发明名称
一种青铜工艺 Nb₃Sn 超导体多芯线接头及其制备方法

摘要
一种青铜工艺 Nb₃Sn 超导体多芯线接头及其制备方法，接头的结构由内层至外层分别为：稳定芯、超导连接单元、Nb 管和 Cu 管，上述各层次之间紧密贴合。超导连接单元由内层至外层分别为 Nb 丝、Nb₃Sn 化合物层、Cu-Sn 合金镀层，其中同一超导连接单元内嵌连接的不同的超导体多芯线的 Nb 丝相互搭接， Nb 丝表面沉积 Cu-Sn 合金镀层，Nb₃Sn 化合物层为 Nb 丝与 Cu-Sn 合金镀层于热处理反过过程中在两者之间通过固态扩散生成，不同的超导体多芯线 Nb 丝表面的 Nb₃Sn 化合物层相互桥接导通，起到超导连接作用，使得青铜工艺 Nb₃Sn 超导体多芯线的接头在超导温度下保持低电阻、低损耗。
1. 一种青铜工艺 Nb₃Sn 超导体多芯线接头，其特征在于所述的接头的结构由内层至外层分别为：稳定芯、超导连接单元、Nb 管和 Cu 管，上述各层次之间紧密粘合；超导连接单元由内层至外层分别为 Nb 丝、Nb₃Sn 化合物层、Cu-Sn 合金镀层，其中同一超导连接单元内待连接的不同超导体多芯线的 Nb 丝相互搭接，Nb 丝表面沉积 Cu-Sn 合金镀层，Nb₃Sn 化合物层为 Nb 丝与 Cu-Sn 合金镀层于热处理反应过程中在两者之间通过固态扩散生成，不同的超导体多芯线 Nb 丝表面的 Nb₃Sn 化合物层相互桥接导通，起到超导连接作用，使得青铜工艺 Nb₃Sn 超导体多芯线的接头在超导温度下保持低电阻、低损耗。

2. 制备权利要求 1 所述的青铜工艺 Nb₃Sn 超导体多芯线接头的方法，其特征在于制作步骤如下：

(1) 腐蚀 Nb₃Sn 超导体多芯线端部的青铜基体，露出散开的稳定芯和 Nb 丝；
(2) 将待连接的不同超导体多芯线的 Nb 丝相互混合，相互搭接，并用 Cu 丝编织固定；
(3) 通过沉积技术，使所述接头的 Nb 丝表面生成一层 Cu-Sn 合金镀层；
(4) 将所述的接头从内至外分别套上 Nb 管和 Cu 管，并压紧接头，使沉积有 Cu-Sn 合金镀层的 Nb 丝紧密镶嵌在 Nb 管和 Cu 管内；
(5) 在接头外层包覆耐高温绝缘材料后，固定安装在线圈指定位置；
(6) 将接头热处理，在 Nb₃Sn 超导体多芯线接头处通过固态扩散生成 Nb₃Sn 超导桥接层，实现接头的超导连接。

3. 根据权利要求 2 所述的青铜工艺 Nb₃Sn 超导体多芯线接头的制备方法，其特征在于所述的沉积方法采用电镀沉积或化学镀沉积。

4. 根据权利要求 2 所述的青铜工艺 Nb₃Sn 超导体多芯线接头的制备方法，特征在于所述的 Nb 管壁厚为 0.5—2 毫米，Cu 管壁厚为 0.5—2 毫米，Nb 管和 Cu 管的长度均能覆盖 Nb 丝。

5. 根据权利要求 2 所述的青铜工艺 Nb₃Sn 超导体多芯线接头的制备方法，特征在于所述的接头外部包覆耐高温绝缘材料为无碱玻璃丝纤维布。

6. 根据权利要求 2 所述的青铜工艺 Nb₃Sn 超导体多芯线接头的制备方法，特征在于所述的接头的热处理温度、保温时间和热处理气氛与接头所在的 Nb₃Sn 线圈的热处理温度、保温时间和热处理气氛相同，且对所述的接头的热处理与接头所在的 Nb₃Sn 线圈的热处理同时完成。

7. 根据权利要求 2 所述的青铜工艺 Nb₃Sn 超导体多芯线接头的制备方法，特征在于对接头的热处理温度为 650—690℃，保温时间是 100—190 小时，热处理气氛要求惰性气体或真空。
说明书

一种青铜工艺 Nb₃Sn 超导体多芯线接头及其制备方法

技术领域

本发明涉及一种青铜工艺 Nb₃Sn 超导体多芯线接头及其制备方法。

背景技术

Nb₃Sn 材料在 18K 低温条件下，显示出良好的超导电特性。它的临界转变温度高于 NbTi 超导体材料，特别适合用于高磁场超导磁体的建造。

按照线材结构不同，制备 Nb₃Sn 超导线的方法主要分为青铜工艺和内锡法两种。青铜工艺的线材为青铜-Nb 丝多芯机械复合结构。内锡法线材为多 Cu/Nb 合金管内插 Sn 丝的机械复合结构。以上两种线材均需在适当温度下进行热处理，通过固态扩散生成具备超导电性的 Nb₃Sn 化合物层，具有超导性能。青铜工艺 Nb₃Sn 超导体多芯线由于使用稳定、技术成熟的特点，得到广泛应用。青铜工艺 Nb₃Sn 超导体多芯线在热处理前（青铜 -Nb 丝多芯机械复合线）的横截面结构示意图如图 1 所示，其中包括：稳定芯、Nb 丝，青铜基体。

Nb₃Sn 是 A15 结构化合物，本身具有较大的脆性，任何变形或碰撞都可能会对超导性能造成损伤。因此在实际工程中利用青铜工艺制备 Nb₃Sn 超导线圈的过程中，需要首先将青铜 -Nb 丝多芯机械复合线绕制成符合设计要求的线圈，然后将线圈整体进行热处理，通过固态扩散反应在多芯机械复合线中生成具备超导电性的 Nb₃Sn 化合物，从而得到具有超导性能的 Nb₃Sn 超导线圈。反应后不能再改变超导线的绕向，避免发生 Nb₃Sn 超导线的脆断或损伤，影响超导性能。

在超导磁体线圈的建造过程中，超导线的焊接是关键技术之一。单根超导线的长度是有限的，而绕制一个大型超导磁体往往需要几十至几百千米的超导线。在这种情况下，必须将多根超导线焊接起来保持所需的长度。同时，制造多线圈组成的超导磁体时，线圈之间的连接需要通过线圈端部的焊接来完成。类似地，制造由多个超导磁体组成的超导磁体系统时，如果要求将各个磁体串联起来由单一电源供电，也需要将各个磁体端部首尾串联焊接。与各个磁体单独供电的方式相比，单一供电方式能使磁体系统具备更高的工作可靠性。另外，如果超导磁体要闭环运行，还需要将磁体或磁体系统的两端与超导开关连接起来形成闭合回路。

在大型超导磁体建造中，超导线的绕制和超导线之间的连接是同时进行的。接头制作的工艺质量直接影响到工程的进度。另外，大型磁体的许多接头在磁体内部，不能对其进行拆卸检测和再修复，任何一个接头的质量不良都影响整个磁体的性能，甚至可能使整个磁体报废。因此，在大型磁体制造中接头必须具有很高的可靠性。对于一般的组合磁体或磁体系统，虽然接头可以放在比较容易接触的地方，但是由于整个磁体需要工作在封闭的低温环境下，因而对接头进行经常性检测和修复也是不现实的。因此必须保证接头质量的高可靠性。对于闭环运行的超导磁体来说，接头的性能还直接影响到磁体的工作性能和持续运行时间。

对超导线接头的基本要求一方面是接头必须要有较低的电阻。超导磁体的工作电流一般达到上百甚至上千安培量级，电阻太大会引起严重的焦耳热损耗，可能导致磁体失
说明书

超导体的超导性研究中，接头电阻导致了磁场的衰减。如果要求磁场的稳定度达到某一水平，则要求接头的电阻必须小于某一值。例如对于超导体系统，一般需要超导接头的电阻不高于10⁻¹²欧姆。另一方面是必须具有一定的机械强度和韧性来承受整个装置的弯曲应力和工作状态下的电磁应力，和冷却过程中受到的收缩应力。

目前关于Nb₅Sn超导接头的制作方法，根据制作接头和热处理的先后关系主要可以分为两类：一类是在超导线热处理后制接头，另一类是在超导线热处理前制作接头。

第一类方法中，美国专利5111574公开了一种Nb₅Sn超导接头制作方法。这种方法将所述结构超导线的Nb丝和Sn丝混合，表面分别包裹Sn、Cu和V、Nb、Ta等金属层，通过热处理反应生成超导线接头。该方法中的Sn丝在热处理过程中为液态，一方面对包套的密封性要求很高，这在实际工程使用中，较难实现。另一方面液态纯Sn会对包套层材料（如Cu）造成热腐蚀，影响接头效果。此外，铜基钎焊技术也曾被用于制作Nb₅Sn超导接头的制作，由于并未真正形成超导连接，接头电阻值仅为10⁻⁴欧姆，不适合作为NMR等对接头电阻要求较高的工艺技术。以上方法虽然避免了热处理后超导线变脆给接头制作带来的超导线折损危险，但是这些现有方法载流能力很弱，为了降低接头电阻，一般会被迫延长接头电阻，使得接头体积庞大。

另一类方法中，美国Airco公司曾将热处理反应后的Nb₅Sn线接头直接进行电阻焊，接头电阻仅为10⁻⁶欧姆。美国GE公司曾采用TIG焊接技术将Nb₅Sn-Cu-Pb合金焊接在超导线接头上，形成超导连接，电阻值达到低于10⁻¹₁欧姆，但是2100℃高温的焊接条件下却容易对超导线造成损伤。此外美国GE公司还曾采用化学气相沉积（CVD）在接头上沉积超导层的方法，该方法工艺复杂，环境要求苛刻，并不适合工程使用。这类方法最大的问题在于Nb₅Sn超导线在热处理后本身发脆，偶然的折损很容易造成超导性能的损伤和丧失。

综合分析，现有的Nb₅Sn超导接头方法尚不能满足超导工艺Nb₅Sn超导接头的工程实际要求，急需开发一种电阻率低且制备过程对超导线的超导性能损坏威胁小的超导工艺Nb₅Sn超导接头制备方法。

发明内容

本发明的目的在于克服现有超导线接头方法中存在的接头非超导连接、超导线易损伤、工艺条件复杂苛刻等问题，提出的一种青铜工艺Nb₅Sn超导体多芯线接头及其制备方法，本发明可以实现超导连接，降低接头电阻。

本发明的技术方案在于：

一种青铜工艺Nb₅Sn超导体多芯线接头，接头的结构由内层至外层分别为：稳定芯、超导连接单元、Nb管和Cu管，上述各层次之间紧密贴合。超导连接单元由内层至外层分别为Nb丝、Nb₅Sn化合物层、Cu-Sn合金镀层，其中同一超导连接单元内连接不同的超导体多芯线的Nb丝相互搭接，Nb丝表面沉积Cu-Sn合金镀层，Nb₅Sn化合物层为Nb丝与Cu-Sn合金镀层于热处理反应过程中在两者之间通过固态扩散生成，不同的超导体多芯线Nb丝表面的Nb₅Sn化合物层相互桥接连接，起到超导连接作用，使青铜工艺Nb₅Sn超导体多芯线的接头在超导温度下保持低电阻、低损耗。

本发明制备上述青铜工艺Nb₅Sn超导体多芯线接头的方法，制备步骤顺序如下：

(1) 腐蚀Nb₅Sn超导体多芯线端部的青铜基体，露出散开的稳定芯和Nb丝；
（2）将待连接的不同超导体多芯线的 Nb 丝相互混合，尽量相互搭接，并 Cu 丝绑扎固定；

（3）通过沉积技术，使接头的 Nb 丝表面生成一层 Cu–Sn 合金镀层；

（4）将接头从内至外分别套上 Nb 管和 Cu 管，并压紧接头，使沉积有 Cu–Sn 合金镀层的 Nb 丝紧密镶嵌在 Nb 管和 Cu 管内；

（5）在接头外层包覆耐高温绝缘材料后，固定安装在线圈指定位置；

（6）对接头进行热处理，在 Nb₃Sn 超导体多芯线接头处通过固态扩散生成 Nb₃Sn 超导体接层，从而实现接头的超导连接。

其中，沉积方法可以采用电镀沉积或化学镀沉积方法。

其中，接头 Nb 管壁厚为 0.5–2 毫米，Cu 管壁厚为 0.5–2 毫米，Nb 管和 Cu 管的长度应能覆盖 Nb 丝。

其中，接头外部包覆的耐高温绝缘材料为无碱玻璃丝纤维布。

其中，对接头的热处理温度、保温时间和热处理气氛与接头所在的 Nb₃Sn 线圈的热处理温度、保温时间和热处理气氛相同，且对接头的热处理随接头所在的 Nb₃Sn 线圈的热处理工艺同时完成。

其中，对接头的热处理温度为 650–690°C，保温时间是 100–190 小时，热处理气氛要求惰性气体或真空。

本发明的青铜工艺 Nb₃Sn 超导体多芯线接头和制备方法，特点之一在于是通过借助表面沉积技术结合热处理技术，使青铜工艺 Nb₃Sn 超导体多芯线的 Nb 丝上通过固态扩散生成的 Nb₃Sn 超导化合物层相互接桥沟通，实现了不同超导线之间的超导连接。这大大降低了超导线接头在低温工作状态下的电阻值，提高磁体的载流能力，减小接头体积。另一特点在于本发明的青铜工艺 Nb₃Sn 超导体多芯线接头是在 Nb₃Sn 超导线热处理之前制备完成的。这避免了由于热处理之后 Nb₃Sn 超导线本身变脆的原因，可能导致的超导线意外折断而破坏整体超导性的危险。

附图说明

图 1 青铜工艺 Nb₃Sn 超导体多芯线在热处理前（青铜一 Nb 丝多芯机械复合线）的横截面结构示意图；

图 2 青铜工艺 Nb₃Sn 超导体多芯线接头的结构示意图；

图 3 青铜工艺 Nb₃Sn 超导体多芯线接头制备方法流程图；

图 4 待连接青铜工艺 Nb₃Sn 超导体多芯线端部的青铜基体被腐蚀掉并露出 Nb 丝的示意图；

图 5 待连接青铜工艺 Nb₃Sn 超导体多芯线 Nb 丝放放在一起相互接接的示意图；

图 6 热处理前的青铜工艺 Nb₃Sn 超导体多芯线接头结构示意图。

具体实施方式

以下结合附图和具体实施方式进一步说明本发明。

如图 2 所示，本发明青铜工艺 Nb₃Sn 超导体多芯线接头的结构由内层至外层分别为：稳定芯、超导连接单元、Nb 管和 Cu 管。各层次之间紧密贴合。所述的超导连接单元由
内至外分别为 Nb 丝、Nb₃Sn 化合物层和 Cu-Sn 合金镀层，其中同一超导连接单元内待连接的
不同超导体多芯线的 Nb 丝相互搭接。

【0036】本发明青铜工艺 Nb₃Sn 超导体多芯线接头的制作方法如下：

【0037】如图 3 所示，先将待连接的两根或两根以上未进行热处理的青铜工艺 Nb₃Sn 超导
体多芯线的端部的青铜基体腐蚀掉，露出一段均匀散开的 Nb 丝，如图 4 所示。对 Nb 丝进行
彻底清洗，去除表面的油渍和灰尘；然后将待连接的两根或两根以上的 Nb₃Sn 超导体多芯线
的稳定芯和 Nb 丝拢放在一起，使 Nb 丝尽量相互接触搭接，如图 5 所示。并用细 Cu 丝将搭接
在一起的 Nb 丝绑扎固定。然后使用化学镀镍或电镀沉积方式将接头的超导体多芯线 Nb
丝镀上 Cu-Sn 合金镀层，Cu-Sn 合金镀层将不同的超导体多芯线的 Nb 丝连接为一体。再对
Cu-Sn 合金镀层的接头进行清洗和烘干处理，彻底清除接头上的镍液或氧化物杂质层。将清
洗干净的接头由内向外依次套上纯 Nb 管和纯 Cu 管，纯 Nb 管和纯 Cu 管的宽度均为 0.5 至 2.0
毫米，纯 Nb 管和纯 Cu 管的宽度略长于超导体多芯线腐蚀露出的 Nb 丝的长度，纯 Nb 管和纯
Cu 管的一端长于 Nb 丝端部，另一端长于 Nb 丝根部。将纯 Cu 管和纯 Nb 管压扁压紧，使夹层
有 Cu-Sn 合金镀层的 Nb 丝紧密镶嵌在 Nb 管和 Cu 管内，防止 Nb 丝在纯 Cu 管和纯 Nb 管内
部发生移动，图 6 所示为热处理前的青铜工艺 Nb₃Sn 超导体多芯线接头结构示意图。将接
头整体外面包裹耐高温绝缘材料，并固定安装在线圈指定位置，最后接头随其所在的 Nb₃Sn
线圈并置于热处理炉中进行扩散热处理。在线圈中的青铜-Nb 丝多芯机械复合层通过固
态扩散生成具备超导性能的 Nb₃Sn 化合物层的同时，接头中的 Nb 丝与 Cu-Sn 合金镀层反应，
通过固态扩散生成具备超导性能的 Nb₃Sn 超导化合物层。热处理温度为 650 至 690℃，保温时
间是 100 至 190 小时，热处理后温度要求控制在 60℃左右。接头的热处理温度、保温时间和热
处理气密性与接头所在的 Nb₃Sn 线圈的热处理温度、保温时间和热处理气密性相同。Nb₃Sn 超导
化合物层相互连接，能够接合不同超导体多芯线，从而实现接头的超导化连接。

【0038】其中耐高温绝缘材料可以为无碱玻璃丝纤维布。

【0039】实施方式 1：本实施方式中，待连接的青铜工艺 Nb₃Sn 超导体多芯线的外径为 0.9
毫米，单根 Nb 丝直径 4.5 微米。先使用浓硝酸将待连接的两根青铜工艺 Nb₃Sn 超导体多
芯线的端部的青铜基体腐蚀掉，露出纯 Nb 丝部分，露出 Nb 丝长度 30 毫米。对接头部位的
Nb 丝进行清洗和烘干。然后将超导体多芯线的 Nb 丝部分放在一起，使两线的 Nb 丝尽量相
互搭接，并用细 Cu 丝绑扎固定。再将接头进行电镀沉积 Cu-Sn 合金层处理，电镀沉积电解
液的成分配比为：SnCl₂•2H₂O —— 40 克/升，NaF —— 30 克/升，N(CH₃COOH)₂——20 克/升，
CuSO₄•5H₂O——30 克/升，EDTA——45 克/升，柠檬酸——10 克/升，聚氧乙烯脂肪
酸 —— 2 克/升，去离子水 —— 余量，PH = 5.5。电镀沉积过程中，将表面积相同的纯锡板
和纯 Cu 板作为阳极，将接头部位作为阴极，通过电流密度 0.1 至 0.6A/dm² 的直流电流电
镀沉积。温度要求 30℃±2℃。随后对接头电镀沉积部位采用化学纯酒精溶液进行清洗和
烘干。然后将接头从内至外分别套上纯 Nb 管和纯 Cu 管，Nb 管内径 3.5 毫米，壁厚 0.5 毫米，
长 40 毫米；Cu 管内径 4.5 毫米，壁厚 0.5 毫米，长 40 毫米。纯 Nb 管和纯 Cu 管对齐覆盖整
个接头部分，纯 Nb 管和纯 Cu 管的两端比 Nb 丝各长出 5 毫米。采用液压机将纯 Nb 管和纯
Cu 管压紧变形，使沉积有 Cu-Sn 合金镀层的 Nb 丝固定镶嵌在 Nb 管和 Cu 管内，使接头部位
封闭结实，并在接头外层包覆无碱玻璃丝纤维布，固定在磁体线圈规定位置。随后接头随
线圈一起放入热处理炉中进行扩散热处理。热处理温度 650℃，保温时间 190 小时，真空热
处理，真空度 10^{-3} Pa。热处理完毕后缓慢冷却到室温。超导接头制备完毕。经试验测试，接
头电阻为 9×10^{-12} 欧姆。

【0040】实施方式 2：本实施方式中，待连接的铜杆工艺 Nb$_3$Sn 超导体多芯线的直径均为
0.7 毫米，单根 Nb 丝直径 4.5 微米。先使用浓硝酸将待连接的两根铜杆工艺 Nb$_3$Sn 超导体
多芯线的端部的铜杆基体部分腐蚀掉，露出纯 Nb 丝部分，露出 Nb 丝长度 40 毫米。对接头
部位的 Nb 丝进行清洗和烘干。然后将超导体多芯线的 Nb 丝部分拢在一起，使两根Nb$_3$Sn
超导体多芯线的 Nb 丝尽量相互搭接，并用细 Cu 丝绑扎固定。再将接头进行化学镀沉积 Cu–Sn
合金层处理，化学镀沉积电解液的成分配置为：SnCl$_2$·2H$_2$O——30 克 / 升，NaF——30 克 / 升，
N(CH$_2$COOH)$_3$——25 克 / 升，CuSO$_4$·5H$_2$O——20 克 / 升，EDTA——25 克 / 升，柠檬酸——
7 克 / 升，聚乙烯脂肪酸——1 克 / 升，去离子水——余量，PH = 4。化学镀沉积温度要求
30℃ ±2℃。随后对接头化学镀沉积部位采用纯酒精溶液进行清洗和烘干。再将接头从内
至外分别套上纯 Nb 管和纯 Cu 管，Nb 管内径 3 毫米，壁厚 2 毫米，长 50 毫米；Cu 管内径 7 毫
米，壁厚 2 毫米，长 50 毫米。纯 Nb 管和纯 Cu 管对齐覆盖整个接头部分，采用液压钳将纯 Nb
管和纯 Cu 管压紧变形，使沉积有 Cu–Sn 合金镀层的 Nb 丝紧密镶嵌在 Nb 管和 Cu 管内，使接
头部位封闭结实，并将接头外层包裹无碱玻璃丝纤维布后，固定在磁体线圈规定位置。随后
接头随线圈一并放入热处理炉中进行扩散热处理。热处理温度 690℃，保温时间 100 小时，
热处理气氛为流动氩气，流量 0.1 ~ 0.2 升 / 分钟。热处理完毕后缓慢冷却到室温。超导
接头制备完毕。经试验测试，接头电阻为 8×10^{-12} 欧姆。
图 1

图 2

图 3