US 20020149792A1

a2 Patent Application Publication o) Pub. No.: US 2002/0149792 Al

a9 United States

Gauthier et al.

43) Pub. Date: Oct. 17, 2002

(549) METHOD AND SYSTEM FOR MERGING
VARIABLE TEXT AND IMAGES INTO
BITMAPS DEFINED BY A PAGE
DESCRIPTION LANGUAGE

(76) TInventors: Forrest P. Gauthier, Maineville, OH
(US); James R. Walker, Maineville,
OH (US)

Correspondence Address:

Attn: David A. Mancino

Taft, Stettinius & Hollister LLP
Suite 1800

425 Walnut Street

Cinncinnati, OH 45202-3957 (US)

(21) Appl. No.: 09/874,895

(22) Filed: Jun. 5, 2001

Related U.S. Application Data

(63) Continuation of application No. 09/291,121, filed on
Apr. 14, 1999, now Pat. No. 6,243,172, which is a
continuation-in-part of application No. 08/896,899,
filed on Jul. 18, 1997, now Pat. No. 5,937,153, which
is a continuation-in-part of application No. 08/373,
582, filed on Jan. 18, 1995, now Pat. No. 5,729,665.

Publication Classification

(51) Int.CL” oo GO6K 15/02; HO4N 1/387
(52) US.CL oo 358/1.18; 358/1.11
(57) ABSTRACT

A computer implemented method includes the steps of: a)
generating a template PDL (page description language)
specification, the template specification including template
data and associated graphic attributes (i.c., graphic states)

defining how the template data is to appear on a printed
page, the template specification including at least one vari-
able data identifier; b) generating a plurality of sub-template
PDL specifications, each sub-template specification includ-
ing sub-template data and associated graphic attributes
defining how the sub-template data is to appear on a portion
of a printed page; ¢) interpreting the template specification
S0 as to generate a template bitmap or a plurality of template
rendering commands (display list), and during the interpret-
ing step, identifying the variable data identifier; d) saving the
template bitmap or the plurality of template rendering com-
mands into memory;) associating the variable data iden-
tifier with the sub-template specifications; f) accessing a first
sub-template specification from the plurality of sub-template
specifications; g) processing the first sub-template specifi-
cation so as to generate a sub-template bitmap or a plurality
of first sub-template rendering commands; h) accessing a
copy of the template bitmap or the plurality of template
rendering commands from memory; i) merging the copy of
the template bitmap or template rendering commands with
the sub-template bitmap or sub-template rendering com-
mands so as to provide a first merged bitmap or first merged
plurality of rendering commands; j) generating a first
merged bitmap from the first merged plurality rendering
commands (if necessary); k) accessing a next sub-template
specification from the plurality of sub-template specifica-
tions; 1) processing the next sub-template specification so as
to generate a next sub-template bitmap or plurality of next
sub-template rendering commands, m) accessing a copy of
the template bitmap or template rendering commands from
memory; n) merging the copy of the template bitmap or
template rendering commands with the next sub-template
bitmap or sub-template rendering commands so as to pro-
vide a next merged bitmap or next plurality of rendering
commands; and o) generating a next merge bitmap from the
next merged plurality of rendering commands, if necessary.
The steps k-o may be repeated, as necessary, to generate a
plurality of merged bitmaps.

Patent Application Publication Oct. 17,2002 Sheet 1 of 8 US 2002/0149792 A1

SO %L C;}[;

{ MRGE FLE | CONFIGLRATION FILE

I~ 18

—_

TEMPLATE PDL .

Floe $OB TEMPLT T
e POL FiLk &

Flo. 1

Patent Application Publication

Oct. 17,2002 Sheet 2 of 8 US 2002/0149792 A1

T APLATE TRSPLA |
TEMPLATE POL FILE 14 TEMPATE
T : R PP cend. candh
73 "'M:x‘fuseﬂ r/ ,,'/-’-,; tond. cnd i~ 25
. e
23¥\\3_5‘ e VALY €7 /‘38 . ,,l FT:K’_C
— - _
26 T Loe yaR2 % TEXT . /
o A
|~ placeholag™ 4 \ 4 5) Iy
! i I
= s for yaz3 4 K NARLYY? /4— I /
E 1 /o
3 / \qﬂr R .
Z ~)
~40 ~4T yé
(& PreTLgE 7 SELEcT /,/
///‘—I/
e
<~/ 38 \/7\ 38
\ \/% 18
40 -~
N)
..<<VARS>7 MORE TeXT
seargmpiaTy B
SuBTERPATE *A” PRL FLY
iaiiied SuB-TEMPLATE SuB-TEMOTE SLB=TEMPUTE
{ *8 st GRATLC STATES RS prseay L13THY
fend. cande]
5. b VARZ
i randhe cwd s | 9 Grova ‘\ 4'0/}\3/ /—

38/

—

1S

27a

CONTROL TASK

Fis. ol

——

-

23

JTb

Patent Application Publication Oct. 17,2002 Sheet 3 of 8 US 2002/0149792 A1

MERGE FILE
VAR yAZ2Z VAZ 3 VAR & PreTLEE
| Lo
Ay ; 2 BAT BALL GLove gASE B
s Smes Pues PASK A
b HooP BALL shogs A
1 CLus BALL BAG CART 3
/ |
/
/ <
i Zz
i
/ [|
/ TEMPAATE Brishay MEZGED BIT-MAF
]' Ls™
f en~d e /‘\ e S—Z
; end. emds T b e ExT »
!’ r(/\[ﬁw ‘MJ». ——y NSO
i vend . Cmdl | et FSD
1 S >
| lL "~ ‘;;-(’/) ®
‘l il \\"'«..
| ") . 48
\ TEMPLATE GRATRIC /? \ ~
GCTATES CAGRT S& O
s, for NARL e . »
s for YARZ — ’ - P
N SLa- TEMALATE - -
MORE TEX
MGLO\)E S

lde ~ T
‘Plaag‘a VAZ 3] DISPLAY LAST "8~
g »5. or
19

[
\

el cmd,

——E—

SUB-TEMPLATE "4

CRAPING STATES
CACN T

9-5. fr VARG A

MEZLE ThsX

6. 2

Patent Application Publication Oct. 17,2002 Sheet 4 of 8 US 2002/0149792 A1

[MergeFiles] ~¥
merge ~ 1%

[merge]~18
FilePath = c:/class/mrgfiles/mydata04.mrg
MergeType = delimited
MergeHeader = yes
RecordDelimiter = "\r\n" ~\7
FieldDelimiter = "\t"

[PageDescriptionLanguageFile] ~ ©@©
letter_master — @2
all maps ~ &4

[letter master] ~ ¢

FilePath = c:/class/psfiles/dirmail4.ps
[all maps] ~ ©& _
FilePath = c:/class/psfiles/maps4.ps
10 L SubTemplate = true :
Vs Templates = South, East, West, Midwest

12

fle.4

Patent Application Publication

Snsan
Tharles

ey

mot iy
} o Eleanor
[easricis
Hark
' Raacr
Lomma

Mniel

JELEEINN

S
Rodger
Lnaiiter

“awnll
uiisan
Sl

Himmgian
facratls
Tawlia.
foigarsen
Stevens
ce

“renna

P e
Goaffaa
TN
Pasis

Slosyer:

=co e vnen
ecrars
ratmet
Peynnten
P brame
Mkt ebam
Gre o

Jeerdan

et
n

ns

ne

Hins

e

e
ez
L)
Ammager

Azcount Manager

M Pysources

Fresidenc

Presideat
Vica President

Santer Pactnes

Direcion
Pezident

Paaager
oo

Searar Partuer

Msnager

President

Sales anager

amer

Manager

rresuent
President

Ranagec

mistailaay L

Company
Ruodgees Recrealion
Clhondle: & Son

Chuck Trcarporated
Ceuteryiiie Nelf
General fomn
Excellence Ink
Clobm! Fala (€ator
Campball First Trust
Great lood Store
ffatterson Pel Cace
llerman Butlder Supply
vance Valve Company
Janco I

Wapwatedl Auto Shog
xeller Cabicics Center
Walgon & Walton
incredible loy Store
Kuny s Construction
Washiinglon Lale
Kramee's Killen Care
Hemotiis Fride
Bl s Shell
Holoamls g Flon e
Vielaiy House
Deere & Guitfin
Anderson's Pory Kegy
Davis Company

TL faox ank

Clyde's cate

Morgan Frinting

Geoss L Stanton
Braun‘s Beauty Shop
Haurkis & Company
Alailama Sawings & Loan
Bell & Whiatie

Shipp Woildwide
Jackson el Ski
fowden Makery

oY1y Arena

Damonte Grocery
Hadison Cazette

Games Extraordinaire
Ml & lube

Garden Cencer

wicker wotlil

Rockgurd Quick Print
Rite Tire Center
Archiitecis of Cmaho
thuveesal Tempy

fioll vos jad

Fie.S

addiess

$98 Gimbie Way

117 Angel Street

711 Steeplechase Lane
200 Cast 1ra

9812 Pepper Hill

64 Los Lane

296 Norchgare Drive
1104 Sunnyview Lane
427 larcington Arive
$441 Jarrison Court
405k Colemere Carcle
7611 Caskleton Place
3155 Glenmore Ave
315 Garden Ave

SU3 Sunraise Ave.
6839 TreeRidge Diive
3904 Cleander Court
62 Nottingham Read
B1L Carlisle Road
4867 Cherrywood lane
958 wilwington Dike
2749 redford Street
2047 Gatland Ave

134 Broacway Strect
6902 Clifton Drive
3673 Beaumont Ave
618 Kiriwood Drave
8732 Aulnirn Ave

629 woodgreen Drive
34 Riversade Drive
#84 Pattersen Blvd
49267 21gGer Road

810 Clyo Ave

5270 Rahin Road

267 Marshsll streer
2956 Stroop Ave.
6248 Shrayer Blvd.
9218 David noal

6219 Dorothy Lane
193 Springboro Pike
9278 Alexardria Rd.
1234 Danbury Road
7234 Carters Grove
4268 Blanchester Lane
$612 lilllendaia Cr.
2103 Wslout Creek o,
4187 Kountain Mesdows Ct
92)4 Eastgate Drive
29 Joseph Place
9RE26 Danmister $truct

2p
45429-0011
93003-84G5
lo13G-2703
15459-2958
45010-3G13
22192-973)
10236-2744
95008-78)6
15068-2454
66208-7511
20874-4902
08731-2724
67218-9537
94541-2829
80027-1824
23302-3101
44109-1549
867:2-38M
58020-2381
16695-1243
3B137-B245
97204-2872
$0322-824%
92026-1347
97401-8245
60093-3246
85014-9136
95104-2408
TL080-5783
98104-5683
94¢03-R186
785)4-9827
17374-473%
351319348
24612-4591
634357417
06912-392T7
62435-2920
24583-5128
283542343
72354-2437
24578-0243
24570-7335
20346-8912
56270-5213
12034-522%
49772-357%
26546~8134
50501-7637
34293-9181

Oct. 17,2002 Sheet 5 of 8

1egion
Midwest
West
Seuth
Michvent
Hidwest
East
Sauth
wesL
Midwest
Mighvest
cast
East
Midwest
Hunt
wWest

wes
Sautnr
Hadwest
West
Hicost
West
west
Hzdwest
est
est
SauLh
est
west
Hidwest
South
South
Migwest
South
gasc
west
#ast
East
Hiduest
East
Hidwest
eastc
Hidwest
Hidwest
Hidwest
Midwest
Hidwest
Soutl

US 2002/0149792 A1

ey

Ketles iy
Ventuea
Buluth
Cepiervilie
Hason
woodbr 1 dye
Janesboro
Cangitse1d
wayneaville
Peairie Village
Germantawn
Forked River
wWichita
Hayware!
Super 1or
Alexandria
Axeon
"Nucson
Erbaardz
Bobite
Hepliis
Porylard
Des Hounes
Esconchido
Cugene
Notthiaeld
Phoenix
Cupertina
RAichardson
Seattle
San Hateo
Lexington
arlamlo
Briwanghan
Flint

Lake Chartes
Tranlon
olymna

e seigepor t
Wiite Platns
Hadigson
winchester

Qnatia NE
FL. Dadge 2
Vinseo [2)

EZXRSBCREETRDS

2z

CEBNISEE0FECE2AR0EN0RESS

Patent Application Publication Oct. 17,2002 Sheet 6 of 8 US 2002/0149792 A1

15

Thanks so much!

’ f0a ’ 80b
<<fname>> <<Iname>>
80c ~—- <<company>>
Pdd—" <<address>>
<<city>>‘ <<state>> <<zip>>
(((

40 e 30§ 2 j
4 I3 Bol
Dear <<prefix>> <<lname>> Ve 60)
Thank you for visiting Vans and your interest in VariScript. As a printer in the <<region>>, you are undoubtecly
in search of new ways to reduce your total job development time. Recent marketing phenorpena in printing
requires more frequent changes in the layout than ever befare The result is the increased importance of
keeping presentation (static fayout} and data separate so those rapid changes can be accomplished
Varis Corporation has a soiution that will enable you to achieve these goals. f 80\'(

Is this new system compatible with my current pre-press equipment and format, and is it avaiiable in <<city>>?

These are probably your first questions. The answer to both is yes! The VariScript suite of products can be
eastly incorporated within your current pre-press equipment, and <<city>> is at the top of our list for our next
product deivery! s gol

Remember that a key advantage of VariScript is the abiiity to make last-minute changes in text, graphics,
layout or data. Pre-flight information conceming your job's components is given to you via the Operator
Display Terminal (ODT) before you pface your printer on-line. This gives you better controf over production
schedules and ensures on-time customer deliveries.

With 2 minimal capitat investment,
VariScript offers you the
opportunity to reduce your cost of
operation, optimize the use of your
staff and equipment, and provide
additional services to your
company.

Many of our customers are
reporting astounding
irmprovements in their preductiont

We look forward to talking with you me
about how the sutte of VariScript
products can help you achieve '/
<<company>>'s goals.
) <<region>> select
<
pon L

L. b

Patent Application Publication Oct. 17,2002 Sheet 7 of 8 US 2002/0149792 A1

Patent Application Publication Oct. 17,2002 Sheet 8 of 8 US 2002/0149792 A1

Thanks so much!

/g%a , @Bb
(ﬁ)c, Shannon Janszen
~ Golf World

88d - 08626 Bannister Street
Venice, FL 34293-9183

({ N
e et By

) .
I ¢ ~ 8B
Dear Ms Janszen ’ 3y

Thank you for visiting Vans and your interest (n VanScript As a printer in the South, you are undoubtedly
1n search of new ways ta reduce your total job development tme Recent marketing phenomena i printing
requires more frequent changes in the layout than ever before. The result 15 the (ncreased importance of
keeping presentation (static layout) and data separate so those rapid changes can be accompiished.

Varis Corporation has a sofution that will enable you to achieve these goals (%ﬁ‘(

Is this new system compatible with my current pre-press equipment and farmat, and is it available in Venice?

These are probably your first questions. The answer to both is yes! The VanScript suite of products can be
easily incorporated within your current pre-press equipment, and Venice is at the top of our list for our next
product delivery! C 861

Remember that a key advantage of VariSdript is the ability to make last-minute changes in text, graphics,
fayout or data. Pre-flight information concerning your job’s components is given to you via the Operator
Display Terminal (OOT) before you place your printer on-line. This gives you better control over production
schedules and ensures on-time customer deliveries. T

With a minimal capital investment, .

VariSeript offers you the 8% m

opportunity to reduce your cost of {

cperation, optimize the use of your

staff and equipment, and provide
additional services to your
company.

e £

TRAINING

Many of our customers are
reporting astounding
improvements in their production?

We look farward to talking with you
about how the suite of VariScript
products can help you achieve
Golf World's goals.

(%9’\

US 2002/0149792 A1l

METHOD AND SYSTEM FOR MERGING
VARIABLE TEXT AND IMAGES INTO BITMAPS
DEFINED BY A PAGE DESCRIPTION LANGUAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present patent application is a Continuation-
In-Part of U.S. patent application Ser. No. 08/896,899, filed
Jan. 18, 1997; which is a Continuation-In-Part of U.S. patent
application Ser. No. 08/373,582, filed Jan. 18, 1995 and
issued as U.S. Pat. No. 5,729,665.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to the high-speed
printing industry, and more particularly, to a system and
method for merging variable data and images into a template
image defined by a page description language file in a high
speed printing environment.

[0003] Application programs, such as wordprocessors,
illustrators, and computer aided design systems are software
packages used to create a document (text and graphics) on
a computer screen and to simultaneously generate a page
description language (“PDL”) specification, which is to be
transferred to the printer, or to any other type of raster device
or output device for creating a hard copy or copies of the
document. Alternatively a PDL specification can be gener-
ated by a programmer without the assistance of an applica-
tion program.

[0004] The printer executes the PDL specification to gen-
erate a bitmap of the document, or a raster-data representa-
tion of a document, and eventually transfers the bitmap or
raster-data to a physical medium such as paper. A typical
PDL language, such as PostScript (a registered trademark of
Adobe Corporation) defines a page of the document as
containing a number of data areas, where each data area
contains either graphic or alpha-numeric data. Each data
area is defined by a “graphic state,” which is a collection of
parameters or attributes for controlling the representation
and appearance of text and graphics. For example, the
graphic state can include a set of text attributes such as scale
factor, type font, etc. In postscript an example of a PDL
command used to build a graphic state can be:

[0005] 20 rotate/Times-Roman findfont 14 scalefont
setfont

[0006] Examples of PDL commands used to define the
graphic or alpha-numeric data that is displayed in the data
area include:

[0007] 0 0 moveto and (ABC) show

[0008] The entire group of PDL commands used to define
a document is hereinafter referred to as the “PDL specifi-
cation.” Furthermore, the entire graphic state, or any par-
ticular attribute or combination of attributes included in a
graphic state, or any similar attribute contained in a PDL
specification for defining or controlling the representation,
location and/or appearance of text and graphics in a final
bitmap or raster image is hereinafter referred to as “graphic
attributes.”

[0009] In variable data printing each printed document
shares a common template and there is at least one area in
the template that changes for each printing of the template.

Oct. 17, 2002

Typical PDL languages are not designed for high-speed
variable data printing because, with PDL languages and
interpreters, even if a single item of data in the document
changes, an entirely new PDL specification must be created
and interpreted. For example, if 100,000 copies of a mass
mailing advertisement were to be printed (i.e., each copy of
which is identical except for the mailing address) it is
typically necessary to generate a new PDL specification for
each copy to be printed. Hence, to generate 100,000 adver-
tisements, it would be necessary to generate 100,000 PDL
specifications, even though each advertisement is virtually
the same except for the variable data area. The processing
time required to interpret and render 100,000 PDL specifi-
cations is enormous, significantly slowing the entire printing
system.

[0010] Furthermore, typical PDL languages do not include
the capability of rapidly merging variable images or bitmaps
(such as company logos, coupons, charts, and the like) along
with variable text data into the template bitmaps. Accord-
ingly, there is a need for a high-speed printing operation
having the ability to merge variable data (which includes
variable text data and bitmap images) into a template defined
by a PDL specification.

SUMMARY OF THE INVENTION

[0011] Ttis an object of the present invention to provide as
system and method for merging variable text and bitmap
images into a PDL specification in high-speed printing
operation. It is a further object of the present invention to
provide the ability to generate a plurality of merged bitmaps,
which are each essentially a copy of the template, except for
at least one portion of the template into which the variable
data has been merged. In this portion, each merged bitmap
can contain a different set of variable data merged into it.
The template is defined by a PDL specification, and this
template specification only needs to be processed or inter-
preted once before creating all of the merged bitmaps, thus
providing an extremely high-speed variable data printing
operation. The variable images to be merged into the tem-
plate may also be defined by “sub-template” PDL specifi-
cations, which also need only be processed or interpreted
once. Such sub-template specifications may also allow for
variable data or images to be merged into them as well,
before being merged into the primary template.

[0012] A computer implemented method for merging vari-
able data into an image defined by page description language
specification (“PDL specification”), according to the present
invention, generally comprises the steps of: processing
(interpreting) the template PDL specification to produce a
template; processing the sub-template specification (defin-
ing the variable bitmap image) to produce a sub-template;
identifying a variable data identifier in the template speci-
fication; associating the sub-template with the variable data
identifier; and merging the sub-template into a copy of a
template to generate a merged bitmap.

[0013] More specifically, a computer implemented
method of the present invention comprises the steps of: a)
generating a template PDL specification, the template speci-
fication including template data and associated graphic
attributes (i.e., graphic states) defining how the template
data is to appear on a printed page, the template specification
including at least one variable data identifier; b) generating

US 2002/0149792 A1l

a plurality of sub-template PDL specifications, each sub-
template specification including sub-template data and asso-
ciated graphic attributes defining how the sub-template data
is to appear on a portion of a printed page; c) interpreting the
template specification so as to generate a template bitmap or
a plurality of template rendering commands (display list),
and during the interpreting step, identifying the variable data
identifier; d) saving the template bitmap or the plurality of
template rendering commands into memory; e) associating
the variable data identifier with the sub-template specifica-
tions; f) accessing a first sub-template specification from the
plurality of sub-template specifications; g) processing the
first sub-template specification so as to generate a sub-
template bitmap or a plurality of first sub-template rendering
commands; h) accessing a copy of the template bitmap or the
plurality of template rendering commands from memory; 1)
merging the copy of the template bitmap or template ren-
dering commands with the sub-template bitmap or sub-
template rendering commands so as to provide a first merged
bitmap or first merged plurality of rendering commands; j)
generating a first merged bitmap from the first merged
plurality rendering commands (if necessary); k) accessing a
next sub-template specification from the plurality of sub-
template specifications; 1) processing the next sub-template
specification so as to generate a next sub-template bitmap or
plurality of next sub-template rendering commands, m)
accessing a copy of the template bitmap or template ren-
dering commands from memory; n) merging the copy of the
template bitmap or template rendering commands with the
next sub-template bitmap or sub-template rendering com-
mands so as to provide a next merged bitmap or next
plurality of rendering commands; and o) generating a next
merge bitmap from the next merged plurality of rendering
commands, if necessary. The steps k-o may be repeated, as
necessary, to generate a plurality of merged bitmaps.

[0014] The method of the present invention is accom-
plished by executing a control task in conjunction with a
PDL interpreter program. The control task generates a
template display list based upon the PDL commands in the
PDL specification. The display list includes a plurality of
rendering commands, where each rendering command des-
ignates a particular data area or object to be rendered, the
graphic states to be applied to the data area and the offset
address at which the rendered object, if any, in the data area
is to be over written onto the final bitmap. The graphic states
for each data area re set forth in the PDL specification, and
pertain to the print attributes that describe how particular
graphic or alpha-numeric data is to appear on the printed
page. These attributes can include size, font, position, ori-
entation, location and the like. The control task also gener-
ates display lists for each of the sub-template PDL specifi-
cations.

[0015] The control task, during the PDL interpretation
procedures, monitors the data areas defined by the PDL
specifications to watch for variable data identifiers defined
by the PDL code. If the control task identifies a data area or
object as being (or including) a variable data identifier, it
reserves the graphic states associated with that variable data
identifier in a cache and continues on with the interpretation
procedure, preferably without adding the rendering com-
mands for that variable data area into the display list. In this
identification step, the control task will also watch for
attributes associated with the variable data identifier. Such
attributes may define the variable data identifier as identi-

Oct. 17, 2002

fying a sub-template bitmap, which is to be merged into the
bitmap represented by the PDL specification. If the inter-
preter detects such an attribute, rather than saving off the
graphic states associated with this variable data area, the
control task will instead store a “place holder” in the graphic
states cache corresponding to the sub-template PDL speci-
fication identified in the variable data identifier string. In
certain embodiments of the invention, the control task may
include certain graphic attributes associated with the vari-
able data identifier in the cache, along with the place holder,
such as a graphic attribute defining the location of the
variable data identifier (which may be used to determine
where to merge the sub-template bitmap into the template
bitmap).

[0016] Once the interpreter program completes its inter-
pretation of the PDL specifications, the control task saves
each display list in memory without dispatching a bitmap of
the template or sub-template to the printer. Subsequently, the
merge task is initiated which accesses a copy of the template
display list from memory and begins processing the render-
ing commands in the display list to create a bitmap of the
template. Also, the merge task accesses a variable data
record from a merge file; associates the variable data record
to the graphic states in the cache and creates bitmaps for the
data in the variable data record by applying the reserved
graphics states to the data in the variable data record these
bitmaps may be merged into the template bitmap or rendered
directly onto the template bitmap during, before, or after the
rendering of the template bitmap. When the merge task
reaches the place holder in the cache associated with the
sub-template display list, the merge task will access and
begin processing the rendering commands in the sub-tem-
plate display list to create a bitmap of the sub-template,
which is then merged onto the template bitmap. When
finished with the rendering commands of the sub-template
display list, the merge task will return to the processing of
the variable data record by applying the reserved graphic
states thereto and merging the resulting bitmaps into the
template bitmap. The merge task is repeated for each vari-
able data record in the merge file to create a plurality of the
merged bitmaps.

[0017] Therefore, the PDL specifications of the template
and sub-templates need only be interpreted once, saving
significant processing time for the variable printing opera-
tion, because the reserved graphic states may be utilized
over and over again to create the variable bitmaps for each
variable data record contained in the merge file. Similarly
the display lists of the templates and sub-templates may be
used over and over again to create the multiple merged
bitmaps.

[0018] In its simplest form a sub-template is a collection
of graphic states or graphic attributes taken from another
source (such as a PDL specification) and used collectively as
a variable element inserted into a template PDL page. The
sub-templates may be used to add variable graphics/logos,
or other static images to a page; to add formatted pieces
(such as graphs, charts, images, etc.), including any number
of additional variable fields to a page, a page of variable
coupons directly marketed to the end receiver, and the like.
The sub-template is really just another PDL page used as an
element drawn somewhere on another page. For example,
one coulde have a PDL page that had a company logo drawn
on it. One could then use that logo on demand whenever a

US 2002/0149792 A1l

printed page calls for it. Taken further, one could have
several different logos, each drawn as a separate PDL page,
which one could add (or not) to any page printed during the
processing job.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is a schematic, block diagram representa-
tion of a high-speed printing system according to the present
invention;

[0020] FIG. 2 is a schematic flow diagram illustrating the
method of the control task according to the present inven-
tion;

[0021] FIG. 3 is a schematic flow diagram representing
the method of the merge task according to the present
invention;

[0022] FIG. 4 is an example of a job ticket file for use with
the present invention;

[0023] FIG. 5 is an example of a merge file for use with
the present invention;

[0024] FIG. 6 is an example of a sub-template file for use
with the present invention.

[0025] FIG. 7 is an example of a template file for use with
the present invention; and

[0026] FIG. 8 is an example of a merged page created by
the process of the present invention using the PDL specifi-
cation of FIG. 7, the job ticket of FIG. 4, the sub-template
specifications of FIG. 6 and the merge file of FIG. 5.

DETAILED DESCRIPTION

[0027] As shown in FIG. 1, a system for performing the
method of the present invention includes a printer controller
10 having access to a job ticket file 12 a page description
language (“PDL”) file of a template 14, a plurality of PDL
files for sub-templates 15, a source of variable data such as
a merge file 16 and an optional printer configuration file 18.
The system also contains an operator control terminal 20 for
providing operator controls such as indicating the name and
path of the job ticket file 12 for the specific print job.

[0028] The job ticket file 12 contains the guidelines for the
print job which can include the names and locations of the
PDL files 14, 15, the merge files 16, the configuration files
18, etc.; and may also include special instructions pertaining
to the print job such as identifying and locating sub-tem-
plates, defining additional graphical attributes for variable
data areas identified during the process, and the like, all of
which is described in greater detail below. The PDL files 14,
15 are preferably PostScript® specifications created by an
application program such as a wordprocessor, illustrator, or
computer aided design system. The merge file 16 contains
platform independent data, such as text data, image data,
bar-code data and the like, which is to merged into a
template bitmap defined by the PDL template specification
14 or the PDL sub-template specifications 15 during the
merging task, as will be described in detail below. The
configuration file 18, defines the print engines and the post
processing equipment and other options to be executed.

[0029] Initially, the path and name of the job ticket file 12
is specified by the operator using the operator control
terminal 20. The printer controller 10 retrieves the job ticket

Oct. 17, 2002

file 12 and then retrieves the PDL files 14, 15 specified in the
job ticket file. Next, the controller 10 initiates a control task
22 in conjunction with a page description language inter-
preter program.

[0030] The control task 22 interprets the PDL specifica-
tions from the PDL files 14, 15 and monitors data areas
defined in the PDL specifications to watch areas defined by
the specifications to become variable. If the control task
identifies a data area as being a variable data area, it reserves
the graphic states and/or other associated graphic attributes
23 of that variable data area in a cache or memory 24 and
then moves on to the next data area defined by the particular
PDL specification, usually without allowing any data
defined by the variable data area to be added to the template
bitmap. The control task also looks for predetermined
attributes defined in the data areas to determine if the data
area is defining the importation of a sub-template bitmap. If
the control task detects such an attribute, rather than storing
the graphic states associated with the data area in the cache
24, it stores a placeholder 23' in memory, which will instruct
the merge task that a sub-template is to be incorporated into
the present template or sub-template bitmap during the
merge task 28, and will also include information identifying
the one or a group of the sub-templates that may be merged
into the present template or sub-template bitmap. Once the
control task completes its processing of the particular PDL
specification, the control task saves the template display list
25 or sub-template display list 27 in memory 26. The
template and sub-template display lists 25, 27 will include a
plurality of rendering commands for the static data defined
in their respective PDL specifications. Each rendering com-
mand designates a particular static data area or object to be
rendered, the graphic states and/or graphic attributes to be
applied to the static data area and the offset address at which
the rendered object, if any, in the static data area is to be over
written onto the final bitmap.

[0031] Next, a merge task 28, having access to the variable
data records 17 from the merge file 16 is executed to apply
the reserved graphic states and/or graphic attributes 23 to the
variable data records 17, creating rendering commands for
that variable data record as defined by the graphic states. The
merge task 28 retrieves a copy 25' of the template display list
from the memory 26 and merges the variable data rendering
commands with the template display list to create a merged
display list 30. The merge task will also look for place
holders 23' among the graphic states stored in the memory
24 during this merging operation. If a place holder 23' is
detected, the merge task will access a copy 27 of the display
list of the sub-template corresponding to the place holder
and will then merge the rendering commands from the
display list of the sub-template 27" with the merged display
list 30. It is noted that the sub-template may also include an
associated cache of graphic states and/or graphic attributes
corresponding to variable data areas (or even additional
levels of sub-templates) defined within the sub-template.
Therefore, if such a cache is present with a particular
sub-template, the merge task will apply such stored graphic
states and/or graphic attributes to the present variable data
fields in the variable data record 17 linked to the graphic
states to therefore create rendering commands for such
variable data fields. These rendering commands are also
merged into the display list 30.

US 2002/0149792 A1l

[0032] Once the merged display list 30 is created, the
controller 10 performs a rendering task 32 to render the
merged display list 30 into a plurality of bitmap bands 34 for
dispatching to at least one print engine 36. A general method
for performing the above control task is described in U.S.
Pat. No. 5,729,665, the disclosure which is incorporated
herein by reference. A method and system architecture for
performing the above merging, banding and dispatching
operations are respectively described in U.S. Pat. Nos.
5,594,860 and 5,796,930, the disclosures of which are also
incorporated herein by reference.

[0033] As shown in FIG. 2, a graphical flow diagram
representation of the control task is illustrated. As discussed
above, the primary function of the control task is to monitor
a PDL interpreter program which interprets the PDL speci-
fications for the template (14) and the sub-templates 15 to
create display lists 25, 27, containing the rendering com-
mands for the static data in the PDL specifications, and a
cache of graphic states and/or graphic attributes correspond-
ing to the variable data areas identified by the PDL speci-
fications. While the PDL specifications are typically in the
form of a list of PDL commands (as described above) the
specifications 14, 15a and 15b shown in FIG. 2 are shown,
for clarity, as they would have appeared to the artist using
the application program (such as QuarkXPress®) to create
such PDL specifications.

[0034] As shown in FIG. 2 the template PDL file 14
includes a plurality of static data areas 38 and a plurality of
variable data areas 40. The variable data areas are identified
by the control task as a text string surrounded by special
characters, “<<” and “>>". The phrase or word within the
special characters corresponds to the field name for the
particular variable data area. These strings may also be
followed by an attribute command string 42, which may
define special attributes to be applied to the particular
variable data area. With respect to the template PDL file
shown in FIG. 2, the variable data identifier with the field
name “PICTURE” is followed by the attribute command
string “SELECT”, which, as will be discussed below,
informs the control task that the particular variable data area
corresponds to the insertion of a sub-template.

[0035] As discussed above, the rendering commands for
the static data areas 38 in the template PDL file are stored in
a template display list 25 and the graphic states 23 of the
variable data areas 40 are stored in a cache 24. As also
discussed above, and as will be discussed in detail below, the
graphic state stored in the cache for the variable data area
having the “select” attribute string is merely a place holder
23", which will instruct the merge file to insert a sub-
template bit map into the template bit map being rendered.

[0036] The control task will also interpret the sub-template
PDL files 15a, 15b, shown as sub-template “A” and sub-
template “B” in FIG. 2. Sub-template “A”15a includes two
static data areas 38, and therefore a sub-template display list
27a is created for the sub-template “A” PDL file, including
the rendering commands for such static data areas. The
sub-template “B” PDL file 15b includes a static data area 38
and a variable data arca 40. Therefore, the control task will
create a sub-template display list 27b, including the render-
ing command for the static data area and will cache the
graphic states 23' for the variable data area. It is noted here
that the variable data identifiers in the sub-template PDL

Oct. 17, 2002

specifications may also include attribute strings for special
processing, such as specifying additional levels of sub-
template files. For the purposes of simplicity, the present
example is shown with only one level of sub-templates.

[0037] As shown in FIG. 3, the merge task will access a
copy 25' of the template display list and will also access a
first record 46 from the merge file 16. Note that the first
record has record fields, in the form of text strings, for each
of the field names VAR1, VAR2, VAR3 and VAR4. For the
field name PICTURE, the record includes a name (in this
example either A or B) corresponding to the sub-template to
be inserted for the variable data identifier having the field
name “PICTURE.” The merge task accesses the rendering
commands from the copy of the template display list 25' to
add to a merged display list 30. Such rendering commands
will be processed by the rendering task 32 to generate the bit
maps 48 for the static data areas from the template PDL
specification 14 to appear in the merged bitmap 52. The
merge task will link the cached graphic states 23 to the to the
record fields by matching the field names associated with the
cached graphic state to the field names in the merge file. For
example, the cached graphic states for the variable data
identifier 40 having the field name “VAR1” will be linked to
the record fields in the merge file under the field name
“VAR1.” Once linked, the merge task will apply the graphic
states 23 to the data in the associated record field to create
rendering commands for such data, which are to merged into
the merged display list 30. Such rendering commands will
be processed by the rendering task 32 to generate the bit
maps 50 in the merged bitmap 52. This is done for each of
the graphic states in the cache.

[0038] When the merge task reaches the place holder 23'
in the template graphic states cache, it will link the place
holder 23' to the to the record fields by matching the field
name associated with the the place holder 23' to a field name
in the merge file. For example, the he place holder 23' for the
variable data identifier 40 having the field name “PIC-
TURE” will be linked to the record fields in the merge file
under the field name “PICTURE.” The field name in the
record will identify which of the sub-templates to merge into
the merged display list 30 and eventually into the merged
bitmap 52. Because the merge record 46 indicates that the
sub-template “B” is to be used, the merge task accesses the
sub-template display list 44b and merges its rendering
commands into the merged display list 30. Such rendering
commands will be processed by the rendering task 32 to
generate the bit maps 54 in the merged bitmap 52. The merge
task also accesses the associated cache of graphic states for
the sub-template, and applies the graphic states to the record
fields linked to the graphic states so as to generate rendering
commands for the data of the record fields that are to be
merged into the merged display list 30. Such rendering
commands will be processed by the rendering task 32 to
generate the bit maps 56 in the merged bitmap 52.

[0039] Note that if this sub-template “B” included a fur-
ther level of sub-templates, the cache graphic states for the
sub-template would also include a place holder, and the
merge task would access the sub-templates associated with
this place holder for another level of sub-template process-
ing.

[0040] The final merged big map 52 includes the static
data bitmaps 48 defined by the template PDL file 14, the

US 2002/0149792 A1l

static data bitmaps 54 defined by the sub-template “B” PDL
file 15b, the variable data bitmaps 50 having the graphic
attributes corresponding to the cached graphic states for the
variable data identifiers 40 in the template PDL file 50, and
the variable data bitmaps 56 having the graphic attributes
corresponding to the cached graphic states for the variable
data identifiers 40 in the sub-template “B” PDL file 15b. The
location of the bit maps 54, 56 from the sub-template “B”
PDL specification can be defined by the job ticket file (see
the Appendix to this disclosure). Furthermore, it is within
the scope of the invention to include a graphic state or
graphic attribute with the place holder that corresponds to
the location of the variable data identifier (this graphic
attribute may also include other information such as orien-
tation, size, etc.). This additional graphic attribute may be
stored with the place holder and applied to the bit map data
from the sub-template file during the merging operation. For
example, a graphic state corresponding to the location of the
variable data identifier having the attribute 42 corresponding
to the sub-template may be stored with the place holder in
the graphic state cache to direct the merge task to place the
bit maps from the sub-template in the merge bit map 52 in
the location directed by the stored graphic state.

[0041] An embodiment of the present invention is illus-
trated by way of example in FIGS. 4-8. As illustrated in FIG.
4, the job ticket file 12 contains a group header 60“[Page-
DescriptionLanguageFile]” indicating that the phrases
below that group header 60 are the names of page descrip-
tion language files to be processed by the control task. In the
present example, there are two page description language
files: a file “letter_master”62 and a file “all_maps”64. The
job ticket file 12 includes a group header 66“[letter_mas-
ter],” under which are defined the location and attributes for
that PDL file. Note that with this PDL file no attributes are
defined and only the path location for the file is indicated.
Another group header “[all_maps]” defines the path and
attributes for the all_maps PDL file. Note that an attribute
string 70“SubTemplate=true” indicates that this file is a
sub-template file and the attribute string 72“Templates=
South, East, West, Midwest” indicates that the file includes
four sub-templates, named South, East, West and Midwest.

[0042] The job ticket also includes a group header 74%
[MergeFiles]” identifying the names of the merge files to be
used in the merge task. In the present case a single merge file
is named “merge.” Below that, a group header 78“[merge]”
is given, under which the attributes and location of the merge
file is set forth. The attribute strings for this merge file
indicate that the merge file is delimited and includes merge
headers. The attribute strings also indicate that the records
are delimited by a carriage-return/line-feed character and the
particular fields in each record are delimited by a tab
character. A complete description of the different attributes
that can be defined for the PDL files is described in detail in
the Appendix below.

[0043] As illustrated in FIG. 5, the merge file 16 has a
platform-independent data file that contains the “variable”
data to be merged into the path defined in the PDL speci-
fication, and also includes names associated with the sub-
templates to be merged into the PDL specification during the
merge task. The merge file in the present example includes
a plurality of rows of merge records separated by carriage-
return/line space characters, where each record includes the
following fields: “fname,”“lname,”“prefix,”“title,”“com-

Oct. 17, 2002

236¢

pany,”“address,”“zip,”“region,”“city” and “state.” As will
be described below, the data in the field “region” doubles as
variable data and also as a name of a sub-template to be
merged into the final bit maps.

[0044] As illustrated in FIG. 6, the designer will utilize an
application program to create a document containing static
data and variable data identifiers. The application program
will then be directed to create a PDL specification of the
document by the designer. The variable data identifiers 80
each include a field name surrounded by special characters,
“<<” and “ >>", and may also include an attribute string 82
following the field name and special characters. The
attribute string will be described below. The PDL specifi-
cation generated by the application program will include the
graphic states of the variable data identifiers 80. These
graphic states can include the font size (i.e., 12 point), the
type-font (i.e., Helvetica), the orientation (i.e., horizontal),
the location such as x and y coordinates, and the like. As
discussed above, the control task will create a display list
with the rendering commands for the static data in the PDL
specification and will cache the graphic states for the vari-
able data identifiers without transferring the rendering com-
mands for the variable data identifiers to the display list. The
variable data identifier in the bottom center portion of the
page includes the “select™ attribute, indicating to the control
task that a sub-template bit map is to be inserted into the
document. The field name “region” associated with this
variable data identifier indicates that the sub-template name
will be under the heading “region” in the merge file.

[0045] Referring to FIG. 5, the regions named in the
merge file are South, East, West and Midwest. Therefore,
referring to FIG. 4, the sub-templates having the name
South, East, West and Midwest are found in the PDL file
defined under the “all_maps” group header (68) in the job
ticket. Note that the attributes defined under the “all_maps”
group header do not include an attribute directing the
location of the sub-template. Therefore, the lower left-hand
corner of the sub-template merged into the final document
will be directed by the locational graphic states of the
variable data identifier stored along with the place holder in
the graphic state cache.

[0046] FIG. 7 illustrates the sub-template PDL file 15,
including the four sub-templates: South 844, East 84b, West
84c and Midwest 84d. The merge task will access a variable
data record 86 from the merge file 16 and a copy of the
display list for the template PDL file 25. As discussed above,
the merge task will generate rendering commands for the
variable data records in the merge file by applying the
cached graphic states linked to the variable data records.
These rendering commands will be merged into the merged
display list along with the rendering commands from the
display list for the template PDL file. The merge task will
also merge the rendering commands from the display list of
the sub-template named by the variable data records into the
merged display list. The rendering task will process the
rendering commands in the merged display list to generate
the final merged bit map for the present variable data record
86. This bit map appears in FIG. 8.

[0047] Referring to FIGS. 5, 6 and 8, the merge task will
apply the cached graphic states linked to the variable data
fields in the variable data record 86 as follows. The first
graphic state in the cache will be for the first variable data

29¢¢ 236¢

US 2002/0149792 A1l

identifier 80a. The field name for this variable data identifier
80 is “fname,” which in the particular variable data record,
corresponds to “Shannon.” Therefore, the final merged bit
map will include a bit map of the text, “Shannon”88a,
having the graphic states for the variable data identifier 80a.
Likewise, the second cached graphic state will be for the
variable data identifier 805 which includes a field name
“lname,” corresponding to the term “Janzen” in the particu-
lar variable data record 86. Therefore, the final merged bit
map will include a bit map of the text, “Janzen”88b, -15
having the graphic states for the variable data identifier 80b.
Correspondingly, the remaining graphic states, except for
those of variable data identifier 88m, which is the variable
data identifier including the sub-template attribute 82, will
be processed in the same way resulting in bit maps 88¢c-88n
in the merged bitmap.

[0048] When the merge task reaches the place holder in
the graphic state cache associated with the variable data
identifier 80m, it will refer to the merge record for the name
of the sub-template under the field name “Region,” which in
the present example is “South.” Referring to FIG. 7, the
sub-template having the name “South” is sub-template 84a.
Accordingly, the merge file will then merge the rendering
commands from the display list of the sub-template 844 into
the merged display list. Some or all of these rendering
commands will also be modified by a graphic attribute
corresponding to the location that the sub-template is to be
merged into the merged bit map. As discussed above, this

Oct. 17, 2002

graphic attribute may be taken from the graphic state of the
variable data identifier 80m or may be defined in the job
ticket file.

[0049] The present invention also provides for the flowing
of sub-templates into a path defined by the template speci-
fication. Such a feature is based upon the invention disclosed
in U.S. patent application Ser. No. 08/897,467, filed Jul. 18,
1997. Specifically, the feature includes the steps of: associ-
ating a path defined by the template PDL specification with
the variable data identifier with the “sub-template™ attribute
string; and merging the sub-template(s) into the path accord-
ing to the path boundary and according to a predefined flow
rule (as will be defined in the job ticket). The path may be
associated with the attribute string, for example, by having
the PDL. command for the path immediately follow the PDL
command for the attribute string in the PDL specification, or
by having the PDL. command for the path “grouped” with
the PDL. command for the attribute string using a GROUP
command provided by the application program.

[0050] The following Appendix provides a preferred com-
pilation of commands and parameter definitions that can be
specified in the job ticket file 12 for the sub-template
application as described above. Each entry provides a par-
ticular command header, the syntax for the command, any
relevant remarks for the use of the command, examples, etc.
As will be appreciated by one of ordinary skill in the art, the
present invention includes any and all additional functions,
features and attributes detailed in the Appendix.

APPENDIX

[PageDescriptionLanguageFile]

Syntax

Remarks

Explanation

Example

Syntax

See Also
Remarks

A group that provides a list of tags which you create to describe
the PDL file(s) to be used in the print job. Each tag will become
a user-defined group to give additional information about a
specific PDL file.
[PageDescriptionLanguageFile]
PDL File Tag A
PDL File Tag B
Required
The number of tags listed equals the number of PDL files that
VariScript is to interpret during the job. Every tag that appears
under this initial [PageDescriptionLanguageFile] group will
become a new group name in succeeding sections of the Job
Ticket.
PDL File Tag A
Create a descriptive name for the first PDL file used in the print
job. This tag is for use within the Job Ticket only and is not used
outside of that context.
PDL File Tag B
Create a descriptive name for the next PDL file used in the print
job. This tag is for use within the Job Ticket only and is not used
outside of that context.
[PageDescriptionLanguageFile]
Cover Form
Contents Form
Letter Form
A user-defined tag name for a group that provides information
about a PDL file and corresponds to a descriptive tag that you
created under the initial [PageDescriptionLanguageFile] group.
[PDL File Tag]
File Path =
<other host access parameters>
<VariScript rendering parameters>
Templates =
Sub Template =
Sub Template Area =
Templates
A separate [PDL File Tag] group is required for each descriptive tag
listed under the initial [PageDescriptionLanguageFile] group.

US 2002/0149792 A1l Oct. 17, 2002

APPENDIX-continued

Case sensitivity of the values that you define depends on the host
operating system.
Explanation [PDL File Tag]
Take the descriptive tag under the initial
[PageDescriptionLanguageFile] group and write it here as a
group name within brackets [].
File Path =
Write the drive, path, and file name for the PDL file being
described. The format of your notation is dependent on your host
computer. See the FilePath element description in Chapter 3.
<other host access parameters>
Define values for any other host access parameter for which the
default value is not accurate for access to this PDL file. See the
element descriptions in Chapter 3.
<VariScript rendering parameters>
Define a value for any VariScript rendering parameter which will
be applied to all of the templates in this specific PDL file. These
elements include PSAnchor, PSLength, PSN Planes,
PSOrientation, PSResX, PSResY, PSRotation, PSScale,
PSScaleX, PSScaleY, PSTranslateX, PSTranslate Y, and
PSWidth. See the element descriptions in Chapter 4.
Applying a VariScript rendering parameter here will override the
definition of the same parameter in the configuration file and in
the [JobSetup] group This definition, in turn, can be overridden
by the definition of the same parameter in the [Template Tag]
group.
Templates =
See the Templates element description.
SubTemplate =
See the Sub Template element description.
SubTemplate Area =
See the Sub Template Area element description.
Example [Cover Form]
File pate = forms/cover.ps
Templates = tempA, tempB, tempC, tempD

TEMPLATES
An element that provides a list of descriptive tags which you
create to represent the names of the templates in a PDL file.
Syntax Templates = Template Tag A, Template Tag B, Template Tag Z
Remarks Templates is an element within the user-defined [PDL File Tag] group.

NOTE: Each descriptive template tag that you create is for use within
the Job Ticket only and is not used outside of that context.

The template tags mustbeuniquewithintheprintjob and must appear in
theorder in which the templates are defined in the PDL file(s). A
template that requires no further definition can be represented by a blank
tag.
Each tag that appears as a parameter of Templates may become a user-
defined group name listed elsewhere in the Job Ticket. The Templates
statement simply lets VariScript know that it is to look for user-defined
groups and then provides the names (tags) of these groups.
Therefore, in theory, a PDL file with ten pages could have up to ten
template tags listed within the Templates element. If any templates need
not be named, the order of templates can be preserved by inserting blank
template tags into the list.

Explanation Template Tag A
Create a descriptive name for the first template in this PDL file. This
tag is for use within the Job Ticket.
Template Tag B
Create a descriptive name for the next template in this PDL file. This
tag is for use within the Job Ticket.

And so on.
Example Templates = tempA, tempB, ,tempD
SUBTEMPLATE

An element that identifies the templates within the specified PDL file as
being subtemplates.

Syntax SubTemplate = {True | False}

Remarks Optional.
A subtemplate is a template or PDL page that is used as an object to be
inserted on another page.
A default value for SubTemplate is False.

Explanation {True | False}
If all (or most) of the templates within the specified PDL ffie are to be
identified as subtemplates, type True.
If all (or most) of the templates within the specified PDL file are NOT
subtemplates, type False.

Example SubTemplate = True

US 2002/0149792 A1l Oct. 17, 2002

APPENDIX-continued

SUBTEMPLATE AREA
An element that assigns a subtemplate name and describes the portion of
a template to be used as a subtemplate.
Syntax SubTemplate Area = Name “<SubName>” X <Units> <Unit
Type>\
Y<Units x Unit Type> Width <Units> <Unit Type>\
Height <Unit> <Unit Type>
See Also SubTemplate
Remarks Optional if SubTemplate = True. Ignored if SubTemplate = False.
This element may be used to specify what part of a template should be
used as a subtemplate and to give that extracted portion a subtemplate
name.
When this element is defined at a PDL file level, the system will
recognize the same extracted portion of each template in the file as being
a subtemplate.
Explanation Name “<SubName>"
This value assigns a specific name to the subtemplate.
Type the word Name followed by a space. For “<SubName>”, type
the name to be assigned to this subtemplate. Enclose the subtemplate
name in double quotation marks (“7).
NOTE: A subtemplate will be known by the official name of the
template, unless it is given another name through the
SubTemplate Area element.
The official template name is defined by the method of highest
precedence. The template name of lowest precedence is the
default system-generated template name, followed by the
template name you physically define on the PDL template. Of
highest precedence is the template name defined using the
NewName element in the [Template Tag] group.
Example: Name “mysubl”
X<Unit> <Unit Type>
This value identifies the subtemplate’s offset, the horizontal distance
between the left side of the template and the area to be extracted.
Type the character X followed by a space. For <Units>, type the
horizontal distance from the template’s left side to the beginning of the
area to be extracted.
An X value of 0 represents a location flush along the left side of the
template. Increasing the value of X locates the area to be extracted the
defined distance to the right.
This value is expressed in unitized format if the unit type is different
from the default unit type defined in the Units element. Possible <Unit
Type> values are:

cm for centimeters
dm for decimeters
dots for dots

ft for feet

in for inch (default value)
m for meters
mils for mils

mm for millimeter
nm for nanometers
pixels for pixels

pts for points
pulses for pulses

yds for yards

The default value for X is 0.

Y <Units> <UnitType>

This value identifies the vertical distance between the bottom of the
template and the area to be extracted.

Type the character Y followed by a space. For <Units>, type the
vertical distance from the bottom of the template to the beginning of the
area to be extracted.

A'Y value of 0 represents a location flush along the bottom of the
template. Increasing the value of Y locates the area to be extracted the
defined distance above the bottom of the template.

The Y value is expressed in unitized format if the unit type is different
from the default unit type defined in the Units element. Possible <Unit
Type> values are listed above.

The default value for Y is O.

Width <Unit> <Unit Type>

This value identifies the width of the portion to be extracted (starting at
the X, Y coordinates).

Type the word Width followed by a space. For <Units>, type the

width of area to be extracted from the template. This measurement is the
X (horizontal) dimension of the area to be extracted.

This default value for Width is equal to the width of the template.

US 2002/0149792 A1l Oct. 17, 2002

APPENDIX-continued

Heights <Units> <Unit Type>
The value identifies the height (length) of the portion to be extracted
(starting at the X, Y coordinates).
Type the word Height followed by a space. For <Units>, type the
height of the area to be extracted from the template. This measurement
is the Y (vertical) dimension of the area to be extracted.
This value is expressed in unitized format if the unit type is different
from the default unit type defined in the Units element. Possible <Unit
Type> values are listed above.
The default value for Height is equal to the width of the template.
Example
[PageDescriptionLanguageFile]
psl
ps2
[ps1]
File Path = /mydir/mypsfile.ps
Templates = temp1, temp2
PSScale = .8
[ps2]
File Path = /mydir/mysubtmp.ps
SubTemplate = True
Templates = temp3, temp4, temp5, temp6
SubTemplate Area - X 1in Y 2in Width 3in Height 4in
This example depicts two PDL files.
File ps1 is a “normal” PDL file containing two “normal” templates
File ps2 is identified as a subtemplate file (SubTemplate = True). The
same area (SubTemplateArea) on each template is ps2 will be defined as
a subtemplate. This area represents a 3-inch wide by 4-inch long portion
starting from 1 inch to the right and 2 inches above the lower left corner
of the template. Since no Name <SubName> value is given, each
subtemplate will take the official name of its template.
[TEMPLATE TAG]
A user-defined tag name for a group that provides information about a
template and corresponds to a descriptive tag that you create within the
Templates element.
Syntax [Template Tag]
<VariScript rendering parameters>
New Name = <Template New Name>
Sub Template =
Sub Template Area =
See Also Templates
Remarks Optional.
A separate [Template Tag] group is required for each descriptive tag
listed in the Templates element which you will identify as a subtemplate
or assign a new template name or a template-level marketing parameter.
Explanation [Template Tag]
Take the descriptive tag within the TempleNames element and write it
here as a group name within brackets [].
<VariScript rendering parameters>
Define a value for any VariScript rendering parameter which will be
applied to this specific template. These elements include PSAnchor,
PSLength, PSNPlanes, PSOrientation, PSResX, PSResY,
PSRotation, PSScale, PSScaleX; PSScale Y, PSTranslater X,
PSTranslate Y, and PSWidth. See the element descriptions in Chapter
4,
A rendering parameter applied within this group has the highest
precedence. It will override the definition of the same parameter in the
configuration file, in the [JobSetup] group, and in the [PDLFileTag]
group.
NewName =
See the NewName element description
SubTemplate =
See the SubTemplate element description.
SubTemplate Area =
See the SubTemplate Area element description.
Example [TempA]
NewName = lotto_ tikt
PSScale = 0.8125
SubTemplate = True
NEWNAME
An element that defines a new name for the specified template. This
new name overrides the system-generated default template name or the
template name that you may have placed directly on this template within
the PDL file.
Syntax NewName = <TemplateNewName>
Remarks Optional.

US 2002/0149792 A1l

APPENDIX-continued

Oct. 17, 2002
10

The template receives its name in one of three ways:

The system automatically generates a default template name.

(lowest precedence)

You can physically name the template when you are working in
your design application (for example, QuarkXPress) before you

output to a PDL file.

You can define a new template name in the Job Ticket within the

NewName element. (highest precedence)

VariScript will recognize only one template name for each template.
Therefore, a template name assigned by using a method of higher
precedence will overwrite a name of lower precedence. For example, a
name defined directly on the template will overwrite the system-
generated default, and, in turn, be overwritten by a name defined using

the NewName element.

The NewName element does NOT have a default value.
<TemplateNewName>

Specify the template’s new name.

Explanation

Example NewName = lotto__tikt
SUBTEMPLATE
An element that identifies this templates as being a subtemplate.
Syntax SubTemplate = {True | False}
Remarks Optional.
A subtemplate is a template or PDL page that is used as an object to be
inserted on another page.
The default value for SubTemplate is False.
Explanation {True | False}
If this template is to be identified as a subtemplate, type True.
If this template is NOT a subtemplate, type False.
Example SubTemplate = True

[0051] While the forms of apparatus and procedure herein
described constitute preferred embodiments of the inven-
tion, it is to be understood that the invention is not limited
to such precise embodiments, and that variations can be
made therein without departing from the scope of the
invention.

What is claimed is:

1. A method for generating a plurality of bitmaps com-
prising the steps of:

(a) generating a template page description language speci-
fication, the template specification including template
data and associated graphic attributes defining how the
template data is to appear on a printed page, the
template specification including at least one variable
data identifier;

(b) generating a plurality of sub-template page description
language specifications, each sub-template specifica-
tion including sub-template data and associated graphic
attributes defining how the sub-template data is to
appear on a portion of a printed page;

(c) interpreting the template specification so as to generate
a plurality of template rendering commands, and during
the interpreting step, identifying the variable data iden-
tifier;

(d) saving the plurality of template rendering commands
into memory;

(e) associating the variable data identifier with the plu-
rality sub-template specifications;

(f) accessing a first sub-template specification from the
plurality of sub-template specifications;

(g) processing the first sub-template specification so as to
generate a plurality of first sub-template rendering
commands;

(h) accessing a copy of the plurality of template rendering
commands from memory;

(1) merging the copy of the plurality of template rendering
commands with the plurality of first sub-template ren-
dering commands so as to provide a first merged
plurality of rendering commands;

(j) generating a first merged bitmap from the first merged
plurality of rendering commands;

(k) accessing a next sub-template specification from the
plurality of sub-template specifications;

(D) processing the next sub-template specification so as to
generate a plurality of first sub-template rendering
commands;

(m) accessing a copy of the plurality of template render-
ing commands from memory;

(n) merging the copy of the plurality of template rendering
commands with the plurality of next sub-template
rendering commands so as to provide a next merged
plurality of rendering commands; and

(0) generating a next merged bitmap from the next merged

plurality of rendering commands.

2. The method of claim 1, wherein steps (k) through (o)
are repeated for the remaining plurality of sub-template
specifications.

3. The method of claim 1, wherein:

the variable data identifier includes a associated graphic
attribute;

US 2002/0149792 A1l

prior to the merging step (i), the graphic attribute asso-
ciated with the variable data identifier is saved to
memory;

the merging step (i) includes the steps of accessing the
graphic attribute associated with the variable data iden-
tifier from memory and applying it to the plurality of
first sub-template rendering commands so that a bitmap
generated by the plurality of first sub-template render-
ing commands will include the graphic attribute asso-
ciated with the variable data identifier; and

the merging step (p) includes the steps of accessing the
graphic attribute associated with the variable data iden-
tifier from memory and applying it to the plurality of
next sub-template rendering commands so that a bit-
map generated by the plurality of next sub-template
rendering commands will include the graphic attribute
associated with the variable data identifier.

4. The method of claim 1, wherein the variable data
identifier includes an associated graphic attribute that is
discarded during the processing step.

5. The method of claim 1, wherein:

wherein the associating step includes the step of referring
to a file containing a name corresponding to at least one
of the locations and identities of sub-template specifi-
cations; and

the file includes a definition of a new graphic attribute to
be applied to the sub-template specifications associated
with the name.

6. The method of claim 5, wherein the new graphic
attribute includes the location of sub-template bitmaps in
merged bitmaps.

7. The method of claim 5, wherein the new graphic
attribute includes the size of sub-template bitmaps in merged
bitmaps.

8. A method for generating a plurality of bitmaps com-
prising the steps of:

(a) generating a template page description language speci-
fication, the template specification including template

Oct. 17, 2002

data and associated graphic attributes defining how the
template data is to appear on a printed page, the
template specification including at least one variable
data identifier;

(b) generating a plurality of sub-template page description
language specifications, each sub-template specifica-
tion including sub-template data and associated graphic
attributes defining how the sub-template data is to
appear on a portion of a printed page;

(c) processing the template specification so as to generate
a template bitmap, and during the processing step,
identifying the variable data identifier;

(d) saving the template bitmap into memory;

(e) associating the variable data identifier with the plu-
rality of sub-template specifications;

(f) accessing a first sub-template specification from the
plurality of sub-template specifications;

(g) processing the first sub-template specification so as to
generate a first sub-template bitmap;

(h) accessing a copy of the template bitmap from
memory;

(i) merging the copy of the template bitmap with the first
sub-template bitmap so as to provide a first merged
bitmap;

(j) accessing a next sub-template specification from the
plurality of sub-template specifications;

(k) processing the next sub-template specification so as to
generate a next sub-template bitmap;

(1) accessing a copy of the template bitmap from memory;
and

(m) merging the copy of the template bitmap with the next
sub-template bitmap so as to provide a next merged
bitmap.

