clones is induced with SG/R-CAA medium to express the Fcabs on their cell surface as 25 described above. After two days, the amount of cells covering e.g. 10 times the library (=2.5×10e9) is incubated for 30 minutes on ice with 500 nM biotinylated antigen (Her2) in 201 SB. Then the cells are washed once with cold SB and subsequently incubated for 30' on ice with streptavidin-PE 30 (from R&D systems) diluted 1 100 in SB. The cells are washed twice with ice cold SB and diluted to an end concentration of 1×10e9 cells/ml. Control stainings with 5×10e6 cell/ml in 100 pl are made with streptavidin-PE only, in the absence of antigen. Both the complete library and the 35 control stainings are analysed in e.g. a FACS ARIA from BD. To set the gates for sorting the control cells are used. First a FSC/SSC gate (G1) is set to identify healthy yeast cells, from G1 a FSC-width versus FSC-area plot is made and only non-aggregating cells are selected in a new gate 40 (G2). Cells in G2 are subsequently analysed for reactivity with streptavidin-PE using FSC versus FL-2 (PE channel). G3 is set to include 0.1% of (false) positive cells. Subsequently, at least 5×10e8 stained cells (twice the library size ideally more) are analysed with the settings as indicated 45 above and the cells in G3 are sorted into a tube containing 2-3 ml SD-CAA medium. Roughly 5×10e5 cells (Pooh) are harvested in the first round of selection and propagated for 1 to 2 days, after which the cells can be stored at -80° C. and aliquots can be induced to express the Fcabs as described 50 above. After two more days the next selection round can take place.

Second Selection Round:

Pooh 1 selected in round 1 are induced to express the Fcab on their surface as described above. At least 5×10e6 cells 55 (comprising multiple copies of Pooh) are incubated for 30' on ice with 500 nM biotinylated antigen (Her2) in 1 ml SB. Then the cells are washed once with cold SB and subsequently incubated for 30' on ice with streptavidin-PE (from R&D systems) diluted 1 in 100 in SB together with 2 g/ml 60 Protein A-FITC (Fluka). Next the cells are washed twice with ice cold SB and diluted to an end concentration of -2×10e6 cells/ml. In addition, control stainings are made in which 5×10e6 cells/ml of Pooh 1 in 100 pl cells are incubated with a mixture of Prot A and streptavidin-PE as indicated 65 above, but without the incubation with the antigen (Her2). In addition, 5×10e5 cell in 100 pl of a yeast clone expressing

40

Fcab wt non randomized Pc fragment) is stained with Prot A-FITC as described above in the absence of streptavidin-PE. Fcab-wt expressing cells are analysed in e.g. a FACS ARIA from BD to set gates for sorting. First a FSC/SSC gate (G1) is set to identify healthy yeast cells, from Cl a FSC-width versus FSC-area plot is made and only non aggregating cells are selected in new gate (G2).

Cells in G2 are subsequently analysed for Protein A expression using FSC versus FL-1 (FITC). G3 is set to cover strong Prot A positive cells (50-60% of parent gate) and G4 is set to cover weak Prot A positive cells (20-30% of parent cells). G3+G4 will include roughly 70-80% of all cells in G2. Now the Pool cells stained for streptavidin-PE in the presence of Prot A-FITC are used to set the rest of the sorting gates. First Cl and G2 are checked with the Pool cells and if necessary adjusted. Pool cells will have lesser events in G3 and maybe also in G4 indicating that not all cells in Pooh 1 express Fcabs that are folded as the Fcab-wt. Using the 20 control stained Pool cells a new gate is prepared both for G3 and G4. The new gates are set in a plot FSC and FL-2 (PE). Gate (G5) is prepared that includes 0.1% (false) streptavidin positive cells in G3 and the same is done for cells in G4 resulting in G6. In the next step at least 5×10e6 cells stained for Her2-biotin+streptavidin-PE and Prot A-FITC are sorted by the FACS-ARIA. Cells are collected from G5 (Poo12.1 and G6 (Poo12.2) in separate tubes containing 2-3 ml yeast culture medium. Between 10 and 1000 clones can be expected from both gates. Both new pools are propagated for 1 or 2 days and stored at -80° C. Cells from 2.1 and 2.2 may be either used for direct further sorting in a third round or they may be subjected, (preferably after mixing the two clone together again) to a round of additional randomization of the AB loop (affinity maturation) before they are further sorted in FACS.

Affinity Maturation for Selected Clones/Pools

For affinity maturation, diversity is introduced in selected clones or in pools of selected clones in the AB loop. For this purpose, a PCR is made with a primer that contained degenerate codons at positions 359, 360 and 361 (EU numbering) (primer Abmut, gaaccacaggtgtacaccctgoccccatccogggatgagetgnnbnnbnnbca ggtcageetgaeetgee tggtcaaag, SEQ ID No. 26) or alternatively with a primer that contained degenerate codons at positions 358, 359, 360, 361 and 362 (EU numbering) (primer Abmut2LR, gaaccacaggtgtacaccetgccccatcccgggatgagnnbnnbnnbnnbnnbnnbnnbgtcagc ctgacctgctggtcaaag, SEQ ID No. 27). The second primer used in these PCRs is gapfcs3 in both cases. In order to create flanking sequences for efficient gap repair in yeast, the resulting PCR products are further amplified with the primer pair gapch35 and gapfsc3 and subsequently transformed in Saccharomyces cerevisiae strain EBY100 by Lithiumacetate transformation together with XhoI cleaved pYD1CH12 as described above. As alternative primers for randomization of the described residues in the AB loop, primers such as AbmutlL (gaaccacaggtgtacaccetgccccatcccgggatgagnnbnnbnnbnnbcaggtcage etgacetgeetggtcaaag, SEQ ID No. 28) or AbmutlR (gaaccacaggtgta caccetgccccatcccgggatgagctgnnbnnbnnbnnbgtcagcctgacctgcctggtc aaag, SEQ ID No. 29) can also be used. In an analogous manner, residues in the EF loop can be randomized e.g. by total randomization or by randomization using spiked oligonucleotides as primers or by similar mutagenesis techniques. The Abmut primer will result in 8000 new variants (Poo12.3) of each clone and the Abmut2LR primer with lead to 3×10e6 new variants (Poo12.4). Therefore Pools 2.3. and 2.4 will both results in

new libraries of approximately 10e8 individual since the starting material (P0012.1+2.2) already contains approximately 10-1000 clones.

Third Selection Round

Affinity matured pools 2.3 and 2.4 and if necessary Pool 2.1 (only the Prot A positive cells are preferred) are induced to express Fcabs on their cell surface as described above and subsequently sorted as described for "Second selection round", with exception that the Pools 2.3 and 2.4 are much bigger and therefore staining volumes for the pools are equal to those of the library staining described in "First selection round". In the third selection round, only Her2 positive/Prot A positive cells are sorted. Pools derived from these selections contain typically >20% Her2/Prot A positive cells. If not then a fourth and fifth (or even more) round(s) of selection combining Prot A with Her2 can be performed. Clone Analyses:

Individual clones from pools containing Her2/Prot A cells (>20% is preferred) are prepared either by plating the pools on agar plates with SD-CAA medium or by sorting the singles cells (=clones) directly from the FACS ARIA onto the plates without generating a pool. Clones are allowed to grow and are transferred to liquid cultures and stored in -80° C. Aliquots of the clones are subsequently induced to express Fcabs on their cell surface as described above and screened for a number of parameters in the FACS. These parameters may be: a dose response range of the antigen used for selection (Her2) with and without the presence of Prot A-FITC, CD64 staining as described above. In addition using similar staining protocols a number of irrelevant biotinylated antigen can be screened to identify non-cross reacting Fcabs.

It is to be expected that, after several rounds of selecting antigen (Her2)+Prot A positive cells, a large percentage of clones show >25% antigen (Her2) positivity when stained with 500 nM antigen (Her2) and >70% Prot A positivity when stained with 2 pg/ml Prot A-FITC. In most of the cases these clones will also show >50% CD64 binding. Thus mimicking the Prot A and CD64 levels of non-randomized Pc fragments (Fcab wt) expressed on yeast.

Clones selected as described above with characteristics as described above are now ready to be produced as soluble molecules. This can be done by transient transfection or by stable transfection of the Fcab DNA into new host cells. For this purpose the DNA from individual yeast clones is isolated using standard procedures. The relevant DNA coding for the complete CH3 domain or only the part of the CH3 domain that is randomized in the library is amplified by PCR and transferred into a new expression vector containing the missing part of the Fcab+a suitable promoter and one of more selection markers such as G418, that allows selection of transfected cells out of a pool of non transfected cells. The new vector is then e.g. transiently transfected into a new host cell such as HEK293 or CHO. The host cells are allowed to recover and are subsequently cultured for a number of days. The supernatant of the cultures with contain the soluble Fcab which can be used for further testing with or without purification over e.g. Prot A. Stable cell lines can also be made by standard procedures.

42

TABLE 2

	_			Her2 clones: with g of Seq. ID No. 1
5	Clone name	AB loop AA143ff		EF Loop AA198ff
	Fcab wt	LTKNQ (SEQ ID No	. 87)	DKSRWQQ
10	y Her.C2- P3.1-1		. 30)	IRSSVGSRRWWS (SEQ ID No. 51)
	y Her.C2- P3.1-3	YEGSS (SEQ ID No	. 31)	ARYSPRMLRWAH (SEQ ID No. 52)
15	y-Her.C2- P3.1-5		. 32)	SRRDSSLLRWAH (SEQ ID No. 53)
20	y Her.C2- P3.1-6	YRRGD (SEQ ID No	. 33)	APGSKGYRRWAL (SEQ ID No. 54)
20	y ⁻ Her.C2- P3.1-8			DKPFWGTSRWSR (SEQ ID No. 55)
25	y ⁻ Her.C2- P3.1-16	LHLAQ (SEQ ID No	. 35)	SINDLINHRWPY (SEQ ID No. 56)
	y Her.C2- P3.1-18		. 36)	MWGSRDYWRWSH (SEQ ID No. 57)
30	y Her.C2- P3.2-3	YRSGS (SEQ ID No.	. 37)	NSGSAMMVRWAH (SEQ ID No. 58)
	y Her.C2- P3.2-9		. 38)	QRSRLSRQRWWR (SEQ ID No. 59)
35	y Her.C2. P4.2-1	YSANT (SEQ ID No	. 39)	ARYSPRMLRWAH (SEQ ID No. 60)
	y Her.C2. P4.2-3		. 40)	ARYSPRMLRWAH (SEQ ID No. 61)
40	y ⁻ Her.C2. P4.2-4	YSDGD (SEQ ID No	. 41)	ARYSPRMLRWAH (SEQ ID No. 62)
	y Her.C2. P4.2-5	YSGGS (SEQ ID No	. 42)	ARYSPRMLRWAH (SEQ ID No. 63)
45	y-Her.C2. P4.2-6	YGRDS (SEQ ID No		ARYSPRMLRWAH (SEQ ID No. 64)
	y-Her.C2. P4.2-8		. 44)	ARYSPRMLRWAH (SEQ ID No. 65)
50	y Her.C2. P4.2-10	YSSDS (SEQ ID No		ARYSPRMLRWAH (SEQ ID No. 66)
55	y Her.C2. P4.2-12	YHSGS (SEQ ID No	. 46)	ARYSPRMLRWAH (SEQ ID No. 67)
55	y Her.C2. P4.2-15	YLTNS (SEQ ID No.	. 47)	ARYSPRMLRWAH (SEQ ID No. 68)
60	y Her.C2. P4.2-18		. 48)	ARYSPRMLRWAH (SEQ ID No. 69)
	y Her.C2. P4.2-19	YRSGE (SEQ ID No		ARYSPRMLRWAH (SEQ ID No. 70)
65	y-Her.C2. P4.2-20		. 50)	ARYSPRMLRWAH (SEQ ID No. 71)

Example 7

Yeast Display of 4D5 Fab

For the display of a Fab fragment on yeast, the yeast display vector pYD1 (Invitrogen) (SEQ ID No. 72) is modified as follows:

A NheI restriction site is introduced by site directed mutagenesis at position 581/586 to yield the modified vector pYD1Nhe (SEQ ID No. 73). This vector is restricted with NheI and PmeI, to yield 3 fragments. The largest fragment is the remaining vector backbone, in which a synthetic oligonucleotide linker is inserted to yield the vector pYDllnk (SEQ ID No. 74). A cassette which includes the MATa transcription termination region is then amplified by PCR from the vector pYD1 and is cloned into pYDllnk via BamHI and PstI restriction and ligation. The resulting vector is pYD1mata (SEQ ID No. 75). A cassette that contains the GAL1 promotor, the gene coding for Aga2 and a synthetic linker with NotI and SfiI cloning sites is amplified by PCR from pYD1 and cloned in pYD1mata via EcoRI and Pad restriction to yield the vector pYDlgal (SEQ. ID No. 76).

As an example for a Fab to be displayed on yeast, the genes coding for VH-CH1 and VL-CL respectively of the 25 antibody 4D5 (Herceptin) are made synthetically (sequences 4D5H (SEQ ID No. 77) and 4D5L (SEQ ID No. 78)).

4D5H is flanked by SfiI and NotI restriction sites, and cloned into the vector pYDlgal to yield the vector pYD4D5hc (SEQ ID No. 79). In this vector, the N-terminus 30 of 4D5H is fused to the C-terminus of Aga2, and at the C-terminus of 4D5H, a hexahistidine tag is attached, followed by the stop codon. The amino acid sequence of VH-CH1 of 4D5 is given in 4D5 hp (SEQ ID No. 80).

4D5L is flanked by NcoI and AscI restriction sites, and 35 cloned into the vector pYD4D5hc to yield the vector pYD4D5h1 (SEQ ID No. 81). 4D5L is preceded by an Aga2 secretion signal, and carries a stop codon after the C-terminal Cysteine residue of the CL domain. The amino acid sequence of VL-CL of 4D5 is given in 4D51p (SEQ ID No. 82).

44

For display of the 4D5 Fab, the vector pYD4D5h1 is transformed into the yeast strain EBY100 (Invitrogen), transformants are selected on minimal medium without tryptophan, and expression of the recombinant protein is induced by growth on galactose containing medium according to standard protocols (Invitrogen).

Example 8

Construction of a Library with Randomized Residues in Structural Loops of the CL Domain of 4D5 Fab

As first step in the yeast display library construction, the wildtype CL (C kappa) domain is cut out from the display vector pYD4D5h1 with restriction enzymes BsiWI and AscI. A synthetic gene encoding human C kappa domain flanked by BsiWI and AscI sites (in the context according to pYD4D5h1) is prepared in which random mutations and insertions respectively are introduced in the AB and EF loops. In this particular example, insertions of 3, 4 or 5 NNB codons are made between amino acid positions 16 and 17 of the human C kappa domain, and residue positions 92, 93, 94, 95, 97, 98 and 99 are replaced by NNB codons. (IMGT numbering, see FIG. 2). An NNB codon contains all 4 nucleotides at positions 1 and 2, and C, G and T at position 3. NNB therefore encodes all 20 naturally encoded amino acids.

The library is prepared and selected following standard procedures.

As a scaffold ligand the CDR target Her2neu and 4D5 epitope is used. Those members of the library are selected for production of a cytotoxic modular antibody according to the invention, that have a binding site engineered into the CL domain, which is specifically binding to an effector molecule, such as an Fcgamma receptor, or a half-life prolonging protein, such as serum albumin. The resulting Fab is tested for (i) Her2neu binding with a Kd<10⁻⁸ M and an 1050<10⁻⁸ M, and (ii) effector function using a CDC and/or ADCC assay, and alternatively to determine albumin binding.

SEQUENCE LISTING

-continued

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 120 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 215 Ser Leu Ser Leu Ser Pro Gly Lys 225 230 <210> SEQ ID NO 2 <211> LENGTH: 237 <212> TYPE: PRT <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: human IgG including randomized amino acid modifications <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (144) .. (146) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (198)..(205) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (208)..(209) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <400> SEQUENCE: 2 Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 105 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 120 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Xaa Xaa Xaa Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser

-continued

```
145
                                         155
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
                165
                                    170
Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
           180
                               185
Ser Lys Leu Thr Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg Trp Xaa
                            200
Xaa Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
                   230
<210> SEQ ID NO 3
<211> LENGTH: 728
<212> TYPE: DNA
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: DNA Sequence for Cloning of modified IgG
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (438) .. (439)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (441)..(442)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (444)..(445)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (600) .. (601)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (603)..(604)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (606)..(607)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (609)..(610)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (612)..(613)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (615) .. (616)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (618) .. (619)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (621)..(622)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (630) ... (631)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (633)..(634)
<223> OTHER INFORMATION: n is a, c, g, or t
```

<400> SEQUENCE: 3

-continued

Concinaca
ccatggccga gcccaaatct tgtgacaaaa ctcacacatg cccaccgtgc ccagcacctg 60
aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 120
teteceggae ceetgaggte acatgegtgg tggtggaegt gagecaegaa gaeeetgagg 180
tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg 240
aggageagta caacageacg taccgtgtgg teagegteet caccgteetg caccaggact 300
ggctgaatgg caaggagtac aagtgcaagg tctccaacaa agccctccca gcccccatcg 360
agaaaaccat ctccaaagcc aaagggcagc ctcgagaacc acaggtgtac accctgcccc 420
catcccgtga cgagetenns nnsnnscaag teageetgae etgeetggte aaaggettet 480
ateceagega categeegtg gagtgggaga geaatgggea geeggagaac aactacaaga 540
ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctacagcaag cttaccgtgn 600
nsnnsnnsnn snnsnnsnns nnsaggtggn nsnnsgggaa cgtcttctca tgctccgtga 660
tgcatgaggc tctgcacaac cactacacac agaagagcct ctccctgtct ccgggtaaag 720
cggccgca 728
<210> SEQ ID NO 4 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer EPKSNCO
<400> SEQUENCE: 4
ccatggccga gcccaaatct tgtgacaaaa ctc 33
<pre><210> SEQ ID NO 5 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer CH3LSAC</pre>
<400> SEQUENCE: 5
agtcgagctc gtcacgggat gggggcaggg 30
<pre><210> SEQ ID NO 6 <211> LENGTH: 41 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer CH3CSAC <220> FEATURE: <221> NAME/KEY: misc_feature <222\ LOCATION: (11)(12) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222\ LOCATION: (14)(15) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222\ LOCATION: (14)(15) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (17)(18) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 6</pre>
gtacgagete nnsnnsnnse aagteageet gacetgeetg g 41
<210> SEQ ID NO 7 <211> LENGTH: 32 <212> TYPE: DNA <213> OPCANISM. artificial

<213 > ORGANISM: artificial

-continued

```
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer CH3CHIN
<400> SEQUENCE: 7
tgccaagctt gctgtagagg aagaaggagc cg
                                                                        32
<210> SEQ ID NO 8
<211> LENGTH: 59
<212> TYPE: DNA
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: PCR primer CH3RHIN
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (17)..(18)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (20)..(21)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (23)..(24)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (32)..(33)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (35)..(36)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 8
tgccaagett accgtgnnsn nsnnsaggtg gnnsnnsggg aacgtettet catgeteeg
                                                                        59
<210> SEQ ID NO 9
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer CH3RNOT
<400> SEQUENCE: 9
agttgcggcc gctttacccg gagacaggga gag
                                                                        33
<210> SEQ ID NO 10
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: junction region
<400> SEQUENCE: 10
Ser Pro Gly Lys Ala Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp
Leu Asn Gly Ala Ala Thr Val Glu Ser
            20
<210> SEQ ID NO 11
<211> LENGTH: 662
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: amino acid sequence of FcabRGD4L
<400> SEQUENCE: 11
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
                                   10
```

Pro	Glu	Leu	Leu 20	Gly	Gly	Pro	Ser	Val 25	Phe	Leu	Phe	Pro	Pro 30	Lys	Pro
Lys	Asp	Thr 35	Leu	Met	Ile	Ser	Arg 40	Thr	Pro	Glu	Val	Thr 45	Cys	Val	Val
Val	Asp 50	Val	Ser	His	Glu	Asp 55	Pro	Glu	Val	Lys	Phe 60	Asn	Trp	Tyr	Val
Asp 65	Gly	Val	Glu	Val	His 70	Asn	Ala	Lys	Thr	Lys 75	Pro	Arg	Glu	Glu	Gln 80
Tyr	Asn	Ser	Thr	Tyr 85	Arg	Val	Val	Ser	Val 90	Leu	Thr	Val	Leu	His 95	Gln
Asp	Trp	Leu	Asn 100	Gly	Lys	Glu	Tyr	Lys 105	Сув	Lys	Val	Ser	Asn 110	Lys	Ala
Leu	Pro	Ala 115	Pro	Ile	Glu	ГЛа	Thr 120	Ile	Ser	ГЛа	Ala	Lys 125	Gly	Gln	Pro
Arg	Glu 130	Pro	Gln	Val	Tyr	Thr 135	Leu	Pro	Pro	Ser	Arg 140	Asp	Glu	Leu	Thr
Lys 145	Asn	Gln	Val	Ser	Leu 150	Thr	Cys	Leu	Val	Lys 155	Gly	Phe	Tyr	Pro	Ser 160
Asp	Ile	Ala	Val	Glu 165	Trp	Glu	Ser	Asn	Gly 170	Gln	Pro	Glu	Asn	Asn 175	Tyr
ГÀа	Thr	Thr	Pro 180	Pro	Val	Leu	Asp	Ser 185	Asp	Gly	Ser	Phe	Phe 190	Leu	Tyr
Ser	Lys	Leu 195	Thr	Val	Gly	Cya	Arg 200	Gly	Asp	Cys	Leu	Ser 205	Arg	Trp	Gln
Gln	Gly 210	Asn	Val	Phe	Ser	Суs 215	Ser	Val	Met	His	Glu 220	Ala	Leu	His	Asn
His 225	Tyr	Thr	Gln	Lys	Ser 230	Leu	Ser	Leu	Ser	Pro 235	Gly	Lys	Glu	Gly	Gly 240
Gly	Ser	Ala	Ala	Ala 245	Glu	Gln	Lys	Leu	Ile 250	Ser	Glu	Glu	Asp	Leu 255	Asn
Gly	Ala	Ala	Thr 260	Val	Glu	Ser	Сув	Leu 265	Ala	Lys	Pro	His	Thr 270	Glu	Asn
Ser	Phe	Thr 275	Asn	Val	Trp	Lys	Asp 280	Asp	Lys	Thr	Leu	Asp 285	Arg	Tyr	Ala
Asn	Tyr 290	Glu	Gly	Cys	Leu	Trp 295	Asn	Ala	Thr	Gly	Val 300	Val	Val	Cys	Thr
Gly 305	Asp	Glu	Thr	Gln	310	Tyr	Gly	Thr	Trp	Val 315	Pro	Ile	Gly	Leu	Ala 320
Ile	Pro	Glu	Asn	Glu 325	Gly	Gly	Gly	Ser	Glu 330	Gly	Gly	Gly	Ser	Glu 335	Gly
Gly	Gly	Ser	Glu 340	Gly	Gly	Gly	Thr	Lys 345	Pro	Pro	Glu	Tyr	Gly 350	Asp	Thr
Pro	Ile	Pro 355	Gly	Tyr	Thr	Tyr	Ile 360	Asn	Pro	Leu	Asp	Gly 365	Thr	Tyr	Pro
Pro	Gly 370	Thr	Glu	Gln	Asn	Pro 375	Ala	Asn	Pro	Asn	Pro 380	Ser	Leu	Glu	Glu
Ser 385	Gln	Pro	Leu	Asn	Thr 390	Phe	Met	Phe	Gln	Asn 395	Asn	Arg	Phe	Arg	Asn 400
Arg	Gln	Gly	Ala	Leu 405	Thr	Val	Tyr	Thr	Gly 410	Thr	Val	Thr	Gln	Gly 415	Thr
Asp	Pro	Val	Lys 420	Thr	Tyr	Tyr	Gln	Tyr 425	Thr	Pro	Val	Ser	Ser 430	Lys	Ala

Met	Tyr	Asp 435	Ala	Tyr	Trp	Asn	Gly 440	Lys	Phe	Arg	Asp	Сув 445	Ala	Phe	His	
Ser	Gly 450	Phe	Asn	Glu	Asp	Pro 455	Phe	Val	Cys	Glu	Tyr 460	Gln	Gly	Gln	Ser	
Ser 465	Asp	Leu	Pro	Gln	Pro 470	Pro	Val	Asn	Ala	Gly 475	Gly	Gly	Ser	Gly	Gly 480	
Gly	Ser	Gly	Gly	Gly 485	Ser	Glu	Gly	Gly	Gly 490	Ser	Glu	Gly	Gly	Gly 495	Ser	
Glu	Gly	Gly	Gly 500	Ser	Glu	Gly	Gly	Gly 505	Ser	Gly	Gly	Gly	Ser 510	Gly	Ser	
Gly	Asp	Phe 515		Tyr	Glu	ГÀа	Met 520	Ala	Asn	Ala	Asn	Lys 525	Gly	Ala	Met	
Thr	Glu 530		Ala	Asp	Glu	Asn 535	Ala	Leu	Gln	Ser	Asp 540	Ala	Lys	Gly	Lys	
Leu 545		Ser	Val	Ala	Thr 550	Asp	Tyr	Gly	Ala	Ala 555	Ile	Asp	Gly	Phe	Ile 560	
Gly	Asp	Val	Ser	Gly 565	Leu	Ala	Asn	Gly	Asn 570	Gly	Ala	Thr	Gly	Asp 575	Phe	
Ala	Gly	Ser	Asn 580		Gln	Met	Ala	Gln 585	Val	Gly	Asp	Gly	Asp 590	Asn	Ser	
Pro	Leu	Met 595	Asn	Asn	Phe	Arg	Gln 600		Leu	Pro	Ser	Leu 605	Pro	Gln	Ser	
Val	Glu 610	-	Arg	Pro	Tyr	Val 615	Phe	Gly	Ala	Gly	Lys 620	Pro	Tyr	Glu	Phe	
Ser 625	Ile	Asp	Cha	Asp	630	Ile	Asn	Leu	Phe	Arg 635		Val	Phe	Ala	Phe 640	
Leu	Leu	Tyr	Val	Ala 645	Thr	Phe	Met	Tyr	Val 650	Phe	Ser	Thr	Phe	Ala 655	Asn	
Ile	Leu	His	Lys 660	Glu	Ser											
<211 <212 <213 <220 <223	L> LE 2> TY 3> OF 0> FE 3> OT	ENGTI (PE : RGAN EATUI THER	ISM:	200 art: DRMA:			ctor	рнег	NFc ak	oRGD4	1					
gaco	gaaag	ggg (cctcg	gtgat	ca co	geeta	attt	tat	aggt	taa	tgt	catga	ata a	ataat	ggttt	60
		-		_										_	atttt	120 180
					_				_			_		_	ctttt	240
ttg	eggea	att t	tgc	ette	ct gt	ttt	gata	c acc	ccaga	aaac	gct	ggtga	aaa 🤉	gtaaa	agatg	300
ctga	aagat	ca q	gttgg	ggtgo	ca co	gagto	gggtt	aca	atcga	aact	ggat	ctca	aac a	agcgg	gtaaga	360
tcct	tgag	gag t	tttc	egec	cc ga	agaa	acgtt	tto	ccaat	gat	gago	cactt	tt a	aaagt	tctgc	420
tato	gtggd	ege (ggtat	tato	aa ag	gtatt	gaco	g ccg	gggca	aaga	gcaa	actc	ggt (egeeg	gcatac	480
acta	attct	ca (gaato	gactt	g gt	tgag	gtact	cad	ccagt	cac	agaa	aaago	cat o	cttac	ggatg	540
gcat	gaca	agt a	aagag	gaatt	ta to	gcagt	gata	g cca	ataad	ccat	gagt	gata	aac a	actgo	eggeca	600
															acatgg	660
999	atcat	gt a	aacto	egeet	t ga	tcgt	tggg	g aad	ccgga	agct	gaat	gaaq	gee a	ataco	caaacg	720

acgagcgtga	caccacgatg	cctgtagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	780
gcgaactact	tactctagct	tcccggcaac	aattaataga	ctggatggag	gcggataaag	840
ttgcaggacc	acttctgcgc	teggeeette	cggctggctg	gtttattgct	gataaatctg	900
gagccggtga	gcgtgggtct	cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	960
cccgtatcgt	agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	1020
agatcgctga	gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagtttact	1080
catatatact	ttagattgat	ttaaaacttc	atttttaatt	taaaaggatc	taggtgaaga	1140
tcctttttga	taatctcatg	accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	1200
cagaccccgt	agaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	1260
gctgcttgca	aacaaaaaa	ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc	1320
taccaactct	ttttccgaag	gtaactggct	tcagcagagc	gcagatacca	aatactgtcc	1380
ttctagtgta	gccgtagtta	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	1440
tegetetget	aatcctgtta	ccagtggctg	ctgccagtgg	cgataagtcg	tgtcttaccg	1500
ggttggactc	aagacgatag	ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	1560
cgtgcacaca	gcccagcttg	gagcgaacga	cctacaccga	actgagatac	ctacagcgtg	1620
agcattgaga	aagcgccacg	cttcccgaag	ggagaaaggc	ggacaggtat	ccggtaagcg	1680
gcagggtcgg	aacaggagag	cgcacgaggg	agcttccagg	gggaaacgcc	tggtatcttt	1740
atagtcctgt	cgggtttcgc	cacctctgac	ttgagcgtcg	atttttgtga	tgctcgtcag	1800
gggggcggag	cctatggaaa	aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	1860
gctggccttt	tgctcacatg	ttctttcctg	cgttatcccc	tgattctgtg	gataaccgta	1920
ttaccgcctt	tgagtgagct	gataccgctc	gccgcagccg	aacgaccgag	cgcagcgagt	1980
cagtgagcga	ggaagcggaa	gagcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	2040
cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	2100
acgcaattaa	tgtgagttag	ctcactcatt	aggcacccca	ggctttacac	tttatgcttc	2160
cggctcgtat	gttgtgtgga	attgtgagcg	gataacaatt	tcacacagga	aacagctatg	2220
accatgatta	cgccaagctt	aagcttgcat	gcaaattcta	tttcaaggag	acagtcataa	2280
tgaaatacct	attgcctacg	gcagccgctg	gattgttatt	actcgcggcc	cagccggcca	2340
tggccgagcc	caaatcttgt	gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	2400
tcctgggggg	accgtcagtc	ttcctcttcc	ccccaaaacc	caaggacacc	ctcatgatct	2460
cccggacccc	tgaggtcaca	tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	2520
agttcaactg	gtacgtggac	ggcgtggagg	tgcataatgc	caagacaaag	ccgcgggagg	2580
agcagtacaa	cagcacgtac	cgtgtggtca	gcgtcctcac	cgtcctgcac	caggactggc	2640
tgaatggcaa	ggagtacaag	tgcaaggtct	ccaacaaagc	cctcccagcc	cccatcgaga	2700
aaaccatctc	caaagccaaa	gggcagcccc	gagaaccaca	ggtgtacacc	ctgcccccat	2760
cccgggatga	gctgaccaag	aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	2820
ccagcgacat	cgccgtggag	tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	2880
cgcctcccgt	gctggactcc	gacggctcct	tcttcctcta	cagcaagctt	accgtgggtt	2940
	ttgtctgagc					3000
	gcacaaccac					3060
ccycayaaca	aaaactcatc	ccayaagagg	accegaatgg	ggeegeatag	accyccgaaa	3120

gttgtttagc	aaaacctcat	acagaaaatt	catttactaa	cgtctggaaa	gacgacaaaa	3180
ctttagatcg	ttacgctaac	tatgagggct	gtctgtggaa	tgctacaggc	gttgtggttt	3240
gtactggtga	cgaaactcag	tgttacggta	catgggttcc	tattgggctt	gctatccctg	3300
aaaatgaggg	tggtggctct	gagggtggcg	gttctgaggg	tggcggttct	gagggtggcg	3360
gtactaaacc	tcctgagtac	ggtgatacac	ctattccggg	ctatacttat	atcaaccctc	3420
tcgacggcac	ttatccgcct	ggtactgagc	aaaaccccgc	taatcctaat	ccttctcttg	3480
aggagtetea	gcctcttaat	actttcatgt	ttcagaataa	taggttccga	aataggcagg	3540
gtgcattaac	tgtttatacg	ggcactgtta	ctcaaggcac	tgaccccgtt	aaaacttatt	3600
accagtacac	tcctgtatca	tcaaaagcca	tgtatgacgc	ttactggaac	ggtaaattca	3660
gagactgcgc	tttccattct	ggctttaatg	aggatccatt	cgtttgtgaa	tatcaaggcc	3720
aatcgtctga	cctgcctcaa	cctcctgtca	atgctggcgg	cggctctggt	ggtggttctg	3780
gtggcggctc	tgagggtggc	ggctctgagg	gtggcggttc	tgagggtggc	ggctctgagg	3840
gtggcggttc	cggtggcggc	teeggtteeg	gtgattttga	ttatgaaaaa	atggcaaacg	3900
ctaataaggg	ggctatgacc	gaaaatgccg	atgaaaacgc	gctacagtct	gacgctaaag	3960
gcaaacttga	ttetgteget	actgattacg	gtgctgctat	cgatggtttc	attggtgacg	4020
tttccggcct	tgctaatggt	aatggtgcta	ctggtgattt	tgetggetet	aattcccaaa	4080
tggctcaagt	cggtgacggt	gataattcac	ctttaatgaa	taatttccgt	caatatttac	4140
cttctttgcc	tcagtcggtt	gaatgtcgcc	cttatgtctt	tggcgctggt	aaaccatatg	4200
aattttctat	tgattgtgac	aaaataaact	tattccgtgg	tgtctttgcg	tttcttttat	4260
atgttgccac	ctttatgtat	gtattttcga	cgtttgctaa	catactgcat	aaggagtctt	4320
aataagaatt	cactggccgt	cgttttacaa	cgtcgtgact	gggaaaaccc	tggcgttacc	4380
caacttaatc	gccttgcagc	acateceect	ttcgccagct	ggcgtaatag	cgaagaggcc	4440
cgcaccgatc	gcccttccca	acagttgcgc	agcctgaatg	gcgaatggcg	cctgatgcgg	4500
tattttctcc	ttacgcatct	gtgcggtatt	tcacaccgca	cgtcaaagca	accatagtac	4560
gcgccctgta	gcggcgcatt	aagcgcggcg	ggtgtggtgg	ttacgcgcag	cgtgaccgct	4620
acacttgcca	gcgccctagc	gecegeteet	ttegetttet	tecetteett	tctcgccacg	4680
ttcgccggct	ttccccgtca	agctctaaat	cgggggctcc	ctttagggtt	ccgatttagt	4740
gctttacggc	acctcgaccc	caaaaaactt	gatttgggtg	atggttcacg	tagtgggcca	4800
tegecetgat	agacggtttt	tegecetttg	acgttggagt	ccacgttctt	taatagtgga	4860
ctcttgttcc	aaactggaac	aacactcaac	cctatctcgg	gctattcttt	tgatttataa	4920
gggattttgc	cgatttcggc	ctattggtta	aaaaatgagc	tgatttaaca	aaaatttaac	4980
gcgaatttta	acaaaatatt	aacgtttaca	attttatggt	gcactctcag	tacaatctgc	5040
tctgatgccg	catagttaag	ccagccccga	cacccgccaa	cacccgctga	cgcgccctga	5100
cgggcttgtc	tgctcccggc	atccgcttac	agacaagctg	tgaccgtctc	cgggagctgc	5160
atgtgtcaga	ggttttcacc	gtcatcaccg	aaacgcgcga			5200

<210> SEQ ID NO 13
<211> LENGTH: 48
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: CH3rlink

	61			
		-contin	ued	
<400> SEQUENCE: 13				
actageggee geagageeae eac	ccctcctt acccggagac	agggagag		48
<pre><210> SEQ ID NO 14 <211> LENGTH: 5215 <212> TYPE: DNA <213> ORGANISM: artificia <220> FEATURE:</pre>				
<223> OTHER INFORMATION:	vector pHENFcabRGD	4L		
<400> SEQUENCE: 14				
gacgaaaggg cctcgtgata cgc	cctatttt tataggttaa	tgtcatgata	ataatggttt	60
cttagacgtc aggtggcact ttt	cggggaa atgtgcgcgg	aacccctatt	tgtttatttt	120
tctaaataca ttcaaatatg tat	ccgctca tgagacaata	accctgataa	atgcttcaat	180
aatattgaaa aaggaagagt atg	gagtattc aacatttccg	tgtcgccctt	attccctttt	240
ttgcggcatt ttgccttcct gtt	tttgctc acccagaaac	gctggtgaaa	gtaaaagatg	300
ctgaagatca gttgggtgca cga	agtgggtt acatcgaact	ggatctcaac	agcggtaaga	360
teettgagag ttttegeece gaa	agaacgtt ttccaatgat	gagcactttt	aaagttctgc	420
tatgtggcgc ggtattatcc cgt	attgacg ccgggcaaga	gcaactcggt	cgccgcatac	480
actattctca gaatgacttg gtt	gagtact caccagtcac	agaaaagcat	cttacggatg	540
gcatgacagt aagagaatta tgc	agtgetg ceataaceat	gagtgataac	actgcggcca	600
acttacttct gacaacgatc gga	aggaccga aggagctaac	cgcttttttg	cacaacatgg	660
gggatcatgt aactcgcctt gat	cgttggg aaccggagct	gaatgaagcc	ataccaaacg	720
acgagegtga caccaegatg ect	gtagcaa tggcaacaac	gttgcgcaaa	ctattaactg	780
gcgaactact tactctagct tcc	cggcaac aattaataga	ctggatggag	gcggataaag	840
ttgcaggacc acttctgcgc tcg	ggcccttc cggctggctg	gtttattgct	gataaatctg	900
gageeggtga gegtgggtet ege	eggtatca ttgcagcact	ggggccagat	ggtaagccct	960
cccgtatcgt agttatctac acg	gacgggga gtcaggcaac	tatggatgaa	cgaaatagac	1020
agategetga gataggtgee tea	actgatta agcattggta	actgtcagac	caagtttact	1080
catatatact ttagattgat tta	aaaacttc atttttaatt	taaaaggatc	taggtgaaga	1140
tcctttttga taatctcatg acc	caaaatcc cttaacgtga	gttttcgttc	cactgagcgt	1200
cagaccccgt agaaaagatc aaa	aggatett ettgagatee	tttttttctg	cgcgtaatct	1260
gctgcttgca aacaaaaaa cca	accgctac cagcggtggt	ttgtttgccg	gatcaagagc	1320
taccaactct ttttccgaag gta	actggct tcagcagagc	gcagatacca	aatactgtcc	1380
ttctagtgta gccgtagtta ggc	caccact tcaagaactc	tgtagcaccg	cctacatacc	1440
tegetetget aateetgtta eea	agtggctg ctgccagtgg	cgataagtcg	tgtcttaccg	1500
ggttggactc aagacgatag tta	accggata aggcgcagcg	gtcgggctga	acggggggtt	1560
cgtgcacaca gcccagcttg gag	gegaaega eetaeaeega	actgagatac	ctacagcgtg	1620
agcattgaga aagcgccacg ctt	cccgaag ggagaaaggc	ggacaggtat	ccggtaagcg	1680
gcagggtegg aacaggagag ege	acgaggg agcttccagg	gggaaacgcc	tggtatcttt	1740
atagteetgt egggtttege eac				1800
ggggggggag cctatggaaa aac				1860
gctggccttt tgctcacatg ttc	streety egitateese	rgattetgtg	yataaccgta	1920

ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980

64

cagtgagcga	ggaagcggaa	gagcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	2040
cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	2100
acgcaattaa	tgtgagttag	ctcactcatt	aggcacccca	ggctttacac	tttatgcttc	2160
cggctcgtat	gttgtgtgga	attgtgagcg	gataacaatt	tcacacagga	aacagctatg	2220
accatgatta	cgccaagctt	aagcttgcat	gcaaattcta	tttcaaggag	acagtcataa	2280
tgaaatacct	attgcctacg	gcagccgctg	gattgttatt	actcgcggcc	cageeggeea	2340
tggccgagcc	caaatcttgt	gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	2400
teetgggggg	accgtcagtc	tteetettee	ccccaaaacc	caaggacacc	ctcatgatct	2460
cccggacccc	tgaggtcaca	tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	2520
agttcaactg	gtacgtggac	ggcgtggagg	tgcataatgc	caagacaaag	ccgcgggagg	2580
agcagtacaa	cagcacgtac	cgtgtggtca	gegteeteae	cgtcctgcac	caggactggc	2640
tgaatggcaa	ggagtacaag	tgcaaggtct	ccaacaaagc	cctcccagcc	cccatcgaga	2700
aaaccatctc	caaagccaaa	gggcagcccc	gagaaccaca	ggtgtacacc	ctgcccccat	2760
cccgggatga	gctgaccaag	aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	2820
ccagcgacat	cgccgtggag	tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	2880
cgcctcccgt	gctggactcc	gacggctcct	tcttcctcta	cagcaagctt	accgtgggtt	2940
gccgcggtga	ttgtctgagc	aggtggcagc	aggggaacgt	cttctcatgc	teegtgatge	3000
atgaggctct	gcacaaccac	tacacgcaga	agagcctctc	cctgtctccg	ggtaaggagg	3060
gtggtggctc	tgeggeegea	gaacaaaaac	tcatctcaga	agaggatetg	aatggggccg	3120
catagactgt	tgaaagttgt	ttagcaaaac	ctcatacaga	aaattcattt	actaacgtct	3180
ggaaagacga	caaaacttta	gatcgttacg	ctaactatga	gggctgtctg	tggaatgcta	3240
caggcgttgt	ggtttgtact	ggtgacgaaa	ctcagtgtta	cggtacatgg	gttcctattg	3300
ggcttgctat	ccctgaaaat	gagggtggtg	gctctgaggg	tggcggttct	gagggtggcg	3360
gttctgaggg	tggcggtact	aaacctcctg	agtacggtga	tacacctatt	ccgggctata	3420
cttatatcaa	ccctctcgac	ggcacttatc	cgcctggtac	tgagcaaaac	cccgctaatc	3480
ctaatccttc	tcttgaggag	teteageete	ttaatacttt	catgtttcag	aataataggt	3540
tccgaaatag	gcagggtgca	ttaactgttt	atacgggcac	tgttactcaa	ggcactgacc	3600
ccgttaaaac	ttattaccag	tacactcctg	tatcatcaaa	agccatgtat	gacgcttact	3660
ggaacggtaa	attcagagac	tgcgctttcc	attctggctt	taatgaggat	ccattcgttt	3720
gtgaatatca	aggccaatcg	tctgacctgc	ctcaacctcc	tgtcaatgct	ggcggcggct	3780
ctggtggtgg	ttctggtggc	ggctctgagg	gtggcggctc	tgagggtggc	ggttctgagg	3840
gtggcggctc	tgagggtggc	ggttccggtg	geggeteegg	ttccggtgat	tttgattatg	3900
aaaaaatggc	aaacgctaat	aagggggcta	tgaccgaaaa	tgccgatgaa	aacgcgctac	3960
agtctgacgc	taaaggcaaa	cttgattctg	tegetaetga	ttacggtgct	gctatcgatg	4020
gtttcattgg	tgacgtttcc	ggccttgcta	atggtaatgg	tgctactggt	gattttgctg	4080
gctctaattc	ccaaatggct	caagtcggtg	acggtgataa	ttcaccttta	atgaataatt	4140
tccgtcaata	tttaccttct	ttgcctcagt	cggttgaatg	tegecettat	gtetttggeg	4200
ctggtaaacc	atatgaattt	tctattgatt	gtgacaaaat	aaacttattc	cgtggtgtct	4260
ttgcgtttct	tttatatgtt	gccaccttta	tgtatgtatt	ttcgacgttt	gctaacatac	4320
	-		-	-		

-continued

-continued	
tgcataagga gtcttaataa gaattcactg gccgtcgttt tacaacgtcg tgactgggaa	4380
aaccetggeg ttacecaact taategeett geageacate eeeetttege eagetggegt	4440
aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa	4500
tggcgcctga tgcggtattt tctccttacg catctgtgcg gtatttcaca ccgcacgtca	4560
aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg	4620
cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct	4680
teettteteg eeaegttege eggettteee egteaagete taaategggg geteeettta	4740
gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgattt gggtgatggt	4800
tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg	4860
ttetttaata gtggaetett gtteeaaact ggaacaacae teaaceetat etegggetat	4920
tettttgatt tataagggat tttgeegatt teggeetatt ggttaaaaaa tgagetgatt	4980
taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt ttacaatttt atggtgcact	5040
ctcagtacaa tctgctctga tgccgcatag ttaagccagc cccgacaccc gccaacaccc	5100
getgaegege cetgaeggge ttgtetgete eeggeateeg ettaeagaea agetgtgaee	5160
gtctccggga gctgcatgtg tcagaggttt tcaccgtcat caccgaaacg cgcga	5215
<210> SEQ ID NO 15 <211> LENGTH: 5013 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: vector pyD1dX	
<400> SEQUENCE: 15	
	60
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt	60 120
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactotc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga	120
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac	120 180
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga	120
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat	120 180 240
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc	120 180 240 300
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggata ataaaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac	120 180 240 300
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc	120 180 240 300 360 420
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac	120 180 240 300 360 420
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggata ataaaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt	120 180 240 300 360 420 480
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa	120 180 240 300 360 420 480 540
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggata ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaataac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa ctaatagcga gcaaatcccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga	120 180 240 300 360 420 480 540 600
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggata ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa ctaatagcag gcaaatccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga ctactatttt ggccaacggg aaggcaatgc aaggagtttt tgaatattac aaatcagtaa	120 180 240 300 360 420 480 540 600 660
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggata ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaataac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa ctaatagcga gcaaatccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga ctactatttt ggccaacggg aaggcaatgc aaggagttt tgaatattac aaatcagtaa cgtttgtcag taattgcggt tctcacccct caacaactag caaaggcagc cccataaaca	120 180 240 300 360 420 480 540 600 660 720
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacaggata ataaaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa ctaatatgcga gcaaatcccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga ctactatttt ggccaacggg aaggcaatgc aaggagtttt tgaatattac aaatcagtaa cgtttgtcag taattgcggt tctcacccct caacaactag caaaggcagc cccataaaca cacagtatgt ttttaagctt ctgcaggcta gtggtggtgg tggttctggt ggtggtggtt	120 180 240 300 360 420 480 540 600 660 720 780
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactete ctccgtgcgt cctcgtctte accggtcgcg ttcctgaaac gcagatgtge ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaataac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa ctaatatgcga gcaaatccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga ctactatttt ggccaacggg aaggcaatgc aaggagttt tgaatattac aaatcagtaa cgtttgtcag taattgcggt tctcacccct caacaactag caaaggcagc cccataaaca cacagtatgt ttttaagctt ctgcaggcta gtggtggtgg tggttctggt ggtggtggtt ctgggtggtgg tggttctgct agcatgactg gtggacagca aatgggtcgg gatctgtacg acgatgacga taaggtagca ggatcagta tcgaagatat ctgcagatat ccagcacagt acgatgacga taaggtagca ggatcagta gtggtggggt tcggtaggg tggttctgct agcatgactg tggtggaatt ctgcagatat ccagcacagt	120 180 240 300 360 420 480 540 600 660 720 780 840
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactete ctccgtcgt cctcgtctte accggtcgcg ttcctgaaac gcagatgtge ctcggccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaaggtatca acaaaaaatt gttaatatac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aaggtaatat atttcgtta ttgcttcagt tttagcacag gaactgacaa ctaatagcag gcaaatcccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga ctactatttt ggccaacggg aaggcaatgc aaggagttt tgaatattac aaatcagtaa cgttgtcag taattgcggt tctcacccct caacaactag caaaggcagc cccataaaca cacagtatgt ttttaagctt ctgcaggcta gtggtggtgg tggttctggt ggtggtggtt ctggtggtgg tggttctggt ggtggtggt tctggtggtgg tggttctggt ggtggtggt tctggtggtgg tggttctgc agcatcagt ttggaggagca aatggcagc cccataaaca acgatgacga taaggtacca ggatccagt ttggagagta ctgcagatat ctgcagatat ccagcacagt ggcggccgct cgatcgatc tagagggccc ttcgaaggta agcctatcc taaccctctc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactete ctccgtgcgt cctcgtctte accggtcgcg ttcctgaaac gcagatgtge ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaataac ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa ctaatatgcga gcaaatccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga ctactatttt ggccaacggg aaggcaatgc aaggagttt tgaatattac aaatcagtaa cgtttgtcag taattgcggt tctcacccct caacaactag caaaggcagc cccataaaca cacagtatgt ttttaagctt ctgcaggcta gtggtggtgg tggttctggt ggtggtggtt ctgggtggtgg tggttctgct agcatgactg gtggacagca aatgggtcgg gatctgtacg acgatgacga taaggtagca ggatcagta tcgaagatat ctgcagatat ccagcacagt acgatgacga taaggtagca ggatcagta gtggtggggt tcggtaggg tggttctgct agcatgactg tggtggaatt ctgcagatat ccagcacagt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

ctcgtacaaa atacaatata cttttcattt ctccgtaaac aacatgtttt cccatgtaat 1200

atccttttct	atttttcgtt	ccgttaccaa	ctttacacat	actttatata	gctattcact	1260
tctatacact	aaaaaactaa	gacaatttta	attttgctgc	ctgccatatt	tcaatttgtt	1320
ataaattcct	ataatttatc	ctattagtag	ctaaaaaaag	atgaatgtga	atcgaatcct	1380
aagagaattg	ggcaagtgca	caaacaatac	ttaaataaat	actactcagt	aataacctat	1440
ttcttagcat	ttttgacgaa	atttgctatt	ttgttagagt	cttttacacc	atttgtctcc	1500
acacctccgc	ttacatcaac	accaataacg	ccatttaatc	taagcgcatc	accaacattt	1560
tctggcgtca	gtccaccagc	taacataaaa	tgtaagctct	cggggctctc	ttgccttcca	1620
acccagtcag	aaatcgagtt	ccaatccaaa	agttcacctg	tcccacctgc	ttctgaatca	1680
aacaagggaa	taaacgaatg	aggtttctgt	gaagctgcac	tgagtagtat	gttgcagtct	1740
tttggaaata	cgagtctttt	aataactggc	aaaccgagga	actcttggta	ttcttgccac	1800
gactcatctc	cgtgcagttg	gacgatatca	atgccgtaat	cattgaccag	agccaaaaca	1860
tectecttag	gttgattacg	aaacacgcca	accaagtatt	teggagtgee	tgaactattt	1920
ttatatgctt	ttacaagact	tgaaattttc	cttgcaataa	ccgggtcaat	tgttctcttt	1980
ctattgggca	cacatataat	acccagcaag	tcagcatcgg	aatctagagc	acattctgcg	2040
gcctctgtgc	tctgcaagcc	gcaaactttc	accaatggac	cagaactacc	tgtgaaatta	2100
ataacagaca	tactccaagc	tgcctttgtg	tgcttaatca	cgtatactca	cgtgctcaat	2160
agtcaccaat	gccctccctc	ttggccctct	ccttttcttt	tttcgaccga	atttcttgaa	2220
gacgaaaggg	cctcgtgata	cgcctatttt	tataggttaa	tgtcatgata	ataatggttt	2280
cttaggacgg	atcgcttgcc	tgtaacttac	acgcgcctcg	tatcttttaa	tgatggaata	2340
atttgggaat	ttactctgtg	tttatttatt	tttatgtttt	gtatttggat	tttagaaagt	2400
aaataaagaa	ggtagaagag	ttacggaatg	aagaaaaaaa	aataaacaaa	ggtttaaaaa	2460
atttcaacaa	aaagcgtact	ttacatatat	atttattaga	caagaaaagc	agattaaata	2520
gatatacatt	cgattaacga	taagtaaaat	gtaaaatcac	aggattttcg	tgtgtggtct	2580
tctacacaga	caagatgaaa	caattcggca	ttaatacctg	agagcaggaa	gagcaagata	2640
aaaggtagta	tttgttggcg	atccccctag	agtcttttac	atcttcggaa	aacaaaaact	2700
attttttctt	taatttcttt	ttttactttc	tatttttaat	ttatatattt	atattaaaaa	2760
atttaaatta	taattatttt	tatagcacgt	gatgaaaagg	acccaggtgg	cacttttcgg	2820
ggaaatgtgc	gcggaacccc	tatttgttta	tttttctaaa	tacattcaaa	tatgtatccg	2880
ctcatgagac	aataaccctg	ataaatgctt	caataatatt	gaaaaaggaa	gagtatgagt	2940
attcaacatt	teegtgtege	ccttattccc	ttttttgcgg	cattttgcct	tcctgttttt	3000
gctcacccag	aaacgctggt	gaaagtaaaa	gatgctgaag	atcagttggg	tgcacgagtg	3060
ggttacatcg	aactggatct	caacagcggt	aagatccttg	agagttttcg	ccccgaagaa	3120
cgttttccaa	tgatgagcac	ttttaaagtt	ctgctatgtg	gcgcggtatt	atcccgtgtt	3180
gacgccgggc	aagagcaact	cggtcgccgc	atacactatt	ctcagaatga	cttggttgag	3240
tactcaccag	tcacagaaaa	gcatcttacg	gatggcatga	cagtaagaga	attatgcagt	3300
gctgccataa	ccatgagtga	taacactgcg	gccaacttac	ttctgacaac	gatcggagga	3360
ccgaaggagc	taaccgcttt	tttgcacaac	atgggggatc	atgtaactcg	ccttgatcgt	3420
tgggaaccgg	agctgaatga	agccatacca	aacgacgagc	gtgacaccac	gatgcctgta	3480
gcaatggcaa	caacgttgcg	caaactatta	actggcgaac	tacttactct	agcttcccgg	3540

-continued

-continued	
caacaattaa tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc	3600
cttccggctg gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt	3660
atcattgcag cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg	3720
ggcagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg	3780
attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa	3840
cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa	3900
atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga	3960
tettettgag ateettttt tetgegegta atetgetget tgeaaacaaa aaaaceaceg	4020
ctaccagegg tggtttgttt geeggateaa gagetaceaa etetttttee gaaggtaaet	4080
ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac	4140
cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg	4200
gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg	4260
gataaggege ageggteggg etgaaegggg ggttegtgea caeageeeag ettggagega	4320
acgacctaca ccgaactgag atacctacag cgtgagcatt gagaaagcgc cacgcttccc	4380
gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg	4440
agggagette caggggggaa egeetggtat etttatagte etgtegggtt tegeeacete	4500
tgacttgagc gtcgattttt gtgatgctcg tcaggggggc cgagcctatg gaaaaacgcc	4560
ageaacgegg cetttttaeg gtteetggee ttttgetgge ettttgetea eatgttettt	4620
cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc	4680
getegeegea geegaaegae egagegeage gagteagtga gegaggaage ggaagagege	4740
ccaatacgca aaccgcctct ccccgcgcgt tggccgattc attaatgcag ctggcacgac	4800
aggtttcccg actggaaagc gggcagtgag cgcaacgcaa	4860
cattaggcac cccaggcttt acactttatg cttccggctc ctatgttgtg tggaattgtg	4920
ageggataac aattteacac aggaaacage tatgaceatg attaegeeaa geteggaatt	4980
aaccctcact aaagggaaca aaagctggct agt	5013
<210> SEQ ID NO 16 <211> LENGTH: 5971 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: vector pYD1dXFc	
<400> SEQUENCE: 16	
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt	60
cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga	120
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac	180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga	240
ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat	300
taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc	360
ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac	420
ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac	480

540

600

gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt

tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa

660	ttgtcaacga	gccgtactct	tagaatcgac	tcaccaactt	gcaaatcccc	ctatatgcga
720	aaatcagtaa	tgaatattac	aaggagtttt	aaggcaatgc	ggccaacggg	ctactatttt
780	cccataaaca	caaaggcagc	caacaactag	tctcacccct	taattgcggt	cgtttgtcag
840	ggtggtggtt	tggttctggt	gtggtggtgg	ctgcaggcta	ttttaagctt	cacagtatgt
900	gatctgtacg	aatgggtcgg	gtggacagca	agcatgactg	tggttctgct	ctggtggtgg
960	ttecetetgg	ccccagcgtg	gcaccaaggg	ggatccgcta	taaggtacca	acgatgacga
1020	gtgaaggatt	gggctgcctg	cegeegeeet	teeggeggea	caagagcacc	cccccagctc
1080	ggcgtgcaca	cctgaccagc	acageggege	gtgagctgga	gcccgtgacc	acttcccaga
1140	gtgaccgtgc	gagcagcgtg	tgtactccct	tecageggee	cgtgctgcag	cctttcccgc
1200	cccagcaata	gaaccacaag	tctgcaatgt	cagacctaca	cctgggcacc	ccagcagcag
1260	tgtcccccat	gacacacacg	gcagcgacaa	gagcccaaga	taagaaggtg	ccaaggtgga
1320	aagccaaagg	gttccctccc	ccgtgttcct	ggeggeeett	tgagctgctg	gtcccgcccc
1380	gtgagccacg	ggtggtggac	tgacctgtgt	acccctgagg	gatctcccgg	acaccctgat
1440	aacgccaaga	ggaggtgcac	tggacggcgt	aactggtacg	ggtgaagttc	aggacccaga
1500	ctgaccgtgc	ggtgagcgtg	cctaccgcgt	tacaacagca	agaggagcag	ccaagcctag
1560	aaggccctgc	ggtgagcaac	acaagtgcaa	ggcaaggagt	ttggctgaat	tgcaccagga
1620	ccacaggtgt	gcctcgagaa	ccaagggcca	atctccaagg	cgagaagacc	ctgcccccat
1680	acctgcctgg	ggtcagcctg	ccaagaacca	gatgagctga	cccatcccgg	acaccctgcc
1740	cagccggaga	gagcaatggg	tggagtggga	gacatcgccg	ctatcccagc	tcaaaggctt
1800	ctctacagca	ctccttcttc	actccgacgg	cccgtgctgg	gaccacgcct	acaactacaa
1860	tccgtgatgc	cttctcatgc	aggggaacgt	aggtggcagc	ggacaagagc	agctcaccgt
1920	ggtaaatgag	cctgtctccg	agagcctctc	tacacacaga	gcacaaccac	atgaggctct
1980	accctctcct	cctatcccta	cgaaggtaag	gagggccctt	atcgagtcta	cggccgctcg
2040	aaacccgctg	cattgagttt	tcaccatcac	ccggtcatca	tctacgcgta	cggtctcgat
2100	acttttagct	ttcccactgt	atcgactttg	atgtaacaaa	aacagtgtag	atctgataac
2160	catgtaatat	catgttttcc	ccgtaaacaa	tttcatttct	acaatatact	cgtacaaaat
2220	tattcacttc	tttatatagc	ttacacatac	gttaccaact	ttttcgttcc	ccttttctat
2280	aatttgttat	gccatatttc	tttgctgcct	caattttaat	aaaactaaga	tatacactaa
2340	cgaatcctaa	gaatgtgaat	aaaaaaagat	attagtagct	aatttatcct	aaattcctat
2400	taacctattt	tactcagtaa	aaataaatac	aacaatactt	caagtgcaca	gagaattggg
2460	ttgtctccac	tttacaccat	gttagagtct	ttgctatttt	ttgacgaaat	cttagcattt
2520	caacattttc	agcgcatcac	atttaatcta	caataacgcc	acatcaacac	acctccgctt
2580	geettecaac	gggctctctt	taageteteg	acataaaatg	ccaccagcta	tggcgtcagt
2640	ctgaatcaaa	ccacctgctt	ttcacctgtc	aatccaaaag	atcgagttcc	ccagtcagaa
2700	tgcagtcttt	agtagtatgt	agctgcactg	gtttctgtga	aacgaatgag	caagggaata
2760	cttgccacga	tcttggtatt	accgaggaac	taactggcaa	agtcttttaa	tggaaatacg
2820	ccaaaacatc	ttgaccagag	gccgtaatca	cgatatcaat	tgcagttgga	ctcatctccg
2880	aactatttt	ggagtgcctg	caagtatttc	acacgccaac	tgattacgaa	ctccttaggt
2940	ttctctttct	gggtcaattg	tgcaataacc	aaattttcct	acaagacttg	atatgctttt

ed
ed

attgggcaca	catataatac	ccagcaagtc	agcatcggaa	tctagagcac	attctgcggc	3000
ctctgtgctc	tgcaagccgc	aaactttcac	caatggacca	gaactacctg	tgaaattaat	3060
aacagacata	ctccaagctg	cctttgtgtg	cttaatcacg	tatactcacg	tgctcaatag	3120
tcaccaatgc	cctccctctt	ggecetetee	ttttctttt	tcgaccgaat	ttcttgaaga	3180
cgaaagggcc	tcgtgatacg	cctattttta	taggttaatg	tcatgataat	aatggtttct	3240
taggacggat	cgcttgcctg	taacttacac	gcgcctcgta	tcttttaatg	atggaataat	3300
ttgggaattt	actctgtgtt	tatttattt	tatgttttgt	atttggattt	tagaaagtaa	3360
ataaagaagg	tagaagagtt	acggaatgaa	gaaaaaaaaa	taaacaaagg	tttaaaaaat	3420
ttcaacaaaa	agcgtacttt	acatatatat	ttattagaca	agaaaagcag	attaaataga	3480
tatacattcg	attaacgata	agtaaaatgt	aaaatcacag	gattttcgtg	tgtggtcttc	3540
tacacagaca	agatgaaaca	attcggcatt	aatacctgag	agcaggaaga	gcaagataaa	3600
aggtagtatt	tgttggcgat	ccccctagag	tcttttacat	cttcggaaaa	caaaaactat	3660
tttttcttta	atttcttttt	ttactttcta	tttttaattt	atatatttat	attaaaaaat	3720
ttaaattata	attatttta	tagcacgtga	tgaaaaggac	ccaggtggca	cttttcgggg	3780
aaatgtgcgc	ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	3840
catgagacaa	taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	3900
tcaacatttc	cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	3960
tcacccagaa	acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	4020
ttacatcgaa	ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	4080
ttttccaatg	atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtgttga	4140
cgccgggcaa	gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	4200
ctcaccagtc	acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	4260
tgccataacc	atgagtgata	acactgcggc	caacttactt	ctgacaacga	teggaggace	4320
gaaggagcta	accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	4380
ggaaccggag	ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	4440
aatggcaaca	acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	4500
acaattaata	gactggatgg	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	4560
tccggctggc	tggtttattg	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	4620
cattgcagca	ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	4680
cagtcaggca	actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	4740
taagcattgg	taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	4800
tcatttttaa	tttaaaagga	tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	4860
cccttaacgt	gagttttcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	4920
ttcttgagat	ccttttttc	tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	4980
accageggtg	gtttgtttgc	cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	5040
cttcagcaga	gcgcagatac	caaatactgt	ccttctagtg	tagccgtagt	taggccacca	5100
cttcaagaac	tctgtagcac	cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	5160
tgctgccagt	ggcgataagt	cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	5220
				cagcccagct		5280
				gaaagcgcca		5340
5	5 5 5 6		JJ 34	J J = 5 = 5 w	J	

agggagaaag	gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	5400
ggagcttcca	ggggggaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	5460
acttgagcgt	cgatttttgt	gatgctcgtc	aggggggccg	agcctatgga	aaaacgccag	5520
caacgcggcc	tttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	5580
tgcgttatcc	cctgattctg	tggataaccg	tattaccgcc	tttgagtgag	ctgataccgc	5640
tegeegeage	cgaacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgccc	5700
aatacgcaaa	ccgcctctcc	ccgcgcgttg	gccgattcat	taatgcagct	ggcacgacag	5760
gtttcccgac	tggaaagcgg	gcagtgagcg	caacgcaatt	aatgtgagtt	acctcactca	5820
ttaggcaccc	caggetttae	actttatgct	tccggctcct	atgttgtgtg	gaattgtgag	5880
cggataacaa	tttcacacag	gaaacagcta	tgaccatgat	tacgccaagc	tcggaattaa	5940
ccctcactaa	agggaacaaa	agctggctag	t			5971
<220> FEAT	TH: 5657 : DNA NISM: artif: JRE: R INFORMATIO	icial DN: pYD1CH12	2			
acggattaga	agccgccgag	cgggtgacag	ccctccgaag	gaagactctc	ctccgtgcgt	60
cctcgtcttc	accggtcgcg	ttcctgaaac	gcagatgtgc	ctcgcgccgc	actgctccga	120
acaataaaga	ttctacaata	ctagctttta	tggttatgaa	gaggaaaaat	tggcagtaac	180
ctggccccac	aaaccttcaa	atgaacgaat	caaattaaca	accataggat	gataatgcga	240
ttagtttttt	agccttattt	ctggggtaat	taatcagcga	agcgatgatt	tttgatctat	300
taacagatat	ataaatgcaa	aaactgcata	accactttaa	ctaatacttt	caacattttc	360
ggtttgtatt	acttcttatt	caaatgtaat	aaaagtatca	acaaaaaatt	gttaatatac	420
ctctatactt	taacgtcaag	gagaaaaaac	cccggatcgg	actactagca	gctgtaatac	480
gactcactat	agggaatatt	aagctaattc	tacttcatac	attttcaatt	aagatgcagt	540
tacttcgctg	tttttcaata	ttttctgtta	ttgcttcagt	tttagcacag	gaactgacaa	600
ctatatgcga	gcaaatcccc	tcaccaactt	tagaatcgac	gccgtactct	ttgtcaacga	660
ctactatttt	ggccaacggg	aaggcaatgc	aaggagtttt	tgaatattac	aaatcagtaa	720
cgtttgtcag	taattgcggt	tctcacccct	caacaactag	caaaggcagc	cccataaaca	780
cacagtatgt	ttttaagctt	ctgcaggcta	gtggtggtgg	tggttctggt	ggtggtggtt	840
ctggtggtgg	tggttctgct	agcatgactg	gtggacagca	aatgggtcgg	gatctgtacg	900
acgatgacga	taaggtacca	ggatccgcta	gcaccaaggg	ccccagcgtg	ttccctctgg	960
ccccagctc	caagagcacc	tccggcggca	ccgccgccct	gggctgcctg	gtgaaggatt	1020
acttcccaga	gcccgtgacc	gtgagctgga	acageggege	cctgaccagc	ggcgtgcaca	1080
cctttcccgc	cgtgctgcag	tccagcggcc	tgtactccct	gagcagcgtg	gtgaccgtgc	1140
ccagcagcag	cctgggcacc	cagacctaca	tctgcaatgt	gaaccacaag	cccagcaata	1200
ccaaggtgga	taagaaggtg	gagcccaaga	gcagcgacaa	gacacacacg	tgtcccccat	1260
gtcccgcccc	tgagctgctg	ggcggccctt	ccgtgttcct	gttccctccc	aagccaaagg	1320
acaccctgat	gateteeegg	acccctgagg	tgacctgtgt	ggtggtggac	gtgagccacg	1380

				-contir	nued	
aggacccaga	ggtgaagttc	aactggtacg	tggacggcgt	ggaggtgcac	aacgccaaga	1440
ccaagcctag	agaggagcag	tacaacagca	cctaccgcgt	ggtgagcgtg	ctgaccgtgc	1500
tgcaccagga	ttggctgaat	ggcaaggagt	acaagtgcaa	ggtgagcaac	aaggccctgc	1560
ctgcccccat	cgagaagacc	atctccaagg	ccaagggcca	gcctcgaggc	cgctcgatcg	1620
agtctagagg	gcccttcgaa	ggtaagccta	tccctaaccc	tctcctcggt	ctcgattcta	1680
cgcgtaccgg	tcatcatcac	catcaccatt	gagtttaaac	ccgctgatct	gataacaaca	1740
gtgtagatgt	aacaaaatcg	actttgttcc	cactgtactt	ttagctcgta	caaaatacaa	1800
tatacttttc	atttctccgt	aaacaacatg	ttttcccatg	taatatcctt	ttctattttt	1860
cgttccgtta	ccaactttac	acatacttta	tatagctatt	cacttctata	cactaaaaaa	1920
ctaagacaat	tttaattttg	ctgcctgcca	tatttcaatt	tgttataaat	tcctataatt	1980
tatcctatta	gtagctaaaa	aaagatgaat	gtgaatcgaa	teetaagaga	attgggcaag	2040
tgcacaaaca	atacttaaat	aaatactact	cagtaataac	ctatttctta	gcatttttga	2100
cgaaatttgc	tattttgtta	gagtetttta	caccatttgt	ctccacacct	ccgcttacat	2160
caacaccaat	aacgccattt	aatctaagcg	catcaccaac	attttctggc	gtcagtccac	2220
cagctaacat	aaaatgtaag	ctctcggggc	tctcttgcct	tccaacccag	tcagaaatcg	2280
agttccaatc	caaaagttca	cctgtcccac	ctgcttctga	atcaaacaag	ggaataaacg	2340
aatgaggttt	ctgtgaagct	gcactgagta	gtatgttgca	gtcttttgga	aatacgagtc	2400
ttttaataac	tggcaaaccg	aggaactctt	ggtattcttg	ccacgactca	tctccgtgca	2460
gttggacgat	atcaatgccg	taatcattga	ccagagccaa	aacatcctcc	ttaggttgat	2520
tacgaaacac	gccaaccaag	tatttcggag	tgcctgaact	atttttatat	gcttttacaa	2580
gacttgaaat	tttccttgca	ataaccgggt	caattgttct	ctttctattg	ggcacacata	2640
taatacccag	caagtcagca	tcggaatcta	gagcacattc	tgeggeetet	gtgctctgca	2700
agccgcaaac	tttcaccaat	ggaccagaac	tacctgtgaa	attaataaca	gacatactcc	2760
aagctgcctt	tgtgtgctta	atcacgtata	ctcacgtgct	caatagtcac	caatgccctc	2820
cctcttggcc	ctctcctttt	cttttttcga	ccgaatttct	tgaagacgaa	agggcctcgt	2880
gatacgccta	tttttatagg	ttaatgtcat	gataataatg	gtttcttagg	acggatcgct	2940
tgcctgtaac	ttacacgcgc	ctcgtatctt	ttaatgatgg	aataatttgg	gaatttactc	3000
tgtgtttatt	tatttttatg	ttttgtattt	ggattttaga	aagtaaataa	agaaggtaga	3060
agagttacgg	aatgaagaaa	aaaaaataaa	caaaggttta	aaaaatttca	acaaaaagcg	3120
tactttacat	atatatttat	tagacaagaa	aagcagatta	aatagatata	cattcgatta	3180
acgataagta	aaatgtaaaa	tcacaggatt	ttcgtgtgtg	gtcttctaca	cagacaagat	3240
gaaacaattc	ggcattaata	cctgagagca	ggaagagcaa	gataaaaggt	agtatttgtt	3300
ggcgatcccc	ctagagtctt	ttacatcttc	ggaaaacaaa	aactatttt	tctttaattt	3360
ctttttttac	tttctatttt	taatttatat	atttatatta	aaaaatttaa	attataatta	3420
tttttatagc	acgtgatgaa	aaggacccag	gtggcacttt	tcggggaaat	gtgcgcggaa	3480
cccctatttg	tttattttc	taaatacatt	caaatatgta	tccgctcatg	agacaataac	3540
cctgataaat	gcttcaataa	tattgaaaaa	ggaagagtat	gagtattcaa	catttccgtg	3600
tcgcccttat	tccctttttt	gcggcatttt	gccttcctgt	ttttgctcac	ccagaaacgc	3660
tggtgaaagt	aaaagatgct	gaagatcagt	tgggtgcacg	agtgggttac	atcgaactgg	3720
						2700

ateteaacag eggtaagate ettgagagtt ttegeeeega agaacgtttt eeaatgatga 3780

```
gcacttttaa agttctgcta tgtggcgcgg tattatcccg tgttgacgcc gggcaagagc
                                                                    3840
aactcggtcg ccgcatacac tattctcaga atgacttggt tgagtactca ccagtcacag
                                                                    3900
aaaagcatct tacggatggc atgacagtaa gagaattatg cagtgctgcc ataaccatga
                                                                    3960
gtgataacac tgcggccaac ttacttctga caacgatcgg aggaccgaag gagctaaccg
                                                                    4020
cttttttgca caacatgggg gatcatgtaa ctcgccttga tcgttgggaa ccggagctga
                                                                    4080
atgaagccat accaaacgac gagcgtgaca ccacgatgcc tgtagcaatg gcaacaacgt
                                                                    4140
                                                                    4200
tgcgcaaact attaactggc gaactactta ctctagcttc ccggcaacaa ttaatagact
ggatggaggc ggataaagtt gcaggaccac ttctgcgctc ggcccttccg gctggctggt
                                                                    4260
ttattgctga taaatctgga gccggtgagc gtgggtctcg cggtatcatt gcagcactgg
                                                                    4320
ggccagatgg taagccctcc cgtatcgtag ttatctacac gacgggcagt caggcaacta
                                                                    4380
tggatgaacg aaatagacag atcgctgaga taggtgcctc actgattaag cattggtaac
                                                                    4440
                                                                    4500
tqtcaqacca aqtttactca tatatacttt aqattqattt aaaacttcat ttttaattta
aaaggatcta ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt
                                                                    4560
                                                                    4620
tttcqttcca ctqaqcqtca qacccqtaq aaaaqatcaa aqqatcttct tqaqatcctt
tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt
                                                                    4680
gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc
                                                                    4740
agataccaaa tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg
                                                                    4800
tagcaccgcc tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg
                                                                    4860
ataagtcgtg tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt
                                                                    4920
cgggctgaac ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac
                                                                    4980
tgagatacct acagcgtgag cattgagaaa gcgccacgct tcccgaaggg agaaaggcgg
                                                                    5040
acaggtatcc ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg
                                                                    5100
ggaacgcctg gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat
                                                                    5160
ttttgtgatg ctcgtcaggg gggccgagcc tatggaaaaa cgccagcaac gcggcctttt
                                                                    5220
tacggtteet ggeettttge tggeettttg etcacatgtt ettteetgeg ttateceetg
                                                                    5280
attotgtgga taaccgtatt accgcctttg agtgagctga taccgctcgc cgcagccgaa
                                                                    5340
cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gcgcccaata cgcaaaccgc
                                                                    5400
ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga
                                                                    5460
aagegggeag tgagegeaac geaattaatg tgagttacet cacteattag geaceceagg
                                                                    5520
ctttacactt tatgcttccg gctcctatgt tgtgtggaat tgtgagcgga taacaatttc
                                                                    5580
acacaggaaa cagctatgac catgattacg ccaagctcgg aattaaccct cactaaaggg
                                                                    5640
aacaaaagct ggctagt
                                                                    5657
```

```
<210> SEQ ID NO 18
```

<211> LENGTH: 738

<212> TYPE: DNA

<213 > ORGANISM: artificial

<220> FEATURE:

<223> OTHER INFORMATION: Fcab01

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (449)..(450)

<223> OTHER INFORMATION: n is a, c, g, or t

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (452)..(453)

```
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (455) .. (456)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (611)..(612)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (614)..(615)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (617) .. (618)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (620) .. (621)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (623) .. (624)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (626)..(627)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (629)..(630)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (632) .. (633)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (641)..(642)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (644) .. (645)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 18
ggcccagccg gccatggccg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg
                                                                       60
cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga
                                                                      120
cacceteatg atetecegga eccetgaggt cacatgegtg gtggtggaeg tgagecaega
agaccctgag gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac
aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct
gcaccaggac tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc
agececcate gagaaaacca tetecaaage caaagggcag cetegagaac cacaggtgta
caccetgeee ceateeeggg atgaactgnn bnnbnnbcag gteageetga eetgeetggt
                                                                      480
caaaggette tateecageg acategeegt ggagtgggag ageaatggge ageeggagaa
                                                                      540
caactacaag accaegeete eegtgetgga eteegaegge teettettee tetacageaa
                                                                      600
gctcaccgtg nnbnnbnnbn nbnnbnnbnn bnnbaggtgg nnbnnbggga acgtcttctc
atgeteegtg atgeatgagg etetgeacaa ceaetaeaeg eagaagagee teteeetgte
                                                                      720
tccgggtaaa gcggccgc
                                                                      738
<210> SEQ ID NO 19
<211> LENGTH: 738
<212> TYPE: DNA
```

<213 > ORGANISM: artificial

-continued

```
<220> FEATURE:
<223> OTHER INFORMATION: Fcab02
<400> SEQUENCE: 19
ggcccagccg gccatggccg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg
                                                                       60
cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga
caccctcatg atctcccgga cccctgaggt cacatgcgtg gtggtggacg tgagccacga
                                                                      180
agaccetgag gteaagttea aetggtaegt ggaeggegtg gaggtgeata atgeeaagae
aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct
gcaccaggac tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc
agcccccatc gagaaaacca tctccaaagc caaagggcag cctcgagaac cacaggtgta
caccetgeee ceateeeggg atgagetgkm tkmtkmteag gtgageetga cetgeetggt
                                                                      480
caaaggette tateeeageg acategeegt ggagtgggag ageaatggge ageeggagaa
                                                                      540
caactacaag accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa
                                                                      600
gctcaccgtg kmtkmtkmtk mtkmtkmtkm tkmtaggtgg kmtkmtggga acgtcttctc
                                                                      660
atgctccqtq atqcatqaqq ctctqcacaa ccactacacq caqaaqaqcc tctccctqtc
                                                                      720
teeqqqtaaa qeqqeeqe
                                                                      738
<210> SEO ID NO 20
<211> LENGTH: 750
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Fcab03
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (449) .. (450)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (452)..(453)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (455)..(456)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (617) .. (618)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (620)..(621)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (623)..(624)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (626)..(627)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (629) .. (630)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (632)..(633)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (635)..(636)
```

<223> OTHER INFORMATION: n is a, c, g, or t

<220> FEATURE:

-continued

```
<221> NAME/KEY: misc_feature
<222> LOCATION: (638)..(639)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (653)..(654)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (656)..(657)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 20
ggcccagccg gccatggccg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg
                                                                       60
cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga
cacceteatg atetecegga eccetgaggt cacatgegtg gtggtggaeg tgagecaega
agaccctgag gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac
                                                                     240
aaaqccqcqq qaqqaqcaqt acaacaqcac qtaccqtqtq qtcaqcqtcc tcaccqtcct
                                                                     300
gcaccaggac tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc
                                                                     360
agcccccatc gagaaaacca tctccaaagc caaagggcag cctcgagaac cacaggtgta
                                                                     420
caccetgece cetteceggg atgagetgnn bnnbnnbcag gteageetga cetgeetggt
                                                                     480
caaaggette tateeeageg acategeegt ggagtgggag ageaatggge ageeggagaa
                                                                     540
caactacaag accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa
                                                                     600
gctcaccgtg ggttctnnbn nbnnbnnbnn bnnbnnbnnb agcggcaggt ggnnbnnbgg
                                                                     660
gaacgtcttc tcatgctccg tgatgcatga ggctctgcac aaccactaca cgcagaagag
                                                                     720
cctctccctg tctccgggta aagcggccgc
                                                                     750
<210> SEQ ID NO 21
<211> LENGTH: 750
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Fcab04
<400> SEOUENCE: 21
ggcccagccg gccatggccg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg
                                                                       60
cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga
                                                                     120
caccctcatg atctcccgga cccctgaggt cacatgcgtg gtggtggacg tgagccacga
                                                                     180
agaccctgag gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac
                                                                     240
aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct
gcaccaggac tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc
agcccccatc gagaaaacca tctccaaagc caaagggcag cctcgagaac cacaggtgta
                                                                     420
caccetque ceateteqqq atqaqetqkm tkmtkmtcaq qtcaqeetqa cetqeetqqt
                                                                     480
caaaggette tateeeageg acategeegt ggagtgggag ageaatggge ageeggagaa
                                                                     540
caactacaag accaegeete eegtgetgga eteegaegge teettettee tetacageaa
gctcaccgtg ggttctkmtk mtkmtkmtkm tkmtkmtkmt agcggcaggt ggkmtkmtgg
                                                                     660
gaacgtette teatgeteeg tgatgeatga ggetetgeae aaccaetaea egeagaagag
                                                                      720
                                                                      750
cctctccctq tctccqqqta aaqcqqccqc
```

<210> SEQ ID NO 22 <211> LENGTH: 738

```
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Fcab05
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (449) .. (450)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (452)..(453)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (455)..(456)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (611) .. (612)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (614) .. (615)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (617) .. (618)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (620)..(621)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (623)..(624)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (626)..(627)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (629)..(630)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (632)..(633)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (641)..(642)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (644)..(645)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 22
ggcccagccg gccatggccg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg
cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga
                                                                      120
cacceteatg atetecegga eccetgaggt cacatgegtg gtggtggaeg tgagecaega
                                                                      180
agaccetgag gteaagttea aetggtaegt ggaeggegtg gaggtgeata atgceaagae
                                                                      240
aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct
                                                                      300
gcaccaggac tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc
                                                                      360
agececcate gagaaaacca tetecaaage caaagggeag eetegagaac caeaggtgta
                                                                      420
caccetgeec ceatecegtg atgagkmtnn bnnbnnbkmt gteageetga eetgeetggt
                                                                      480
caaaggette tateecageg acategeegt ggagtgggag ageaatggge ageeggagaa
                                                                      540
caactacaag accaegeete eegtgetgga eteegaegge teettettee tetacageaa
```

geteacegtg nnbnnbnnbn nbnnbnnbnn bnnbaggtgg nnbnnbggga aegtettete	660
atgeteegtg atgeatgagg etetgeacaa ceaetaeaeg eagaagagee teteeetgte	720
teegggtaaa geggeege	738
<210> SEQ ID NO 23 <211> LENGTH: 738 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: Fcab06	
<400> SEQUENCE: 23	
ggcccagccg gccatggccg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg	60
cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga	120
cacceteatg atetecegga eccetgaggt cacatgegtg gtggtggaeg tgagecaega	180
agaccetgag gteaagttea aetggtaegt ggaeggegtg gaggtgeata atgeeaagae	240
aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct	300
gcaccaggac tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc	360
agececcate gagaaaacca tetecaaage caaagggeag eetegagaac cacaggtgta	420
caccetgeec ceateeeggg acgagkmtkm tkmtkmtkmt gteageetga eetgeetggt	480
caaaggette tateeeageg acategeegt ggagtgggag ageaatggge ageeggagaa	540
caactacaag accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa	600
gctcaccgtg kmtkmtkmtk mtkmtkmtkm tkmtaggtgg kmtkmtggga acgtcttctc	660
atgeteegtg atgeatgagg etetgeacaa ceaetaeaeg eagaagagee teteeetgte	720
teegggtaaa geggeege	738
<pre>ccgggtaaa gcggccgc <210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35</pre>	738
<210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE:	738
<210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35	60
<210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35 <400> SEQUENCE: 24	
<pre><210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35 <400> SEQUENCE: 24 caacaaggee etgeetgeee ceategagaa gaccatetee aaggecaagg gecageeteg</pre>	60
<pre><210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35 <400> SEQUENCE: 24 caacaaggec etgeetgeec ceategagaa gaccatetec aaggecaagg gecageeteg agaaccacag gtgtacacce tgeec <210> SEQ ID NO 25 <211> LENGTH: 99 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE:</pre>	60
<pre><210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35 <400> SEQUENCE: 24 caacaaggec etgeetgeec ceategagaa gaccatetee aaggecaagg gecageeteg agaaccacag gtgtacacce tgeec <210> SEQ ID NO 25 <211> LENGTH: 99 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapfcs3</pre>	60
<pre><210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35 </pre> <pre><400> SEQUENCE: 24 caacaaaggcc ctgcctgccc ccatcgagaa gaccatctcc aaggccaagg gccagcctcg agaaccacag gtgtacaccc tgccc </pre> <pre><210> SEQ ID NO 25 <211> LENGTH: 99 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapfcs3 </pre> <400> SEQUENCE: 25	60 85
<pre><210> SEQ ID NO 24 <211> LENGTH: 85 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapch35 <400> SEQUENCE: 24 caacaaggcc ctgcctgccc ccatcgagaa gaccatctcc aaggccaagg gccagcctcg agaaccacag gtgtacaccc tgccc <210> SEQ ID NO 25 <211> LENGTH: 99 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer gapfcs3 <400> SEQUENCE: 25 gagaccgagg agagggttag ggataggctt accttcgaag ggccctctag actcgatcga</pre>	60 85

-continued

```
<222> LOCATION: (43)..(44)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (46)..(47)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (49)..(50)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 26
gaaccacagg tgtacaccct gcccccatcc cgggatgagc tgnnbnnbnn bcaggtcagc
ctgacctgcc tggtcaaag
<210> SEQ ID NO 27
<211> LENGTH: 79
<212> TYPE: DNA
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer Abmut2LR
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (40)..(41)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (43)..(44)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (46)..(47)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (49)..(50)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (52)..(53)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEOUENCE: 27
gaaccacagg tgtacaccct gccccatcc cgggatgagn nbnnbnnbnn bnnbgtcagc
                                                                       60
ctgacctgcc tggtcaaag
                                                                       79
<210> SEQ ID NO 28
<211> LENGTH: 79
<212> TYPE: DNA
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer Abmut1L
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (40)..(41)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (43)..(44)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (46)..(47)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (49)..(50)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 28
```

gaaccacagg tgtacaccct gcccccatcc cgggatgagn nbnnbnnbnn bcaggtcagc

```
ctgacctgcc tggtcaaag
                                                                       79
<210> SEQ ID NO 29
<211> LENGTH: 79
<212> TYPE: DNA
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer Abmut1R
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (43)..(44)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (46)..(47)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (49)..(50)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (52)..(53)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 29
gaaccacagg tgtacaccct gcccccatcc cgggatgagc tgnnbnnbnn bnnbgtcagc
                                                                       60
                                                                       79
ctgacctgcc tggtcaaag
<210> SEQ ID NO 30
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 30
Leu Asp Asn Ser Gln
              5
<210> SEQ ID NO 31
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 31
Tyr Glu Gly Ser Ser
<210> SEQ ID NO 32
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEOUENCE: 32
Tyr Met Ser Ala Asp
<210> SEQ ID NO 33
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
```

```
<400> SEQUENCE: 33
Tyr Arg Arg Gly Asp
<210> SEQ ID NO 34
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 34
Leu Met Ser Arg Gln
<210> SEQ ID NO 35
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 35
Leu His Leu Ala Gln
<210> SEQ ID NO 36
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 36
Tyr Leu Ser Lys Asp
<210> SEQ ID NO 37
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 37
Tyr Arg Ser Gly Ser
<210> SEQ ID NO 38
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 38
Leu Arg Asp Gly Gln
<210> SEQ ID NO 39
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 39
```

```
Tyr Ser Ala Asn Thr
<210> SEQ ID NO 40
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 40
Tyr Ala Ser Asn Thr
<210> SEQ ID NO 41
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 41
Tyr Ser Asp Gly Asp
<210> SEQ ID NO 42
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 42
Tyr Ser Gly Gly Ser
<210> SEQ ID NO 43
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 43
Tyr Gly Arg Asp Ser
<210> SEQ ID NO 44
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 44
Tyr Ala Gly Gly Thr
<210> SEQ ID NO 45
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 45
```

```
Tyr Ser Ser Asp Ser
<210> SEQ ID NO 46
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 46
Tyr His Ser Gly Ser
<210> SEQ ID NO 47
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 47
Tyr Leu Thr Asn Ser
<210> SEQ ID NO 48
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 48
Tyr Gly Ser Glu Glu
<210> SEQ ID NO 49
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 49
Tyr Arg Ser Gly Glu
<210> SEQ ID NO 50
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 50
Tyr Gly Thr Asp Asp
<210> SEQ ID NO 51
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 51
Ile Arg Ser Ser Val Gly Ser Arg Arg Trp Trp Ser
```

```
10
<210> SEQ ID NO 52
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 52
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 53
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 53
Ser Arg Arg Asp Ser Ser Leu Leu Arg Trp Ala His
<210> SEQ ID NO 54
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 54
Ala Pro Gly Ser Lys Gly Tyr Arg Arg Trp Ala Leu
<210> SEQ ID NO 55
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 55
Asp Lys Pro Phe Trp Gly Thr Ser Arg Trp Ser Arg
<210> SEQ ID NO 56
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 56
Ser Ile Asn Asp Leu Ile Asn His Arg Trp Pro Tyr
1
<210> SEQ ID NO 57
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 57
Met Trp Gly Ser Arg Asp Tyr Trp Arg Trp Ser His
                                  10
```

```
<210> SEQ ID NO 58
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 58
Asn Ser Gly Ser Ala Met Met Val Arg Trp Ala His
<210> SEQ ID NO 59
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 59
<210> SEQ ID NO 60
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 60
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
              5
<210> SEQ ID NO 61
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 61
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
             5
<210> SEQ ID NO 62
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 62
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 63
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 63
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
```

```
<210> SEQ ID NO 64
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 64
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 65
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 65
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 66
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 66
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
              5
<210> SEQ ID NO 67
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 67
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
          5
<210> SEQ ID NO 68
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 68
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 69
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 69
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
             5
```

```
<210> SEQ ID NO 70
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 70
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 71
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF-loop sequence AA198ff
<400> SEQUENCE: 71
Ala Arg Tyr Ser Pro Arg Met Leu Arg Trp Ala His
<210> SEQ ID NO 72
<211> LENGTH: 5009
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: vector pYD1
<400> SEOUENCE: 72
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt
                                                                      60
cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga
                                                                      120
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac
                                                                      180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga
                                                                      240
ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat
                                                                      300
taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc
                                                                      360
ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac
                                                                      420
ctctatactt taacgtcaag gagaaaaaac cccggatcgg actactagca gctgtaatac
                                                                      480
gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt
                                                                      540
tacttcgctg tttttcaata ttttctgtta ttgcttcagt tttagcacag gaactgacaa
ctatatgcga gcaaatcccc tcaccaactt tagaatcgac gccgtactct ttgtcaacga
ctactatttt ggccaacggg aaggcaatgc aaggagtttt tgaatattac aaatcagtaa
cgtttgtcag taattgcggt tctcacccct caacaactag caaaggcagc cccataaaca
                                                                      840
cacaqtatqt ttttaaqctt ctqcaqqcta qtqqtqqtqq tqqttctqqt qqtqqtq
ctggtggtgg tggttctgct agcatgactg gtggacagca aatgggtcgg gatctgtacg
                                                                      900
acgatgacga taaggtacca ggatccagtg tggtggaatt ctgcagatat ccagcacagt
                                                                      960
ggcggccgct cgagtctaga gggcccttcg aaggtaagcc tatccctaac cctctcctcg
                                                                    1020
gtctcgattc tacgcgtacc ggtcatcatc accatcacca ttgagtttaa acccgctgat
                                                                    1080
ctgataacaa cagtgtagat gtaacaaaat cgactttgtt cccactgtac ttttagctcg
                                                                    1140
tacaaaatac aatatacttt tcatttctcc gtaaacaaca tgttttccca tgtaatatcc
                                                                    1200
ttttctattt ttcgttccgt taccaacttt acacatactt tatatagcta ttcacttcta
                                                                    1260
tacactaaaa aactaagaca attttaattt tgctgcctgc catatttcaa tttgttataa
```

attcctataa	tttatcctat	tagtagctaa	aaaaagatga	atgtgaatcg	aatcctaaga	1380
gaattgggca	agtgcacaaa	caatacttaa	ataaatacta	ctcagtaata	acctatttct	1440
tagcattttt	gacgaaattt	gctattttgt	tagagtettt	tacaccattt	gtctccacac	1500
ctccgcttac	atcaacacca	ataacgccat	ttaatctaag	cgcatcacca	acattttctg	1560
gcgtcagtcc	accagctaac	ataaaatgta	agctctcggg	gctctcttgc	cttccaaccc	1620
agtcagaaat	cgagttccaa	tccaaaagtt	cacctgtccc	acctgcttct	gaatcaaaca	1680
agggaataaa	cgaatgaggt	ttctgtgaag	ctgcactgag	tagtatgttg	cagtcttttg	1740
gaaatacgag	tcttttaata	actggcaaac	cgaggaactc	ttggtattct	tgccacgact	1800
catctccgtg	cagttggacg	atatcaatgc	cgtaatcatt	gaccagagcc	aaaacatcct	1860
ccttaggttg	attacgaaac	acgccaacca	agtatttcgg	agtgcctgaa	ctatttttat	1920
atgcttttac	aagacttgaa	attttccttg	caataaccgg	gtcaattgtt	ctctttctat	1980
tgggcacaca	tataataccc	agcaagtcag	catcggaatc	tagagcacat	tctgcggcct	2040
ctgtgctctg	caagccgcaa	actttcacca	atggaccaga	actacctgtg	aaattaataa	2100
cagacatact	ccaagctgcc	tttgtgtgct	taatcacgta	tactcacgtg	ctcaatagtc	2160
accaatgccc	tecetettgg	ccctctcctt	ttctttttc	gaccgaattt	cttgaagacg	2220
aaagggcctc	gtgatacgcc	tatttttata	ggttaatgtc	atgataataa	tggtttctta	2280
ggacggatcg	cttgcctgta	acttacacgc	gcctcgtatc	ttttaatgat	ggaataattt	2340
gggaatttac	tctgtgttta	tttatttta	tgttttgtat	ttggatttta	gaaagtaaat	2400
aaagaaggta	gaagagttac	ggaatgaaga	aaaaaaaata	aacaaaggtt	taaaaaattt	2460
caacaaaaag	cgtactttac	atatatattt	attagacaag	aaaagcagat	taaatagata	2520
tacattcgat	taacgataag	taaaatgtaa	aatcacagga	ttttcgtgtg	tggtcttcta	2580
cacagacaag	atgaaacaat	tcggcattaa	tacctgagag	caggaagagc	aagataaaag	2640
gtagtatttg	ttggcgatcc	ccctagagtc	ttttacatct	tcggaaaaca	aaaactattt	2700
tttctttaat	ttctttttt	actttctatt	tttaatttat	atatttatat	taaaaaattt	2760
aaattataat	tatttttata	gcacgtgatg	aaaaggaccc	aggtggcact	tttcggggaa	2820
atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	ttcaaatatg	tatccgctca	2880
tgagacaata	accctgataa	atgcttcaat	aatattgaaa	aaggaagagt	atgagtattc	2940
aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcct	gtttttgctc	3000
acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca	cgagtgggtt	3060
acatcgaact	ggatctcaac	agcggtaaga	tccttgagag	ttttcgcccc	gaagaacgtt	3120
ttccaatgat	gagcactttt	aaagttctgc	tatgtggcgc	ggtattatcc	cgtgttgacg	3180
ccgggcaaga	gcaactcggt	cgccgcatac	actattctca	gaatgacttg	gttgagtact	3240
caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	tgcagtgctg	3300
ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	ggaggaccga	3360
aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt	aactcgcctt	gatcgttggg	3420
aaccggagct	gaatgaagcc	ataccaaacg	acgagcgtga	caccacgatg	cctgtagcaa	3480
tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	tcccggcaac	3540
	ctggatggag					3600
	gtttattgct					3660
	ggggccagat					3720
cogcagcact	aaaaccaaac	ggcaageeet	Josephaneye	agecacciac	a-gacyyyca	5,20

gtcaggcaac	tatggatgaa	cgaaatagac	agategetga	gataggtgcc	tcactgatta	3780
agcattggta	actgtcagac	caagtttact	catatatact	ttagattgat	ttaaaacttc	3840
atttttaatt	taaaaggatc	taggtgaaga	tcctttttga	taatctcatg	accaaaatcc	3900
cttaacgtga	gttttcgttc	cactgagcgt	cagaccccgt	agaaaagatc	aaaggatctt	3960
cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca	aacaaaaaa	ccaccgctac	4020
cagcggtggt	ttgtttgccg	gatcaagagc	taccaactct	ttttccgaag	gtaactggct	4080
tcagcagagc	gcagatacca	aatactgtcc	ttctagtgta	gccgtagtta	ggccaccact	4140
tcaagaactc	tgtagcaccg	cctacatacc	tegetetget	aatcctgtta	ccagtggctg	4200
ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	aagacgatag	ttaccggata	4260
aggcgcagcg	gtcgggctga	acggggggtt	cgtgcacaca	gcccagcttg	gagcgaacga	4320
cctacaccga	actgagatac	ctacagcgtg	agcattgaga	aagcgccacg	cttcccgaag	4380
ggagaaaggc	ggacaggtat	ccggtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	4440
agcttccagg	ggggaacgcc	tggtatcttt	atagtcctgt	cgggtttcgc	cacctctgac	4500
ttgagcgtcg	atttttgtga	tgctcgtcag	gggggccgag	cctatggaaa	aacgccagca	4560
acgcggcctt	tttacggttc	ctggcctttt	getggeettt	tgctcacatg	ttctttcctg	4620
cgttatcccc	tgattctgtg	gataaccgta	ttaccgcctt	tgagtgagct	gataccgctc	4680
gccgcagccg	aacgaccgag	cgcagcgagt	cagtgagcga	ggaagcggaa	gagcgcccaa	4740
tacgcaaacc	geeteteeee	gegegttgge	cgattcatta	atgcagctgg	cacgacaggt	4800
ttcccgactg	gaaageggge	agtgagcgca	acgcaattaa	tgtgagttac	ctcactcatt	4860
aggcacccca	ggctttacac	tttatgcttc	cggctcctat	gttgtgtgga	attgtgagcg	4920
gataacaatt	tcacacagga	aacagctatg	accatgatta	cgccaagctc	ggaattaacc	4980
ctcactaaag	ggaacaaaag	ctggctagt				5009
<220> FEATU	TH: 5009 : DNA NISM: artif: JRE: R INFORMATIC		l vector pYI	01Nhe		
~		cqqqtqacaq	ccctccgaag	qaaqactctc	ctccqtqcqt	60
			gcagatgtgc			120
			tggttatgaa			180
ctggccccac	aaaccttcaa	atgaacgaat	caaattaaca	accataggat	gataatgcga	240
ttagtttttt	agccttattt	ctggggtaat	taatcagcga	agcgatgatt	tttgatctat	300
taacagatat	ataaatgcaa	aaactgcata	accactttaa	ctaatacttt	caacattttc	360
ggtttgtatt	acttcttatt	caaatgtaat	aaaagtatca	acaaaaaatt	gttaatatac	420
ctctatactt	taacgtcaag	gagaaaaaac	cccggatcgg	actactagca	gctgtaatac	480
gactcactat	agggaatatt	aagctaattc	tacttcatac	attttcaatt	aagatgcagt	540
tacttcgctg	tttttcaata	ttttctgtta	ttgcttcagt	gctagcacag	gaactgacaa	600
			tagaatcgac			660

ctactatttt ggccaacggg aaggcaatgc aaggagtttt tgaatattac aaatcagtaa

cgtttgtcag	taattgcggt	tctcacccct	caacaactag	caaaggcagc	cccataaaca	780
cacagtatgt	ttttaagctt	ctgcaggcta	gtggtggtgg	tggttctggt	ggtggtggtt	840
ctggtggtgg	tggttctgct	agcatgactg	gtggacagca	aatgggtcgg	gatctgtacg	900
acgatgacga	taaggtacca	ggatccagtg	tggtggaatt	ctgcagatat	ccagcacagt	960
ggcggccgct	cgagtctaga	gggcccttcg	aaggtaagcc	tatccctaac	cctctcctcg	1020
gtctcgattc	tacgcgtacc	ggtcatcatc	accatcacca	ttgagtttaa	acccgctgat	1080
ctgataacaa	cagtgtagat	gtaacaaaat	cgactttgtt	cccactgtac	ttttagctcg	1140
tacaaaatac	aatatacttt	tcatttctcc	gtaaacaaca	tgttttccca	tgtaatatcc	1200
ttttctattt	ttcgttccgt	taccaacttt	acacatactt	tatatagcta	ttcacttcta	1260
tacactaaaa	aactaagaca	attttaattt	tgctgcctgc	catatttcaa	tttgttataa	1320
attcctataa	tttatcctat	tagtagctaa	aaaaagatga	atgtgaatcg	aatcctaaga	1380
gaattgggca	agtgcacaaa	caatacttaa	ataaatacta	ctcagtaata	acctatttct	1440
tagcattttt	gacgaaattt	gctattttgt	tagagtcttt	tacaccattt	gtctccacac	1500
ctccgcttac	atcaacacca	ataacgccat	ttaatctaag	cgcatcacca	acattttctg	1560
gcgtcagtcc	accagctaac	ataaaatgta	agctctcggg	gctctcttgc	cttccaaccc	1620
agtcagaaat	cgagttccaa	tccaaaagtt	cacctgtccc	acctgcttct	gaatcaaaca	1680
agggaataaa	cgaatgaggt	ttctgtgaag	ctgcactgag	tagtatgttg	cagtcttttg	1740
gaaatacgag	tcttttaata	actggcaaac	cgaggaactc	ttggtattct	tgccacgact	1800
catctccgtg	cagttggacg	atatcaatgc	cgtaatcatt	gaccagagcc	aaaacatcct	1860
ccttaggttg	attacgaaac	acgccaacca	agtatttcgg	agtgcctgaa	ctatttttat	1920
atgcttttac	aagacttgaa	attttccttg	caataaccgg	gtcaattgtt	ctctttctat	1980
tgggcacaca	tataataccc	agcaagtcag	catcggaatc	tagagcacat	tctgcggcct	2040
ctgtgctctg	caagccgcaa	actttcacca	atggaccaga	actacctgtg	aaattaataa	2100
cagacatact	ccaagctgcc	tttgtgtgct	taatcacgta	tactcacgtg	ctcaatagtc	2160
accaatgccc	tecetettgg	ccctctcctt	ttctttttc	gaccgaattt	cttgaagacg	2220
aaagggcctc	gtgatacgcc	tatttttata	ggttaatgtc	atgataataa	tggtttctta	2280
ggacggatcg	cttgcctgta	acttacacgc	gcctcgtatc	ttttaatgat	ggaataattt	2340
gggaatttac	tctgtgttta	tttattttta	tgttttgtat	ttggatttta	gaaagtaaat	2400
aaagaaggta	gaagagttac	ggaatgaaga	aaaaaaaata	aacaaaggtt	taaaaaattt	2460
caacaaaaag	cgtactttac	atatatattt	attagacaag	aaaagcagat	taaatagata	2520
tacattcgat	taacgataag	taaaatgtaa	aatcacagga	ttttcgtgtg	tggtcttcta	2580
cacagacaag	atgaaacaat	tcggcattaa	tacctgagag	caggaagagc	aagataaaag	2640
gtagtatttg	ttggcgatcc	ccctagagtc	ttttacatct	tcggaaaaca	aaaactattt	2700
tttctttaat	ttctttttt	actttctatt	tttaatttat	atatttatat	taaaaaattt	2760
aaattataat	tatttttata	gcacgtgatg	aaaaggaccc	aggtggcact	tttcggggaa	2820
atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	ttcaaatatg	tatccgctca	2880
tgagacaata	accctgataa	atgcttcaat	aatattgaaa	aaggaagagt	atgagtattc	2940
aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcct	gtttttgctc	3000
		gtaaaagatg				3060
		agcggtaaga				3120
	Januare	5 - 5 5 5 6 6 9 6			J J 40 90 0	

ttccaatgat	gagcactttt	aaagttctgc	tatgtggcgc	ggtattatcc	cgtgttgacg	3180	
ccgggcaaga	gcaactcggt	cgccgcatac	actattctca	gaatgacttg	gttgagtact	3240	
caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	tgcagtgctg	3300	
ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	ggaggaccga	3360	
aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt	aactcgcctt	gatcgttggg	3420	
aaccggagct	gaatgaagcc	ataccaaacg	acgagcgtga	caccacgatg	cctgtagcaa	3480	
tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	tcccggcaac	3540	
aattaataga	ctggatggag	gcggataaag	ttgcaggacc	acttctgcgc	teggeeette	3600	
cggctggctg	gtttattgct	gataaatctg	gagccggtga	gcgtgggtct	cgcggtatca	3660	
ttgcagcact	ggggccagat	ggtaagccct	cccgtatcgt	agttatctac	acgacgggca	3720	
gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	gataggtgcc	tcactgatta	3780	
agcattggta	actgtcagac	caagtttact	catatatact	ttagattgat	ttaaaacttc	3840	
atttttaatt	taaaaggatc	taggtgaaga	tcctttttga	taatctcatg	accaaaatcc	3900	
cttaacgtga	gttttcgttc	cactgagcgt	cagaccccgt	agaaaagatc	aaaggatctt	3960	
cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca	aacaaaaaa	ccaccgctac	4020	
cagcggtggt	ttgtttgccg	gatcaagagc	taccaactct	ttttccgaag	gtaactggct	4080	
tcagcagagc	gcagatacca	aatactgtcc	ttctagtgta	gccgtagtta	ggccaccact	4140	
tcaagaactc	tgtagcaccg	cctacatacc	tegetetget	aatcctgtta	ccagtggctg	4200	
ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	aagacgatag	ttaccggata	4260	
aggcgcagcg	gtegggetga	acggggggtt	cgtgcacaca	gcccagcttg	gagcgaacga	4320	
cctacaccga	actgagatac	ctacagcgtg	agcattgaga	aagcgccacg	cttcccgaag	4380	
ggagaaaggc	ggacaggtat	ccggtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	4440	
agcttccagg	ggggaacgcc	tggtatcttt	atagtcctgt	cgggtttcgc	cacctctgac	4500	
ttgagcgtcg	atttttgtga	tgctcgtcag	gggggccgag	cctatggaaa	aacgccagca	4560	
acgcggcctt	tttacggttc	ctggcctttt	getggeettt	tgctcacatg	ttctttcctg	4620	
cgttatcccc	tgattctgtg	gataaccgta	ttaccgcctt	tgagtgagct	gataccgctc	4680	
gccgcagccg	aacgaccgag	cgcagcgagt	cagtgagcga	ggaagcggaa	gagcgcccaa	4740	
tacgcaaacc	gcctctcccc	gegegttgge	cgattcatta	atgcagctgg	cacgacaggt	4800	
ttcccgactg	gaaageggge	agtgagcgca	acgcaattaa	tgtgagttac	ctcactcatt	4860	
aggcacccca	ggctttacac	tttatgcttc	cggctcctat	gttgtgtgga	attgtgagcg	4920	
gataacaatt	tcacacagga	aacagctatg	accatgatta	cgccaagctc	ggaattaacc	4980	
ctcactaaag	ggaacaaaag	ctggctagt				5009	
<210> SEQ ID NO 74 <211> LENGTH: 4605 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: vector pyD1lnk <4400> SEQUENCE: 74							
acggattaga	ageegeegag	cgggtgacag	ccctccqaaq	gaagactctc	ctccgtgcgt	60	

60 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga 120

acaataaaga	ttctacaata	ctagctttta	tggttatgaa	gaggaaaaat	tggcagtaac	180
ctggccccac	aaaccttcaa	atgaacgaat	caaattaaca	accataggat	gataatgcga	240
ttagttttt	agccttattt	ctggggtaat	taatcagcga	agcgatgatt	tttgatctat	300
taacagatat	ataaatgcaa	aaactgcata	accactttaa	ctaatacttt	caacattttc	360
ggtttgtatt	acttcttatt	caaatgtaat	aaaagtatca	acaaaaaatt	gttaatatac	420
ctctatactt	taacgtcaag	gagaaaaaac	cccggatcgg	actactagca	gctgtaatac	480
gactcactat	agggaatatt	aagctaattc	tacttcatac	attttcaatt	aagatgcagt	540
tacttcgctg	tttttcaata	ttttctgtta	ttgcttcagt	gctagccgct	ggggccatgg	600
ttactgattg	gegegeegga	tccttcagac	tctgcagaat	teggeegegt	acttaattaa	660
gtttaaaccc	gctgatctga	taacaacagt	gtagatgtaa	caaaatcgac	tttgttccca	720
ctgtactttt	agctcgtaca	aaatacaata	tacttttcat	ttctccgtaa	acaacatgtt	780
ttcccatgta	atatcctttt	ctatttttcg	ttccgttacc	aactttacac	atactttata	840
tagctattca	cttctataca	ctaaaaaact	aagacaattt	taattttgct	gcctgccata	900
tttcaatttg	ttataaattc	ctataattta	tcctattagt	agctaaaaaa	agatgaatgt	960
gaatcgaatc	ctaagagaat	tgggcaagtg	cacaaacaat	acttaaataa	atactactca	1020
gtaataacct	atttcttagc	atttttgacg	aaatttgcta	ttttgttaga	gtcttttaca	1080
ccatttgtct	ccacacctcc	gcttacatca	acaccaataa	cgccatttaa	tctaagcgca	1140
tcaccaacat	tttctggcgt	cagtccacca	gctaacataa	aatgtaagct	ctcggggctc	1200
tcttgccttc	caacccagtc	agaaatcgag	ttccaatcca	aaagttcacc	tgtcccacct	1260
gcttctgaat	caaacaaggg	aataaacgaa	tgaggtttct	gtgaagctgc	actgagtagt	1320
atgttgcagt	cttttggaaa	tacgagtctt	ttaataactg	gcaaaccgag	gaactcttgg	1380
tattcttgcc	acgactcatc	tccgtgcagt	tggacgatat	caatgccgta	atcattgacc	1440
agagccaaaa	catcctcctt	aggttgatta	cgaaacacgc	caaccaagta	tttcggagtg	1500
cctgaactat	ttttatatgc	ttttacaaga	cttgaaattt	tccttgcaat	aaccgggtca	1560
attgttctct	ttctattggg	cacacatata	atacccagca	agtcagcatc	ggaatctaga	1620
gcacattctg	cggcctctgt	gctctgcaag	ccgcaaactt	tcaccaatgg	accagaacta	1680
cctgtgaaat	taataacaga	catactccaa	getgeetttg	tgtgcttaat	cacgtatact	1740
cacgtgctca	atagtcacca	atgecetece	tettggeeet	ctccttttct	tttttcgacc	1800
gaatttcttg	aagacgaaag	ggcctcgtga	tacgcctatt	tttataggtt	aatgtcatga	1860
taataatggt	ttcttaggac	ggatcgcttg	cctgtaactt	acacgcgcct	cgtatctttt	1920
aatgatggaa	taatttggga	atttactctg	tgtttattta	tttttatgtt	ttgtatttgg	1980
attttagaaa	gtaaataaag	aaggtagaag	agttacggaa	tgaagaaaaa	aaaataaaca	2040
aaggtttaaa	aaatttcaac	aaaaagcgta	ctttacatat	atatttatta	gacaagaaaa	2100
gcagattaaa	tagatataca	ttcgattaac	gataagtaaa	atgtaaaatc	acaggatttt	2160
cgtgtgtggt	cttctacaca	gacaagatga	aacaattcgg	cattaatacc	tgagagcagg	2220
aagagcaaga	taaaaggtag	tatttgttgg	cgatccccct	agagtctttt	acatcttcgg	2280
aaaacaaaaa	ctatttttc	tttaatttct	ttttttactt	tctatttta	atttatatat	2340
ttatattaaa	aaatttaaat	tataattatt	tttatagcac	gtgatgaaaa	ggacccaggt	2400
ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	2460
	cgctcatgag					2520
3	5 -55		55		555	

aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	2580
cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	2640
ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	2700
cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	2760
ttatcccgtg	ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	2820
gacttggttg	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	2880
gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	2940
acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	3000
cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	3060
acgatgcctg	tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	3120
ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	3180
ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	3240
gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	3300
atctacacga	cgggcagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	3360
ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	tatactttag	3420
attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	3480
ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	3540
aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	3600
aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	aactcttttt	3660
ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	agtgtagccg	3720
tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	3780
ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	3840
cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	3900
agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagca	ttgagaaagc	3960
gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	4020
ggagagcgca	cgagggagct	tccagggggg	aacgcctggt	atctttatag	tcctgtcggg	4080
tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	gccgagccta	4140
tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	4200
cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	cgcctttgag	4260
tgagctgata	ccgctcgccg	cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	4320
gcggaagagc	gcccaatacg	caaaccgcct	ctccccgcgc	gttggccgat	tcattaatgc	4380
agctggcacg	acaggtttcc	cgactggaaa	gcgggcagtg	agcgcaacgc	aattaatgtg	4440
agttacctca	ctcattaggc	accccaggct	ttacacttta	tgcttccggc	tcctatgttg	4500
tgtggaattg	tgagcggata	acaatttcac	acaggaaaca	gctatgacca	tgattacgcc	4560
aagctcggaa	ttaaccctca	ctaaagggaa	caaaagctgg	ctagt		4605

<210> SEQ ID NO 75 <211> LENGTH: 4886

<211> INDER: 4000
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: vector pyDlmata

<400> SEQUENCE: 75							
acggattaga	agccgccgag	cgggtgacag	ccctccgaag	gaagactctc	ctccgtgcgt	60	
cctcgtcttc	accggtcgcg	ttcctgaaac	gcagatgtgc	ctcgcgccgc	actgctccga	120	
acaataaaga	ttctacaata	ctagctttta	tggttatgaa	gaggaaaaat	tggcagtaac	180	
ctggccccac	aaaccttcaa	atgaacgaat	caaattaaca	accataggat	gataatgcga	240	
ttagttttt	agccttattt	ctggggtaat	taatcagcga	agcgatgatt	tttgatctat	300	
taacagatat	ataaatgcaa	aaactgcata	accactttaa	ctaatacttt	caacattttc	360	
ggtttgtatt	acttcttatt	caaatgtaat	aaaagtatca	acaaaaaatt	gttaatatac	420	
ctctatactt	taacgtcaag	gagaaaaaac	cccggatcgg	actactagca	gctgtaatac	480	
gactcactat	agggaatatt	aagctaattc	tacttcatac	attttcaatt	aagatgcagt	540	
tacttcgctg	tttttcaata	ttttctgtta	ttgcttcagt	gctagccgct	ggggccatgg	600	
ttactgattg	gegegeegga	tccgatgtaa	caaaatcgac	tttgttccca	ctgtactttt	660	
agctcgtaca	aaatacaata	tacttttcat	ttctccgtaa	acaacatgtt	ttcccatgta	720	
atatcctttt	ctatttttcg	ttccgttacc	aactttacac	atactttata	tagctattca	780	
cttctataca	ctaaaaaact	aagacaattt	taattttgct	gcctgccata	tttcaatttg	840	
ttataaattc	ctataattta	tcctattagt	agctaaaaaa	agatgaatgt	gaatcgaatc	900	
ctaagagaat	tgctgcagaa	tteggeegeg	tacttaatta	agtttaaacc	cgctgatctg	960	
ataacaacag	tgtagatgta	acaaaatcga	ctttgttccc	actgtacttt	tagctcgtac	1020	
aaaatacaat	atacttttca	tttctccgta	aacaacatgt	tttcccatgt	aatatccttt	1080	
tctattttc	gttccgttac	caactttaca	catactttat	atagctattc	acttctatac	1140	
actaaaaaac	taagacaatt	ttaattttgc	tgcctgccat	atttcaattt	gttataaatt	1200	
cctataattt	atcctattag	tagctaaaaa	aagatgaatg	tgaatcgaat	cctaagagaa	1260	
ttgggcaagt	gcacaaacaa	tacttaaata	aatactactc	agtaataacc	tatttcttag	1320	
catttttgac	gaaatttgct	attttgttag	agtettttae	accatttgtc	tccacacctc	1380	
cgcttacatc	aacaccaata	acgccattta	atctaagcgc	atcaccaaca	ttttctggcg	1440	
tcagtccacc	agctaacata	aaatgtaagc	tetegggget	ctcttgcctt	ccaacccagt	1500	
cagaaatcga	gttccaatcc	aaaagttcac	ctgtcccacc	tgcttctgaa	tcaaacaagg	1560	
gaataaacga	atgaggtttc	tgtgaagctg	cactgagtag	tatgttgcag	tcttttggaa	1620	
atacgagtct	tttaataact	ggcaaaccga	ggaactettg	gtattcttgc	cacgactcat	1680	
ctccgtgcag	ttggacgata	tcaatgccgt	aatcattgac	cagagccaaa	acatcctcct	1740	
taggttgatt	acgaaacacg	ccaaccaagt	atttcggagt	gcctgaacta	tttttatatg	1800	
cttttacaag	acttgaaatt	ttccttgcaa	taaccgggtc	aattgttctc	tttctattgg	1860	
gcacacatat	aatacccagc	aagtcagcat	cggaatctag	agcacattct	gcggcctctg	1920	
tgctctgcaa	gccgcaaact	ttcaccaatg	gaccagaact	acctgtgaaa	ttaataacag	1980	
acatactcca	agctgccttt	gtgtgcttaa	tcacgtatac	tcacgtgctc	aatagtcacc	2040	
aatgccctcc	ctcttggccc	tctccttttc	ttttttcgac	cgaatttctt	gaagacgaaa	2100	
gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	ataataatgg	tttcttagga	2160	
cggatcgctt	gcctgtaact	tacacgcgcc	tcgtatcttt	taatgatgga	ataatttggg	2220	
aatttactct	gtgtttattt	atttttatgt	tttgtatttg	gattttagaa	agtaaataaa	2280	
	gagttacgga					2340	
		- 0					

caaaaagcgt	actttacata	tatatttatt	agacaagaaa	agcagattaa	atagatatac	2400
attcgattaa	cgataagtaa	aatgtaaaat	cacaggattt	tcgtgtgtgg	tcttctacac	2460
agacaagatg	aaacaattcg	gcattaatac	ctgagagcag	gaagagcaag	ataaaaggta	2520
gtatttgttg	gcgatccccc	tagagtcttt	tacatcttcg	gaaaacaaaa	actattttt	2580
ctttaatttc	tttttttact	ttctattttt	aatttatata	tttatattaa	aaaatttaaa	2640
ttataattat	ttttatagca	cgtgatgaaa	aggacccagg	tggcactttt	cggggaaatg	2700
tgcgcggaac	ccctatttgt	ttatttttct	aaatacattc	aaatatgtat	ccgctcatga	2760
gacaataacc	ctgataaatg	cttcaataat	attgaaaaag	gaagagtatg	agtattcaac	2820
atttccgtgt	cgcccttatt	cccttttttg	cggcattttg	ccttcctgtt	tttgctcacc	2880
cagaaacgct	ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	gtgggttaca	2940
tcgaactgga	tctcaacagc	ggtaagatcc	ttgagagttt	tcgccccgaa	gaacgttttc	3000
caatgatgag	cacttttaaa	gttctgctat	gtggcgcggt	attatcccgt	gttgacgccg	3060
ggcaagagca	actcggtcgc	cgcatacact	attctcagaa	tgacttggtt	gagtactcac	3120
cagtcacaga	aaagcatctt	acggatggca	tgacagtaag	agaattatgc	agtgctgcca	3180
taaccatgag	tgataacact	geggeeaact	tacttctgac	aacgatcgga	ggaccgaagg	3240
agctaaccgc	ttttttgcac	aacatggggg	atcatgtaac	tegeettgat	cgttgggaac	3300
cggagctgaa	tgaagccata	ccaaacgacg	agegtgacae	cacgatgcct	gtagcaatgg	3360
caacaacgtt	gcgcaaacta	ttaactggcg	aactacttac	tctagcttcc	cggcaacaat	3420
taatagactg	gatggaggcg	gataaagttg	caggaccact	tetgegeteg	gcccttccgg	3480
ctggctggtt	tattgctgat	aaatctggag	ccggtgagcg	tgggtctcgc	ggtatcattg	3540
cagcactggg	gccagatggt	aagccctccc	gtatcgtagt	tatctacacg	acgggcagtc	3600
aggcaactat	ggatgaacga	aatagacaga	tegetgagat	aggtgcctca	ctgattaagc	3660
attggtaact	gtcagaccaa	gtttactcat	atatacttta	gattgattta	aaacttcatt	3720
tttaatttaa	aaggatctag	gtgaagatcc	tttttgataa	tctcatgacc	aaaatccctt	3780
aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	ggatcttctt	3840
gagateettt	ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaaacca	ccgctaccag	3900
cggtggtttg	tttgccggat	caagagctac	caactctttt	tccgaaggta	actggcttca	3960
gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	caccacttca	4020
agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	4080
ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	ccggataagg	4140
cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	cgaacgacct	4200
acaccgaact	gagataccta	cagcgtgagc	attgagaaag	cgccacgctt	cccgaaggga	4260
gaaaggcgga	caggtateeg	gtaagcggca	gggtcggaac	aggagagcgc	acgagggagc	4320
ttccaggggg	gaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	ctctgacttg	4380
agcgtcgatt	tttgtgatgc	tcgtcagggg	ggccgagcct	atggaaaaac	gccagcaacg	4440
cggccttttt	acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	tttcctgcgt	4500
tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	accgctcgcc	4560
gcagccgaac	gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	cgcccaatac	4620
gcaaaccgcc	tctccccgcg	cgttggccga	ttcattaatg	cagetggeae	gacaggtttc	4680

ccgactggaa agcgggcagt	gagcgcaacg	caattaatgt	gagttacctc	actcattagg	4740
caccccagge tttacacttt	atgetteegg	ctcctatgtt	gtgtggaatt	gtgagcggat	4800
aacaatttca cacaggaaac	agctatgacc	atgattacgc	caagctcgga	attaaccctc	4860
actaaaggga acaaaagctg	gctagt				4886
<210> SEQ ID NO 76 <211> LENGTH: 5801 <212> TYPE: DNA <213> ORGANISM: artif <220> FEATURE: <223> OTHER INFORMATI		pYD1gal			
<400> SEQUENCE: 76					
acggattaga agccgccgag	cgggtgacag	ccctccgaag	gaagactctc	ctccgtgcgt	60
cctcgtcttc accggtcgcg	ttcctgaaac	gcagatgtgc	ctcgcgccgc	actgctccga	120
acaataaaga ttctacaata	ctagctttta	tggttatgaa	gaggaaaaat	tggcagtaac	180
ctggccccac aaaccttcaa	atgaacgaat	caaattaaca	accataggat	gataatgcga	240
ttagtttttt agccttattt	ctggggtaat	taatcagcga	agcgatgatt	tttgatctat	300
taacagatat ataaatgcaa	aaactgcata	accactttaa	ctaatacttt	caacattttc	360
ggtttgtatt acttcttatt	caaatgtaat	aaaagtatca	acaaaaaatt	gttaatatac	420
ctctatactt taacgtcaag	gagaaaaaac	cccggatcgg	actactagca	gctgtaatac	480
gactcactat agggaatatt	aagctaattc	tacttcatac	attttcaatt	aagatgcagt	540
tacttcgctg tttttcaata	ttttctgtta	ttgcttcagt	gctagccgct	ggggccatgg	600
ttactgattg gcgcgccgga	tccgatgtaa	caaaatcgac	tttgttccca	ctgtactttt	660
agctcgtaca aaatacaata	tacttttcat	ttctccgtaa	acaacatgtt	ttcccatgta	720
atatcctttt ctatttttcg	ttccgttacc	aactttacac	atactttata	tagctattca	780
cttctataca ctaaaaaact	aagacaattt	taattttgct	gcctgccata	tttcaatttg	840
ttataaattc ctataattta	tcctattagt	agctaaaaaa	agatgaatgt	gaatcgaatc	900
ctaagagaat tgctgcagaa	ttcacggatt	agaagccgcc	gagcgggtga	cagccctccg	960
aaggaagact ctcctccgtg	cgtcctcgtc	ttcaccggtc	gegtteetga	aacgcagatg	1020
tgcctcgcgc cgcactgctc	cgaacaataa	agattctaca	atactagctt	ttatggttat	1080
gaagaggaaa aattggcagt	aacctggccc	cacaaacctt	caaatgaacg	aatcaaatta	1140
acaaccatag gatgataatg	cgattagttt	tttagcctta	tttctggggt	aattaatcag	1200
cgaagcgatg atttttgatc	tattaacaga	tatataaatg	caaaaactgc	ataaccactt	1260
taactaatac tttcaacatt	ttcggtttgt	attacttctt	attcaaatgt	aataaaagta	1320
tcaacaaaaa attgttaata	tacctctata	ctttaacgtc	aaggagaaaa	aaccccggat	1380
cggactacta gcagctgtaa	tacgactcac	tatagggaat	attaagctaa	ttctacttca	1440
tacattttca attaagatgc	agttacttcg	ctgtttttca	atattttctg	ttattgcttc	1500
agttttagca caggaactga	caactatatg	cgagcaaatc	ccctcaccaa	ctttagaatc	1560
gacgccgtac tctttgtcaa	cgactactat	tttggccaac	gggaaggcaa	tgcaaggagt	1620
ttttgaatat tacaaatcag					1680
tagcaaaggc agccccataa					1740
tggtggttct ggtggtggtg					1800
gcaaggccta attctgatgc	ggccgcacat	catcaccatc	accattgatt	aattaagttt	1860

aaacccgctg	atctgataac	aacagtgtag	atgtaacaaa	atcgactttg	ttcccactgt	1920
acttttagct	cgtacaaaat	acaatatact	tttcatttct	ccgtaaacaa	catgttttcc	1980
catgtaatat	ccttttctat	ttttcgttcc	gttaccaact	ttacacatac	tttatatagc	2040
tattcacttc	tatacactaa	aaaactaaga	caattttaat	tttgctgcct	gccatatttc	2100
aatttgttat	aaattcctat	aatttatcct	attagtagct	aaaaaaagat	gaatgtgaat	2160
cgaatcctaa	gagaattggg	caagtgcaca	aacaatactt	aaataaatac	tactcagtaa	2220
taacctattt	cttagcattt	ttgacgaaat	ttgctatttt	gttagagtct	tttacaccat	2280
ttgtctccac	acctccgctt	acatcaacac	caataacgcc	atttaatcta	agcgcatcac	2340
caacattttc	tggcgtcagt	ccaccagcta	acataaaatg	taagctctcg	gggctctctt	2400
gccttccaac	ccagtcagaa	atcgagttcc	aatccaaaag	ttcacctgtc	ccacctgctt	2460
ctgaatcaaa	caagggaata	aacgaatgag	gtttctgtga	agctgcactg	agtagtatgt	2520
tgcagtcttt	tggaaatacg	agtcttttaa	taactggcaa	accgaggaac	tcttggtatt	2580
cttgccacga	ctcatctccg	tgcagttgga	cgatatcaat	gccgtaatca	ttgaccagag	2640
ccaaaacatc	ctccttaggt	tgattacgaa	acacgccaac	caagtatttc	ggagtgcctg	2700
aactatttt	atatgctttt	acaagacttg	aaattttcct	tgcaataacc	gggtcaattg	2760
ttctctttct	attgggcaca	catataatac	ccagcaagtc	agcatcggaa	tctagagcac	2820
attctgcggc	ctctgtgctc	tgcaagccgc	aaactttcac	caatggacca	gaactacctg	2880
tgaaattaat	aacagacata	ctccaagctg	cctttgtgtg	cttaatcacg	tatactcacg	2940
tgctcaatag	tcaccaatgc	cctccctctt	ggccctctcc	ttttctttt	tcgaccgaat	3000
ttcttgaaga	cgaaagggcc	tcgtgatacg	cctatttta	taggttaatg	tcatgataat	3060
aatggtttct	taggacggat	cgcttgcctg	taacttacac	gcgcctcgta	tcttttaatg	3120
atggaataat	ttgggaattt	actctgtgtt	tatttattt	tatgttttgt	atttggattt	3180
tagaaagtaa	ataaagaagg	tagaagagtt	acggaatgaa	gaaaaaaaaa	taaacaaagg	3240
tttaaaaaat	ttcaacaaaa	agcgtacttt	acatatatat	ttattagaca	agaaaagcag	3300
attaaataga	tatacattcg	attaacgata	agtaaaatgt	aaaatcacag	gattttcgtg	3360
tgtggtcttc	tacacagaca	agatgaaaca	attcggcatt	aatacctgag	agcaggaaga	3420
gcaagataaa	aggtagtatt	tgttggcgat	ccccctagag	tcttttacat	cttcggaaaa	3480
caaaaactat	tttttcttta	atttcttttt	ttactttcta	tttttaattt	atatatttat	3540
attaaaaaat	ttaaattata	attatttta	tagcacgtga	tgaaaaggac	ccaggtggca	3600
cttttcgggg	aaatgtgcgc	ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	3660
tgtatccgct	catgagacaa	taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	3720
gtatgagtat	tcaacatttc	cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	3780
ctgtttttgc	tcacccagaa	acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	3840
cacgagtggg	ttacatcgaa	ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	3900
ccgaagaacg	ttttccaatg	atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	3960
cccgtgttga	cgccgggcaa	gagcaactcg	gtcgccgcat	acactattct	cagaatgact	4020
tggttgagta	ctcaccagtc	acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	4080
		atgagtgata				4140
		accgcttttt				4200
5555400	JJJ&9004			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	-200

ttgatcgttg ggaacc	ggag ctgaatgaag ccatacca	aaa cgacgagcgt gacaccacga	4260	
tgcctgtagc aatggc	aaca acgttgcgca aactatta	ac tggcgaacta cttactctag	4320	
cttcccggca acaatt	aata gactggatgg aggcggat	aa agttgcagga ccacttctgc	4380	
geteggeeet teegge	tggc tggtttattg ctgataaa	tc tggagccggt gagcgtgggt	4440	
ctcgcggtat cattgc	agca ctggggccag atggtaaq	gcc ctcccgtatc gtagttatct	4500	
acacgacggg cagtca	ggca actatggatg aacgaaat	ag acagateget gagataggtg	4560	
cctcactgat taagca	ttgg taactgtcag accaagtt	ta ctcatatata ctttagattg	4620	
atttaaaact tcattt	ttaa tttaaaagga tctaggto	gaa gatccttttt gataatctca	4680	
tgaccaaaat ccctta	acgt gagttttcgt tccactga	agc gtcagacccc gtagaaaaga	4740	
tcaaaggatc ttcttg	agat cettttttte tgegegta	aat ctgctgcttg caaacaaaaa	4800	
aaccaccgct accagc	ggtg gtttgtttgc cggatcaa	aga gctaccaact ctttttccga	4860	
aggtaactgg cttcag	caga gcgcagatac caaatact	gt ccttctagtg tagccgtagt	4920	
taggccacca cttcaa	gaac tetgtageae egeetaea	ata cctcgctctg ctaatcctgt	4980	
taccagtggc tgctgc	cagt ggcgataagt cgtgtctt	ac cgggttggac tcaagacgat	5040	
agttaccgga taaggc	gcag cggtcgggct gaacgggg	ggg ttcgtgcaca cagcccagct	5100	
tggagcgaac gaccta	cacc gaactgagat acctacag	gcg tgagcattga gaaagcgcca	5160	
cgcttcccga agggag	aaag gcggacaggt atccggta	ag cggcagggtc ggaacaggag	5220	
agcgcacgag ggagct	tcca ggggggaacg cctggtat	ct ttatagteet gtegggttte	5280	
gccacctctg acttga	gcgt cgatttttgt gatgctc	stc aggggggccg agcctatgga	5340	
aaaacgccag caacgc	ggcc tttttacggt tcctggc	tt ttgctggcct tttgctcaca	5400	
tgttctttcc tgcgtt	atcc cctgattctg tggataac	cg tattaccgcc tttgagtgag	5460	
ctgataccgc tcgccg	cage egaacgaeeg agegeage	ga gtcagtgagc gaggaagcgg	5520	
aagagegeee aataeg	caaa ccgcctctcc ccgcgcgt	tg gccgattcat taatgcagct	5580	
ggcacgacag gtttcc	cgac tggaaagcgg gcagtgag	gcg caacgcaatt aatgtgagtt	5640	
acctcactca ttaggo	accc caggetttae actttate	gct teeggeteet atgttgtgtg	5700	
gaattgtgag cggata	acaa tttcacacag gaaacago	ta tgaccatgat tacgccaagc	5760	
tcggaattaa ccctca	ctaa agggaacaaa agctggct	ag t	5801	
<210> SEQ ID NO 7 <211> LENGTH: 692 <212> TYPE: DNA <213> ORGANISM: a <220> FEATURE: <223> OTHER INFOR	rtificial			
<400> SEQUENCE: 7	7			
ggccagcaag gccaag	aggt tcaactagtg gagtctg	geg gtggeetggt geageeaggg	60	
ggctcactcc gtttgt	cctg tgcagcttct ggcttcaa	aca ttaaagacac ctatatacac	120	
tgggtgcgtc aggccc	cggg taagggcctg gaatgggt	tg caaggattta teetaegaat	180	
ggttatacta gatatg	ccga tagcgtcaag ggccgttt	ca ctataagege agacacatee	240	
aaaaacacag cctacc	tgca gatgaacagc ctgcgtgo	tg aggacactgc cgtctattat	300	
tgttctagat ggggag	ggga cggcttctat gctatgga	act actggggtca aggaaccctg	360	
gtcaccgtct cctcgg	ctag caccaagggc cccagcgt	gt tecetetgge ceccagetee	420	

480

aagagcacct ccggcggcac cgccgccctg ggctgcctgg tgaaggatta cttcccagag

cccgtgaccg	tgagctggaa	cageggegee	ctgaccagcg	gcgtgcacac	ctttcccgcc	540
gtgctgcagt	ccagcggcct	gtactccctg	agcagcgtgg	tgaccgtgcc	cagcagcagc	600
ctgggcaccc	agacctacat	ctgcaatgtg	aaccacaagc	ccagcaatac	caaggtggat	660
aagaaggtgg	agcccaagag	ctgcgcggcc	gc			692
<220> FEAT	TH: 661 : DNA NISM: artif:					
<400> SEQUI	ENCE: 78					
ccatggcgga	tatccagatg	acccagtccc	cgagctccct	gteegeetet	gtgggcgata	60
gggtcaccat	cacctgccgt	gccagtcagg	atgtgaatac	tgctgtagcc	tggtatcaac	120
agaaaccagg	aaaagctccg	aaactactga	tttactcggc	atccttcctc	tactctggag	180
tcccttctcg	cttctctgga	tccagatctg	ggacggattt	cactctgacc	atcagcagtc	240
tgcagccgga	agacttcgca	acttattact	gtcagcaaca	ttatactact	cctcccacgt	300
teggaeaggg	taccaaggtg	gagatcaaac	gtacggtggc	ggcgccatct	gtcttcatct	360
tecegecate	tgatgagcag	cttaagtctg	gaactgcctc	tgttgtgtgc	ctgctgaata	420
acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgccctc	caatcgggta	480
actcccagga	gagtgtcaca	gagcaggaca	gcaaggacag	cacctacagc	ctcagcagca	540
ccctgacgct	gagcaaagca	gactacgaga	aacacaaagt	ctacgcctgc	gaagtcaccc	600
atcagggcct	gagetegeee	gtcacaaaga	gcttcaacag	gggagagtgt	tgaggcgcgc	660
С						661
<220> FEAT	TH: 6468 : DNA NISM: artif:		oYD4D5hc			
<400> SEQUI	ENCE: 79					
acggattaga	agccgccgag	cgggtgacag	ccctccgaag	gaagactctc	ctccgtgcgt	60
cctcgtcttc	accggtcgcg	ttcctgaaac	gcagatgtgc	ctcgcgccgc	actgctccga	120
acaataaaga	ttctacaata	ctagctttta	tggttatgaa	gaggaaaaat	tggcagtaac	180
ctggccccac	aaaccttcaa	atgaacgaat	caaattaaca	accataggat	gataatgcga	240
ttagtttttt	agccttattt	ctggggtaat	taatcagcga	agcgatgatt	tttgatctat	300
taacagatat	ataaatgcaa	aaactgcata	accactttaa	ctaatacttt	caacattttc	360
ggtttgtatt	acttcttatt	caaatgtaat	aaaagtatca	acaaaaaatt	gttaatatac	420
ctctatactt	taacgtcaag	gagaaaaaac	cccggatcgg	actactagca	gctgtaatac	480
gactcactat	agggaatatt	aagctaattc	tacttcatac	attttcaatt	aagatgcagt	540
tacttcgctg	tttttcaata	ttttctgtta	ttgcttcagt	gctagccgct	ggggccatgg	600
ttactgattg	gcgcgccgga	tccgatgtaa	caaaatcgac	tttgttccca	ctgtactttt	660
agctcgtaca	aaatacaata	tacttttcat	ttctccgtaa	acaacatgtt	ttcccatgta	720
atatcctttt	ctatttttcg	ttccgttacc	aactttacac	atactttata	tagctattca	780

cttctataca	ctaaaaaact	aagacaattt	taattttgct	gcctgccata	tttcaatttg	840
ttataaattc	ctataattta	tcctattagt	agctaaaaaa	agatgaatgt	gaatcgaatc	900
ctaagagaat	tgctgcagaa	ttcacggatt	agaageegee	gagcgggtga	cagccctccg	960
aaggaagact	ctcctccgtg	cgtcctcgtc	ttcaccggtc	gcgttcctga	aacgcagatg	1020
tgcctcgcgc	cgcactgctc	cgaacaataa	agattctaca	atactagctt	ttatggttat	1080
gaagaggaaa	aattggcagt	aacctggccc	cacaaacctt	caaatgaacg	aatcaaatta	1140
acaaccatag	gatgataatg	cgattagttt	tttagcctta	tttctggggt	aattaatcag	1200
cgaagcgatg	atttttgatc	tattaacaga	tatataaatg	caaaaactgc	ataaccactt	1260
taactaatac	tttcaacatt	ttcggtttgt	attacttctt	attcaaatgt	aataaaagta	1320
tcaacaaaaa	attgttaata	tacctctata	ctttaacgtc	aaggagaaaa	aaccccggat	1380
cggactacta	gcagctgtaa	tacgactcac	tatagggaat	attaagctaa	ttctacttca	1440
tacattttca	attaagatgc	agttacttcg	ctgtttttca	atattttctg	ttattgcttc	1500
agttttagca	caggaactga	caactatatg	cgagcaaatc	ccctcaccaa	ctttagaatc	1560
gacgccgtac	tctttgtcaa	cgactactat	tttggccaac	gggaaggcaa	tgcaaggagt	1620
ttttgaatat	tacaaatcag	taacgtttgt	cagtaattgc	ggttctcacc	cctcaacaac	1680
tagcaaaggc	agccccataa	acacacagta	tgtttttaag	cttctgcagg	ctagtggtgg	1740
tggtggttct	ggtggtggtg	gttctggtgg	tggtggttct	gctagcatga	ctggtggcca	1800
gcaaggccaa	ggttctgagg	ttcaactagt	ggagtetgge	ggtggcctgg	tgcagccagg	1860
gggctcactc	cgtttgtcct	gtgcagcttc	tggcttcaac	attaaagaca	cctatataca	1920
ctgggtgcgt	caggccccgg	gtaagggcct	ggaatgggtt	gcaaggattt	atcctacgaa	1980
tggttatact	agatatgccg	atagcgtcaa	gggccgtttc	actataagcg	cagacacatc	2040
caaaaacaca	geetaeetge	agatgaacag	cctgcgtgct	gaggacactg	ccgtctatta	2100
ttgttctaga	tggggagggg	acggcttcta	tgctatggac	tactggggtc	aaggaaccct	2160
ggtcaccgtc	teeteggeta	gcaccaaggg	ccccagcgtg	ttecetetgg	cccccagctc	2220
caagagcacc	teeggeggea	ccgccgccct	gggctgcctg	gtgaaggatt	acttcccaga	2280
gcccgtgacc	gtgagctgga	acagcggcgc	cctgaccagc	ggcgtgcaca	cctttcccgc	2340
cgtgctgcag	tccagcggcc	tgtactccct	gagcagcgtg	gtgaccgtgc	ccagcagcag	2400
cctgggcacc	cagacctaca	tctgcaatgt	gaaccacaag	cccagcaata	ccaaggtgga	2460
taagaaggtg	gagcccaaga	gctgcgcggc	cgcacatcat	caccatcacc	attgattaat	2520
taagtttaaa	cccgctgatc	tgataacaac	agtgtagatg	taacaaaatc	gactttgttc	2580
ccactgtact	tttagctcgt	acaaaataca	atatactttt	catttctccg	taaacaacat	2640
gttttcccat	gtaatatcct	tttctatttt	tcgttccgtt	accaacttta	cacatacttt	2700
atatagctat	tcacttctat	acactaaaaa	actaagacaa	ttttaatttt	gctgcctgcc	2760
atatttcaat	ttgttataaa	ttcctataat	ttatcctatt	agtagctaaa	aaaagatgaa	2820
tgtgaatcga	atcctaagag	aattgggcaa	gtgcacaaac	aatacttaaa	taaatactac	2880
tcagtaataa	cctatttctt	agcatttttg	acgaaatttg	ctattttgtt	agagtctttt	2940
acaccatttg	tctccacacc	tccgcttaca	tcaacaccaa	taacgccatt	taatctaagc	3000
gcatcaccaa	cattttctgg	cgtcagtcca	ccagctaaca	taaaatgtaa	gctctcgggg	3060
ctctcttgcc	ttccaaccca	gtcagaaatc	gagttccaat	ccaaaagttc	acctgtccca	3120
cctgcttctq	aatcaaacaa	gggaataaac	gaatgaggtt	tctgtgaagc	tgcactgagt	3180
				- 5 5		

agtatgttgc	agtcttttgg	aaatacgagt	cttttaataa	ctggcaaacc	gaggaactct	3240
tggtattctt	gccacgactc	atctccgtgc	agttggacga	tatcaatgcc	gtaatcattg	3300
accagagcca	aaacatcctc	cttaggttga	ttacgaaaca	cgccaaccaa	gtatttcgga	3360
gtgcctgaac	tatttttata	tgcttttaca	agacttgaaa	ttttccttgc	aataaccggg	3420
tcaattgttc	tctttctatt	gggcacacat	ataataccca	gcaagtcagc	atcggaatct	3480
agagcacatt	ctgcggcctc	tgtgctctgc	aagccgcaaa	ctttcaccaa	tggaccagaa	3540
ctacctgtga	aattaataac	agacatactc	caagctgcct	ttgtgtgctt	aatcacgtat	3600
actcacgtgc	tcaatagtca	ccaatgccct	ccctcttggc	cctctccttt	tcttttttcg	3660
accgaatttc	ttgaagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	3720
tgataataat	ggtttcttag	gacggatcgc	ttgcctgtaa	cttacacgcg	cctcgtatct	3780
tttaatgatg	gaataatttg	ggaatttact	ctgtgtttat	ttatttttat	gttttgtatt	3840
tggattttag	aaagtaaata	aagaaggtag	aagagttacg	gaatgaagaa	aaaaaaataa	3900
acaaaggttt	aaaaaatttc	aacaaaaagc	gtactttaca	tatatattta	ttagacaaga	3960
aaagcagatt	aaatagatat	acattcgatt	aacgataagt	aaaatgtaaa	atcacaggat	4020
tttcgtgtgt	ggtcttctac	acagacaaga	tgaaacaatt	cggcattaat	acctgagagc	4080
aggaagagca	agataaaagg	tagtatttgt	tggcgatccc	cctagagtct	tttacatctt	4140
cggaaaacaa	aaactatttt	ttctttaatt	tctttttta	ctttctattt	ttaatttata	4200
tatttatatt	aaaaaattta	aattataatt	atttttatag	cacgtgatga	aaaggaccca	4260
ggtggcactt	ttcggggaaa	tgtgcgcgga	acccctattt	gtttattttt	ctaaatacat	4320
tcaaatatgt	atccgctcat	gagacaataa	ccctgataaa	tgcttcaata	atattgaaaa	4380
aggaagagta	tgagtattca	acatttccgt	gtcgccctta	ttcccttttt	tgcggcattt	4440
tgccttcctg	tttttgctca	cccagaaacg	ctggtgaaag	taaaagatgc	tgaagatcag	4500
ttgggtgcac	gagtgggtta	catcgaactg	gatctcaaca	gcggtaagat	ccttgagagt	4560
tttcgccccg	aagaacgttt	tccaatgatg	agcactttta	aagttctgct	atgtggcgcg	4620
gtattatccc	gtgttgacgc	cgggcaagag	caactcggtc	gccgcataca	ctattctcag	4680
aatgacttgg	ttgagtactc	accagtcaca	gaaaagcatc	ttacggatgg	catgacagta	4740
agagaattat	gcagtgctgc	cataaccatg	agtgataaca	ctgcggccaa	cttacttctg	4800
acaacgatcg	gaggaccgaa	ggagctaacc	gcttttttgc	acaacatggg	ggatcatgta	4860
actegeettg	atcgttggga	accggagctg	aatgaagcca	taccaaacga	cgagcgtgac	4920
accacgatgc	ctgtagcaat	ggcaacaacg	ttgcgcaaac	tattaactgg	cgaactactt	4980
actctagctt	cccggcaaca	attaatagac	tggatggagg	cggataaagt	tgcaggacca	5040
cttctgcgct	cggcccttcc	ggctggctgg	tttattgctg	ataaatctgg	agccggtgag	5100
cgtgggtctc	gcggtatcat	tgcagcactg	gggccagatg	gtaagccctc	ccgtatcgta	5160
gttatctaca	cgacgggcag	tcaggcaact	atggatgaac	gaaatagaca	gatcgctgag	5220
ataggtgcct	cactgattaa	gcattggtaa	ctgtcagacc	aagtttactc	atatatactt	5280
tagattgatt	taaaacttca	tttttaattt	aaaaggatct	aggtgaagat	cctttttgat	5340
aatctcatga	ccaaaatccc	ttaacgtgag	ttttcgttcc	actgagcgtc	agaccccgta	5400
gaaaagatca	aaggatcttc	ttgagatcct	ttttttctgc	gcgtaatctg	ctgcttgcaa	5460
acaaaaaac	caccgctacc	agcggtggtt	tgtttgccgg	atcaagagct	accaactctt	5520

-continued

	gaa	.gg t	aact	ggct	t ca	agcaç	gageg	g caç	gatad	ccaa	atad	ctgto	ect t	ctaç	gtgta	g 5580
ccgta	agtt	ag g	gccac	ccact	it ca	aagaa	actct	gta	agcad	cege	ctad	catao	ect o	egete	etget	a 5640
atcct	gtt	ac c	cagto	ggct	gc to	gccaç	gtggd	gat	aagt	cgt	gtct	taco	egg s	gttgg	gacte	a 5700
agacg	gata	gt t	acco	ggata	aa g	gegea	agegg	g teg	gggct	gaa	cggg	ggggt	tc (gtgca	acaca	g 5760
cccag	gctt	gg a	agcga	aacga	ac ct	cacac	ccgaa	a ctç	gagat	acc	taca	agcgt	ga (gcatt	gaga	a 5820
agcgc	ccac	gc t	tcc	gaag	aa a	agaaa	aggcg	g gad	aggt	atc	cggt	aago	gg (caggo	gtcgg.	a 5880
acagg	gaga	.gc ç	gcaco	gaggg	ga go	cttco	caggg	9 999	gaaco	gcct	ggta	atctt	ta t	agto	ctgt	c 5940
gggtt	tcg	cc a	accto	ctgad	ct to	gageç	gtcga	a ttt	ttgt	gat	gcto	egtea	agg g	9999	cgag	c 6000
ctatg	ggaa	aa a	acgco	cagca	aa c	gegge	ecttt	tta	ecggt	tcc	tgg	ectt	tg o	ctggo	cttt	t 6060
gctca	acat	gt t	cttt	cct	gc gt	tato	cccct	gat	tete	gtgg	ataa	accgt	at t	cacco	geett	t 6120
gagtg	gagc	tg a	ataco	egete	eg e	cgcag	gccga	a acç	gacco	gagc	gcaç	gcgag	gtc a	agtga	agcga	g 6180
gaago	egga	ag a	agcgo	cccaa	at a	cgcaa	aacco	g cct	ctc	cccg	cgc	gttgg	gee (gatto	catta	a 6240
tgcag	gctg	gc a	acgad	caggt	t to	cccga	actgo	g aaa	gegg	ggca	gtga	agcgo	caa o	cgcaa	attaa	t 6300
gtgag	gtta	.cc t	cact	catt	a g	gcaco	ccaç	g gct	ttad	cact	ttat	gctt	ccc (ggata	ctat	g 6360
ttgtg	gtgg	aa t	tgtg	gagco	gg at	caaca	aattt	cad	cacaç	ggaa	acaç	gctat	ga d	ccato	gatta	c 6420
gccaa	agct	cg ç	gaatt	caaco	cc to	cacta	aaagg	g gaa	acaaa	aagc	tgg	ctagt	:			6468
<210> SEQ ID NO 80 <211> LENGTH: 223 <212> TYPE: PRT <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: 4D5hp																
							-									
<400>	> SE	QUEN	ICE :	80			-									
<400> Glu V					Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
Glu V	/al	Gln	Leu	Val 5			_	_	10					15	_	
Glu V 1	/al Leu	Gln Arg	Leu Leu 20	Val 5 Ser	Сув	Ala	Ala	Ser 25	10 Gly	Phe	Asn	Ile	Tys	15 Asp	Thr	
Glu V 1 Ser L Tyr I	/al Leu	Gln Arg His	Leu Leu 20 Trp	Val 5 Ser Val	Cys Arg	Ala Gln	Ala Ala 40	Ser 25 Pro	Gly	Phe Lys	Asn Gly	Ile Leu 45	Lys 30 Glu	15 Asp Trp	Thr Val	
Glu V 1 Ser L Tyr I	/al Leu Ile Arg	Gln Arg His 35	Leu Leu 20 Trp	Val 5 Ser Val Pro	Cys Arg Thr	Ala Gln Asn 55	Ala Ala 40 Gly	Ser 25 Pro	Gly Gly Thr	Phe Lys Arg	Asn Gly Tyr 60	Ile Leu 45 Ala	Lys 30 Glu Asp	15 Asp Trp Ser	Thr Val	
Glu V 1 Ser L Tyr I Ala A 5	/al Leu Ile Arg 50	Gln Arg His 35 Ile	Leu 20 Trp Tyr	Val 5 Ser Val Pro	Cys Arg Thr	Ala Gln Asn 55 Ser	Ala Ala 40 Gly	Ser 25 Pro Tyr	Gly Gly Thr	Phe Lys Arg Ser	Asn Gly Tyr 60 Lys	Ile Leu 45 Ala Asn	Lys 30 Glu Asp	Asp Trp Ser	Thr Val Val Tyr 80	
Glu V 1 Ser L Tyr I Ala A 5 Lys G	Jal Geu Ile Arg 50 Gly	Gln Arg His 35 Ile Arg	Leu 20 Trp Tyr Phe	Val 5 Ser Val Pro Thr	Cys Arg Thr Ile 70 Leu	Ala Gln Asn 55 Ser	Ala Ala 40 Gly Ala	Ser 25 Pro Tyr Asp	Gly Gly Thr Thr	Phe Lys Arg Ser 75	Asn Gly Tyr 60 Lys	Ile Leu 45 Ala Asn Val	Lys 30 Glu Asp Thr	Asp Trp Ser Ala Tyr 95	Thr Val Val Tyr 80 Cys	
Glu V 1 Ser L Tyr I Ala A 5 Lys G 65 Leu G	Jal Leu Ile Arg 500 Gly Arg	Gln Arg His 35 Ile Arg Met	Leu 20 Trp Tyr Phe Asn Gly 100	Val 5 Ser Val Pro Thr Ser 85	Cys Arg Thr Leu Asp	Ala Gln Asn 55 Ser Arg Gly	Ala Ala 40 Gly Ala Ala	Ser 25 Pro Tyr Asp Glu Tyr 105	Gly Gly Thr Asp 90 Ala	Phe Lys Arg Ser 75 Thr	Asn Gly Tyr 60 Lys Ala Asp	Ile Leu 45 Ala Asn Val	Lys 30 Glu Asp Thr Tyr	Asp Trp Ser Ala Tyr 95 Gly	Thr Val Val Tyr 80 Cys	
Glu V Ser L Tyr I Ala A 5 Lys G 65 Leu G Ser A Gly T	Jal Leu Ile Arg 50 Gly Arg	Gln Arg His 35 Ile Arg Met Trp Leu 115	Leu 20 Trp Tyr Phe Asn Gly 100 Val	Val 5 Ser Val Pro Thr Ser 85 Gly	Cys Arg Thr Ile 70 Leu Asp	Ala Gln Asn 55 Ser Arg Gly Ser	Ala Ala 40 Gly Ala Ala Phe Ser 120	Ser 25 Pro Tyr Asp Glu Tyr 105 Ala	10 Gly Gly Thr Thr Asp 90 Ala Ser	Phe Lys Arg Ser 75 Thr Met	Asn Gly Tyr 60 Lys Ala Asp	Ile Leu 45 Ala Asn Val Tyr Gly 125	Lys 30 Glu Asp Thr Tyr Trp 110	Asp Trp Ser Ala Tyr 95 Gly Ser	Thr Val Val Tyr 80 Cys Gln Val	
Glu V Ser L Tyr I Ala A 5 Lys G 65 Leu G Ser A Gly T	Jal Leu Ile Arg 50 Ely Fhr Pro	Gln Arg His 35 Ile Arg Met Trp Leu 115	Leu 20 Trp Tyr Phe Asn Gly 100 Val	Val 5 Ser Val Pro Thr Ser 85 Gly Thr	Cys Arg Thr Ile 70 Leu Asp Val	Ala Gln Asn 55 Ser Arg Gly Ser Ser	Ala Ala 40 Gly Ala Ala Phe Lys	Ser 25 Pro Tyr Asp Glu Tyr 105 Ala	10 Gly Gly Thr Thr Asp 90 Ala Ser	Phe Lys Arg Ser 75 Thr Met Thr	Asn Gly Tyr 60 Lys Ala Asp Lys Gly 140	Ile Leu 45 Ala Asn Val Tyr Gly 125 Gly	Lys 30 Glu Asp Thr Tyr Trp 110 Pro	Asp Trp Ser Ala Tyr 95 Gly Ser Ala	Thr Val Val Tyr 80 Cys Gln Val	
Glu V 1 Ser L Tyr I Ala A 5 Lys G 65 Leu G Ser A Gly T Phe F 1 Leu G	/al Geu Ile Arg 50 Gily Giln Arg Fhr 130 Gily	Gln Arg His 35 Ile Arg Met Trp Leu 115 Leu Cys	Leu Leu 20 Trp Tyr Phe Asn Gly 100 Val Ala	Val 5 Ser Val Pro Thr Ser 85 Gly Thr Pro Val	Cys Arg Thr Ile 70 Leu Asp Val Ser Lys 150	Ala Gln Asn 55 Ser Arg Gly Ser Ser 135	Ala Ala Ala Ala Ala Ala Phe Lys Tyr	Ser 25 Pro Tyr Asp Glu Tyr 105 Ala Ser	Gly Gly Thr Thr Asp 90 Ala Ser Thr	Phe Lys Arg Ser 75 Thr Met Thr Glu 155	Asn Gly Tyr 60 Lys Ala Asp Lys Gly 140 Pro	Ile Leu 45 Ala Asn Val Tyr Gly 125 Gly Val	Lys 30 Glu Asp Thr Tyr Trp 110 Pro	Asp Trp Ser Ala Tyr 95 Gly Ser Ala Val	Thr Val Val Tyr 80 Cys Gln Val Ala Ser 160	

Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys

-continued

195 200 205 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys 210 215 220 <210> SEQ ID NO 81 <211> LENGTH: 7100 <212> TYPE: DNA <213 > ORGANISM: artificial <220> FEATURE: <223 > OTHER INFORMATION: vector pYD4D5hl <400> SEQUENCE: 81 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60 cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac 180 ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 240 ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat 300 taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc 360 qqtttqtatt acttcttatt caaatqtaat aaaaqtatca acaaaaaatt qttaatatac 420 ctctatactt taacqtcaaq qaqaaaaaac cccqqatcqq actactaqca qctqtaatac 480 gactcactat agggaatatt aagctaattc tacttcatac attttcaatt aagatgcagt 540 tacttegetg tittteaata tittetgita tigetteagt getageeget ggggeeatgg 600 cggatateca gatgacecag teccegaget ceetgteege etetgtggge gatagggtea 660 ccatcacctg ccgtgccagt caggatgtga atactgctgt agcctggtat caacagaaac 720 caggaaaagc tccgaaacta ctgatttact cggcatcctt cctctactct ggagtccctt 780 ctcgcttctc tggatccaga tctgggacgg atttcactct gaccatcagc agtctgcagc 840 cggaagactt cgcaacttat tactgtcagc aacattatac tactcctccc acgttcggac 900 agggtaccaa ggtggagatc aaacgtacgg tggcggcgcc atctgtcttc atcttcccgc 960 catctgatga gcagcttaag tctggaactg cctctgttgt gtgcctgctg aataacttct 1020 atoccagaga ggccaaagta cagtggaagg tggataacgc cotccaatog ggtaactccc 1080 aggagagtgt cacagagcag gacagcaagg acagcaccta cagcctcagc agcaccctga 1140 cgctgagcaa agcagactac gagaaacaca aagtctacgc ctgcgaagtc acccatcagg 1200 gcctgagctc gcccgtcaca aagagcttca acaggggaga gtgttgaggc gcgccggatc cgatgtaaca aaatcgactt tgttcccact gtacttttag ctcgtacaaa atacaatata 1320 cttttcattt ctccgtaaac aacatgtttt cccatgtaat atccttttct atttttcgtt 1380 ccgttaccaa ctttacacat actttatata gctattcact tctatacact aaaaaactaa 1440 gacaatttta attttgctgc ctgccatatt tcaatttgtt ataaattcct ataatttatc 1500 ctattagtag ctaaaaaaag atgaatgtga atcgaatcct aagagaattg ctgcagaatt 1560 cacggattag aagccgccga gcgggtgaca gccctccgaa ggaagactct cctccgtgcg 1620 tectegtett caceggtege gtteetgaaa egeagatgtg eetegegeeg eactgeteeg 1680 aacaataaag attctacaat actagctttt atggttatga agaggaaaaa ttggcagtaa 1740 cctggcccca caaaccttca aatgaacgaa tcaaattaac aaccatagga tgataatgcg 1800 attagttttt tagccttatt tctggggtaa ttaatcagcg aagcgatgat ttttgatcta 1860

ttaacagata tataaatgca aaaactgcat aaccacttta actaatactt tcaacatttt

1920

cggtttgtat	tacttcttat	tcaaatgtaa	taaaagtatc	aacaaaaaat	tgttaatata	1980
cctctatact	ttaacgtcaa	ggagaaaaaa	ccccggatcg	gactactagc	agctgtaata	2040
cgactcacta	tagggaatat	taagctaatt	ctacttcata	cattttcaat	taagatgcag	2100
ttacttcgct	gtttttcaat	attttctgtt	attgcttcag	ttttagcaca	ggaactgaca	2160
actatatgcg	agcaaatccc	ctcaccaact	ttagaatcga	cgccgtactc	tttgtcaacg	2220
actactattt	tggccaacgg	gaaggcaatg	caaggagttt	ttgaatatta	caaatcagta	2280
acgtttgtca	gtaattgcgg	ttctcacccc	tcaacaacta	gcaaaggcag	ccccataaac	2340
acacagtatg	tttttaagct	tctgcaggct	agtggtggtg	gtggttctgg	tggtggtggt	2400
tctggtggtg	gtggttctgc	tagcatgact	ggtggccagc	aaggccaaga	ggttcaacta	2460
gtggagtctg	geggtggeet	ggtgcagcca	gggggctcac	tccgtttgtc	ctgtgcagct	2520
tctggcttca	acattaaaga	cacctatata	cactgggtgc	gtcaggcccc	gggtaagggc	2580
ctggaatggg	ttgcaaggat	ttatcctacg	aatggttata	ctagatatgc	cgatagcgtc	2640
aagggccgtt	tcactataag	cgcagacaca	tccaaaaaca	cagcctacct	gcagatgaac	2700
agcctgcgtg	ctgaggacac	tgccgtctat	tattgttcta	gatggggagg	ggacggcttc	2760
tatgctatgg	actactgggg	tcaaggaacc	ctggtcaccg	teteetegge	tagcaccaag	2820
ggccccagcg	tgttccctct	ggcccccagc	tccaagagca	ceteeggegg	caccgccgcc	2880
ctgggctgcc	tggtgaagga	ttacttccca	gagcccgtga	ccgtgagctg	gaacagcggc	2940
gccctgacca	geggegtgea	cacctttccc	gccgtgctgc	agtccagcgg	cctgtactcc	3000
ctgagcagcg	tggtgaccgt	geecageage	agcctgggca	cccagaccta	catctgcaat	3060
gtgaaccaca	agcccagcaa	taccaaggtg	gataagaagg	tggagcccaa	gagetgegeg	3120
geegeacate	atcaccatca	ccattgatta	attaagttta	aacccgctga	tctgataaca	3180
acagtgtaga	tgtaacaaaa	tcgactttgt	tcccactgta	cttttagctc	gtacaaaata	3240
caatatactt	ttcatttctc	cgtaaacaac	atgttttccc	atgtaatatc	cttttctatt	3300
tttegtteeg	ttaccaactt	tacacatact	ttatatagct	attcacttct	atacactaaa	3360
aaactaagac	aattttaatt	ttgctgcctg	ccatatttca	atttgttata	aattcctata	3420
atttatccta	ttagtagcta	aaaaaagatg	aatgtgaatc	gaatcctaag	agaattgggc	3480
aagtgcacaa	acaatactta	aataaatact	actcagtaat	aacctatttc	ttagcatttt	3540
tgacgaaatt	tgctattttg	ttagagtctt	ttacaccatt	tgtctccaca	cctccgctta	3600
catcaacacc	aataacgcca	tttaatctaa	gcgcatcacc	aacattttct	ggcgtcagtc	3660
caccagctaa	cataaaatgt	aagctctcgg	ggetetettg	ccttccaacc	cagtcagaaa	3720
tcgagttcca	atccaaaagt	tcacctgtcc	cacctgcttc	tgaatcaaac	aagggaataa	3780
acgaatgagg	tttctgtgaa	gctgcactga	gtagtatgtt	gcagtctttt	ggaaatacga	3840
gtcttttaat	aactggcaaa	ccgaggaact	cttggtattc	ttgccacgac	tcatctccgt	3900
gcagttggac	gatatcaatg	ccgtaatcat	tgaccagagc	caaaacatcc	tccttaggtt	3960
gattacgaaa	cacgccaacc	aagtatttcg	gagtgcctga	actatttta	tatgctttta	4020
caagacttga	aattttcctt	gcaataaccg	ggtcaattgt	tctctttcta	ttgggcacac	4080
atataatacc	cagcaagtca	gcatcggaat	ctagagcaca	ttctgcggcc	tctgtgctct	4140
gcaagccgca	aactttcacc	aatggaccag	aactacctgt	gaaattaata	acagacatac	4200
		ttaatcacgt				4260
		tttctttttt				4320
	5		5 5		5 555	

cgtgatacgc	ctatttttat	aggttaatgt	catgataata	atggtttctt	aggacggatc	4380
gcttgcctgt	aacttacacg	cgcctcgtat	cttttaatga	tggaataatt	tgggaattta	4440
ctctgtgttt	atttatttt	atgttttgta	tttggatttt	agaaagtaaa	taaagaaggt	4500
agaagagtta	cggaatgaag	aaaaaaaaat	aaacaaaggt	ttaaaaaatt	tcaacaaaaa	4560
gcgtacttta	catatatatt	tattagacaa	gaaaagcaga	ttaaatagat	atacattcga	4620
ttaacgataa	gtaaaatgta	aaatcacagg	attttcgtgt	gtggtcttct	acacagacaa	4680
gatgaaacaa	ttcggcatta	atacctgaga	gcaggaagag	caagataaaa	ggtagtattt	4740
gttggcgatc	cccctagagt	cttttacatc	ttcggaaaac	aaaaactatt	ttttctttaa	4800
tttcttttt	tactttctat	ttttaattta	tatatttata	ttaaaaaatt	taaattataa	4860
ttatttttat	agcacgtgat	gaaaaggacc	caggtggcac	ttttcgggga	aatgtgcgcg	4920
gaacccctat	ttgtttattt	ttctaaatac	attcaaatat	gtatccgctc	atgagacaat	4980
aaccctgata	aatgcttcaa	taatattgaa	aaaggaagag	tatgagtatt	caacatttcc	5040
gtgtcgccct	tattcccttt	tttgcggcat	tttgccttcc	tgtttttgct	cacccagaaa	5100
cgctggtgaa	agtaaaagat	gctgaagatc	agttgggtgc	acgagtgggt	tacatcgaac	5160
tggatctcaa	cagcggtaag	atccttgaga	gttttegeee	cgaagaacgt	tttccaatga	5220
tgagcacttt	taaagttctg	ctatgtggcg	cggtattatc	ccgtgttgac	gccgggcaag	5280
agcaactcgg	tegeegeata	cactattctc	agaatgactt	ggttgagtac	tcaccagtca	5340
cagaaaagca	tcttacggat	ggcatgacag	taagagaatt	atgcagtgct	gccataacca	5400
tgagtgataa	cactgcggcc	aacttacttc	tgacaacgat	cggaggaccg	aaggagctaa	5460
ccgcttttt	gcacaacatg	ggggatcatg	taactcgcct	tgatcgttgg	gaaccggagc	5520
tgaatgaagc	cataccaaac	gacgagcgtg	acaccacgat	gcctgtagca	atggcaacaa	5580
cgttgcgcaa	actattaact	ggcgaactac	ttactctagc	ttcccggcaa	caattaatag	5640
actggatgga	ggcggataaa	gttgcaggac	cacttctgcg	ctcggccctt	ccggctggct	5700
ggtttattgc	tgataaatct	ggagccggtg	agegtgggte	tegeggtate	attgcagcac	5760
tggggccaga	tggtaagccc	tecegtateg	tagttatcta	cacgacgggc	agtcaggcaa	5820
ctatggatga	acgaaataga	cagategetg	agataggtgc	ctcactgatt	aagcattggt	5880
aactgtcaga	ccaagtttac	tcatatatac	tttagattga	tttaaaactt	catttttaat	5940
ttaaaaggat	ctaggtgaag	atcctttttg	ataatctcat	gaccaaaatc	ccttaacgtg	6000
agttttcgtt	ccactgagcg	tcagaccccg	tagaaaagat	caaaggatct	tcttgagatc	6060
cttttttct	gcgcgtaatc	tgctgcttgc	aaacaaaaaa	accaccgcta	ccagcggtgg	6120
tttgtttgcc	ggatcaagag	ctaccaactc	tttttccgaa	ggtaactggc	ttcagcagag	6180
cgcagatacc	aaatactgtc	cttctagtgt	agccgtagtt	aggccaccac	ttcaagaact	6240
ctgtagcacc	gcctacatac	ctcgctctgc	taatcctgtt	accagtggct	gctgccagtg	6300
gcgataagtc	gtgtcttacc	gggttggact	caagacgata	gttaccggat	aaggcgcagc	6360
ggtcgggctg	aacggggggt	tcgtgcacac	agcccagctt	ggagcgaacg	acctacaccg	6420
aactgagata	cctacagcgt	gagcattgag	aaagcgccac	gcttcccgaa	gggagaaagg	6480
cggacaggta	tccggtaagc	ggcagggtcg	gaacaggaga	gcgcacgagg	gagetteeag	6540
gggggaacgc	ctggtatctt	tatagtcctg	tcgggtttcg	ccacctctga	cttgagcgtc	6600
gatttttgtg	atgctcgtca	ggggggccga	gcctatggaa	aaacgccagc	aacgcggcct	6660

-continued

```
ttttacggtt cctggccttt tgctggcctt ttgctcacat gttctttcct gcgttatccc
ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc
                                                                    6780
gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga agagcgccca atacgcaaac
cgcctctccc cgcgcgttgg ccgattcatt aatgcagctg gcacgacagg tttcccgact
ggaaageggg cagtgagege aaegeaatta atgtgagtta eeteaeteat taggeaeeee
aggetttaca etttatgett eeggeteeta tgttgtgtgg aattgtgage ggataacaat
ttcacacagg aaacagctat gaccatgatt acgccaagct cggaattaac cctcactaaa
                                                                    7100
gggaacaaaa gctggctagt
<210> SEQ ID NO 82
<211> LENGTH: 214
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: 4D5lp
<400> SEQUENCE: 82
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                       10
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala
Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
                          120
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
Phe Asn Arg Gly Glu Cys
   210
<210> SEQ ID NO 83
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: artificial
<223 > OTHER INFORMATION: C-terminal residues of junction region (SEQ ID
     No. 10)
```

<400> SEQUENCE: 83

```
Ser Pro Gly Lys
<210> SEQ ID NO 84
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Myc epitope of junction region (SEQ ID No. 10)
<400> SEQUENCE: 84
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
             5
<210> SEQ ID NO 85
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Residues 18-21 of junction region (SEQ ID No.
<400> SEQUENCE: 85
Asn Gly Ala Ala
<210> SEQ ID NO 86
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: N-terminal residues of junction region (SEQ ID
     No. 10)
<400> SEQUENCE: 86
Thr Val Glu Ser
<210> SEQ ID NO 87
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: AB-loop sequence AA143ff
<400> SEQUENCE: 87
Leu Thr Lys Asn Gln
<210> SEQ ID NO 88
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: EF loop sequence AA198ff
<400> SEQUENCE: 88
Asp Lys Ser Arg Trp Gln Gln
<210> SEQ ID NO 89
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: linker
<400> SEQUENCE: 89
```

```
Glu Gly Gly Gly Ser
<210> SEQ ID NO 90
<211> LENGTH: 105
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(21)
<223 > OTHER INFORMATION: Motif
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (72)..(80)
<223 > OTHER INFORMATION: Motif
<400> SEQUENCE: 90
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
                                  10
Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
                              25
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
                           40
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
                                   90
Thr Gln Lys Ser Leu Ser Leu Ser Pro
           100
<210> SEQ ID NO 91
<211> LENGTH: 110
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(21)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (73)..(80)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (83)..(84)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 91
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu Xaa Xaa Xaa Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
                    25
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
                           40
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
                       55
Phe Leu Tyr Ser Lys Leu Thr Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
Arg Trp Xaa Xaa Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
           100
                               105
<210> SEQ ID NO 92
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(21)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (73)..(80)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (83)..(84)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<400> SEQUENCE: 92
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu Xaa Xaa Xaa Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
                            40
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
                      55
Phe Leu Tyr Ser Lys Leu Thr Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                   70
Arg Trp Xaa Xaa Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
                                105
<210> SEQ ID NO 93
<211> LENGTH: 114
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(21)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (75)..(82)
<223 > OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (87)..(88)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 93
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu Xaa Xaa Xaa Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
                                25
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
```

```
45
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
                        55
Phe Leu Tyr Ser Lys Leu Thr Val Gly Ser Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Ser Gly Arg Trp Xaa Xaa Gly Asn Val Phe Ser Cys Ser Val
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
Ser Pro
<210> SEQ ID NO 94
<211> LENGTH: 114
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(21)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (75)..(82)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (87)..(88)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<400> SEQUENCE: 94
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu Xaa Xaa Xaa Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
Phe Leu Tyr Ser Lys Leu Thr Val Gly Ser Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Ser Gly Arg Trp Xaa Xaa Gly Asn Val Phe Ser Cys Ser Val
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
Ser Pro
<210> SEQ ID NO 95
<211> LENGTH: 112
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)...(23)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)..(22)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (75)..(82)
```

```
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (85)..(86)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 95
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
                                   10
Glu Leu Xaa Xaa Xaa Xaa Cln Val Ser Leu Thr Cys Leu Val Lys
          20
                              25
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
                    55
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Arg Trp Xaa Xaa Gly Asn Val Phe Ser Cys Ser Val Met His
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
           100
                              105
<210> SEO ID NO 96
<211> LENGTH: 112
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: engineered CH3 domain
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(23)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (75) ... (82)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (85)..(86)
<223> OTHER INFORMATION: Xaa can be any one of Ala, Asp, Ser or Tyr
<400> SEQUENCE: 96
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
                                  10
Glu Leu Xaa Xaa Xaa Xaa Gln Val Ser Leu Thr Cys Leu Val Lys
                        25
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
                           40
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Xaa Xaa Xaa Xaa Xaa Xaa
Xaa Xaa Arg Trp Xaa Xaa Gly Asn Val Phe Ser Cys Ser Val Met His
                                   90
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
                               105
```

We claim:

1. A method of producing a functional binding agent, wherein the functional binding agent binds to both a target antigen and a scaffold ligand, wherein the scaffold ligand binds to the backbone of the oligomer of modular antibody 5 domains regardless of the target antigen specificity of the functional binding agent, wherein the functional binding agent is an antibody Fc fragment comprising a CH2 domain and a CH3 domain, with at least one structural loop region, characterized in that said at least one loop region comprises at least one amino acid modification forming at least one modified loop region, wherein said at least one modified loop region binds specifically to said target antigen,

the method comprising the steps of:

- (a) providing a library of the functional binding agents by 15 a method comprising
- (i) providing a genetic package, wherein the genetic package is yeast, and
- (ii) displaying at least two of the functional binding agents by fusing them to the outer surface of the genetic 20 package, so that a genetic package displaying functional binding agents capable of binding both to a target antigen and to a scaffold ligand is prepared,
- (b) contacting said library with said target antigen in the presence of a scaffold ligand, wherein said target antigen and said scaffold ligand are different molecules, wherein said scaffold ligand is selected from the group consisting of CD64, CD16, CD32, FcRn and Protein A,
- (c) selecting a library member binding to said target antigen in the presence of said scaffold ligand to obtain 30 a functional binding agent which binds to both the target antigen and the scaffold ligand, and

158

- (d) producing a preparation of the selected functional binding agent which binds to both the target antigen and the scaffold ligand.
- 2. The method of claim 1, wherein said library of the functional binding agents contains at least 10² independent clones expressing oligomers of modular antibody domains.
- 3. The method of claim 1, wherein said library of the functional binding agents contains at least 10^6 independent clones expressing oligomers of modular antibody domains.
- **4**. The method of claim **1**, wherein said target antigen is a receptor of the erbB class.
- 5. The method of claim 1, wherein said target antigen is human Her2.
- 6. The method of claim 1, wherein the selected functional binding agent has a molecular weight of less than 60 kD.
- 7. The method of claim 1, wherein the selected functional binding agent has a target antigen binding affinity of $Kd < 10^{-8} M$.
 - **8**. The method of claim **1**, further comprising the steps of:
 - (e) affinity maturating the selected functional binding agent by amino acid variation to obtain an affinity matured pool of binding agents, and
 - (f) selecting a member of said pool which binds to the target antigen in the presence of the scaffold ligand to obtain an affinity maturated functional binding agent.
- **9**. The method of claim **8**, wherein the selected affinity maturated functional binding agent from step 8(f) exhibits at least a 10 fold increase in affinity of binding to the target antigen compared to the selected functional binding agent from step 1(c).

* * * * *