

(51) International Patent Classification:

H04L 12/28 (2006.01)

(21) International Application Number:

PCT/US2013/068345

(22) International Filing Date:

4 November 2013 (04.11.2013)

(25) Filing Language:

English

(26) Publication Language:

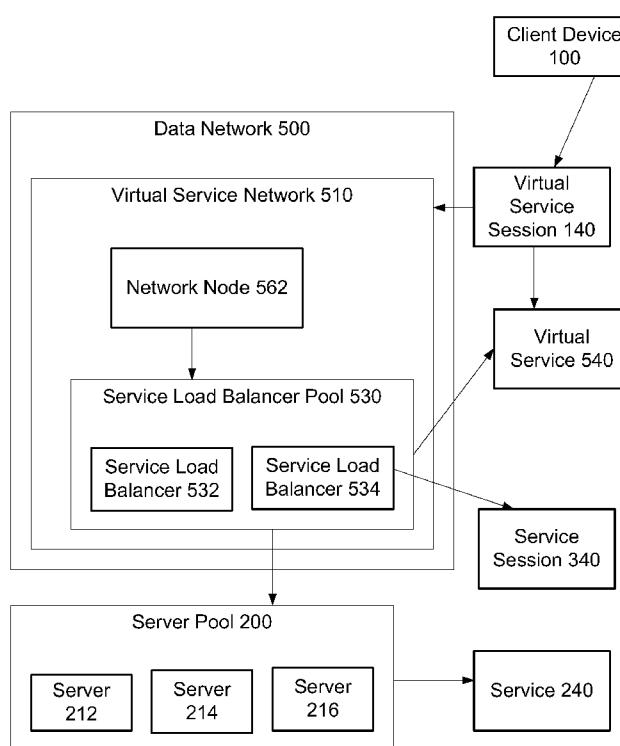
English

(30) Priority Data:

13/706,363 6 December 2012 (06.12.2012) US

(71) Applicant: **A10 NETWORKS, INC.** [US/US]; 3 West Plumeria Drive, San Jose, California 95134 (US).(72) Inventors: **JALAN, Rajkumar**; 3 West Plumeria Drive, San Jose, California 95134 (US). **KAMAT, Gurudeep**; 3 West Plumeria Drive, San Jose, California 95134 (US).(74) Agents: **KLINE, Keith** et al.; Carr & Ferrell LLP, 120 Constitution Drive, Menlo Park, California 94025 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,


AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: FORWARDING POLICIES ON A VIRTUAL SERVICE NETWORK

(57) **Abstract:** In providing packet forwarding policies in a virtual service network that includes a network node and a pool of service load balancers serving a virtual service, the network node: receives a virtual service session request from a client device, the request including a virtual service network address for the virtual service; compares the virtual service network address in the request with the virtual service network address in each of a plurality of packet forwarding policies; in response to finding a match between the virtual service network address in the request and a given virtual service network address in a given packet forwarding policy, determines the given destination in the given packet forwarding policy; and sends the request to a service load balancer in the pool of service load balancers associated with the given destination, where the service load balancer establishes a virtual service session with the client device.

FORWARDING POLICIES ON A VIRTUAL SERVICE NETWORK
BACKGROUND OF THE INVENTION

FIELD

[0001] This invention relates generally to data communications, and more specifically, to a virtual service network.

BACKGROUND

[0002] Service load balancers such as server load balancers or application delivery controllers typically balance load among a plurality of servers providing network services such as Web documents, voice calls, advertisements, enterprise applications, video services, gaming, or consuming broadband services. A service is used by many client computers. Some services are offered for few clients and some services are offered to many clients. Typically a service is handled by a service load balancer. When there are many clients utilizing the service at the same time, the service load balancer will handle the distribution of client service accesses among the servers. However, as the capacity of the service load balancer is reached, a network administrator cannot easily add a second service load balancer, since a service is typically assigned to an IP address of the service load balancer. Adding another service load balancer having the same IP address for the service is not possible in a data network. Network nodes in the data network would not be able to determine which service load balancer to send a client service access to.

[0003] The scaling of service demand has not been a problem in the past as computing capacity of service load balancer was able to keep up with client service demand. However, as mobile computing becomes pervasive and as more traditional non networking services such as television, gaming, and advertisement are migrating to data networks, the demand for client services has surpassed the pace of processing improvement. The need to scale to a plurality of service load balancers to support a network service is imminent.

[0004] The present invention describes a virtual service network wherein network nodes in the virtual service network are capable of processing client service sessions of a network service and forwarding the sessions to a plurality of service load balancers.

BRIEF SUMMARY OF THE INVENTION

[0005] According to one embodiment of the present invention, a method for providing forwarding policies in a virtual service network, the virtual service network comprising a network node and a pool of service load balancers serving a virtual service associated with a virtual service network address, comprises: (a) receiving a virtual service session request from a client device by the network node, the virtual service session request comprising the virtual service network address for the virtual service served by the pool of service load balancers, wherein the network node comprises a plurality of packet forwarding policies, each packet forwarding policy comprising a virtual service network address associated with a destination; (b) comparing by the network node the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy; (c) in response to finding a match between the virtual service network address in the virtual service session request and a given virtual service network address in a given packet forwarding policy, determining the given destination in the given packet forwarding policy by the network node; and (d) sending the virtual service session request to a service load balancer in the pool of service load balancers associated with the given destination, wherein the service load balancer establishes a virtual service session with the client device.

[0006] In one aspect of the present invention, after the service load balancer establishes the virtual service session with the client device, the method further comprises: (e) receiving a virtual service request from the client device through the virtual service session by the network node, the virtual service request comprising the virtual service network address for the virtual service; (f) comparing by the network node the second virtual service network address in the virtual service request with the virtual service network address in each packet forwarding policy; (g) in response to finding a match between the virtual service network address in the virtual service request and a second given virtual service network address in a second given packet forwarding policy, determining a second given destination in the second given packet forwarding policy by the network node; and (h) sending the virtual service request to a second service load balancer associated with the second given destination by the network node.

[0007] In one aspect of the present invention, the method further comprises: (i) receiving a virtual service data packet from the client device through the virtual service session by the network node, the virtual service data packet comprising the virtual service network address for the virtual service; (j) comparing by the network node the virtual service network address in the virtual service data packet with the virtual service network address in each packet forwarding policy; (k) in response to finding a match between the virtual service network address in the virtual service data packet and a third given virtual service network address in a third given packet forwarding policy, determining a third given destination in the third given packet forwarding policy by the network node; and (i) sending the virtual service data packet to a third service load balancer associated with the third given destination by the network node.

[0008] In one aspect of the present invention, the service load balancer, the second service load balancer, and the third service load balancer are the same service load balancer.

[0009] In one aspect of the present invention, the method further comprises: (e) receiving a data packet of the virtual service session by the network node from the service load balancer over a data network, the data packet comprising a client network address of the client device; (f) retrieving the client network address from the data packet by the network node; and (g) sending the data packet to the client device using the client network address by the network node.

[0010] In one aspect of the present invention, the data packet comprises a virtual service session request response or a virtual service request response.

[0011] In one aspect of the present invention, the given destination comprises a second network node, wherein the sending (d) comprises: (d1) sending the virtual service session request to the second network node, wherein the second network node comprises a second plurality of packet forwarding policies, each of the second packet forwarding policies comprising a second virtual service network address associated with a second destination; (d2) comparing by the second network node the virtual service network address in the virtual service session request with the virtual service network address in each of the second packet forwarding policies; (d3) in response to finding a match between

network address in the virtual service session request and a second given virtual service network address in a second given packet forwarding policy, determining a second given destination in the second given packet forwarding policy by the second network node; and (d4) sending the virtual service session request to the service load balancer associated with the second given destination, wherein the service load balancer establishes a virtual service session with the client device.

[0012] In one aspect of the present invention, the determining (c) comprises: (c1) finding by the network node that the virtual service network address in the virtual service session request matches a first virtual service network address in a first packet forwarding policy and a second virtual network address in a second packet forwarding policy; (c2) selecting by the network node either the first packet forwarding policy or the second packet forwarding policy based on additional information comprised in the first and second packet forwarding policies; and (c3) determining the given destination in the selected packet forwarding policy by the network node.

[0013] In one aspect of the present invention, wherein the additional information comprises one or more of the following: a multi-path factor; and a traffic policy.

[0014] In one aspect of the present invention, the first packet forwarding policy comprises a first destination associated with a first service load balancer in the pool of service load balancers, and the second packet forwarding policy comprises a second destination associated with a second service load balancer in the pool of service load balancers, wherein the first service load balancer is different from the second service load balancer, wherein the determining (c3) comprises: (c3i) in response to selecting the first packet forwarding policy, determining the first destination associated with the first service load balancer in the first packet forwarding policy by the network node; and (c3ii) in response to selecting the second packet forwarding policy, determining the second destination in the second packet forwarding policy in the second packet forwarding policy by the network node.

[0015] In one aspect of the present invention, the network node comprises a first plurality of packet forwarding policies for a first virtual service and a second plurality of packet forwarding policies for a second virtual service, wherein the comparing

determining by the network node whether the virtual service session request is for the first virtual service or the second virtual service; (b2) in response to determining that the virtual service session request is for the first virtual service, comparing by the network node the virtual service network address in the virtual service session request with a virtual service network address in each of the first plurality of packet forwarding policies; and (b3) in response to determining that the virtual service session request is for the first virtual service, comparing by the network node the virtual service network address in the virtual service session request with a virtual service network address in each of the second plurality of packet forwarding policies.

[0016] In one aspect of the present invention, the virtual service session request further comprises a client network address of the client device, and each packet forwarding policy further comprises a client network address associated with the destination, wherein the comparing (b) and the determining (c) comprise: (b1) comparing by the network node the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy; (b2) comparing by the network node the client network address in the virtual service session request with the client network address in each packet forwarding policy; and (c1) in response to finding the match between the virtual service network address in the virtual service session request and the given virtual service network address in the given packet forwarding policy, and in response to finding a match between the client network address in the virtual service session request and the given client network address in the given packet forwarding policy, determining the given destination in the given packet forwarding policy by the network node.

[0017] System and computer program products corresponding to the above-summarized methods are also described and claimed herein.

[0018] According to another embodiment of the present invention, a method for providing forwarding policies in a virtual service network, the virtual service network comprising a network node and a pool of service load balancers serving a virtual service associated with a virtual service network address, comprising: (a) receiving a virtual service session request from a client device by the network node, the virtual service session request comprising a

client device network address for the client device and the virtual service network address for the virtual service served by the pool of service load balancers, wherein the network node comprises a plurality of packet forwarding policies, each packet forwarding policy comprising a client network address and a virtual service network address associated with a destination; (b) comparing by the network node the virtual service network address in the virtual service session request with a first virtual service network address in a first packet forwarding policy of the plurality of packet forwarding policies, and comparing the client device network address in the virtual service session request with a first client network address in the first packet forwarding policy; (c) in response to determining that the virtual service network address in the virtual service session request matches the first virtual service network address, and determining that the client device network address in the virtual service session request does not match the first client network address, determining by the network node that the first packet forwarding policy does not apply to the virtual service session request; (d) in response to determining that the first packet forwarding policy does not apply, comparing by the network node the virtual service network address in the virtual service session request with a second virtual service network address in a second packet forwarding policy of the plurality of packet forwarding policies, and comparing the client device network address in the virtual service session request with a second client network address in the second packet forwarding policy; (e) in response to determining that the virtual service network address in the virtual service session request matches the second virtual service network address, and determining that the client device network address in the virtual service session request matches the second client network address, determining by the network node that the second packet forwarding policy applies to the virtual service session request; (f) in response to determining that the second packet forwarding policy applies, determining a given destination in the second packet forwarding policy by the network node; and (g) sending the virtual service session request to a service load balancer in the pool of service load balancers associated with the given destination, wherein the service load balancer establishes a virtual service session with the client device.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE FIGURES

[0019] Figure 1 illustrates a virtual service network for a service according to an embodiment of the present invention.

[0020] Figure 2a illustrates a component view of network node according to an embodiment of the present invention.

[0021] Figure 2b illustrates a component view of service load balancer according to an embodiment of the present invention.

[0022] Figure 2c illustrates a component view of server according to an embodiment of the present invention.

[0023] Figure 3 illustrates a virtual service session according to an embodiment of the present invention.

[0024] Figure 3a illustrates processing of a virtual service session request according to an embodiment of the present invention.

[0025] Figure 3b illustrates processing of a virtual service request according to an embodiment of the present invention.

[0026] Figure 3c illustrates processing of a virtual service data packet according to an embodiment of the present invention.

[0027] Figure 4 illustrates processing of a data packet from service load balancer to client device according to an embodiment of the present invention.

[0028] Figure 5 illustrates a via network node according to an embodiment of the present invention.

[0029] Figure 5a illustrates forwarding a virtual service data packet to a via network node according to an embodiment of the present invention.

[0030] Figure 6 illustrates a network node configuration according to an embodiment of the present invention.

[0031] Figure 7 illustrates packet forwarding policies with other information according to an embodiment of the present invention.

[0032] Figure 8 illustrates a virtual service network supporting multiple services according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0033] The present invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the present invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.

[0034] Furthermore, the present invention can take the form of a computer program product accessible from a computer-readable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-readable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.

[0035] The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk – read only memory (CD-ROM), compact disk – read/write (CD-R/W) and DVD.

[0036] A data processing system suitable for storing and/or executing program code will include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary

storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.

[0037] Input/output or I/O devices (including but not limited to keyboards, displays, point devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.

[0038] Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.

[0039] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified local function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.

[0040] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence of one or more additional features, integers, steps, operations, elements, and/or components.

addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0041] Figure 1 illustrates a virtual service network for a service according to an embodiment of the present invention. Virtual service network 510 includes a network node 562 and a service load balancer pool 530, which includes, in one embodiment, a plurality of service load balancers 532, 534. Network node 562 and service load balancer pool 530 are connected in virtual service network 510 such that network node 562 can forward packets to service load balancers 532-534 and vice versa.

[0042] In one embodiment, virtual service network 510 is configured over a data network 500. In this embodiment, network node 562 and service load balancers 532-534 are a part of data network 500. In one embodiment, network node 562 connects directly to service load balancers 532-534 and forwards data packets directly to service load balancers 532-534. In one embodiment, network node 562 forwards data packets through one or more network elements (not shown) in data network 500.

[0043] In one embodiment, service load balancers 532-534 send data packets to network node 562 through data network 500, using one or more network elements in data network 500 if necessary.

[0044] In one embodiment, data network 500 includes an Internet Protocol (IP) network, a corporate data network, a regional corporate data network, an Internet service provider network, a residential data network, a wired network such as Ethernet, a wireless network such as a WiFi network, or a cellular network. In one embodiment, data network 500 resides in a data center, or connects to a network or application network cloud.

[0045] In one embodiment, network node 562 includes, in addition to that described later in this specification, the functionality of a network switch, an Ethernet switch, an IP router, an ATM switch, a stackable switch, a broadband remote access system (BRAS), a cable head-end, a mobile network gateway, a home agent gateway (HA-Gateway), a PDSN, a GGSN, a broadband gateway, a VPN gateway, a firewall, or a networking device capable of forwarding packets in data network 500.

[0046] In some embodiments, service load balancer 534 includes functionality of a server load balancer, an application delivery controller, a service delivery platform, a traffic manager, a security gateway, a component of a firewall system, a component of a virtual private network (VPN), a load balancer for video servers, a gateway to distribute load to one or more servers, or a gateway performing network address translation (NAT).

[0047] Service load balancer pool 530 connects to server pool 200, which in an embodiment includes a plurality of servers 212, 214, 216. Servers 212-216 of server pool 200 serve service 240. Service load balancers 532-534 of service load balancer pool 530 serve service 240 as virtual service 540.

[0048] In some embodiments, server 212 includes functionality of a Web server, a file server, a video server, a database server, an application server, a voice system, a conferencing server, a media gateway, a media center, an app server or a network server providing a network or application service to client device 100 using a Web protocol.

[0049] In some embodiments, service 240 includes a Web service, a HTTP service, a FTP service, a file transfer service, a video or audio streaming service, an app download service, an advertisement service, an on-line game service, a document access service, a conferencing service, a file sharing service, a group collaboration service, a database access service, an on-line transaction service, a Web browsing service, a VOIP service, a notification service, a messaging service, or an Internet data communication service.

[0050] Each service load balancer, for example service load balancer 532, can exchange data packets to one or more servers in server pool 200.

[0051] Client device 100 is a computing device connecting to virtual service network 510. In one embodiment, in order to utilize service 240, client device 100 establishes a virtual service session 140 for virtual service 540 with service load balancer pool 530 through virtual service network 510. Service load balancer pool 530 establishes service session 340 with server pool 200 and relays data packets between virtual service session 140 and service session 340. In this embodiment, server pool 200 provides the service 240 to client device 100. In some embodiments, client device 100 is a personal computer, a laptop computer, a

desktop computer, a smartphone, a feature phone, a tablet computer, an e-reader, an end-use networked device, a server computer, a service proxy computer, a service gateway, a business computer, a server computer, or a computer requesting service 240.

[0052] Figures 2a-2c illustrate components of network node 562, service load balancer 534, and server 212 according to an embodiment of the present invention.

[0053] In one embodiment illustrated in figure 2a, network node 562 includes processor module 630, packet processing module 650, and network module 670. In one embodiment, processor module 630 includes one or more processors and a computer readable medium storing programming instructions. In one embodiment, processor module 630 includes storage such as random accessible memory (RAM). In one embodiment, packet processing module 650 includes a processor or a network processor capable of processing data packets. In one embodiment, packet processing module 650 is part of processor module 630. In one embodiment, packet processing module 650 is a physical card or module housing a network processor. In one embodiment packet processing module 650 includes storage such as random access memory (RAM), context addressable memory (CAM), tertiary CAM (TCAM), static random access memory (SRAM) or other memory component. In one embodiment, packet processing module 650 includes a plurality of programming instructions. In one embodiment, network module 670 interacts with data network 500 and virtual service network 510 to transmit and receive data packets. In one embodiment, network module 670 includes a plurality of network interfaces such as network interface 671, network interface 672 and network interface 674. Each of the network interfaces connect to another network component. For example, in one embodiment, network interface 671 connects to client device 100; network interface 672 connects to service load balancer 532; and network interface 674 connects to service load balancer 534. In one embodiment, network interface 671 connects to client device 100 and service load balancer pool 530. In one embodiment, network interface 671 is an Ethernet, Gigabit Ethernet, 10-Gigabit Ethernet, ATM, MPLS, wireless network, or optical network interface.

[0054] Figure 2b illustrates a service load balancer such as service load balancer 534 according to an embodiment of the present invention. In one embodiment, service load

balancer 534 includes processor module 734, virtual service processing module 754 and network module 774. Network module 774 interacts with data network 500 and virtual service network 510 to transmit and receive data packets. In one embodiment, network module 774 exchanges data packets with network node 562 and server pool 200. Network module 774 includes a network interface card or network interface module connecting to data network 500 and virtual service network 510. In one embodiment, processor module 734 includes a processor and computer readable medium storing programming instructions. In one embodiment, virtual service processing module 754 includes a physical hardware comprising a processor or a network processor, a memory module such as RAM. In one embodiment, virtual service processing module 754 is included in processor module 734. In one embodiment, virtual service processing module 754 includes storage storing programming instructions.

[0055] Figure 2c illustrates a server, such as server 212, according to an embodiment of the present invention. In one embodiment, server 212 includes processor module 832, service processing module 852 and network module 872. Network module 872 interacts with virtual service network 510 to transmit or receive data packets. In one embodiment, network module 872 exchanges data packets with service load balancer pool 530. Network module 872 includes a network interface card or network interface module connecting to data network 510 or virtual service network 510. In one embodiment, processor module 832 includes a processor and computer readable medium storing programming instructions. In one embodiment, service processing module 852 includes a physical hardware comprising a processor or a network processor, a memory module such as RAM. In one embodiment, service processing module 852 is included in processor module 832. In one embodiment, service processing module 852 includes storage storing programming instructions executed by server 212.

[0056] Figure 3 illustrates a session between client device and a server according to an embodiment of the present invention. In one embodiment, client device 100 uses service 240 by conducting virtual service session 140 using virtual service 540. In one embodiment, virtual service session 140 is a IP session, a UDP session, a TCP session, a SIP session, an

ICMP session, a GRE session, a RTSP session, an SSL session, a HTTPS session, or a HTTP session. In one embodiment, virtual service 540 includes a virtual service network address 541, such as an IP network address. In one embodiment, the virtual service network address 541 is shared among the service load balancers in the service load balancer pool 530. In one embodiment, virtual service network address 541 includes a transport layer identity such as a port number, a TCP port, a UDP port. In one embodiment, client device 100 sends a virtual service session request 142, such as a TCP session request data packet, to network node 562. Virtual service session request 142 includes virtual service network address 541. In one embodiment, network node 562 determines that virtual service session request 142 is to be sent to service load balancer 534, based on virtual service network address 541. Service load balancer 534 establishes virtual service session 140 with client device 100.

[0057] After establishing virtual service session 140, client device 100 sends a virtual service request 144 through virtual service session 140 to service load balancer 534. Service load balancer 534 determines that virtual service request 144 is to be relayed to server 212. Subsequently client device 100 exchanges virtual service data packet 146 with server 212 via service load balancer 534.

[0058] Figure 3a illustrates processing of virtual service session request 142 according to an embodiment of the present invention. Client device 100 sends virtual service session request 142 to network node 562. In one embodiment, virtual service session request 142 data packet includes virtual service network address 541, and client network address 101. In one client network address 101 includes an IP address of client device 100, and optionally a transport layer address. Network node 562 selects service load balancer 534, based on a packet forwarding policy 641, and forwards virtual service session request 142 to service load balancer 534. Packet forwarding policy 641 includes criteria 643 and destination 645. Criteria 643 contain matching information for network node 562 to match against virtual service session request 142. Destination 645 includes information to transmit virtual service session request 142. In one embodiment, destination 645 indicates using network interface 674 to transmit virtual service session request 142. Network node 562 informs network

module 670 to transmit virtual service session request 142 using interface 674. In one embodiment, network interface 674 directly connects to service load balancer 534 and service load balancer 534 receives virtual service session request 142. In one embodiment, network interface 674 connects to service load balancer 534 via data network 500 and service load balancer 534 receives virtual service session request 142 via data network 500.

[0059] Network node 562 compares criteria 643 against virtual service session request 142. In one embodiment, network node 562 retrieves virtual service network address 541 from virtual service session request 142. In one embodiment, criteria 643 include virtual service network address 646. Network node 562 compares virtual service network address 541 with virtual service network address 646. In one embodiment, virtual service network address 646 includes virtual service network address 541 and network node 562 finds a match between virtual service network address 541 and virtual service network address 646. In response to finding a match between virtual service network address 541 and virtual service network address 646, the network node 562 applies the packet forwarding policy 641 to the virtual service session request 142 by informing the network module 670 to transmit the virtual service session request 142 using the network interface 674 indicated by destination 645.

[0060] In one embodiment, virtual service network address 646 includes a transport layer address such as TCP port number, UDP port number or other transport layer information. Network node 562 retrieves transport layer address from virtual service network address 541 and compares with virtual service network address 646. In one embodiment, network node 562 finds a match of the transport layer addresses, network node 562 determines that packet forwarding policy 641 is to be applied to virtual service session request 142. In one embodiment, virtual service network address 646 includes a range of network addresses. In finding that virtual service network address 541 is included in the range of network addresses, network node 562 determines there is a match. In one embodiment, virtual service network address 646 includes a range of transport layer addresses. In finding that transport layer address of virtual service network address 541 is included in the range of transport layer addresses, network node 562 determines there is a match.

[0061] In one embodiment, criteria 643 include client network address 647. Network node 562 obtains client device network address 101 from virtual service session request 142 and compares client network address 647 with client device network address 101. If there is a match, network node 562 determines packet forwarding policy 641 is applicable. In one embodiment, client network address 647 includes a range of network addresses. In finding that client device network address 101 is included in the range of network addresses, network node 562 determines there is a match.

[0062] In one embodiment, network node 562 further includes another packet forwarding policy 651. Packet forwarding policy 651 includes criteria 652, which includes a client network address 653 different from client network address 647 and the same virtual service network address 646 as packet forwarding policy 641. Network node 562 obtains virtual service network address 541 and client device network address 101 from virtual service session request 142. In one embodiment, network node 562 first determines whether packet forwarding policy 651 applies to virtual service session request 142. Network node 562 compares client network address 653 in packet forwarding policy 651 with client device network address 101, and compares virtual service network address 646 in packet forwarding policy 651 with virtual service network address 541. In response to determining that there is no match between the client network address 653 and client device network address 101, the network node 562 determines that packet forwarding policy 651 does not apply. In one embodiment client network address 653 includes a range of network addresses. In finding that client device network address 101 is not included in the range of network addresses, network node 562 determines there is no match.

[0063] Network node 562 then determines whether a different packet forwarding policy applies. In one embodiment, after determining that packet forwarding policy 651 does not apply, network node 562 determines whether packet forwarding policy 641 applies. Network node compares client network address 647 in packet forwarding policy 641 with client device network address 101, and compares virtual service network address 646 in packet forwarding policy 641 with virtual service network address 541. In response to finding a match between client network address 647 and client network address 101 and a

match between the virtual service network address 646 and virtual service network address 541, network node 562 determines packet forwarding policy 641 is applicable.

[0064] Upon receiving virtual service session request 142, service load balancer 534 processes the session request 142 and replies with a virtual service session request response 143, comprising one or more data packets to be transmitted to client device 100. A process to send data packet 143 will be discussed in a later illustration.

[0065] In one embodiment, destination 645 includes a modification procedure prior to transmission. Network node 562 applies the modification procedure in destination 645 prior to informing network interface 674. In one embodiment, destination 645 indicates a IP tunneling modification, a VLAN modification, a MPLS modification, a L2TP tunnel, a IP-in-IP tunnel, a IPv6-v4 tunnel modification, a IPSec modification, a packet header modification, a packet payload modification, or other modification procedure related to network interface 674.

[0066] Figure 3b illustrates processing of virtual service request 144 according to an embodiment of the present invention. Client device 100 sends virtual service request 144 data packet to network node 562, where the virtual service request 144 includes a virtual service network address 541. In one embodiment, network node 562 processes virtual service request 144 using a similar process illustrated in figure 3a, matching the criteria from packet forwarding policy 641 with virtual service request 144 having virtual service network address 541. Network node 562 sends virtual service request 144 to service load balancer 534 according to the application of the matching packet forwarding policy 641.

[0067] Service load balancer 534 receives and processes virtual service request 144. Service load balancer 534 selects server 212 to service virtual service request 144 and sends the virtual service request 148 to the server 212. The selection of server 212 is known to those skilled in the art. Any and all such selection process is considered as a part of an embodiment of the present invention and is not described in this specification. Server 212 responds to the virtual service request 148 with a service request response 245 and sends the service request response 245 to service load balancer 534. Service load balancer 534 creates virtual service request response 145 and sends the service request respo

device 100. An embodiment to send virtual service request 145 from service load balancer 534 to client device 100 will be described in a later illustration in this specification.

[0068] Figure 3c illustrates processing of virtual service data packet 146 according to an embodiment of the present invention. Client device 100 sends virtual service data packet 146 to network node 562, where the virtual service data packet 146 includes a virtual service network address 541. In one embodiment, network node 562 processes virtual service data packet 146 in a similar process illustrated in figure 3a, matching the criteria from packet forwarding policy 641 with virtual service data packet 146 having virtual service network address 541. Network node 562 sends virtual service data packet 146 to service load balancer 534. Service load balancer 534 generates service packet 546 using virtual service data packet 146, and sends service packet 546 to server 212. The process of generating service packet 546 using virtual service data packet 146 is known to those skilled in the art and is not described in this specification.

[0069] Figure 4 illustrates a process to forward a data packet from service load balancer 534 to client device 100 according to an embodiment of the present invention. In one embodiment, service load balancer 534 sends a data packet 147 of service session 140 to network node 562. In one embodiment, data packet 147 may be virtual service session request response 143 or virtual service request response 145. Data packet 147 includes client device network address 101 of client device 100 as a destination for data packet 147. Service load balancer 534 sends data packet 147 through data network 500 to network node 562, and network node 562 receives data packet 147 from data network 500. In one embodiment, data packet 147 traverses through virtual service network 510 before it is received by network node 562.

[0070] Network node 562 retrieves destination client device network address 101 from data packet 147, and determines that data packet 147 is to be sent to client device 100, based on the retrieved client device network address 101.

[0071] In one embodiment illustrated in figure 5, virtual service network 510 includes a network node 564 connected with network node 562 and service load balancer 534. Network node 562 connects to client device 100. Network node 562 rec

data packet 148 of virtual service session 140 from client device 100. Network node 562 selects network node 564 to receive virtual service data packet 148 from network node 562. Figure 5a illustrates a process for network node 562 to select network node 564 according to an embodiment of the present invention. Network node 564 receives and processes virtual service data packet 148. Network node 564 sends virtual service data packet 148 to service load balancer 534 according to an embodiment process illustrated in figures 3, 3a-3c.

[0072] Figure 5a illustrates a process of network node 562 to send a virtual service data packet 148 from client device 100 to network node 564 according to an embodiment of the present invention. Client device 100 sends virtual service data packet 148 to network node 562. In one embodiment, data packet 148 includes virtual service network address 541, and client network address 101. Network node 562 selects network node 564, based on a packet

forwarding policy 681, and forwards data packet 148 to network node 564. Packet forwarding policy 681 includes criteria 683 and destination 685. Criteria 683 contain matching information for network node 562 to compare against data packet 148.

Destination 685 indicates information to transmit data packet 148. In one embodiment, destination 685 indicates network interface 674 is to be used to transmit data packet 148.

Network node 562 informs network module 670 to transmit data packet 148 using interface 674. In one embodiment, network interface 674 directly connects to network node 564 and network node 564 receives data packet 148. In one embodiment, network interface 674 connects to network node 564 via data network 500 and network node 564 receives data packet 148 via data network 500.

[0073] Network node 562 matches criteria 683 against data packet 148. In one embodiment, network node 562 retrieves virtual service network address 541 from data packet 148. In one embodiment, criteria 683 include virtual service network address 686. Network node 562 matches virtual service network address 541 with virtual service network address 686. In one embodiment, virtual service network address 686 includes virtual service network address 541 and network node 562 finds a match between virtual service network address 541 and virtual service network address 686.

[0074] In one embodiment, virtual service network address 686 includes a transport layer address such as TCP port number, UDP port number or other transport layer information. Network node 562 retrieves transport layer address from data packet 148 and compares the transport layer address with virtual service network address 686. In one embodiment, network node 562 finds a match of the transport layer addresses, network node 562 determines that packet forwarding policy 681 is to be applied to data packet 148. In one embodiment, virtual service network address 686 includes a range of network addresses. In finding that virtual service network address 541 is included in the range of network addresses, network node 562 determines there is a match. In one embodiment, virtual service network address 686 includes a range transport layer addresses. In finding that the transport layer address of data packet 148 is included in the range of transport layer addresses, network node 562 determines there is a match.

[0075] In one embodiment, criteria 683 include client network address 687. Network node 562 obtains client device network address 101 from data packet 148 and compares client network address 687 with client device network address 101. If there is a match, network node 562 determines packet forwarding policy 681 is applicable. In one embodiment, client network address 687 includes a range of network addresses. In finding that client device network address 101 is included in the range of network addresses, network node 562 determines there is a match.

[0076] In one embodiment, destination 685 indicates a modification process prior to transmission. Network node 562 applies the modification in destination 685 prior to informing network interface 674. In one embodiment, destination 645 indicates an IP tunneling modification, a VLAN modification, a MPLS modification, a L2TP tunnel, a IP-in-IP tunnel, a IPv6-v4 tunnel modification, a IPSec modification, a packet header modification, a packet payload modification, a layer 2 over layer 2 tunnel modification, a layer 3 over layer 2 tunnel modification, a layer 3 over layer 3 tunnel modification, or other modification related to network interface 674.

[0077] Figure 6 illustrates a process to configure a network node with a packet forwarding policy according to an embodiment of the present invention. Network configuration module

821 includes packet forwarding policy 641 which contains a policy to forward a data packet to service load balancer 534 or network node 564. Network configuration module 821 sends packet forwarding policy 641 to network node 562. In one embodiment, network configuration module 821 is a network management system. In one embodiment, network configuration module 821 is a software module within a service load balancer, such as service load balancer 534. In one embodiment, network configuration module 821 is an administrative computing device, wherein a network administrative user provides packet forwarding policy 641 to network configuration module 821. In one embodiment network configuration module 821 connects to storage 823 wherein storage 823 includes packet forwarding policy 641. Network configuration module 821 retrieves packet forwarding policy 641 and sends to network node 562. In one embodiment, storage 823 includes other packet forwarding policies.

[0078] In one embodiment, network configuration module 821 receives packet forwarding policy 641 from administrator 120, and stores packet forwarding policy 641 into storage 823.

[0079] In one embodiment, network configuration module 821 connects to service load balancer 534 and detects a change to service load balancer 534, and in response, network configuration module 821 generates packet forwarding policy 641. In one embodiment, a change can be due to a change to virtual service 540 of service load balancer 534, or availability of service load balancer 534. In one embodiment, service load balancer 534 sends packet forwarding policy 641 to network configuration module 821.

[0080] In one embodiment, network configuration module 821 connects to network node 564 and detects a change to network node 564, and in response, network configuration module 821 generates packet forwarding policy 641.

[0081] In one embodiment, network configuration module 821 connects to virtual service network 510 and data network 500. Network configuration module 821 detects a change to virtual service network 510 or data network 500. In response, network configuration module 821 generates packet forwarding policy 641.

[0082] In one embodiment, network configuration module 821 detects a change in network node 562 and generates packet forwarding policy 641.

[0083] In one embodiment, network configuration module 821 instructs network node 562 to remove packet forwarding policy 641. In one embodiment, network configuration module 821 detects a change in network node 564, service load balancer 534, data network 500, virtual service network 510, or network node 562 and determines packet forwarding policy 641 is to be removed. In one embodiment, network configuration module 821 removes packet programming policy 641 from storage 823.

[0084] In one embodiment, network configuration module 821 receives a command from administrator 120 to remove packet programming policy 641. In one embodiment, network configuration module 821 receives a command from service load balancer 534 to remove packet programming policy 641.

[0085] Figure 7 illustrates several embodiments of different packet forwarding policies according to an embodiment of the present invention. In figure 7, network node 562 includes packet forwarding policy 641 and packet forwarding policy 642. Packet forwarding policy 641 and packet forwarding 642 include the same criteria 643. Packet forwarding policy 641 includes destination 645 that is different from destination 646 in packet forwarding policy 642. In one embodiment, destination 645 is for server load balancer 532 or a network node (not shown), whereas destination 646 is for service load balancer 534, which is different from service load balancer 532.

[0086] In one embodiment, network node 562 receives data packet 148 from client device 100 and matches information in data packet 148 with criteria 643. Network node 562 finds both packet forwarding policy 641 and packet forwarding policy 642 applicable. Network node 562 selects packet forwarding policy 641 based on additional information. In one embodiment, packet forwarding policy 641 includes multi-path factor 648 while packet forwarding policy 642 includes multi-path factor 649. Network node 562 selects packet forwarding policy 641 based on multi-path factor 648 and multi-path factor 649. In one embodiment, multi-path factor 648 indicates a primary path while multi-factor 648 indicates a secondary path. Network node 562 selects packet forwarding policy 641.

embodiment, multi-path factor 648 includes a status indicating if service load balancer 532 is available. If multi-path factor 648 status indicates service load balancer 532 is available and multi-path factor 649 status indicates service load balancer 534 is not available, network node 562 selects packet forwarding policy 641.

[0087] In one embodiment, packet forwarding policy 641 includes traffic policy 649 such as traffic shaping, traffic management, quality of service, bandwidth management, packet access control or queuing parameters. Network node 562 applies traffic policy 649 or instructs network module 670 to apply traffic policy 649.

[0088] In an embodiment illustrated in figure 8, server pool 200 serves service 240 and service 250. In this embodiment, service load balancer pool 530 provides virtual services 540 and 550 corresponding to service 240 and service 250 respectively. Network node 562 will include at least one packet forwarding policy for virtual service 540 and one packet forwarding policy for virtual service 550. When the network node 562 receives a data packet, the network node 562 determines whether the data packet is for virtual service 540 or virtual service 550. If the data packet is for virtual service 540, then the network node 562 processes the data packet according to the packet forwarding policies for virtual service 540. If the data packet is for virtual service 550, then the network node 562 processes the data packet according to the packet forwarding policies for virtual service 550.

[0089] Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

CLAIMS

What is claimed is:

1. A method for providing forwarding policies in a virtual service network, the virtual service network comprising a network node and a pool of service load balancers serving a virtual service associated with a virtual service network address, comprising:

receiving a virtual service session request from a client device by the network node, the virtual service session request comprising the virtual service network address for the virtual service served by the pool of service load balancers, wherein the network node comprises a plurality of packet forwarding policies, each packet forwarding policy comprising a virtual service network address associated with a destination;

comparing by the network node the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service session request and a given virtual service network address in a given packet forwarding policy, determining the given destination in the given packet forwarding policy by the network node; and

sending the virtual service session request to a service load balancer in the pool of service load balancers associated with the given destination, wherein the service load balancer establishes a virtual service session with the client device.

2. The method of claim 1, wherein after the service load balancer establishes the virtual service session with the client device, the method further comprises:

receiving a virtual service request from the client device through the virtual service session by the network node, the virtual service request comprising the virtual service network address for the virtual service;

comparing by the network node the second virtual service network address in the virtual service request with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service request and a second given virtual service network address in a second given packet forwarding policy, determining a second given destination in the second given packet forwarding policy by the network node; and

sending the virtual service request to a second service load balancer associated with the second given destination by the network node.

3. The method of claim 2, further comprising:

receiving a virtual service data packet from the client device through the virtual service session by the network node, the virtual service data packet comprising the virtual service network address for the virtual service;

comparing by the network node the virtual service network address in the virtual service data packet with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service data packet and a third given virtual service network address in a third given packet forwarding policy, determining a third given destination in the third given packet forwarding policy by the network node; and

sending the virtual service data packet to a third service load balancer associated with the third given destination by the network node.

4. The method of claim 3, wherein the service load balancer, the second service load balancer, and the third service load balancer are the same service load balancer.

5. The method of claim 1, wherein the method further comprises:
receiving a data packet of the virtual service session by the network node from the service load balancer over a data network, the data packet comprising a client network address of the client device;
retrieving the client network address from the data packet by the network node; and
sending the data packet to the client device using the client network address by the network node.

6. The method of claim 5, wherein the data packet comprises a virtual service session request response or a virtual service request response.

7. The method of claim 1, wherein the given destination comprises a second network node, wherein the sending comprises:
sending the virtual service session request to the second network node, wherein the second network node comprises a second plurality of packet forwarding policies, each of the second packet forwarding policies comprising a second virtual service network address associated with a second destination;
comparing by the second network node the virtual service network address in the virtual service session request with the virtual service network address in each of the second packet forwarding policies;
in response to finding a match between the virtual service network address in the virtual service session request and a second given virtual service network address in a second given packet forwarding policy, determining a second given destination in the second given packet forwarding policy by the second network node; and
sending the virtual service session request to the service load balancer associated with the second given destination, wherein the service load balancer establishes a virtual service session with the client device.

8. The method of claim 1, wherein the determining comprise:
finding by the network node that the virtual service network address in the virtual service session request matches a first virtual service network address in a first packet forwarding policy and a second virtual network address in a second packet forwarding policy;

selecting by the network node either the first packet forwarding policy or the second packet forwarding policy based on additional information comprised in the first and second packet forwarding policies; and
determining the given destination in the selected packet forwarding policy by the network node.

9. The method of claim 8, wherein the additional information comprises one or more of the following: a multi-path factor; and a traffic policy.

10. The method of claim 8, wherein the first packet forwarding policy comprises a first destination associated with a first service load balancer in the pool of service load balancers, wherein the second packet forwarding policy comprises a second destination associated with a second service load balancer in the pool of service load balancers, wherein the first service load balancer is different from the second service load balancer, wherein the determining comprises:

in response to selecting the first packet forwarding policy, determining the first destination associated with the first service load balancer in the first packet forwarding policy by the network node; and

in response to selecting the second packet forwarding policy, determining the second destination in the second packet forwarding policy in the second packet forwarding policy by the network node.

11. The method of claim 1, wherein the network node comprises a first plurality of packet forwarding policies for a first virtual service and a second plurality of packet forwarding policies for a second virtual service, wherein the comparing comprises: determining by the network node whether the virtual service session request is for the first virtual service or the second virtual service; in response to determining that the virtual service session request is for the first virtual service, comparing by the network node the virtual service network address in the virtual service session request with a virtual service network address in each of the first plurality of packet forwarding policies; and in response to determining that the virtual service session request is for the first virtual service, comparing by the network node the virtual service network address in the virtual service session request with a virtual service network address in each of the second plurality of packet forwarding policies.

12. The method of claim 1, wherein the virtual service session request further comprises a client network address of the client device, wherein each packet forwarding policy further comprises a client network address associated with the destination, wherein the comparing and the determining comprise: comparing by the network node the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy; comparing by the network node the client network address in the virtual service session request with the client network address in each packet forwarding policy; and in response to finding the match between the virtual service network address in the virtual service session request and the given virtual service network address in the given packet forwarding policy, and in response to finding a match between the client network address in the virtual service session request and the given client network address in the given packet forwarding policy, determining the given destination in the given packet forwarding policy by the network node.

13. A non-transitory computer readable storage medium having computer readable program code embodied therewith for providing forwarding policies in a virtual service network, the virtual service network comprising a network node and a pool of service load balancers serving a virtual service associated with a virtual service network address, the computer readable program code configured to:

receive a virtual service session request from a client device, the virtual service session request comprising the virtual service network address for the virtual service served by the pool of service load balancers, wherein the network node comprises a plurality of packet forwarding policies, each packet forwarding policy comprising a virtual service network address associated with a destination;

compare the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service session request and a given virtual service network address in a given packet forwarding policy, determine the given destination in the given packet forwarding policy;

and

send the virtual service session request to a service load balancer in the pool of service load balancers associated with the given destination, wherein the service load balancer establishes a virtual service session with the client device.

14. The medium of claim 13, wherein the computer readable program code is further configured to, after the service load balancer establishes the virtual service session with the client device:

receive a virtual service request from the client device through the virtual service session, the virtual service request comprising the virtual service network address for the virtual service;

compare the second virtual service network address in the virtual service request with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service request and a second given virtual service network address in a second given packet forwarding policy, determine a second given destination in the second given packet forwarding policy; and

send the virtual service request to a second service load balancer associated with the second given destination.

15. The medium of claim 14, wherein the computer readable program code is further configured to:

receive a virtual service data packet from the client device through the virtual service session, the virtual service data packet comprising the virtual service network address for the virtual service;

compare the virtual service network address in the virtual service data packet with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service data packet and a third given virtual service network address in a third given packet forwarding policy, determine a third given destination in the third given packet forwarding policy; and

send the virtual service data packet to a third service load balancer associated with the third given destination.

16. The medium of claim 15, wherein the service load balancer, the second service load balancer, and the third service load balancer are the same service load balancer.

17. The medium of claim 13, wherein the computer readable program code is further configured to:

receive a data packet of the virtual service session from the service load balancer over a data network, the data packet comprising a client network address of the client device;

retrieve the client network address from the data packet; and

send the data packet to the client device using the client network address.

18. The medium of claim 17, wherein the data packet comprises a virtual service session request response or a virtual service request response.

19. The medium of claim 13, wherein the given destination comprises a network node, wherein the computer readable program code configured to send is further configured to:

send the virtual service session request to the network node, wherein the network node comprises a second plurality of packet forwarding policies, each of the second packet forwarding policies comprising a second virtual service network address associated with a second destination;

compare by the network node the virtual service network address in the virtual service session request with the virtual service network address in each of the second packet forwarding policies by the second network node;

in response to finding a match between the virtual service network address in the virtual service session request and a second given virtual service network address in a second given packet forwarding policy, determine a second given destination in the second given packet forwarding policy; and

send the virtual service session request to the service load balancer associated with the second given destination, wherein the service load balancer establishes a virtual service session with the client device.

20. The medium of claim 13, wherein the computer readable program code configured to determine is further configured to:

find that the virtual service network address in the virtual service session request matches a first virtual service network address in a first packet forwarding policy and a second virtual network address in a second packet forwarding policy;

select either the first packet forwarding policy or the second packet forwarding policy based on additional information comprised in the first and second packet forwarding policies; and

determine the given destination in the selected packet forwarding policy.

21. The medium of claim 20, wherein the additional information comprises one or more of the following: a multi-path factor; and a traffic policy.

22. The medium of claim 20, wherein the first packet forwarding policy comprises a first destination associated with a first service load balancer in the pool of service load balancers, wherein the second packet forwarding policy comprises a second destination associated with a second service load balancer in the pool of service load balancers, wherein the first service load balancer is different from the second service load balancer, wherein the computer readable program code configured to determine is further configured to:

in response to selecting the first packet forwarding policy, determine the first destination associated with the first service load balancer in the first packet forwarding policy; and

in response to selecting the second packet forwarding policy, determine the second destination in the second packet forwarding policy in the second packet forwarding policy.

23. The medium of claim 13, comprising a first plurality of packet forwarding policies for a first virtual service and a second plurality of packet forwarding policies for a second virtual service, wherein the computer readable program code configured to compare is further configured to:

determine whether the virtual service session request is for the first virtual service or the second virtual service;

in response to determining that the virtual service session request is for the first virtual service, compare the virtual service network address in the virtual service session request with a virtual service network address in each of the first plurality of packet forwarding policies; and

in response to determining that the virtual service session request is for the first virtual service, compare the virtual service network address in the virtual service session request with a virtual service network address in each of the second plurality of packet forwarding policies.

24. The medium of claim 13, wherein the virtual service session request further comprises a client network address of the client device, wherein each packet forwarding policy further comprises a client network address associated with the destination, wherein the computer readable program code configured to compare and to determine are further configured to:

compare the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy;

compare the client network address in the virtual service session request with the client network address in each packet forwarding policy; and

in response to finding the match between the virtual service network address in the virtual service session request and the given virtual service network address in the given packet forwarding policy, and in response to finding a match between the client network address in the virtual service session request and the given client network address in the

given packet forwarding policy, determine the given destination in the given packet forwarding policy.

25. A virtual service network, comprising:
a pool of service load balancers serving a virtual service associated with a virtual service network address; and

a network node comprising a plurality of packet forwarding policies, each packet forwarding policy comprising a virtual service network address associated with a destination, wherein the network node: receives a virtual service session request from a client device, the virtual service session request comprising a virtual service network address for the virtual service served by the pool of service load balancers, wherein the network node;

compares the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy;
in response to finding a match between the virtual service network address in the virtual service session request and a given virtual service network address in a given packet forwarding policy, determines the given destination in the given packet forwarding policy;
and

sends the virtual service session request to a service load balancer in the pool of service load balancers associated with the given destination, wherein the service load balancer establishes a virtual service session with the client device.

26. The network of claim 25, wherein after the service load balancer establishes the virtual service session with the client device, the network node further:

receives a virtual service request from the client device through the virtual service session, the virtual service request comprising the virtual service network address for the virtual service;

compares the second virtual service network address in the virtual service request with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service request and a second given virtual service network address in a second given packet forwarding policy, determines a second given destination in the second given packet forwarding policy; and

sends the virtual service request to a second service load balancer associated with the second given destination.

27. The network of claim 26, wherein the network node further:

receives a virtual service data packet from the client device through the virtual service session, the virtual service data packet comprising the virtual service network address for the virtual service;

compares the virtual service network address in the virtual service data packet with the virtual service network address in each packet forwarding policy;

in response to finding a match between the virtual service network address in the virtual service data packet and a third given virtual service network address in a third given packet forwarding policy, determines a third given destination in the third given packet forwarding policy; and

sends the virtual service data packet to a third service load balancer associated with the third given destination.

28. The network of claim 27, wherein the service load balancer, the second service load balancer, and the third service load balancer are the same service load balancer.

29. The network of claim 25, wherein the network node further:
receives a data packet of the virtual service session from the service load balancer
over a data network, the data packet comprising a client network address of the client
device;
retrieves the client network address from the data packet; and
sends the data packet to the client device using the client network address.

30. The network of claim 29, wherein the data packet comprises a virtual service
session request response or a virtual service request response.

31. The network of claim 25, further comprising a second network node, wherein
the given destination is associated with the second network node, wherein in the comparing,
the network node further:

sends the virtual service session request to the second network node, wherein the
second network node comprises a second plurality of packet forwarding policies, each of the
second packet forwarding policies comprising a second virtual service network address
associated with a second destination;

wherein the second network node:

compares the virtual service network address in the virtual service session request
with the virtual service network address in each of the second packet forwarding policies;
in response to finding a match between the virtual service network address in the virtual
service session request and a second given virtual service network address in a second given
packet forwarding policy, determines a second given destination in the second given packet
forwarding policy; and

sends the virtual service session request to the service load balancer associated with
the second given destination, wherein the service load balancer establishes a virtual service
session with the client device.

32. The network of claim 25, wherein in the determining, the network node further:

finds that the virtual service network address in the virtual service session request matches a first virtual service network address in a first packet forwarding policy and a second virtual network address in a second packet forwarding policy;

selects either the first packet forwarding policy or the second packet forwarding policy based on additional information comprised in the first and second packet forwarding policies; and

determines the given destination in the selected packet forwarding policy.

33. The network of claim 32, wherein the additional information comprises one or more of a multi-path factor and a traffic policy.

34. The network of claim 32, wherein the first packet forwarding policy comprises a first destination associated with a first service load balancer in the pool of service load balancers, wherein the second packet forwarding policy comprises a second destination associated with a second service load balancer in the pool of service load balancers, wherein the first service load balancer is different from the second service load balancer, wherein in the determining, the network node:

in response to selecting the first packet forwarding policy, determines the first destination associated with the first service load balancer in the first packet forwarding policy; and

in response to selecting the second packet forwarding policy, determines the second destination in the second packet forwarding policy in the second packet forwarding policy.

35. The network of claim 25, wherein the network node comprises a first plurality of packet forwarding policies for a first virtual service and a second plurality of packet forwarding policies for a second virtual service, wherein in the comparing, the network node:

determines whether the virtual service session request is for the first virtual service or the second virtual service;

in response to determining that the virtual service session request is for the first virtual service, compares the virtual service network address in the virtual service session request with a virtual service network address in each of the first plurality of packet forwarding policies; and

in response to determining that the virtual service session request is for the first virtual service, compares the virtual service network address in the virtual service session request with a virtual service network address in each of the second plurality of packet forwarding policies.

36. The network of claim 25, wherein the virtual service session request further comprises a client network address of the client device, wherein each packet forwarding policy further comprises a client network address associated with the destination, wherein in comparing and determining, the network node:

compares the virtual service network address in the virtual service session request with the virtual service network address in each packet forwarding policy;

compares the client network address in the virtual service session request with the client network address in each packet forwarding policy; and

in response to finding the match between the virtual service network address in the virtual service session request and the given virtual service network address in the given packet forwarding policy, and in response to finding a match between the client network address in the virtual service session request and the given client network address in the

given packet forwarding policy, determines the given destination in the given packet forwarding policy.

37. A method for providing forwarding policies in a virtual service network, the virtual service network comprising a network node and a pool of service load balancers serving a virtual service associated with a virtual service network address, comprising:

receiving a virtual service session request from a client device by the network node, the virtual service session request comprising a client device network address for the client device and the virtual service network address for the virtual service served by the pool of service load balancers, wherein the network node comprises a plurality of packet forwarding policies, each packet forwarding policy comprising a client network address and a virtual service network address associated with a destination;

comparing by the network node the virtual service network address in the virtual service session request with a first virtual service network address in a first packet forwarding policy of the plurality of packet forwarding policies, and comparing the client device network address in the virtual service session request with a first client network address in the first packet forwarding policy;

in response to determining that the virtual service network address in the virtual service session request matches the first virtual service network address, and determining that the client device network address in the virtual service session request does not match the first client network address, determining by the network node that the first packet forwarding policy does not apply to the virtual service session request;

in response to determining that the first packet forwarding policy does not apply, comparing by the network node the virtual service network address in the virtual service session request with a second virtual service network address in a second packet forwarding policy of the plurality of packet forwarding policies, and comparing the client device network address in the virtual service session request with a second client network address in the second packet forwarding policy;

in response to determining that the virtual service network address in the virtual service session request matches the second virtual service network address, and determining that the client device network address in the virtual service session request matches the second client network address, determining by the network node that the second packet forwarding policy applies to the virtual service session request;

in response to determining that the second packet forwarding policy applies, determining a given destination in the second packet forwarding policy by the network node; and

sending the virtual service session request to a service load balancer in the pool of service load balancers associated with the given destination, wherein the service load balancer establishes a virtual service session with the client device.

1/12

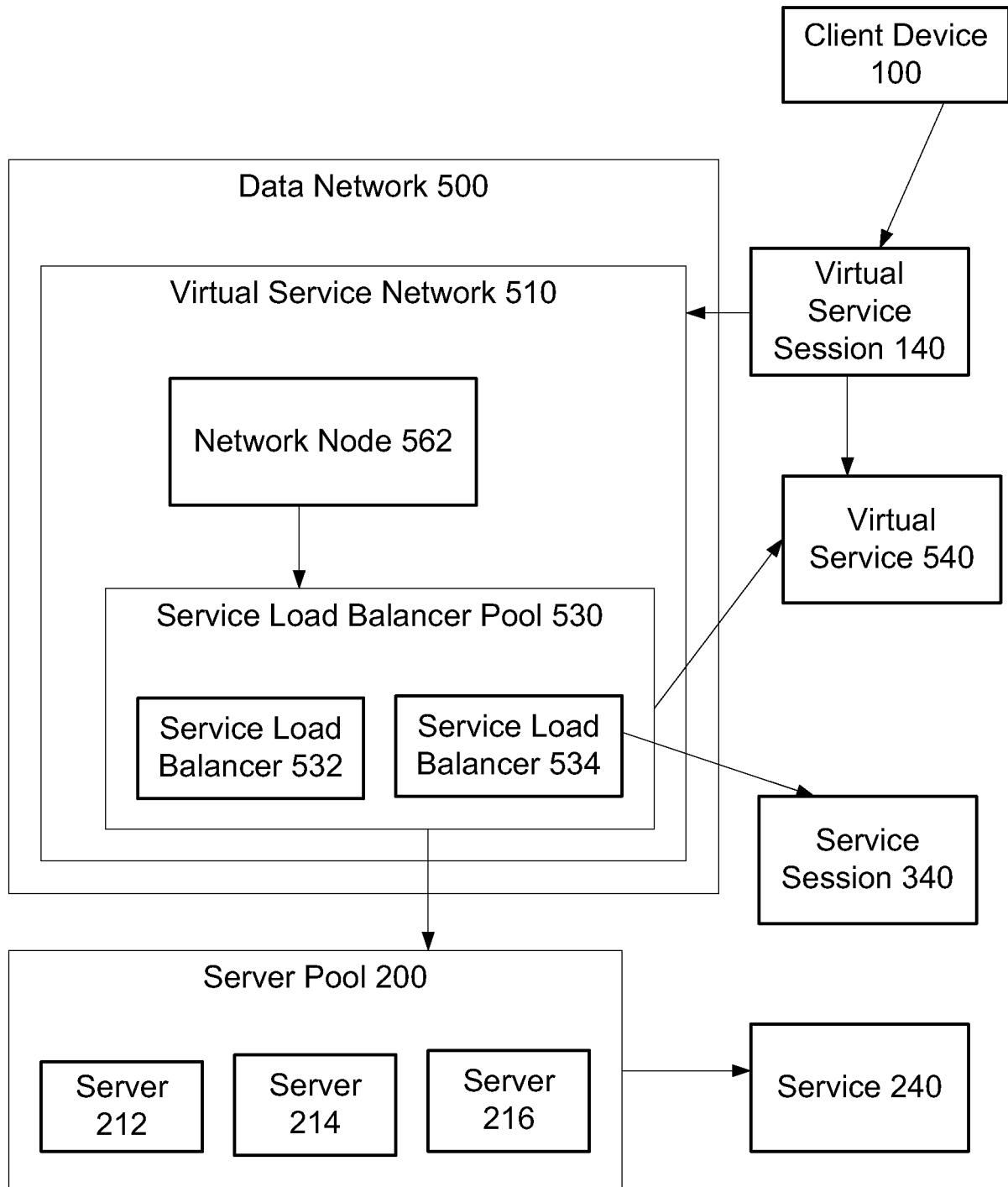


Figure 1

2/12

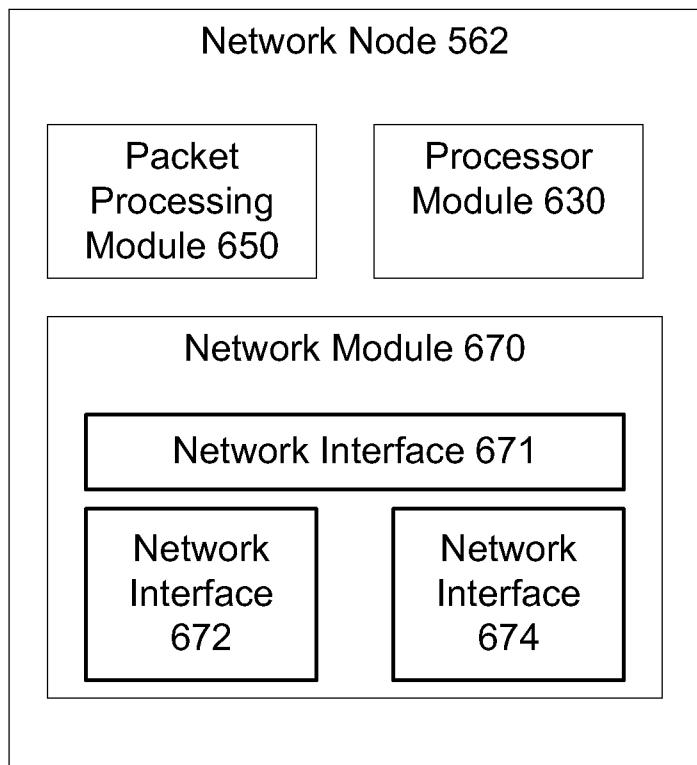


Figure 2a

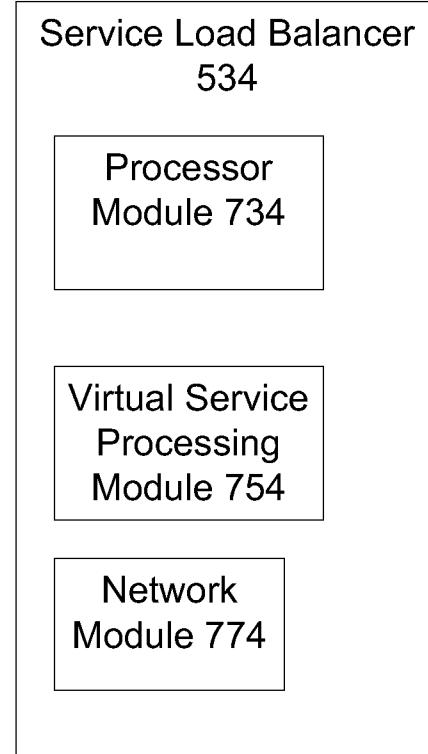


Figure 2b

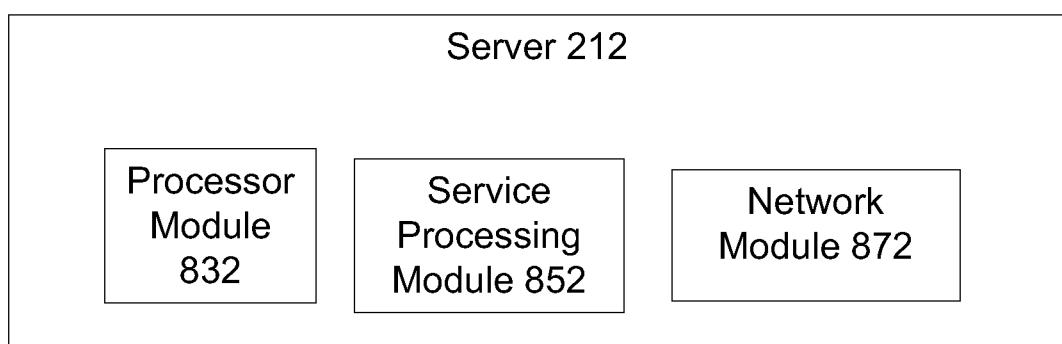


Figure 2c

3/12

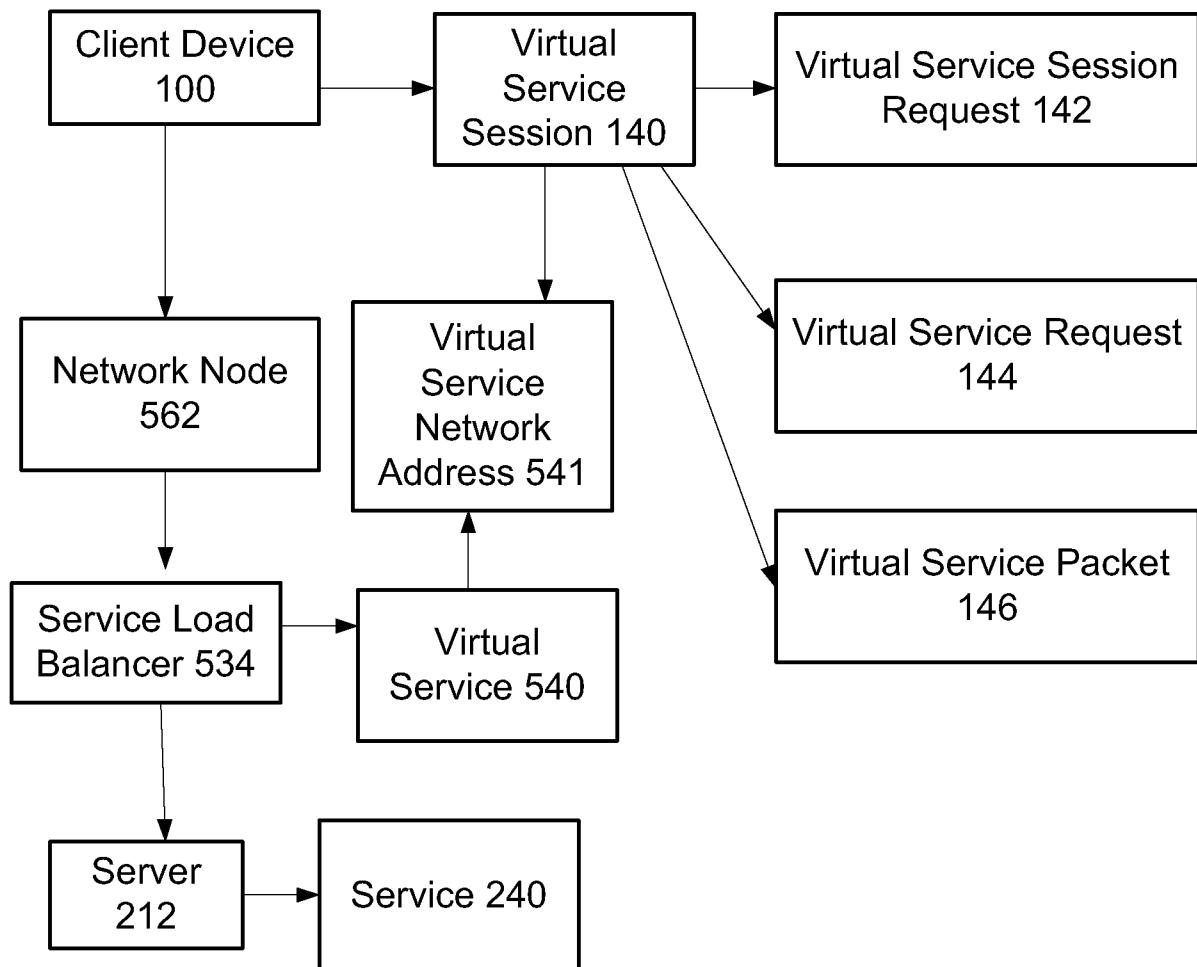


Figure 3

4/12

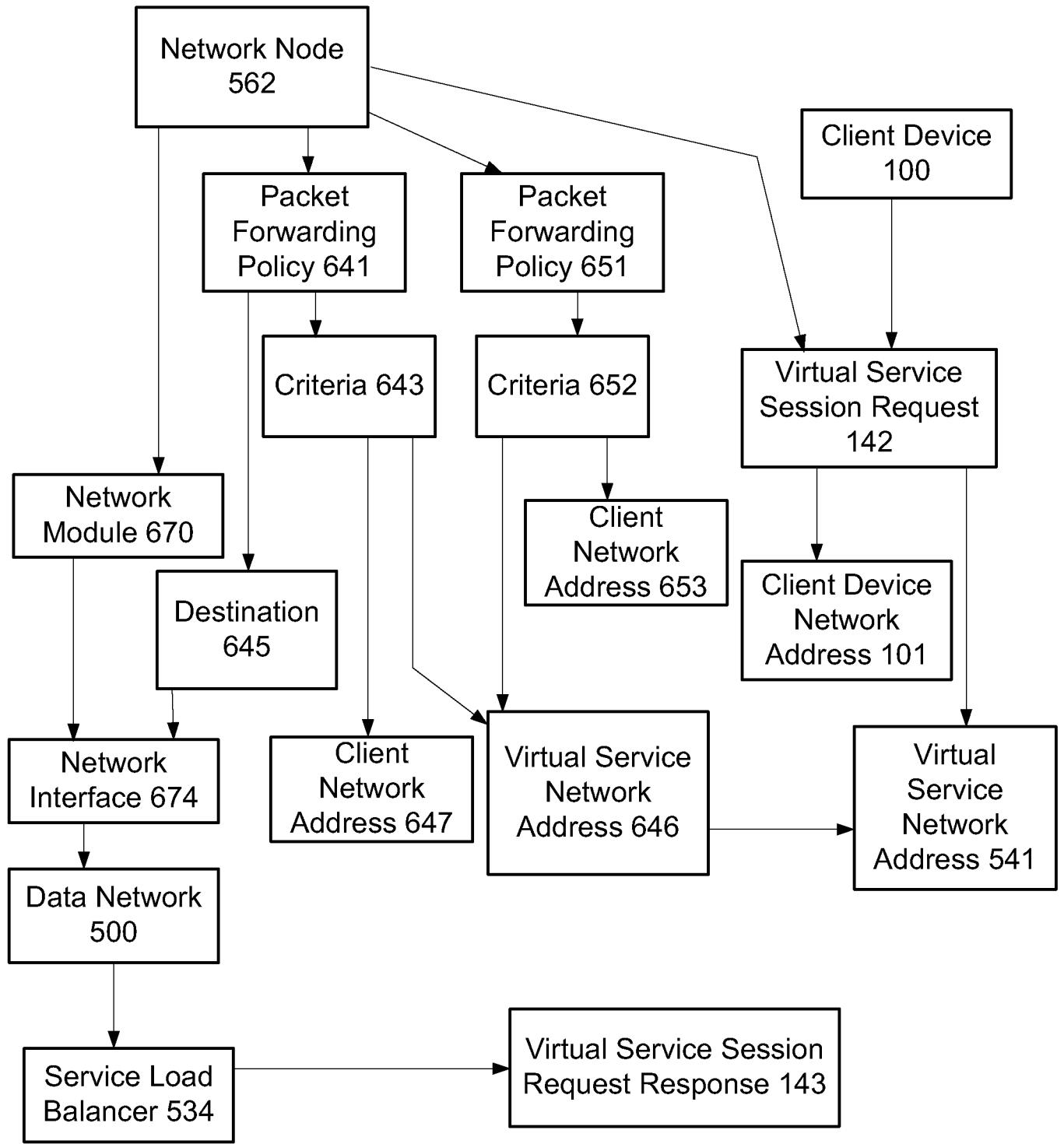


Figure 3a

5/12

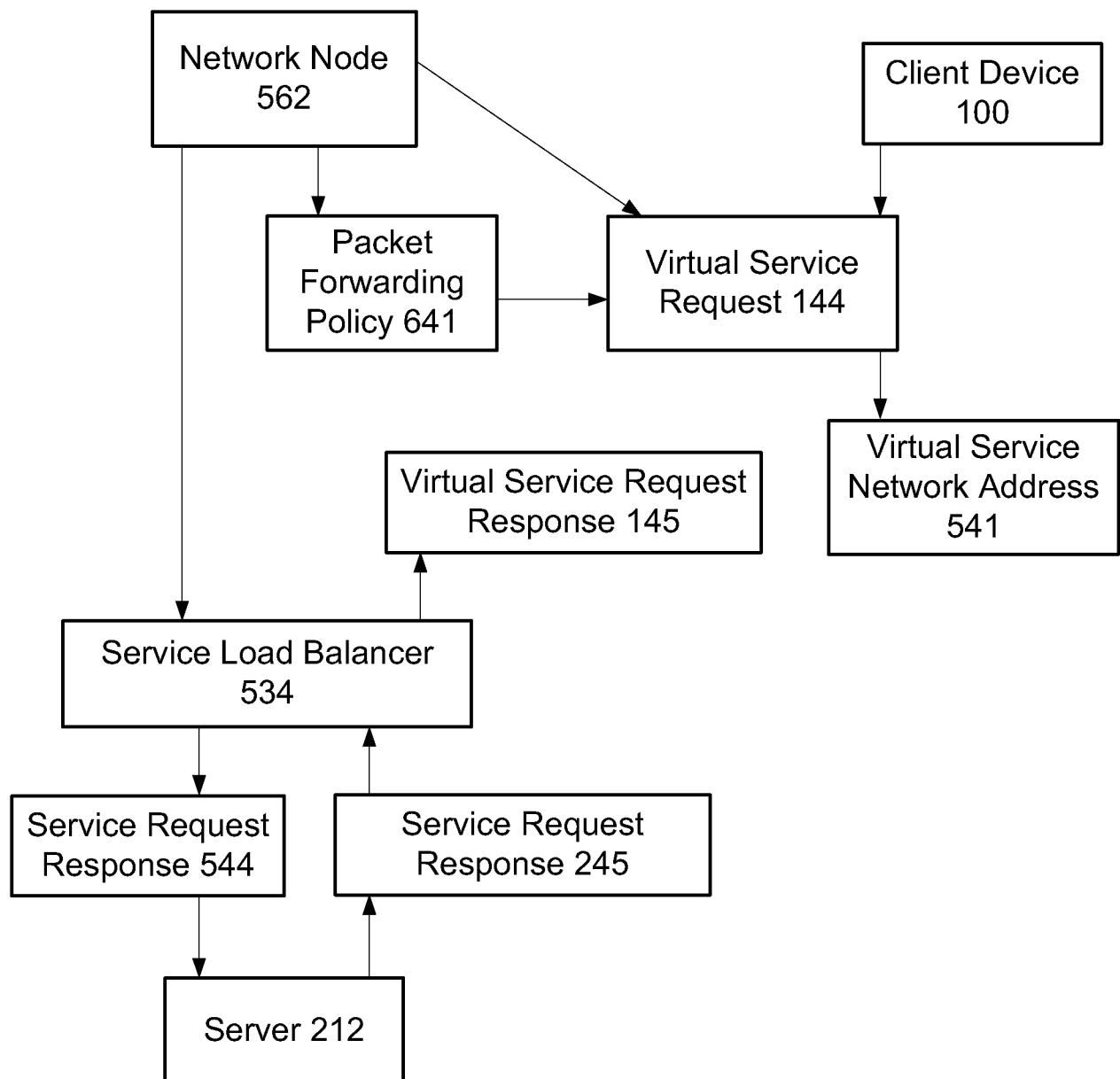


Figure 3b

6/12

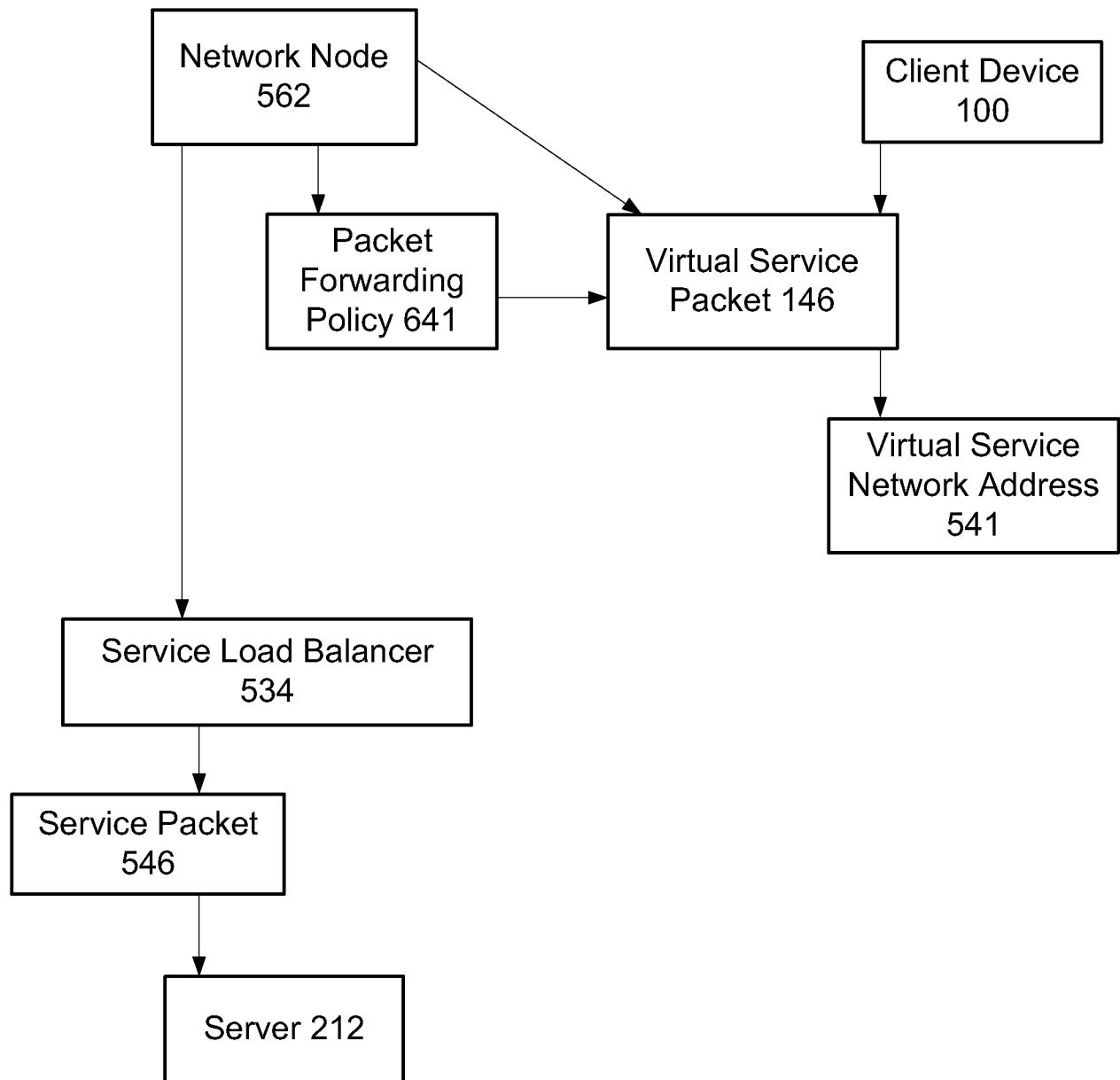


Figure 3c

7/12

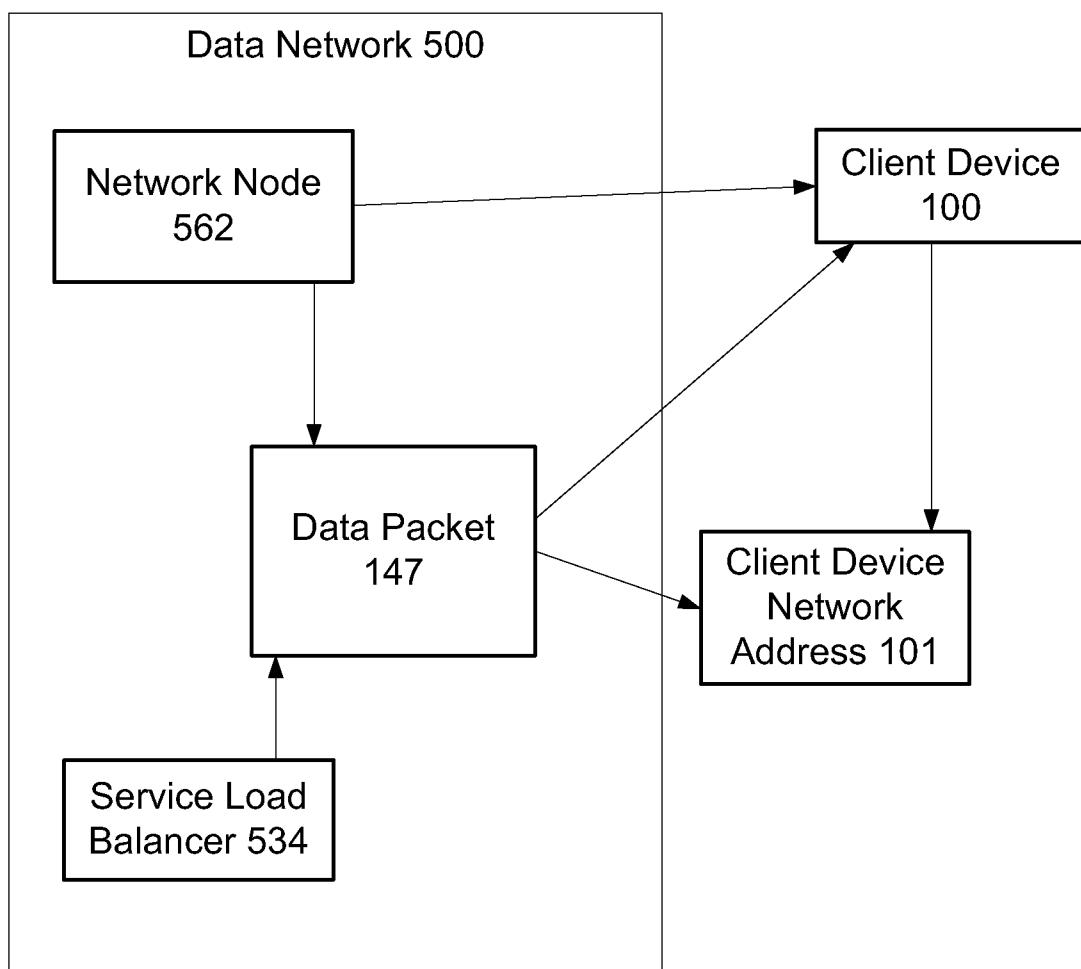


Figure 4

8/12

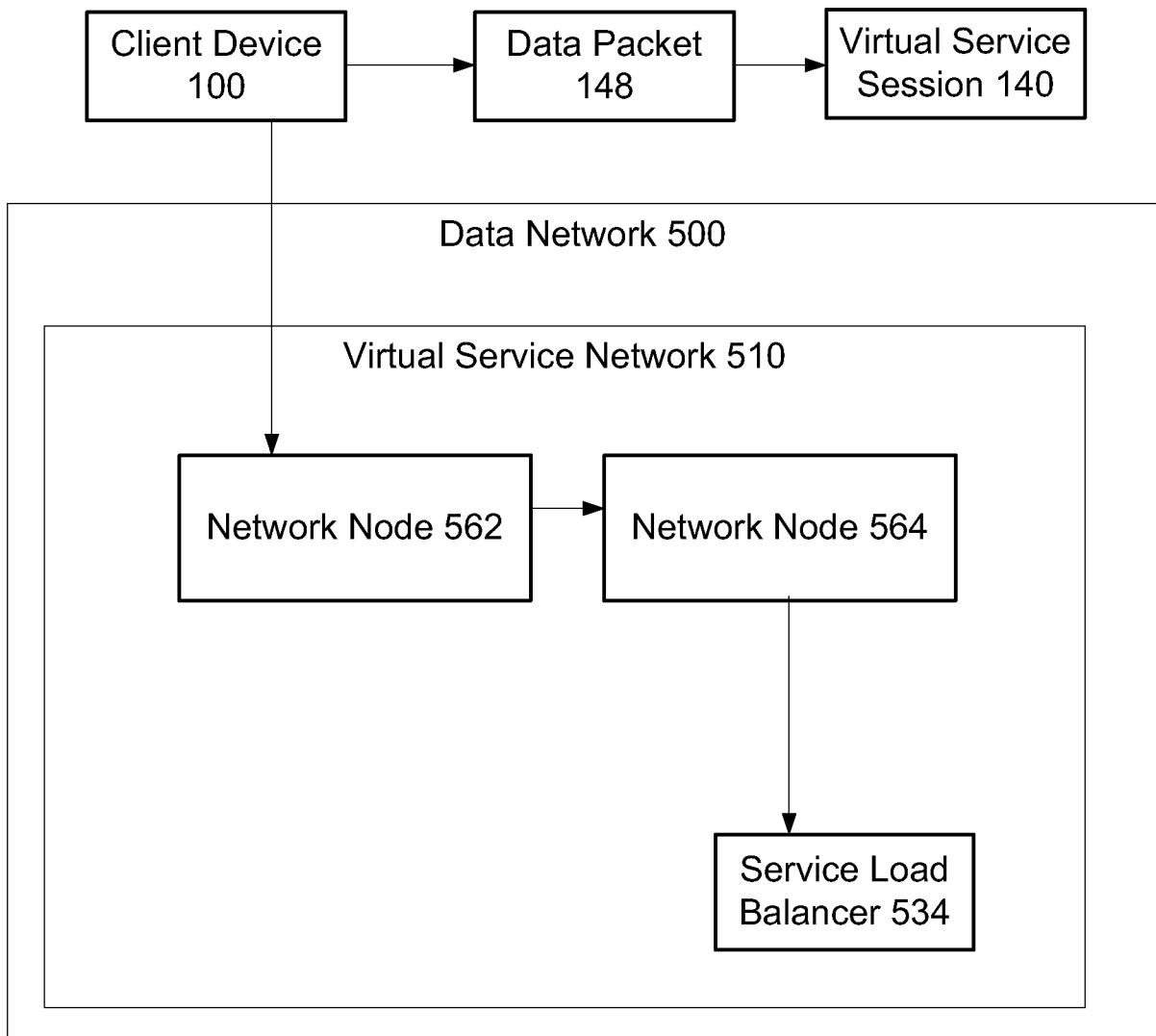


Figure 5

9/12

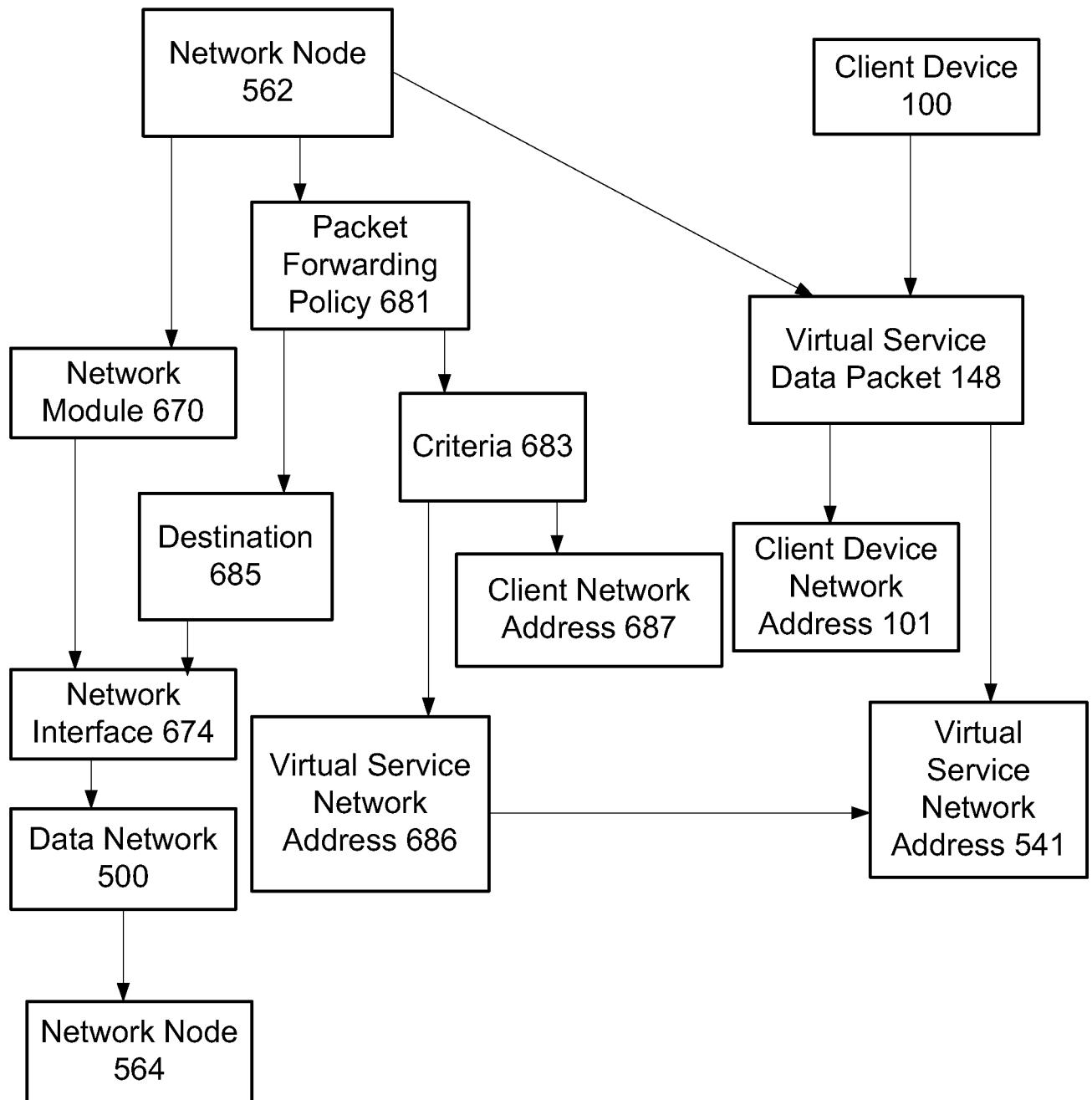


Figure 5a

10/12

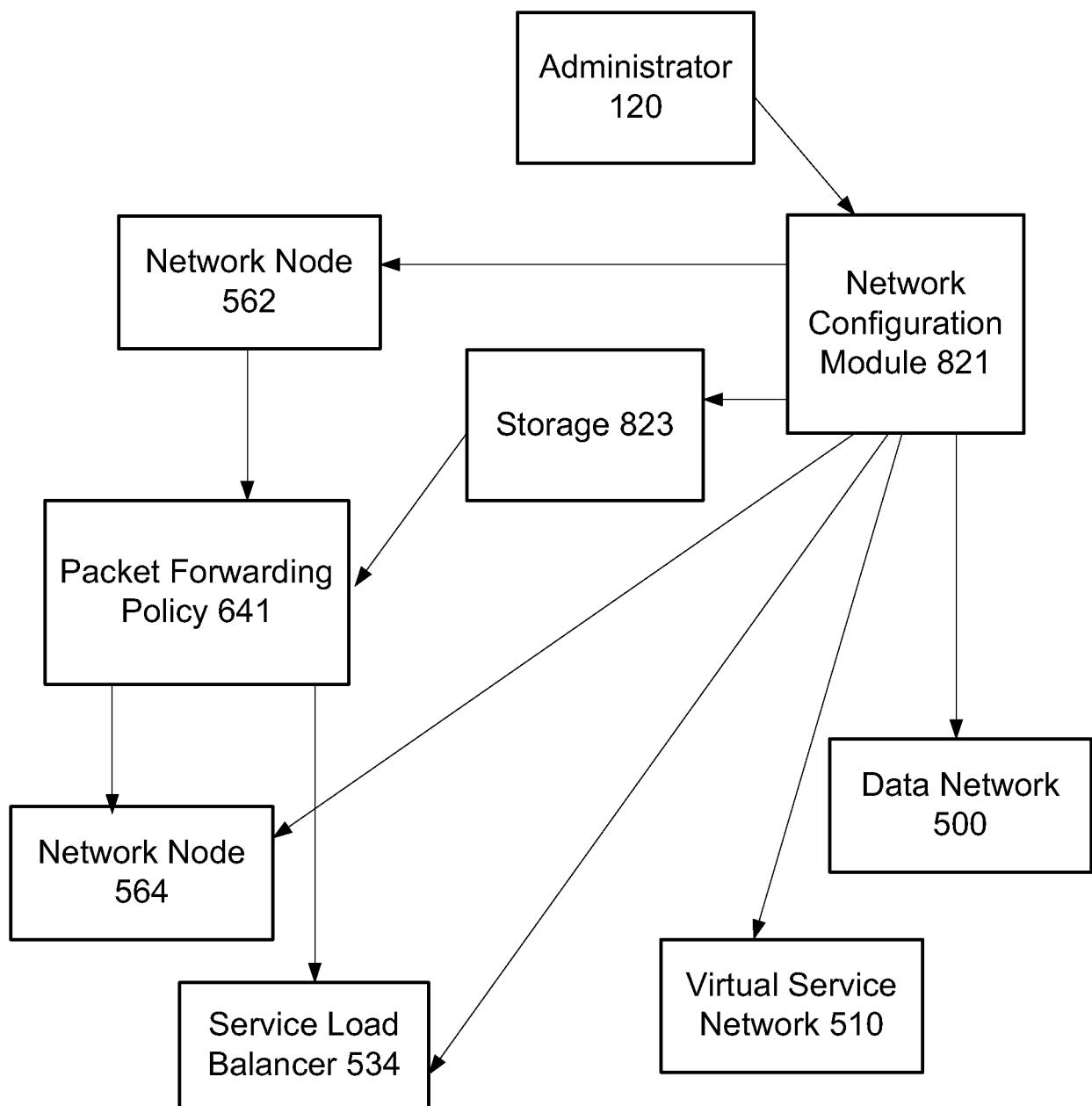


Figure 6

11/12

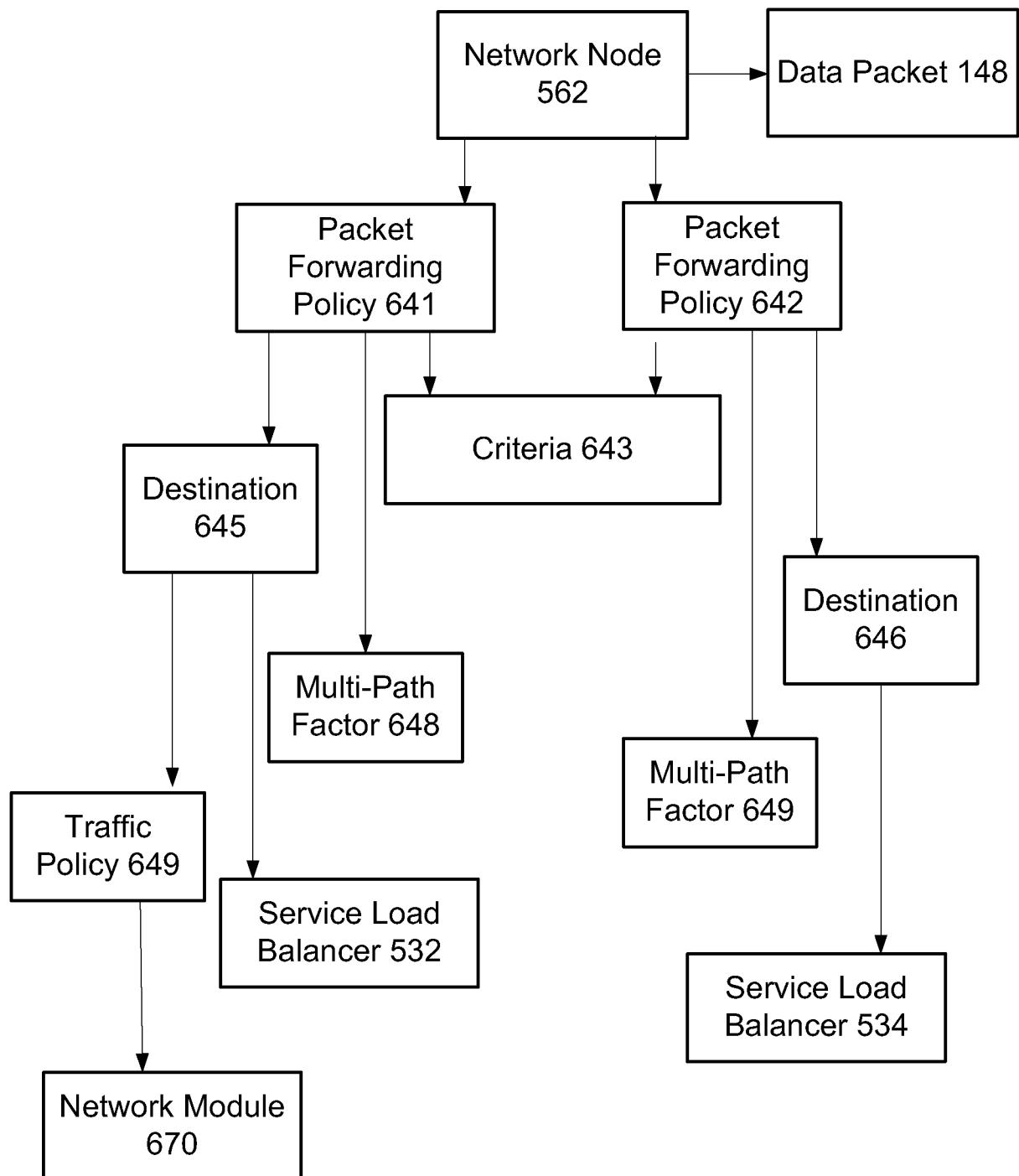


Figure 7

12/12

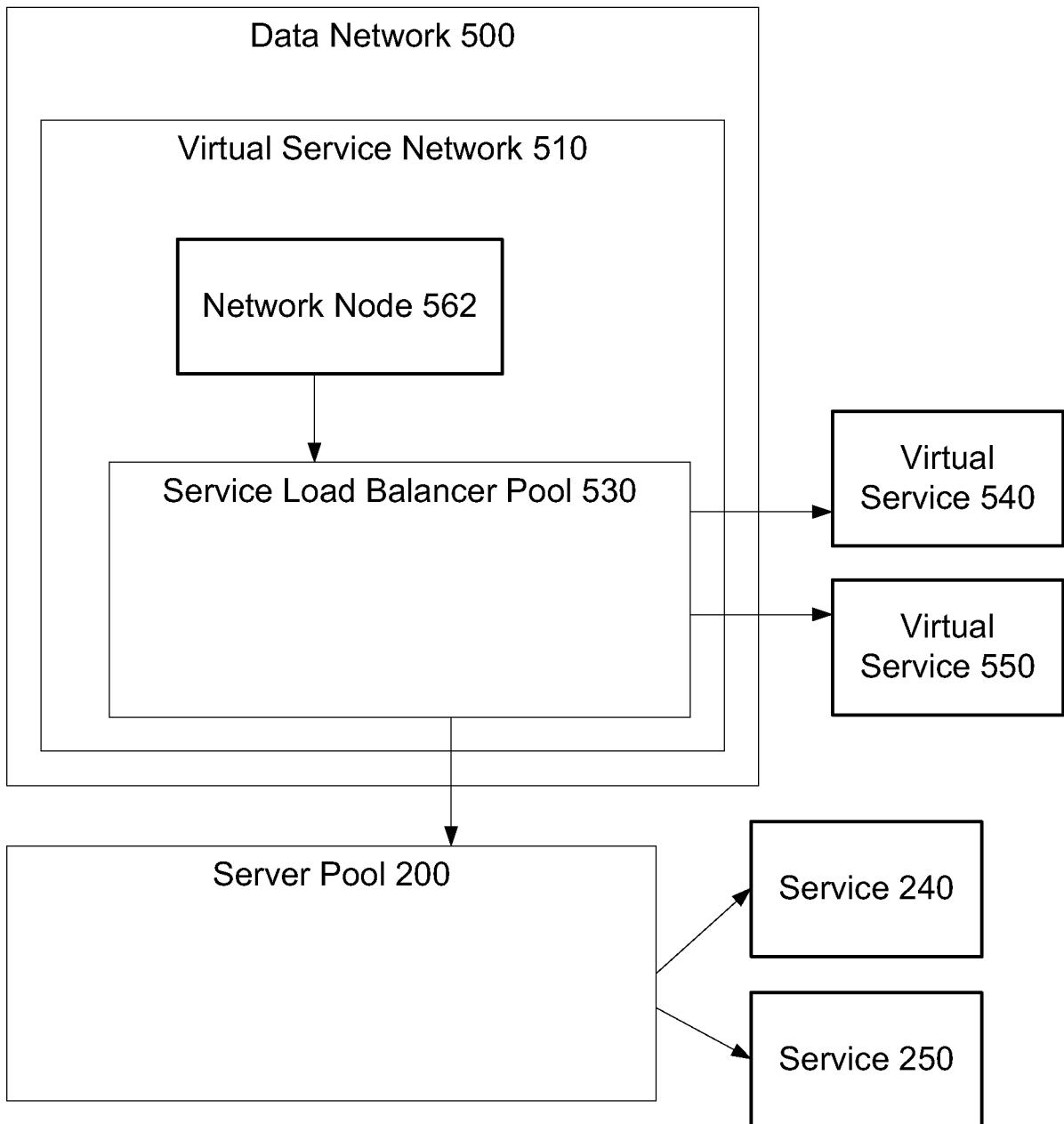


Figure 8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 13/68345

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - H04L 12/28 (2013.01)

USPC - 709/223

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC: 709/223

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

IPC(8): H04L 12/28 (2013.01); USPC: 709/220-229

(keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase (PatBase); PubWEST(USPTO, PGPB, EPAB, JPAB); Science Direct; Google Patents; Google Scholar

Search Terms: virtual, service, network, forwarding, balancer, node, session, client, pool, destination, address, packet, load, policies, third.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 8,224,971 B1 (MILLER et al.) 17 July 2012 (17.07.2012), entire document, especially; FIG 1A-1C, col 2, ln 48 to col 3, ln 52, col 8, ln 25-58, col 11, ln 61 to col 12, ln 57, col 16, ln 65 to col 17, ln 27, col 18, ln 5-56, col 25, ln 1 to col 27, ln 9.	1-37
A	US 7,991,859 B1 (MILLER et al.) 02 August 2011 (02.08.2011), entire document.	1-37
A	US 2011/0110294 A1 (VALLURI et al.) 12 May 2011 (12.05.2011), entire document.	1-37
A	US 7,792,113 B1 (FOSCHIANO et al.) 07 September 2010 (07.09.2010), entire document.	1-37

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international filing date

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition or other means

"&" document member of the same patent family

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

26 December 2013 (26.12.2013)

Date of mailing of the international search report

22 JAN 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774