(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. Januar 2001 (18.01.2001)

PCT

WO 01/03674 A1

(51) Internationale Patentklassifikation?: A61K 9/20, 9/46

(21) Internationales Aktenzeichen: PCT/EP00/05938

(22) Internationales Anmeldedatum: 27. Juni 2000 (27.06.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 31 708.9 8. Juli 1999 (08.07.1999) DE

(72) Erfinder; und

Veröffentlicht:
— Mit internationalen Recherchebericht.
— Vor Ablauf der für Änderungen der Ansprüche geltenden Frist, Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweitbuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING QUICKLY DECOMPOSABLE SOLID PHARMACEUTICAL PREPARATIONS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG SCHNELL ZERFALLENDER, FESTER PHARMAZEUTISCHER ZUBEHÖRTEILE

(57) Abstract: The invention relates to quickly decomposable compositions containing at least one pharmaceutical active ingredient and at least one adjuvant, obtainable by means of a simple method wherein at least the greater part of the total mass of the constituents of the preparation which is to be produced is granulated, the granulate thus obtained and, optionally, the rest of the constituents are shaped in the presence of liquid at almost no pressure and the shaped bodies thus obtained are dried.

(57) Zusammenfassung: Schnell zerfllende Zubereitungen enthaltend mindestens einen pharmazeutischen Wirkstoff und mindestens einen Hilfsstoff lassen sich durch ein einfaches Verfahren erhalten, wonach man mindestens den überwiegenden Teil der Gesamtmasse der Inhaltsstoffe für die herzustellende Zubereitung granuliert, das erhaltene Granulat und gegebenenfalls den Rest der Inhaltsstoffe in Gegenwart von Flüssigkeit nahezu drucklos formt und die erhaltenen Formkörper trocknet.
Verfahren zur Herstellung schnell zerfallender, fester pharmazeutischer Zubereitungen

Die Erfindung betrifft ein Verfahren zur Herstellung in wässrigen Flüssigkeiten (wie z.B. Wasser, Speichel) schnell zerfallender fester Zubereitungen enthaltend pharmazeutischen Wirkstoff.

Brausezubereitungen wie Brausepulver und Brausetabletten sind bei Wirkstoffen mit langer Resorptionszeit und/oder mit eingeschränkter Magenverträglichkeit eine Formulierungsform, die nachteilige Wirkstoffeigenschaften deutlich verbessern kann. Arzneimittel enthaltende Brausezubereitungen erfreuen sich deshalb steigender Beliebtheit. Es wäre daher wünschenswert, dass die zu findende Problemlösung auch auf pharmazeutische Brausezubereitungen anwendbar ist.

Die gewünschten pharmazeutischen Zubereitungen sollten auch die Eigenschaften der einzelnen Wirkstoffe, wie etwa die häufig anzutreffende Wasserempfindlichkeit,
gebührend berücksichtigen. Selbstverständlich sollte die zu findende Problemlösung zu mechanisch stabilen Formulierungen (geringer Abrieb, hohe Bruch- und Druckfestigkeit) führen, die ohne weiteres verpackt und unter üblichen Bedingungen gelagert und befördert werden können.

Es hat vielfältige Versuche gegeben, dieses Ziel zu erreichen:

Aus der JP-A 08291051 ist ein Verfahren zur Tablettenherstellung bekannt, wonach die Wirkstoffe, wasserlösliches Bindemittel und wasserlöslicher Füllstoff zunächst unter sehr geringem Druck tablettiert werden; dann werden die erhaltenen Tabletten befeuchtet und anschließend getrocknet.

Aus EP-PS 548 356 sind Zerfallmittel und/oder Quellmittel oder lösliche Substanzen enthaltende Tabletten bekannt, wobei der (schlecht schmeckende) Wirkstoff multi-
partikulär ist und in Form umhüllter Mikrokristalle oder eines umhüllten Mikrogranulats vorliegt.

Die EP-A 553 777 beschreibt ein Verfahren zur Herstellung poröser, schnell zerfallender Tabletten, wonach man ein Wirkstoff und Kohlenhydrat enthaltendes Granulat mit Wasser befeuchtet, daraus eine Tablette formt und diese trocknet. Die Auflösungszeiten (im Mund) liegen zwischen 0.2 und 1.5 Minuten.

Aus der US-PS 2 926 121 ist ein Verfahren zur Herstellung medizinischer Bonbons bekannt, wonach man einer hochkonzentrierten wässrigen Aluminiumhydroxid-Suspension Zucker zufügt, zu der resultierenden Mischung ein festes Schutzkolloid gibt, die Mischung homogenisiert und Luft einbringt und die erhaltene pastöse Masse ohne Wärmeeinwirkung bei Raumtemperatur trocknen läßt.

Die WO 98/29137 beschreibt schnell zerfallende Tabletten, die eine feste Dispersion eines schwerlöslichen Wirkstoffs in einem gelbildenden wasserlöslichen Polymer umfassen und ein Alkalisalz einer schwachen Säure oder einer starken Säure mit einer endothermen Standardlösungsenthalpie oder Lösungswärme enthalten.

Aus der WO 98/46215 ist eine Technologie bekannt, wonach man auf Granulation verzichtet und die Wirkstoffe und eine Matrix enthaltend einen nicht direkt komprimierbaren Füllstoff ("a non-direct compression filler"), z.B. Mannitol, und ein Gleitmittel zu Tabletten verpreßt. Die Tabletten sollen im Mund rasch zerkleinern und dabei ein minimales "Sandgefühl" verursachen.

Weiterhin ist bekannt, dass Saccharosekristalle geringfügig angefeuchtet werden (Restfeuchte unter 2 Gew.-%) und nach Verdichtung unter hohem Druck getrocknet werden, wobei sich poröse, aber stabile Formkörper ergeben.

Die genannten Verfahren sind entweder technisch aufwendig oder führen zu Produkten, die nicht die erwarteten kurzen Zerfallzeiten aufweisen oder die eine zu geringe mechanische Stabilität besitzen, so dass zum Schutz vor Beschädigung teilweise sogar spezielle Verpackungstechniken vorgeschlagen werden. Während also die bekannten Verfahren in der Regel Teillösungen für bestimmte Probleme anbieten, fehlt bislang ein wirtschaftliches Verfahren für Zubereitungen, die allen oben genannten Anforderungen in hohem Maße gerecht werden.

Überraschenderweise wurde nun gefunden, dass sich die gestellte Aufgabe durch ein technisch sehr einfaches Verfahren lösen läßt.

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Zubereitungen enthaltend A) mindestens einen pharmazeutischen Wirkstoff und B) mindestens einen Hilfsstoff, aber – bis auf einen gegebenenfalls vorhandenen Brausesatz - kein Sprengmittel, wonach man mindestens den überwiegenden Teil der Gesamtmasse der Inhaltsstoffe für die herzustellende Zubereitung granuliert, das erhaltene Granulat
und gegebenenfalls den Rest der Inhaltsstoffe in Gegenwart von 2.5 bis 15 Gew.-% Flüssigkeit C), bezogen auf die Summe von festen Inhaltsstoffen und Flüssigkeit, vorzugsweise Wasser, Ethanol und/oder Isopropanol, unter einem Druck von bis zu 100, vorzugsweise 0.1 bis 50, insbesondere 1 bis 20 N/cm² mit einem Verdichtungsgrad von 30 bis 80 %, bezogen auf feuchte zu formende Gesamtmasse, formt und die erhaltenen Formkörper trocknet.

Die mechanische Stabilität der erfindungsgemäß erhaltenen Zubereitungen ermöglicht problemlos Transport, Lagerung und Handhabung.

Der Begriff „Wirkstoff“ im Sinne dieser Erfindung umfaßt pharmazeutische Wirkstoffe im engeren Sinn, d.h. vorzugsweise nicht Lebensmittel (wie z.B. Milchprodukte) und Vitamine nur in pharmazeutischer Dosierung.

Bevorzugte Wirkstoffe A) für die erfindungsgemäß herzustellenden Zubereitungen sind beispielsweise

- Analgetika wie Ibuprofen, Ketoprofen, Paracetamol, Acetylsalicylsäure, COX2-Hemmer wie Nimesulid, Meloxicam, Naproxen, Propyphenazon, Metamizol,
- Antacida wie Hydrotalcid, Magaldrat, Calciumcarbonat,
- Antiasthmatica/Broncholytika wie Salbutamol, Tulobuterol, Terbutalin, Cromoglycinsäure, Ketotifen, Theophyllin,
- Antibiotika wie Chinolone, Tetracycline, Cephalosporine, Penicilline, Makrolide, Sulfonamide, Polypeptide,
- Psychopharmaka wie Benzodiazepine, Haloperidol, Anitiptyllin, Carbamazepin,
- Antirheumatika wie Phenylbutazon, Indometacin, Diclofenac, Piroxicam,
- Antidiabetika wie Metformin, Glibenclamid, Acarbose, Glisoxepid,
- Antiallergika/Antihistaminiaka wie Astemizol, Terfenadin, Loratadin, Clemastin, Bamipin, Cetirizin,
- Antihypotonika wie Etilefrin, Norfenefrin, Dihydroergotaminmesilat,
- Antitusssiva wie Codein, Dextromethorphan, Clobutinol, Doprampizin,
- Antihypertonika wie Betablocker wie Propanolol, Atenolol, Metoprolol, Prazosin,
- Antihypertonika wie Calciumantagonisten wie Nifedipin, Nitrendipin, Diltiazem, Verapamil, Felodipin, Nimodipin,
- Laxantia wie Natriumpicosulfat, Lactulose, Lactitol,
- Mucolytica/Expectorantia wie Ambroxol, Bromhexin, Guaifenesin, Acetylcystein, Carbocystein,
- H₂-Blocker wie Ranitidin, Famotidin, Pirenzepin,
- Lokalanaestetika wie Benzocain, Lidocain, Procain,
- Antiemetika/Prokinetika wie Metoclopramid, Domperidon, Meclozim, Dimenhydrinat,
- Lipidsenker wie Fenofibrat, Bezafibrat, Pravastatin, Fluvastatin,
- gegen Migräne wirksame Mittel wie Coffein, Dihydroergotamin, Ergotamin, Sumatriptan, Pizotifen,
- Sympathomimetika wie Pseudoephdrin, Pholedrin,
- Vitamine und Mineralien.
Bei an sich schwerlöslichen Wirkstoffen A) ist es generell von Vorteil, wenn man die Wirkstoffe A) in wasserlösliche Salze überführt. Bevorzugte wasserlösliche ASS-Salze umfassen ASS-Lysinat und ASS-Arginat.

Weitere Inhaltsstoffe umfassen

- Trägerstoffe, wie Monosaccharide, beispielsweise Glucose, Oligosaccharide, beispielsweise Saccharose, Polysaccharide, beispielsweise Malto-dextrin und Polyole, beispielsweise Mannitol und Sorbitol,
- Bindemittel wie Glykokoll, Maltodextrin, Polyvinylalkohol, Polyvinylpyrrolidon, Vinylalkohol/Vinylpyrrolidon-Copolymerisate, Polyethylenglykol, Ethylenoxid/Propylenoxid-Mischether, Celluloseether, vorzugsweise Hydroxypropylycellulose,
- Netzmittel wie Di-octyl-natrium-sulfosuccinat, Natriumlaurylsulfat,
- Schmiermittel wie Polyethylenglykol, Dinatriumnfumarat,
- Füllmittel wie hochdisperses Siliciumdioxid,
- Vitamine und
- andere pharmazeutische Hilfsmittel entsprechend den Spezifikationen der Arzneimittel-Handbücher.

Die Hilfsstoffe B) sind vorzugsweise wasserlöslich. „Wasserlöslich“ in diesem Sinne bedeutet eine Löschlichkeit in Wasser (20°C) von mindestens 10, vorzugsweise mindestens 30 und insbesondere mindestens 40 g/100 ml Wasser. Ein besonders bevorzugter Hilfsstoff B) ist Maltodextrin.

Weiterhin umfassen die Hilfsstoffe B) den für Brausezubereitungen notwendigen Brausesatz enthaltend (i) CO₂-Spender und (ii) saure Komponente.

Bevorzugte CO₂-Spender (i) umfassen Alkali- und Erdalkalicarbonate und -hydrogencarbonate, insbesondere Natrium- und Kaliumcarbonat und -hydrogencarbonat sowie Magnesium- und Calciumcarbonat.
Als saure Komponente (ii), die der Freisetzung von Kohlendioxid aus dem CO₂-Spender (i) dient, eignen sich alle physiologisch unbedenklichen Säuren (sogenannte „Genußsäuren“), die stark genug sind, Kohlendioxid aus der Komponente (i) freizusetzen; solche Säuren besitzen einen ersten Gleichgewichtsexponenten pKs von 1 bis 7, vorzugsweise von 2 bis 6 (bei 25°C). Bevorzugte saure Komponenten (ii) umfassen Ascorbinsäure und mehrbasische Carbonsäuren mit 3 bis 8, vorzugsweise 4 bis 6, C-Atomen und 2 bis 4 Carboxylgruppen pro Molekül, wie z.B. Vitamin C, Äpfelsäure, Citronensäure, Weinsäure und deren Mischungen. Weitere bevorzugte saure Komponenten (ii) umfassen die sauren Salze der oben genannten mehrbasischen Säuren.

Der Brausesatz enthält vorzugsweise 30 bis 70 Gew.-% CO₂-Spender (i) und 70 bis 30 Gew.-% saure Komponente (ii), jeweils bezogen auf die Summe der Komponenten (i) und (ii).

Der Begriff „Sprengmittel“ umfaßt insbesondere die sogenannten „super disintegrants“; dazu gehören a) vernetztes Polyvinylpyrrolidon, das normalerweise in Mengen von 2 bis 5 Gew.-%, bezogen auf fertigen Formkörper, eingesetzt wird; b) vernetzte Carboxymethylcellulose („cross ceramellose-sodium“), die in der Regel in Mengen von 2 bis 5 Gew.-%, bezogen auf fertigen Formkörper, eingesetzt wird; c)
vernetzte Stärke, die im allgemeinen in Mengen von 2 bis 10 Gew.-% eingesetzt wird; und d) niedrig substituierte Hydroxypropylcellulose (L-HPC), die normalerweise in Mengen von 2 bis 5 Gew.-%, bezogen auf fertigen Formkörper, eingesetzt wird.

Nach einer besonderen Ausführungsform enthalten die erfindungsgemäß hergestellten Zubereitungen weniger als 3 Gew.-%, bezogen auf fertigen Formkörper, quellbare Bindemittel. „Quellbare Bindemittel“ in diesem Sinne sind vor allem natürliche Stärken, nicht aber nicht-quellende wasserlösliche Stärken.

Eine besonders bevorzugte erfindungsgemäß erhältliche Zubereitung enthält einen Brausesatz sowie A) Acetylsalicylsäure und/oder Ibuprofen bzw. deren wasserlösliche Salze und B) Maltodextrin und/oder Mannitol.

Wasser ist die bevorzugteste Flüssigkeit C). Als bevorzugte Flüssigkeit C) kommen auch Ethanol und Isopropanol sowie sämtliche denkbaren Mischungen, die aus mindestens zwei Gliedern der Gruppe Wasser, Ethanol und Isopropanol hergestellt werden können, in Frage.

Die für die Granulierung einzusetzenden Primärteilchen sollen möglichst klein und, falls möglich, amorph sein. Die Primärteilchengröße der Wirkstoffe kann innerhalb weiter Grenzen schwanken, wird aber meistens zwischen 100 und 600, vorzugsweise 150 und 500, insbesondere unterhalb 250 μm liegen. Die Granulierung kann auf an sich bekannte Weise auf Granuliertellern, in Granuliertrommeln, in der Wirbelschicht oder durch Vibration erfolgen. Ein besonders poröses Granulat kann man durch Vorreaktion des Brausesatzes mit Wasser erhalten.

Die Gleichmäßigkeit und die Geschwindigkeit des Zerfalls der erfindungsgemäß hergestellten Zubereitungen werden durch eine enge Teilchengrößenverteilung des Granulats gefördert. Der bevorzugte mittlere Teilchengendurchmesser \(d_{50} \) beträgt 500 bis 900 μm, wobei \(d_{50} \) der Teilchengendurchmesser ist, oberhalb und unterhalb dessen
jeweils 50 Gew.-% der Teilchen liegen. Der Teilchendurchmesser \(d_{10} - d_{90} \) liegt vorzugsweise im Bereich von 300 bis 1300, insbesondere von 500 bis 1000 \(\mu m \). Weil kugelförmiges Granulat ein Optimum an Porosität und Zahl möglicher Kontaktstellen bietet, sind kugelförmige und nahezu kugelförmige Granulate bevorzugt; eine enge Teilchengrößenverteilung ist besonders bevorzugt.

Die erfindungsgemäß zu verwendende Flüssigkeit C) kann vor, während oder nach der Granulation zugesetzt werden. Da die Flüssigkeit C) bei der Verformung während des erfindungsgemäßen Verfahrens als Gleitmittel wirkt, kann auf andere Gleitmittel verzichtet werden.

Man kann unerwünscht große Agglomerate durch Sieben, z.B. durch Zwangssiebung, entfernen. Die Siebmaschenweite kann innerhalb weiter Grenzen schwanken; sie beträgt in der Regel 0.5 bis 2.0 mm, bevorzugt 0.8 bis 1.5 mm.

Die Restfeuchte der Masse vor der Formgebung kann 2.5 bis 15, vorzugsweise 5 bis 10 Gew.-\%, bezogen auf die Summe von festen Inhaltsstoffen und Flüssigkeit, betragen. Sie kann mit einer Trockenwaage, z.B. mit einem Gerät MA 40 der Firma Sartorius, bei 50°C bestimmt werden. Eventuell vorhandenes Kristallwasser soll bei der Feuchtebestimmung nicht berücksichtigt werden.

Die Schüttdichte des Granulats beträgt im allgemeinen 0.5 bis 1.8, vorzugsweise 0.7 bis 1.5 g/cm³.

Die Porosität des Granulats kann 0.3 bis 0.7, vorzugsweise 0.4 bis 0.6, betragen.

Die Formgebung kann beispielsweise auf Tablettiermaschinen erfolgen (Um unerwünschtes Haften der Zubereitungen am Werkzeug zu vermeiden, kann das Werkzeug mit Polytetrafluorethylen beschichtet sein, da das Werkzeug nur geringen Kräften ausgesetzt wird). Bei Tablettiermaschinen und Formkompaktoren empfiehlt es sich, die geformten Zubereitungen nach unten auszuwerfen.
Das erfindungsgemäße Verfahren erlaubt den Verzicht auf sogenannte Schmier- oder Formtrennmittel. Falls dennoch solche Mittel eingesetzt werden sollen, kommt man mit sehr geringen Mengen, wie z.B. 0.001 bis 0.2, vorzugsweise 0.03 bis 0.1, Gew.-%, bezogen auf feuchte Masse vor der Formgebung, aus.

Durch das Verdichten des Granulats in feuchter Form wird die zur Formgebung erforderliche Arbeit auf ein Minimum reduziert. Bei der Formgebung sollte ein Minimum an angewandtem Druck angestrebt werden.

Bei der Formgebung hat sich ein Verdichtungsgrad von 30 bis 80, vorzugsweise 55 bis 70, insbesondere 60 bis 65 %, bezogen auf Schüttichte (feucht) vor der Formgebung, bewährt. Als Bezug für den Verdichtungsgrad kann die Höhe des geschütteten Materials in der Matrise dienen.

Die wahre Dichte der erfindungsgemäß erhältlichen Zubereitungen (wird aus Probeneinwaage und in Helium bestimmtem Volumen (Vergleichsgaspyknometern, z.B. Ultrapyknometern der Fa. Quantachrome) errechnet) beträgt im allgemeinen 0.7 bis 2.5, vorzugsweise 1.5 bis 1.8 g/cm³. Die scheinbare Dichte (Bestimmung des Hülle-volumens in Quecksilber (z.B. mit einem Pascal 440 Porosimeter der Firma Carlo Erba) wird aus Probeneinwaage und Tablettenvolumen (=Feststoffvolumen + Porenvolumen) berechnet) der getrockneten erfindungsgemäß hergestellten Zubereitungen kann 0.2 bis 1.8, vorzugsweise 0.5 bis 1.5 g/cm³, ihre Porosität (Quotient aus Porenvolumen und Tablettenvolumen) 0.2 bis 0.8, vorzugsweise 0.4 bis 0.7, insbesondere 0.5 bis 0.7 betragen.

20 bis 50 °C zu guten Ergebnissen. Beispielsweise ist die Umlufttrocknung bei 40°C für die meisten Wirkstoffe unproblematisch. Die Trocknungszeiten können 10 Minuten bis 6 Stunden, vorzugsweise 0.5 bis 4 Stunden betragen. Bei Bedarf kann der Trocknung ein Kühlungsschritt nachgeschaltet werden.

Die Bruchfestigkeit der erfindungsgemäß hergestellten Zubereitungen erreicht Werte von 10 bis 110, vorzugsweise 20 bis 50 N/cm², bestimmt im Bruchfestigkeits tester Typ 2E/205 der Firma Schleuniger/Schweiz. Dabei wird die vom Meßinstrument angezeigte Kraft auf die Bruchfläche der idealerweise in der Mitte brechenden Tablette bezogen.; bei einer runden Tablette mit einem Durchmesser von 20 mm und einer Höhe von 7 mm (Bruchfläche 140 mm² = 1.4 cm²) ergibt sich also bei einer angezeigten Kraft von 140 N eine Bruchfestigkeit von 140 : 1.4 = 100 N/cm².

Sofern Wirk- bzw. Hilfsstoffe hygroskopisch, luft- oder lichtempfindlich sind, ist dies bei der Art der Verpackung zu berücksichtigen.

Da der rasche Zerfall und die schnelle Freisetzung schon mit geringen Flüssigkeits- mengen stattfinden, sind die erfindungsgemäß hergestellten Zubereitungen auch für perorale oder rektale Applikation geeignet.

Die Prozentangaben der nachfolgenden Beispiele beziehen sich jeweils auf das Gewicht; Teile sind Gewichtsteile.
Beispiele

Beispiel 1
2 g - Brauseformulierung mit 500 mg Wirkstoff Acetylsalicylsäure (ASS)

A. Zusammensetzung und Herstellung

21.0 Teile Natriumhydrogencarbonat,
37.0 Teile Natriumdihydrogencitrat,
29.4 Teile Maltodextrin (DE 19), \(\text{DE} = \text{Dextrose-Äquivalentwert} \)
29.4 Teile Acetylsalicylsäure und
0.8 Teile Orangentrockenaroma.

2000 g einer trockenen Mischung dieser Substanzen wurden 15 Minuten lang vermischt. Die erhaltene Mischung wurde unter Rollieren auf einem Granulierteller nacheinander mit insgesamt 150 ml demineralisiertem Wasser von Raumtemperatur fein besprüht; das erhaltene Granulat wurde anschließend durch ein Sieb der Maschenweite 1.0 mm gestrichen, um große Agglomerate zu entfernen.

Das feuchte Granulat wurde dann einer Tablettermaschine zugeführt, deren Form mit Polytetrafluorethylen beschichtet war. Der maximale Preßdruck betrug 64 N/cm², die Verdichtung 62 %. Die ausgeworfenen Tabletten (Durchmesser 20mm, Höhe 7 mm) wurden anschließend in einem Umluft-Trockenschrank bei 38°C 3 Stunden lang getrocknet. Danach wiesen die Tabletten eine Druckfestigkeit, gemessen im Bruchfestigkeitstester Typ 2E/205 der Firma Schleuniger/Schweiz, von 0.25 kg/cm² auf.

B. Zerfall- und Freisetzungstest in 150 ml Wasser/20°C

Die Tablette sinkt sofort zu Boden, wobei sie vollständig durchfeuchtet wird. Innerhalb von 2 bis 5 sec beobachtet man spontanen Zerfall unter Kohlendioxid-Entwick-
lung, wobei durch den Zerfall entstandene Tablettenreste zur Oberfläche getrieben werden. Nach 10 bis 20 sec, gemessen vom Einbringen der Tablette in das Wasser, ist die Auflösung der Tabletteninhaltsstoffe beendet.

Beispiel 2

2.0 g - Formulierung mit Wirkstoff 500 mg ASS-Lysinat (ohne Brausesatz)

Zusammensetzung

10

49.0 Teile Natriumcitrat
60.0 Teile Isomaltitol
90.0 Teile ASS-Lysinat
1.0 Teil Orangentrockenaroma

Beispiel 3

1.6 g – Brauseformulierung mit 200 mg Wirkstoff Ibuprofen-Lysinat

Zusammensetzung:

20

21.0 Teile Natriumhydrogencarbonat
37.0 Teile Natriumdihydrogencitrat
33.7 Teile Mannitol
25.1 Teile Ibuprofen-Lysinat
0.8 Teile Orangentrockenaroma

25
Beispiel 4

2 g – Brauseformulierung mit 600 mg Wirkstoff Acetylcystein

Zusammensetzung:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>21.0 Teile Kaliumhydrogencarbonat</td>
</tr>
<tr>
<td></td>
<td>17.4 Teile Natriumdihydrogencitrat</td>
</tr>
<tr>
<td></td>
<td>19.6 Teile Natriumhydrogenphosphat</td>
</tr>
<tr>
<td></td>
<td>23.5 Teile Maltodextrin (DE 19)</td>
</tr>
<tr>
<td></td>
<td>35.3 Teile Acetylcystein</td>
</tr>
<tr>
<td>10</td>
<td>0.8 Teile Orangentrockenaroma</td>
</tr>
</tbody>
</table>

Beispiel 5

1.5 g – Formulierung mit 50 mg Wirkstoff Diphenhydramin-Hydrochlorid (ohne Brausesatz)

Zusammensetzung:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>39.0 Teile Natriumcitrat</td>
</tr>
<tr>
<td></td>
<td>105.0 Teile Lactose (®Spheronac 100)</td>
</tr>
<tr>
<td></td>
<td>5.0 Teile Diphenhydramin-Hydrochlorid</td>
</tr>
<tr>
<td>20</td>
<td>1.0 Teil Orangentrockenaroma</td>
</tr>
</tbody>
</table>

Beispiel 6

1.5 g – Formulierung mit 500 mg Wirkstoff Metamizol-Natrium-Monohydrat

Zusammensetzung:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>91.0 Teile Maltodextrin</td>
</tr>
<tr>
<td></td>
<td>50.0 Teile Metamizol-Natrium-Monohydrat</td>
</tr>
<tr>
<td></td>
<td>2.5 Teile Aspartam</td>
</tr>
<tr>
<td></td>
<td>2.5 Teile Acesulfam</td>
</tr>
<tr>
<td>30</td>
<td>4.0 Teile Zitronenaroma</td>
</tr>
</tbody>
</table>
Patentansprüche

1. Verfahren zur Herstellung von Zubereitungen enthaltend A) mindestens einen pharmazeutischen Wirkstoff und B) mindestens einen Hilfsstoff, aber - bis auf einen gegebenenfalls vorhandenen Brausesatz - kein Sprengmittel, wonach man mindestens den überwiegenden Teil der Gesamtmasse der Inhaltsstoffe für die herzustellende Zubereitung granuliert, das erhaltene Granulat und gegebenenfalls den Rest der Inhaltsstoffe in Gegenwart von 2.5 bis 15 Gew.-% Flüssigkeit C), bezogen auf die Summe von festen Inhaltsstoffen und Flüssigkeit, unter einem Druck von bis zu 100 N/mm² mit einem Verdichtungsgrad von 30 bis 80 %, bezogen auf feuchte zu formende Gesamtmasse, formt und die erhaltenen Formkörper trocknet.

3. Verfahren nach Anspruch 1, wonach die Hilfsstoffe B) einen Brausesatz enthalten.

4. Verfahren nach Anspruch 1, wonach die Flüssigkeit C) aus der Gruppe Wasser, Ethanol, Isopropanol und deren Mischungen ausgewählt ist.

5. Verfahren nach Anspruch 1, wonach die Teilchengröße des feuchten Granulats vor der Formgebung maximal 2.0 mm beträgt.

6. Verfahren nach Anspruch 1, wonach der während der Formgebung erreichte Verdichtungsgrad 30 bis 80 % beträgt.
7. Verfahren nach Anspruch 1, wonach die Restfeuchte der Formmasse vor der Formgebung 5 bis 10 Gew.-% beträgt.

8. Verfahren nach Anspruch 1, wonach der Druck bei der Formgebung 0.1 bis 50 N/cm² beträgt.

9. Verfahren nach Anspruch 1, wonach die erhaltene Zubereitung eine Porosität von 0.4 bis 0.7 besitzt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC | A61K9/20 | A61K9/46 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC | A61K |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 627 218 A (NIPPON SHINYAKU COMPANY, LIMITED) 7 December 1994 (1994-12-07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, line 40 - page 4, line 22</td>
<td>1, 2, 4, 7, 8</td>
</tr>
<tr>
<td></td>
<td>page 7; example 7</td>
<td>1, 3</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 788 791 A (OTSUKA PHARMACEUTICAL CO., LTD.) 13 August 1997 (1997-08-13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 4, line 37 - line 54</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>page 6 - page 7; example 1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 553 777 A (TAKEOD CHEMICAL INDUSTRIES, LTD.) 4 August 1993 (1993-08-04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cited in the application</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>page 3, line 39 - page 6, line 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7 - page 8; example 1</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the international search

11 December 2000

Date of mailing of the international search report

15/12/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (31-70) 340-2040, Tx. 31 651 epo nl.
Fax (31-70) 340-3016

Authorized officer

Benz, K
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 627218 A</td>
<td>07-12-1994</td>
<td>CA 2130487 A</td>
<td>19-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 627218 T</td>
<td>24-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9309821 A</td>
<td>02-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9309822 A</td>
<td>02-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9315724 A</td>
<td>19-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2650493 B</td>
<td>03-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5837285 A</td>
<td>17-11-1998</td>
</tr>
<tr>
<td>EP 788791 A</td>
<td>13-08-1997</td>
<td>AU 705779 B</td>
<td>03-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6754896 A</td>
<td>27-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2204599 A</td>
<td>13-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1167436 A</td>
<td>10-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9709037 A</td>
<td>13-03-1997</td>
</tr>
<tr>
<td>EP 553777 A</td>
<td>04-08-1993</td>
<td>CA 2088334 A</td>
<td>30-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5271054 A</td>
<td>19-10-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000264836 A</td>
<td>26-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5501861 A</td>
<td>26-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5720974 A</td>
<td>24-02-1998</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 A61K9/20 A61K9/46

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A61K

Rechercherte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, PAJ, EPO-Internal

C. ALS WESENTLICH ANGESIONEHME UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 627 218 A (NIPPON SHINYAKU COMPANY, LIMITED) 7. Dezember 1994 (1994-12-07)</td>
<td>1,2,4,7, 8</td>
</tr>
<tr>
<td></td>
<td>Seite 2, Zeile 40 – Seite 4, Zeile 22</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>Seite 7; Beispiel 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 4, Zeile 37 – Zeile 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 6 – Seite 7; Beispiel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in der Anmeldung erwähnt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 3, Zeile 39 – Seite 6, Zeile 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 7 – Seite 8; Beispiel 1</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

11. Dezember 2000

Absendedatum des internationalen Recherchenberichts

15/12/2000

Name und Postanschrift der Internationalen Rechenbehörde

Europäisches Patentamt, P.B. 5818 Patentaan 2
NL – 2280 HV Parijs
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Benz, K
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentschrift</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 627218 A</td>
<td>07-12-1994</td>
<td>CA 2130487 A</td>
<td>19-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 627218 T</td>
<td>24-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9309821 A</td>
<td>02-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9309822 A</td>
<td>02-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9315724 A</td>
<td>19-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2650493 B</td>
<td>03-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5837285 A</td>
<td>17-11-1998</td>
</tr>
<tr>
<td>EP 788791 A</td>
<td>13-08-1997</td>
<td>AU 705779 B</td>
<td>03-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6754896 A</td>
<td>27-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2204599 A</td>
<td>13-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1167436 A</td>
<td>10-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9709037 A</td>
<td>13-03-1997</td>
</tr>
<tr>
<td>EP 553777 A</td>
<td>04-08-1993</td>
<td>CA 2088334 A</td>
<td>30-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5271054 A</td>
<td>19-10-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000264836 A</td>
<td>26-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5501861 A</td>
<td>26-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5720974 A</td>
<td>24-02-1998</td>
</tr>
</tbody>
</table>