
(12) United States Patent
Belu

US009081786B1

US 9,081,786 B1
*Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(63)

(51)

(52)

(58)

SYSTEMIS AND METHODS FOR CREATING
SELF-EXTRACTING FILES

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventor: Sabin Belu, Seattle, WA (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 10 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 13/839,939

Filed: Mar 15, 2013

Related U.S. Application Data
Continuation of application No. 09/818,134, filed on
Mar. 27, 2001, now Pat. No. 8,402,005.

Int. C.
G06F I7/00 (2006.01)
G06F 17/30 (2006.01)
G06F I3/00 (2006.01)
U.S. C.
CPC G06F 17/30.129 (2013.01); G06F 17/3007

(2013.01); G06F 17/30073 (2013.01); G06F
17/30079 (2013.01); G06F 17/30153 (2013.01)

Field of Classification Search
CPC G06F 17/00; G06F 17/30; G06F 9/44
USPC 717/169, 171-183; 707/609, 693,

707/670–673, 804, 821-831: 711/161-162
See application file for complete search history.

al

(56) References Cited

U.S. PATENT DOCUMENTS

5,481,701 A * 1/1996 Chambers, IV T11 111
5,613,123 A * 3/1997 Tsang et al. T13/1
5,632,002 A * 5/1997 Hashimoto et al. ... 704/231
5,794,018 A * 8/1998 Vrvilo et al. 713/400
5,819,115 A * 10/1998 Hoese et al. T10/68
5,835,759 A * 1 1/1998 Moore et al. T13/1
5,913,062 A * 6/1999 Vrvilo et al. ... T19,321
5.991,753 A * 1 1/1999 Wilde 1.1
6,118,899 A * 9/2000 Bloomfield et al. 382/233
8,402,005 B2 * 3/2013 Belu 707/693

FOREIGN PATENT DOCUMENTS

WO O2,17068 * 2/2OO2

* cited by examiner

Primary Examiner — Srirama Channavajala
(74) Attorney, Agent, or Firm — AEON Law: Adam L.K.
Philipp

(57) ABSTRACT

Systems and methods are disclosed for creating a self-extract
ing file from any given input file type with minimum user
interaction. The systems and methods include, in response to
a single action, receiving an input file, compressing the input
file, transforming the compressed input file into a self-extract
ing file, configuring the self-extracting file to, upon execu
tion, decompress and launch the original input file with the
appropriate application Software, and generating a name for
the resulting self-extracting file. The systems and methods
may operate directly on the input file regardless of file type,
transforming the input file into an executable file and increas
ing the ease and speed of creating a self-extracting file that
automatically launches the original input file upon execution
of the self-extracting file.

26 Claims, 6 Drawing Sheets

a.

42

ReCEwe suit
FE

OPEN/NAME UNIVERSAL
SELF-EXTRACTNG FILE

224f

aca
UNSWERSAL SELF-EXTRACTOR SYSEM

fi

a?

f22

SELF-EXRACTNG
MCJE

7a

OAOER OLE F
Aas

COMPRESSION
MOUE

CREATION
ROCESS

ATAC EXECUABE
CCE

ATACHECOMPRESSION
ENGINE

AtACH RESOURCE
ATA

AACH AER

MARK LOCATION FR
ARCHWE EAER &

WRITEKNOWN INFORMATON
TO ARCHWE HEADER

as

aft

va
a2

safe
COMPRESS NU

FLE DATA
2 as

UATE ARCWE
EAER

222

COSE & OUTPU NWERSA
SF-EXTRACTN3 FE

US 9,081,786 B1

27][YCJOW NOISS2}}{d}WOO

Sheet 1 of 6 Jul. 14, 2015 U.S. Patent

US 9,081,786 B1 Sheet 2 of 6 Jul. 14, 2015 U.S. Patent

2, 30/…/ (24001) 3T|+ LndNI

º 22/-/

US 9,081,786 B1 Sheet 3 of 6

27 LI NJZ

Jul. 14, 2015

?O,

duuq'esnou

U.S. Patent

U.S. Patent Jul. 14, 2015 Sheet 4 of 6

47

START

4O2

RECEIVE INPUT
FLE

12

OPEN/NAME UNIVERSAL
SELF-EXTRACTING FILE

(76 4.

ATTACH EXECUTABLE
CODE

465

ATTACH DECOMPRESSION
ENGINE

277

ATACH RESOURCE
DATA

-- 472

ATACH LOADER

MARK LOCATION FOR
ARCHIVE HEADER &c.

WRITE KNOWN INFORMATION
TO ARCHIVE HEADER

42 7-2

Z 76
COMPRESS INPUT

FILE DATA
427s

UPDATE ARCHIVE
HEADER

42O7

CLOSE & OUTPUT UNIVERSAL
SEEF-EXTRACTING FILE

A7C2 4

422

US 9,081,786 B1

US 9,081,786 B1 Sheet 5 of 6 Jul. 14, 2015 U.S. Patent

U.S. Patent Jul. 14, 2015 Sheet 6 of 6 US 9,081,786 B1

422

START

UNIVERSAL
SELF-EXTRACTING
FILE EXECUTED

DECOMPRESSION
ENGINE CALLED

aCa

DECOMPRESS COMPRESSED INPUT
FILE DATA NTO TEMPORARY FILE

aOas

LAUNCH TEMPORARY FILE WITH
ASSOCATED APPLICATION SOFTWARE

a 7O

6O2

624

A/C2 a

US 9,081,786 B1
1.

SYSTEMS AND METHODS FOR CREATING
SELF-EXTRACTING FILES

FIELD OF THE INVENTION

The present invention relates to data compression, and
more specifically, relates to a system and method for creating
self-extracting files.

BACKGROUND

In order to speed up data transmissions and minimize Stor
age requirements, a variety of compression methods have
been used to reduce the size of a given input data file by
removing redundancy from the original data in the input file.
Such redundancy is removed by replacing (or encoding) sym
bols or strings of symbols with numerical codes or combina
tions of numeric codes and symbols. Thus, the resulting out
put file is smaller than the original input file. The major
categories of compression methods include: run length
encoding (RLE) methods, statistical methods, dictionary
methods, and transforms.
RLE methods compress data by replacing consecutive

occurrences of a symbol with one code containing the symbol
and the number of the consecutive occurrences of the symbol.
Statistical methods represent symbols and strings of symbols
using codes of variable length, where shorter length codes are
assigned to the more frequently occurring symbols or strings
of symbols. Dictionary methods compress data by replacing
strings of symbols with a token that indexes to the string in an
accompanying dictionary. An example of a well-known dic
tionary method is LZ77, described on pages 154-157 of Data
Compression. The Complete Reference by David Salomon,
Second Edition, 2000. Transforms use the concept of a math
ematical transform to compress image data by transforming
correlated pixels to a decorrelated representation of the pix
els. For a more detailed description of data compression
methods, please refer to Data Compression. The Complete
Reference by David Salomon, Second Edition, 2000.

Compression methods may be used by programs to com
press multiple files into a single file, called an archive. ARC is
an example of a program capable of compressing a collection
of files into an archive. PKZIP, a variation of ARC, is another
example of a compression/archive program. For a more
detailed description of ARC and PKZip, please refer to pages
206-211 of Data Compression. The Complete Reference by
David Salomon, Second Edition, 2000.

While a compressor (or encoder) compresses the original
data in the input file into a smaller, lower-redundancy output
file, a decompressor converts data in the opposite direction,
restoring the lower-redundancy output file to its original (i.e.,
uncompressed) form. Thus, in order to reconstruct the data to
its original form, the system or individual receiving the com
pressed output file must have a decompressor utility program
capable of reading and restoring the compressed output file.
To facilitate the decompression of files, many compressors
allow the user to specifically create a self-extracting file,
which when executed, decompresses the compressed output
file or files.

Users may create self-extracting files by expressly speci
fying that a binary decompression engine be attached to an
already existing compressed input file or archive. The self
extracting file is therefore an executable file that knows how
to operate on the file or archive (i.e., list, test, extract) without
help from an external decompressor utility. One problem with
this system is that the process of creating such a self-extract
ing archive is cumbersome and requires multiple steps, espe

10

15

25

30

35

40

45

50

55

60

65

2
cially if dealing with only a single file. In addition, to config
ure the self-extracting file to automatically launch a particular
file upon decompression, the user must take yet additional
steps.

Executable (EXE) compressors, such as the LZEXE pro
gram written by Fabrice Bellard, are special purpose com
pression utilities designed to compress PC EXE files, which
can then be decompressed and executed with one command.
Other EXE compressors include WWPack32, EXElite, and
PETITE. Rather than write the decompressed file to disk, the
decompressor for the EXE compressors loads the file into
memory and launches the file from the memory location
where it was extracted. For a more detailed description of
EXE compressors, please refer to page 212 of Data Compres
Sion. The Complete Reference by David Salomon, Second
Edition, 2000. One problem with EXE compressors is that
they operate only with executable files (e.g., "...exe' and “.dll
files). Thus, EXE compressors can not compress other files
that do not contain executable code.

SUMMARY OF THE INVENTION

The present invention provides systems and methods for
creating, in response to a single action, a self-extracting file
from any input file, wherein the input file is automatically
launched upon execution of the self-extracting file. The sys
tems and methods according to one embodiment increase the
speed and ease with which a self-extracting file can be created
from any input file. The methods provide for the creation of a
self-extracting file from an input file. The input file may be of
any file type, including, without limitation, a text file, a audio
file, a graphics file, a video file, a executable file, etc. The
systems include modules configured to receive an input file,
open and name an output file, transform the output file into an
executable file, attach a loader to the executable file to launch
the input file upon execution of the executable file, and com
press the input file data.
A method for creating, in response to only a single action

by a user, a self-extracting file. The method comprises receiv
ing, from a user, an input file to be used in creating a self
extracting file, and, without further action by the user, creat
ing a self-extracting file using the input file. The input file is
automatically launched upon execution of the self-extracting
file.
A method for creating, in response to a single action, a

self-extracting file from an associated input file, wherein the
associated input file is automatically launched upon execu
tion of the self-extracting file, and wherein a user is not
required to separately choose a data compression method,
create a compressed archive using the chosen compression
method, select an input file to be launched upon decompres
sion of the compressed archive, and create a self-extracting
file from the compressed archive. The method comprises
receiving an input file to be used in creating a self-extracting
file, wherein the file may be of any file type, and in response
to only a single action, creating a self-extracting file from the
input file. The input file is automatically launched upon
execution of the self-extracting file.
A method for creating a self-extracting file comprises

receiving an input file to be used in creating a self-extracting
file, wherein the input file is of any file type, and automati
cally creating a self-extracting file using the received input
file.
A method for creating an executable file. The method com

prises, in response to only a single action, creating a self
extracting file from any input file, wherein the input file may

US 9,081,786 B1
3

be of any file type, and wherein the input file will be auto
matically launched upon execution of the self-extracting file.
A method of creating a self-extracting file. The method

comprises displaying a first screen allowing a user to specify
an input file to be converted to a self-extracting file, receiving
the input file specified by the user, wherein the received input
file is automatically configured as a self-extracting file and
wherein the input file will be automatically launched upon
execution of the self-extracting file, and displaying a second
screen including a link to the self-extracting file created from
the user specified input file.
A system for creating a self-extracting file. The system

comprises a receiving module configured to receive an input
file, wherein the input file received may be of any file type and
wherein the input file includes an associated filename, and a
naming module configured to create and name an output file,
wherein the output filename is generated from the associated
filename of the input file and wherein the naming module
receives the input file from the receiving module. The system
further comprises a self-extracting module configured to
transform the output file into a executable file, wherein the
self-extracting module receives the input file and the output
file from the naming module, and a loader module configured
to setup the executable file to launch the input file upon
execution of the executable file, wherein the loader module
receives the executable file and the input file from the self
extracting module. Additionally, the system comprises a
compressing module configured to compress the input file
and attach the compressed input file to the executable file,
wherein the compressing module receives the input file and
the executable file from the loader module.
A system for creating, in response to a single action, a

self-extracting file from an associated input file, wherein the
associated input file is automatically launched upon execu
tion of the self-extracting file, and wherein a user is not
required to separately choose a data compression method,
create a compressed archive using the chosen compression
method, select an input file to be launched upon decompres
sion of the compressed archive, and create a self-extracting
file from the compressed archive. The system comprises
means for receiving an input file to be compressed, wherein
the input file may be of any file type, means for compressing
the received input file according to a data compression
method, and means for creating, in response to only a single
action by a user, an executable file from the compressed input
file, wherein the compressed input file will be automatically
decompressed and launched upon execution of the executable
file.
A data format, stored in a computer readable medium. The

data format comprises a compressed input data portion
including data compressed according to a data compression
method, and an archive header portion, wherein the archive
header portion includes information about the compressed
input data portion. The data format further comprises a self
extracting stub portion, wherein the self-extracting stub por
tion is automatically attached to the compressed input data
portion and the archive header portion, and wherein the self
extracting stub portion includes a decompression engine to
decompress the compressed input data portion and a loader to
launch the decompressed input data portion.
A method for creating, in response to a single action, a

self-extracting file. The method comprises a step for receiving
an input file to be used in creating a self-extracting file,
wherein the input file is of any file type; and a step for
automatically creating a self-extracting file using the received
input file.

10

15

25

30

35

40

45

50

55

60

65

4
A method for creating, in response to only a single action,

an executable file. The method comprises receiving an input
file to be used in creating an executable file, wherein the input
file may be of any file type; and without further instruction,
creating an executable file using the received input file,
wherein the executable file includes a compressed copy of the
input file, and wherein the compressed copy of the input file
is automatically decompressed and launched upon execution
of the executable file.
A process for producing, in response to a single action, a

computer file. The process comprises receiving an input file;
opening an output file; writing a decompression engine to the
output file for decompressing compressed data; and writing
loader code to the output file for launching the input file with
the appropriate application software for handling the input
file. The process further comprises writing an archive header
to the output file, wherein the archive header includes infor
mation relating to the input file; compressing the input file
according to a data compression method; updating the archive
header to include information about the compressed input
file; and closing the output file.
A method for creating, in response to only a single action,

an executable file. The method comprises receiving an input
file to be used in creating an executable file, wherein the input
file may be of any file type; and without further instruction,
creating an executable file using the received input file. The
executable file further comprises a compressed input data
portion including data compressed according to a data com
pression method; an archive header portion including infor
mation about the compressed input data portion; and a stub
portion, wherein the stub portion is automatically attached to
the compressed input data portion and the archive header
portion, and wherein the stub portion includes a decompres
sion engine to decompress the compressed input data portion
and a loader to launch the decompressed input data portion.
A method for using an executable file. The method com

prises in response to a first action, creating an executable file
from any input file, wherein the executable file includes a
compressed copy of the input file, and wherein the executable
file includes code to decompress and load the compressed
input file. The method further comprises, in response to a
second action, launching the executable file, wherein the
compressed input file is decompressed, and wherein the
decompressed input file is loaded with appropriate applica
tion software.
A method for creating a self-extracting file. The method

comprises receiving, in response to a single action, an input
file to be used in creating a self-extracting file, and without
further instruction, creating a self-extracting file using the
input file, wherein the input file is automatically loaded upon
execution of the self-extracting file

Certain aspects, advantages and novel features of the
invention are described herein. It is to be understood that not
necessarily all Such advantages may be achieved in accor
dance with any particular embodiment of the invention. Thus,
for example, those skilled in the art will recognize that the
invention may be embodied or carried out in a manner that
achieves one advantage or group of advantages as taught
herein without necessarily achieving other advantages as may
be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will now be
described with reference to the drawings summarized below.
These drawings and the associated description are provided to

US 9,081,786 B1
5

illustrate a preferred embodiment of the invention, and not to
limit the scope of the invention.

Throughout the drawings, reference numbers are re-used to
indicate correspondence between referenced elements. In
addition, the first digit of each reference number indicates the
figure in which the element first appears.

FIG. 1 illustrates a high-level block diagram according to
one embodiment of the universal self-extractor system.

FIG. 2 illustrates a file structure of a self-extracting output
file produced in accordance with one embodiment of the
invention.

FIG. 3 illustrates an input file and its corresponding output
file produced in accordance with one embodiment of the
invention.

FIG. 4 illustrates a flow chart for producing a self-extract
ing output file according to one embodiment of the invention.

FIG. 5 illustrates a computer screen according to one
implementation of the invention.

FIG. 6 illustrates a flow chart for decompressing and
launching the self-extracting output file according to one
embodiment of the invention.

DETAILED DESCRIPTION

I. Overview

The present invention provides methods and systems for
creating a self-extracting file from any input file with minimal
interaction from a user. One embodiment involves, in
response to a single action by the user, compressing an input
file, attaching a decompression engine, configuring the file to
be launched upon execution, and naming the self-extracting
file. The input file may be of any file type, including, but not
limited to, image files, text files, audio files, video files, and
program files. Using the input file, the methods produce,
without needing further instruction, a self-extracting file that,
upon execution, automatically extracts the input file data into
a temporary file and launches the temporary file (i.e., the input
file) with the appropriate application software for that file
type.

The systems and methods may be implemented in a variety
of embodiments. In one embodiment, the input file is advan
tageously provided, either directly or indirectly, by a com
puter user specifying the input file. The user specifies the
input file using a frame or display screen, which may be one
or more web pages, windows, or other screens or views pro
duced by proprietary software. In another embodiment, the
input file may be specified using Voice recognition software.
In other embodiments, the input file is submitted by another
Software routine making a call to the creation methods. In
further embodiments, the input file is submitted to the cre
ation method through the use of third-party Software applica
tions or routines.

In one embodiment, a user submits the name of a file to be
converted into a universal self-extracting file to independent
application Software running on the user's computer. In
another embodiment, the systems and methods are included
as a component of other application Software, Such as an
email application. In such an embodiment, the method may
be invoked, for example, when a user clicks on a button to
attach a file to an email message. The attached file is con
verted into a universal self-extracting file as a part of the
attachment process, without necessarily requiring further
user input, though it is recognized that in other embodiments,
the user may be queried for further information. Alternatively,
in one embodiment, the method may be incorporated into the
save/open functionality of an existing application, such that

5

10

15

25

30

35

40

45

50

55

60

65

6
each file saved to a disk is converted into a universal self
extracting file before it is written to the disk. For example, if
a user is creating a bitmap and selects the save option from the
bitmap creation program (e.g., Paint.exe), the file saved to the
disk is automatically converted into a universal self-extract
ing file. In another embodiment, the method is implemented
in a web-based environment.

For purposes of illustration, the systems and methods are
described herein in the context of independent application
Software running on a user's computer. Throughout the
description, reference will be made to various implementa
tion-specific details of the independent application Software
embodiment. These details are provided in order to fully
illustrate embodiments of the invention, and not to limit the
scope of the invention. The scope of the invention is set forth
in the appended claims. The various process steps described
herein are preferably performed by or using software
executed by one or more general-purpose computers,
although the process steps could alternatively be embodied
in-whole or in-part within special purpose hardware.

II. Universal Self-Extractor System

FIG. 1 illustrates one embodiment of a high-level block
diagram of a universal self-extractor system 100. The univer
sal self-extractor system 100 includes a receiving module
101, a naming module 102, a self-extracting module 104, a
loader module 106, a compression module 108, and a creation
process 110.
As used herein, the word module refers to logic embodied

inhardware or firmware, or to a collection of software instruc
tions, possibly having entry and exit points, written in a
programming language. Such as, for example C++. A Soft
ware module may be compiled and linked into an executable
program, installed in a dynamic link library, or may be written
in an interpretive language such as BASIC. It will be appre
ciated that software modules may be callable from other
modules or from themselves, and/or may be invoked in
response to detected events or interrupts. Software instruc
tions may be embedded in firmware, such as an EPROM or
EEPROM. It will be further appreciated that hardware mod
ules may be comprised of connected logic units, such as gates
and flip-flops, and/or may be comprised of programmable
units, such as programmable gate arrays or processors. The
modules described herein are preferably implemented as soft
ware modules, but may be represented in hardware or firm
Wa.

It is contemplated that the modules may be integrated into
a fewer number of modules. One module may also be sepa
rated into multiple modules. The described modules may be
implemented as hardware, Software, firmware or any combi
nation thereof. Additionally, the described modules may
reside at different locations connected through a wired or
wireless network, or the Internet.
As used herein, and as understood by one of ordinary skill

in the art, references to the “sending” or “receiving of a file
(i.e., such as the input file 202) is understood to include the
actual sending of a file and/or the sending of a pointer to a
memory address and/or physical location where the file is
located.

In one embodiment, the universal self-extractor system
may be implemented in a user computer. In one embodiment,
the user computer is a conventional general purpose computer
using one or more microprocessors, such as, for example, a
Pentium processor, a Pentium II processor, a Pentium III
processor, a Pentium IV processor, a Pentium Pro processor,
an Xx86 processor, an 8051 processor, a MIPS processor, a

US 9,081,786 B1
7

PowerPC processor, or an Alpha processor. In one embodi
ment, the user computer runs an appropriate operating sys
tem, such as, for example, Microsoft(R) Windows(R 3.X.
Microsoft(R) Windows(R 98, Microsoft(R) Windows(R NT,
Microsoft(R) Windows(R CE, Microsoft(R) Windows(R 2000,
Microsoft(R) Windows(R ME, Palm Pilot OS, AppleR),
MacOSR), Disk Operating System (DOS), UNIX, Linux(R), or
IBM(R) OS/2(R) operating systems.

In other embodiments, the user computer may, for
example, be a computer workStation, a local area network of
individual computers, an interactive television, a set top box,
an interactive kiosk, a personal digital assistant, an interactive
wireless communications device, a handheld computer, a
telephone, a router, a satellite, a Smart card, an embedded
computing device, a cellular phone, a watch, or the like.

A. Receiving Module
The receiving module 101 receives an input file 202 (FIG.

2) for use in creating a universal self-extracting file 204. The
input file 202 may be received either directly or indirectly
from a computer user or from another software module or
routine. After receiving the input file 202, the receiving mod
ule 101 sends the received input file to the naming module
102.

B. Naming Module
The naming module 102 uses the received input file 202 to

begin creating a universal self-extracting file 204. For more
information on the sample file formats for the universal self
extracting file 204, please refer to the section below entitled
“Sample Data Format,” which describes FIG. 2 and FIG. 3.
The naming module 102 generates a name for the universal
self-extracting file 204. After receiving the input file 202, the
naming module 102 opens and names an output file (i.e., a
universal self-extracting file), which initially does not contain
all of the file format portions identified in FIG. 2 and FIG.3 as
portions of the resulting universal self-extracting file 204
after completion of the creation process 110.

In one embodiment, the naming module 102 receives the
input file 202 from a computer user. In another embodiment,
the naming module 102 may receive the input file 202 from
another software module included in other application soft
ware or from an external source. For example, in one embodi
ment, the input file 202 may be received from a module of an
email application. The naming module 102 generates a name
for the universal self-extracting file 204 based on the name
and/or file type of the input file 202 received. In one embodi
ment, a portion of the generated name may include a name
identifying the file as being a file formed in accordance with
the methods herein. For example, the universal self-extract
ing file 204 may be named based on the following pattern:
FILENAME FILEEXTENSTION LIPON.EXE, where
“lipon' is the portion of the generated name chosen to indi
cate that the file has been formed in accordance with the
inventive methods. Thus, if the input file 202 is named
“house.bmp, the resulting universal self-extracting file 204
would be named "house bmp lipon.exe.” In an additional
embodiment, the universal self-extracting file 204 may be
named based on the following pattern: FILENAME FILE
EXTENSTION.EXE. Thus, if the input file 202 is named
“house.bmp, the resulting universal self-extracting file 204
would be named “house bmp.exe.” In another embodiment,
the generated name may be based on additional file informa
tion, such as the name and file size of the input file 202. In
further embodiments, the naming module 102 may query the
user for the name of the file 204. It is recognized that a variety
of naming techniques may be used. After opening and naming
the universal self-extracting file 204, the naming module 102
sends the file to the self-extracting module 104. In one

5

10

15

25

30

35

40

45

50

55

60

65

8
embodiment, the file does not yet include the compressed
input file data portion 206, the archive header portion 208, or
the universal self-extracting stub portion 210 (see FIG. 2 and
FIG.3).

B. Self-Extracting Module
The self-extracting module 104 receives the named univer

sal self-extracting file 204 from the naming module 102 and
attaches executable code and a decompression engine as a
stub, making the resulting file a self-extracting file. The
executable code allows a computer operating system to rec
ognize and load the self-extracting file into memory. In one
embodiment, the added executable code is Win32 executable
code, which is wrapped around the code from the compiler to
generate an executable file.

In one embodiment wherein a compression module 108
(see section below entitled “Compression Module') uses the
same compression method for every input file type, the self
extracting module 104 always attaches the same decompres
sion engine to the file. For example, if the compression mod
ule 108 always uses the LZ77 compression algorithm, the
decompression engine attached to the file is always the LZ77
decompression algorithm. In another embodiment, the
decompression engine attached depends on the compression
method to be used by the compression module 108 in com
pressing the input file data. In this embodiment, the self
extracting module 104 may attach a different decompression
engine for image input files than is attached when the input
file is a text file.

After attaching the executable code and decompression
engine, the self-extracting module 104 sends the file to the
loader module 106. The file includes the executable code and
the attached decompression engine.

C. Loader Module
The loader module 106 receives the file, which includes the

executable code and the attached decompression engine,
from the self-extracting module 104 and configures the file to
be automatically launched after decompression of the com
pressed input file data by the attached decompression engine.
The loader module 106 attaches a loader to the universal
self-extracting file 204 as a part of the universal self-extract
ing stub portion 210.

In one embodiment, the loader attached by the loader mod
ule 106 includes source code configured to behave differently
for different input file 202 types. In another embodiment, the
loader attached by the loader module 106 depends on the file
type of the input file 202. Thus, a different loader is attached
for different input file 202 types. For example, in the case that
the input file 202 is a Dynamic Link Library (DLL) file, the
loader module 106 may use script codes to cause the DLLs
function to be called after execution of the universal self
extracting file 204. In other embodiments, the loader may
interpret Scripts, causing the loader to function differently
(i.e., in loading and/or unloading) for different input file 202
types. In further embodiments, the script commands and
functions of the loader may be implemented as binary Script
codes (i.e., 0x0E for LOAD, etc.), located as a separate format
portion (not shown) of the universal self-extracting file 204
and transformed to binary representations by a compiler.

In one embodiment, the loader module 106 determines
whether unload and clean-up processes are needed after
execution of the universal self-extracting file 204. In those
cases where clean-up is needed. Such as, for example, when
the input file 202 is a DLL file, the loader module 106 con
figures the universal self-extracting file 204 to unload and
clean-up the temporary extracted DLL file after the user is
finished using the file.

US 9,081,786 B1

It is recognized that in other embodiments, the loader mod
ule 106 may configure the file to be launched in response to
other action, Such as, for example, in response to user input,
another module, and so forth. After configuration of the file to
automatically launch upon decompression, the loader module
106 sends the universal self-extracting file, which includes
the universal self-extracting stub portion 210, to the compres
sion module 108.

D. Compression Module
The compression module 108 receives the universal self

extracting file 204, which includes the universal self-extract
ing stub portion 210 and the input file data to be compressed,
from the loader module 106. The compression module 108
applies a compression method to the input file 202 to produce
a compressed input file data portion 206.

In one embodiment, the compression module 108 applies
the same compression method for each input file 202 regard
less of file type, such that text and image files are treated the
same by the compression module 108. In another embodi
ment, the compression module 108 applies one of several
compression methods based on the type of file being com
pressed by the compression module 108. For example, the
compression module 108 may use different compression
methods for text files than for image files. In such an embodi
ment, the compression module 108 may select the compres
sion method to be used based on the file extension of the input
file 202 or through use of an examination sub-module (not
shown) to analyze the data of the input file 202.

After the input file data has been compressed, the compres
sion module 108 attaches an archive header portion 208 to the
compressed input file data portion 206. The resulting univer
sal self-extracting file 204 now includes the universal self
extracting stub portion 210, the archive header portion 208
and the compressed input file data portion 206.

E. Creation Process
The creation process 110 creates a universal self-extracting

file 204 from an input file 202. For a detailed description of
the creation process 110, please refer to the section entitled
“Universal Self-Extraction System Process.”

III. Sample Data Format

FIG. 2 illustrates one embodiment of a sample data format
for the universal self-extracting file 204. Given an input file
202, the systems and methods produce a universal self-ex
tracting file 204, which includes a compressed input file data
portion 206, a archive header portion 208, and a universal
self-extracting stub portion 210 as indicated below:

UNIVERSAL SELF-EXTRACTING STUB POR

TION(EXECUTABLE CODE+DECOMPRES
SION ENGINGE+LOADER)+ARCHIVE
HEADERPORTION--COMPRESSED INPUT
FILE DATA PORTION=UNIVERSAL SELF
EXTRACTING FILE.

In one embodiment, the compressed input file data portion
206 may be produced by the compression module 108
according to the methods described below. The archive
header portion 208, which may also be created by the com
pression module 108, stores information about the com
pressed input file data portion 206. The information in the
archive header portion 208 may include, for example, the file
name of the input file 202, the file type of the input file, the
size of the compressed input file, the actual uncompressed
size of the file, and the cyclic redundancy check (or cyclic
redundancy code).
The universal self-extracting stub portion 210 includes

executable code, the decompression engine attached by the

10

15

25

30

35

40

45

50

55

60

65

10
self-extracting module 104, and the loader attached by the
loader module 106. The executable code enables the operat
ing system of a computer to recognize and load the self
extracting file into memory, upon which execution control is
passed back to the universal self-extracting stub portion. In
one embodiment, the executable code is Win32 executable
code. In one embodiment, the universal self-extracting stub
portion 210 is a small executable file, which includes an
header (i.e., such as, for example, Win32 executable code), a
decompression engine, and a loader built into the universal
self-extracting stub portion 210. In another embodiment, the
loader is included as codes attached between the universal
self-extracting stub portion and the archive header portion. In
one embodiment, the codes are binary representations of
Script commands.

In a further embodiment, the universal self-extracting stub
portion 210 includes an unloader to unload and clean-up the
temporary extracted file. This embodiment is more applicable
when the input file 202 includes dynamically loaded execut
able modules, such as with a Dynamic Link Library file
(DLL). In this embodiment, the resulting universal self-ex
tracting file includes a compressed input file data portion 206,
a archive header portion 208, and a universal self-extracting
stub portion 210 as indicated below:

UNIVERSAL SELF-EXTRACTING STUB POR
TION(EXECUTABLE CODE+DECOMPRES
SION ENGINGE+LOADER+UNLOADER)+
ARCHIVE HEADERPORTION--
COMPRESSED INPUT FILE DATA
PORTION=UNIVERSAL SELF-EXTRACTING
FILE.

FIG.3 provides an example of the above described sample
data format, wherein a bitmap image has been converted into
a universal self-extracting file to produce a universal self
extracting file 204 (named house.exe) that includes the com
pressed input file data portion 206, the archive header portion
208, and the universal self-extracting stub portion 210.

IV. Universal Self-Extraction Methods

By accepting all file types as an input file 202, the systems
and methods provide a universal process for producing a
self-extracting file 204 from any given type of input file 202
with minimal user interaction. The methods may operate
directly on the input file 202. In one embodiment, multiple
input files 202 are transformed into self-extracting files
according to the universal self-extraction method, with each
input file 202 transformed into a separate self-extracting file
204. Thus, if N input files 202 are entered by the user, the
universal self-extraction method will produce N self-extract
ing files 204. In another embodiment, the methods may work
directly with one or more input files 202 to produce one
self-extracting file 204, where one or more of the input files
202 are launched upon execution of the universal self-extract
ing file 204.
As indicated above, the methods are described herein, for

illustration purposes only, in the context of independent
application software running on a users computer. It will be
appreciated by one of ordinary skill in the art that the methods
may also be implemented as a component of other Software
applications, including, but not limited to email applications,
text-based applications (such as word processors), image
based applications (such as graphics programs), video/audio
based applications (such as RealSystem.R. products), web
based applications (such as webpage creation/display
applications), and so forth.

US 9,081,786 B1
11

A. Creation Process
One embodiment of a creation process 110 will now be

described in further detail with reference to FIG. 4. Beginning
at a start state 400, the creation process proceeds to the next
state 402, wherein an input file 202 is received. In state 404,
the universal self-extracting file 204, which does not yet
include the universal self-extracting stub portion 210, archive
header portion 208, or compressed input file data portion 206,
is initially opened (i.e., created) and named. The universal
self-extracting file 204 is also referred to as an output file
during the creation process. In this state, the output file, or the
universal self-extracting file 204, is named by the universal
self-extractor system 100. In one embodiment, the name is
generated based on the name and/or file type of the original
input file 202 received by the compression module 108. For
example, the name of the universal self-extracting file 204
may be generated based on the following pattern: FILENA
ME FILEEXTENSTION.EXE. Thus, if the input file 202 is
named "house.bmp, the produced universal self-extracting
file 204 would be named “house brmp.exe.” In another
embodiment, the generated name may be based on additional
file information. In one embodiment, if the generated name
for the self-extracting file 204 already exists, the existing file
is overwritten with the newly created self-extracting file 204.

In states 406 and 408, the universal self-extracting file 204,
which does not yet include the archive header portion 208 or
compressed input file data portion 206, is configured as a
self-extracting file by attaching a decompression engine and
executable code to the file. The result is that every file is
transformed into an executable file, regardless of the file type
of the received input file 202. Thus, for example, a bitmap
(i.e., a "...bmp' file) received as an input file 202 is automati
cally transformed into a self-extracting file (i.e., an “.exe"
file) just as a text file (i.e., a “...txt file) received as an input file
202 is also automatically transformed into a self-extracting
file (i.e., an “.exe file).
The executable code, attached to the universal self-extract

ing file 204 in state 406, allows the operating system to
recognize and load the self-extracting file into memory and
pass execution control back to the universal self-extracting
stub. In one embodiment, the executable code is Win32
executable code. The decompression engine, attached to the
universal self-extracting file 204 in state 408, allows the com
pressed file data portion 206 to be decompressed without help
from an external decompression utility. In one embodiment,
the decompression engine decompresses the compressed file
data portion 206 to a temporary file. In one embodiment, the
decompression engine attached is always the same, no matter
the file type. In one embodiment, it may be desirable to have
the decompression engine as Small as possible to reduce the
size of the output universal self-extracting file 204, whereas in
other embodiments, other factors may be considered when
selecting the decompression engine such as, for example,
compression ratio, speed, file size, and so forth. In further
embodiments, the decompression engine attached may
depend on a pre-determined compression method to be used
in state 416 and may vary depending on the type of the
received input file 202.

In state 410, resource data is added to the universal self
extracting file 204. The resource data may include informa
tion Such as a graphical icon to be displayed as the universal
self-extracting file 204 icon.

Aloader is attached to the universal self-extracting file 204,
which does not yet contain the archive header 208 or com
pressed input file data 206, in state 412 to automatically
launch the input file 202 upon execution of the self-extracting
file. Unlike archive processes, which require that the user

10

15

25

30

35

40

45

50

55

60

65

12
specifically identify which file to launch, the universal self
extractor system 100 automatically configures the universal
self-extracting file 204 so that the input file 202 is launched
upon decompression. In one embodiment, the loader attached
depends on the file type of the input file 202. Thus, a different
loader is attached for different input file 202 types. For
example, the loader attached for a DLL file (or other execut
able routine) may be different than for another input file 202
type in that the loader is specially configured to work with a
DLL file, such as by calling the DLL's exported function. In
one embodiment, the loader attached also performs unload
and cleanup processes on the temporary file. In another
embodiment, the loader is capable of interpreting various
Scripts, causing the loader to function differently (i.e., in
loading and/or unloading) for different input file 202 types. In
another embodiment, the various Script commands and func
tions of the loader may be implemented as binary codes (i.e.,
0x0E for LOAD, etc.), which are located as a separate portion
(not shown) of the universal self-extracting file 204 and trans
formed to binary representations by a compiler.

In state 414, a dummy archive header, marking a file loca
tion, is written to reserve space (i.e., memory is allocated as a
placeholder) for the additional archive header information to
be added to the universal self-extracting file 204 in state 418.
The dummy archive header includes information known
about the input file 202 before compression of the file data.
The information may include, for example, the file name and
size of the input file 202. After the input file 202 is compressed
and the more information is known about the compressed
input file data portion 206, the dummy archive header portion
will be updated at the marked location, in state 418, with
additional information, such as the size of the compressed
input file data portion 206.

In state 416, the input file 202 is compressed using a stan
dard data compression method. In one embodiment, the com
pression is performed using one compression method, such as
LZ77 or a variant of LZ77, regardless of file type. In this
embodiment, the compression method used to compress the
input file data is pre-determined by the universal self-extrac
tor system 100 so as to provide exceptional speed in decom
pression while also performing well in compression of the
input file data. In one embodiment, the compressed data is
written directly to the open universal self-extracting file 204,
which was opened in state 404.

In other embodiments, the compression method used to
compress the received input file 202 may vary depending on
the type of input file 202 received. In one embodiment, the file
type may be determined based on the file extension of the
filename or on an analysis of the actual input file data
received. For example, a different compression method may
be used for image files, enabling lossy data compression, than
is used for text files, enabling lossless data compression.

After the input file data has been compressed, the dummy
archive header is updated at the appropriate marked location
with information about the compressed input file data. The
resulting archive header is attached to the file in state 418. The
updated archive header information may include, for
example, the creation date/time of the compressed input file,
the size of the compressed input file, and/or the cyclic redun
dancy check (or cyclic redundancy code).

Finally, in state 420, the universal self-extracting file 204 is
closed and returned to the user or Software module invoking
the method and the creation process 110 proceeds to an end
state 422. It is recognized that FIG. 4 illustrates one embodi
ment of a creation process and that other embodiments may
be used. For example, the universal self-extracting file 204
may be named after the input file 202 is compressed.

US 9,081,786 B1
13

FIG. 5 illustrates one embodiment of screen 500 from an
independent Software application implementation of the
method, wherein the Software runs on a user's computer. In
the exemplary screen 500, the user types or otherwise selects
the name of a file to be converted into a universal self-extract
ing file 204 into a text window 502. The user may, for
example, enter the name of the file to be converted into a
universal self-extracting file 204 by selecting an add option to
locate and choose the file from a list of filenames. Once the
name of the file to be converted into a universal self-extracting
file appears in text window 502, the user performs a single
action, such as clicking a “Create File” button, to create the
universal self-extracting file 204. The name of the resulting
universal self-extracting file 204 is displayed in text window
SO4.
The user may be able to enter multiple filenames into text

window 502 to be converted into one or more universal self
extracting files. In one embodiment, the method operates on a
single file such that each of the multiple files will be converted
into a universal self-extracting file separately. Thus, for
example, if a user enters three files into text window 502
(three input files not shown), the user would still be able to
with a single action, such as clicking a "Create All” button,
create three universal self-extracting files. In one embodi
ment, the creation process 110 operates sequentially on each
of the three input files, and the resulting names of the three
universal self-extracting files appears in text window 504
(three files not shown). In other embodiments, the method
may be used to create a single universal self-extracting file
204 from multiple input files 202, where an algorithm is used
to determine which of the multiple files to launch upon execu
tion. For example, the universal self-extracting file 204 may
be configured such that each of the multiple files is launched
as a separate window within the corresponding application
program for that file type. Additionally, the universal self
extracting file 204 may be configured Such that an ordering
algorithm is used to select one particular file to be launched
upon execution of the universal self-extracting file 204 (i.e.,
for example, select the file with the most recent date/time
stamp, etc.). In another embodiment, the user may select
multiple files and group the files such that each group of files
would be part of a single universal self-extracting file.

B. Decompress/Launching Process
After the universal self-extracting file 204 has been cre

ated, the universal self-extracting file 204 may be executed.
One embodiment of a decompress/launching process will
now be described in further detail with reference to FIG. 6.
Beginning at a start state 600, the universal self-extracting file
204 is executed in state 602 when the executable code of the
universal self-extracting stub portion 210 is activated. The
universal self-extracting file 204 may be executed by a user
selecting the file (e.g., double clicking on the file, pressing
enter, etc.) or by another module executing the file. In one
embodiment, the universal self-extracting file 204 may be
executed as a result of a Win32 Application Program Interface
(API) call.
Upon execution of the universal self-extracting file 204 in

state 602, the decompression engine is called in state 604. The
decompression engine, in state 606, decompresses the com
pressed input file data portion 206 into a temporary file. In one
embodiment, the filename of the temporary file is the file
name of the original input file 202. After decompression of
the file to its original non-compressed form, the file is
launched in state 608 with the appropriate application soft
ware for the given file. In one embodiment, for example, this
is accomplished by calling the appropriate “OPEN WITH'
application registered with the current operating system.

5

10

15

25

30

35

40

45

50

55

60

65

14
Thus, the application Software associated with each type of
file is executed, such as, for example, notepad.exe for “...txt
files, paint.exe for “..bmp' files, word.exe for “...doc' files,
realplayer.exe for “..ra’ files, etc. The decompress/launching
process then proceeds to an end state 610.

In another embodiment (not shown) dealing with dynami
cally loaded executable modules, such as with DLL files, the
decompress/launching process may load the temporary DLL
into memory and call the DLL's exported function. For
example, a DLL may be loaded into memory, its function
called, and the DLL may then pop up a user interface for an
application. In this embodiment, the decompress/launching
process may additionally perform unload and/or clean-up
(i.e., delete) processes on the temporary DLL after the com
puter user is finished with the file, such as when the user
terminates the application loaded via the DLL. In this
embodiment, the temporary DLL is unloaded before the pro
cess proceeds to an end State. In yet another embodiment
dealing with executable routines in Windows operating sys
tems, the ShellExec function for Run32.DLL.exe (a Windows
operating system application tool) may be used to call an
exported function of a DLL file.

V. Operation

In operation, the systems and methods for creating self
extracting files may be used in a variety of embodiments, such
as independent application Software running on a client
machine, or as Software components incorporated into third
party software.

For example, a user may desire to send a digital photograph
of a child’s birthday party to grandparents living in another
state. Because the filesize of digital photographs may be very
large, emailing a digital photograph without first compressing
the image may slow down computer resources and take a long
time to transmit over an Internet connection, particularly if
the connection is a slower dial-up Internet connection. Thus,
the user may want to compress the digital photograph before
emailing the photograph to the grandparents. However,
because a compressed file must be decompressed before it
may be viewed again in its original format, the user may want
to configure the file to be automatically decompressed when
ever the grandparents select the file for viewing. Additionally,
the user may want to configure the file to be automatically
launched with the appropriate Software for displaying the
photograph when the file is selected by the grandparents for
viewing.
To accomplish these functions, the user may use the uni

Versal self-extracting systems and methods to transform the
digital photograph into a universal self-extracting file. Using
the independent application software embodiment, the user
runs a computer program with a text window for specifying
the name of a file to be transformed into a universal self
extracting file. If the user is unsure of the filename or location
of the digital photograph, the user may find the digital pho
tograph using the Add/Browse” button, as shown in FIG. 5.
After selecting the “Add/Browse” button, the user locates and
selects the filename of the digital photograph to be trans
formed into a universal self-extracting file. For example, the
digital photograph of the child's birthday party may be a
JPEG (Joint Photographic Experts Group) file entitled
“George's Birthday.jpeg. After the user has selected the digi
tal photograph, the filename of the selected digital photo
graph (i.e., “George's Birthday.jpeg) appears in text window
502. To create the universal self-extracting file, the user next
Selects the “Create file’” button.

US 9,081,786 B1
15

Once the user has selected the “Create file” button, the
digital photograph is sent to the universal self-extracting sys
tem. After receiving the file, the universal self-extracting
systems and methods use the filename of the digital photo
graph to create a name for an output file that will include a
compressed version of the digital photograph; thus, an output
file is opened (i.e., created) and named “George's Birth
day Jpeg Lipon.exe.”

Next, the system configures the open output file as a self
extracting file so that the file may be automatically decom
pressed when selected for viewing by the grandparents. This
is accomplished by adding a decompression engine to the
open output file. Because the universal self-extracting system
knows that the JPEG file will be compressed later using a
dictionary compression method, and because Such methods
operate by replacing every occurrence of a particular string of
symbols with a token that indexes into a dictionary, the
decompression engine is written (i.e., copied) to the open
output file before compression occurs. It is to be understood
that the decompression engine could also be written to the
open output file after compression occurs. Resource data,
Such as an icon to be associated with the final universal
self-extracting file, is also attached to the open output file at
this stage.

The open output file is next configured to automatically
launch the digital photograph with the application Software
appropriate for viewing digital photographs, such as
Microsoft(R) Photo Editor. This is accomplished by writing
computer code to the open output file that will, upon execu
tion of the universal self-extracting file by the grandparents,
call the operating system of the grandparents’ computer to
determine what application software is registered with the
operating system as being the appropriate Software for dis
playing JPEG files.

Finally, the systems and methods prepare a header file
portion and compress the digital photograph using a compres
sion method, such as a dictionary method. The header file
portion, which contains information about the file being com
pressed, is written to the open output file. The information
contained in the header file portion may include, for example,
the name of the original file (i.e., George's Birthday.jpeg), the
file size of the original file, etc. Next, using a compression
algorithm Such as LZ77, the compression method replaces
every occurrence of a particular string of symbols with a
token that corresponds to that particular string of symbols,
thereby shortening or compressing the actual file data. The
compressed image of the digital photograph is then written to
the open output file as uncompressed literals (symbols or
strings of symbols with no token corresponding to the symbol
or string of symbols) and tokens, and the dictionary is
dynamically created based on the symbols or strings of sym
bols encountered in the input file. After the file data has been
compressed, the header file portion is updated with additional
information about the compressed file data, Such as the size of
the compressed file data. The open output file is closed, and
the resulting universal self-extracting file (i.e., George's
Birthday Jpeg Lipon.exe) is displayed in text window 504.
George's parents may now prepare an email using their email
software and attach the universal self-extracting file to the
email being sent to George's grandparents.

After the grandparents receive the email, with the attached
universal self-extracting file, they may view the digital pho
tograph of George's birthday by executing (i.e., double click
ing) the universal self-extracting file.
Once executed, the universal self-extracting file is auto

matically decompressed using the decompression engine that
comes with the self-extracting file and launched with the

5

10

15

25

30

35

40

45

50

55

60

65

16
appropriate software on the grandparents computer for view
ing digital photographs, such as Microsoft(R) Photo Editor.
Decompression of the universal self-extracting file is accom
plished by replacing the tokens inserted during the compres
sion method with String of symbols corresponding to the
particular token, thereby restoring the compressed JPEG file
to its original image. The restored file is saved as a temporary
file with the same name as the original file, i.e., “George's
Birthday.jpeg. The systems and methods next send the
decompressed file (George's Birthday.jpeg) to the operating
system of the grandparents computer, and the operating sys
tem determines, based on the file extension portion of the
filename, what application software is registered as the appro
priate software for displaying JPEG files. For example,
Microsoft(R) Photo Editor or another application may be the
program registered with the operating system as being the
appropriate software for working with “.jpeg files. Thus, if
the registered application for working with “.jpeg files is
Microsoft(R) Photo Editor, the digital photograph (i.e.,
George's Birthday.jpeg) will next be automatically displayed
for viewing in Microsoft(R) Photo Editor.

Although this section makes reference to various imple
mentation-specific details of the independent application
software embodiment, these details are provided in order to
fully illustrate one embodiment of the invention, and not to
limit the scope of the invention.

VI. Conclusion

Although this invention has been described in terms of
certain preferred embodiments, other embodiments that are
apparent to those of ordinary skill in the art, including
embodiments which do not provide all of the benefits and
features set forth herein, are also within the scope of this
invention. Accordingly, the scope of the present invention is
defined only by reference to the appended claims.

What is claimed is:
1. A computer-implemented method for creating a self

extracting file, the method comprising:
receiving, by the computer, an input file to be used in

creating a self-extracting file; and
creating, by the computer, a self-extracting file using the

input file, wherein the input file is configured to be
automatically launched upon execution of the self-ex
tracting file.

2. The method of claim 1, wherein the received input file
has an associated filename and wherein a filename for the
self-extracting file is configured to be automatically gener
ated based in part on the associated filename of the received
input file.

3. A computer-implemented method for creating a self
extracting file from an associated input file, wherein the asso
ciated input file is automatically launched upon execution of
the self-extracting file, and wherein a user is not required to
separately choose a data compression method, create a com
pressed archive using the chosen compression method, select
an input file to be launched upon decompression of the com
pressed archive, and create a self-extracting file from the
compressed archive, the method comprising:

receiving, by the computer, an input file to be used in
creating a self-extracting file, wherein the file is one of a
plurality of file types; and

creating, by the computer, a self-extracting file from the
input file, wherein the input file is configured to be
automatically launched upon execution of the self-ex
tracting file.

US 9,081,786 B1
17

4. The method of claim 3, further comprising generating a
filename for the self-extracting file, wherein the generated
filename is based on a filename associated with the input file.

5. A computer-implemented method for creating a self
extracting file, the method comprising:

receiving, by the computer, a user selection of an input file
to be used in creating a self-extracting file, wherein the
input file is of any file type; and

automatically creating, by the computer, a self-extracting
file configured to automatically launch the received
input file responsive to execution of the self-extracting
file.

6. The method of claim 5, wherein the creation of the
self-extracting file comprises:

opening an output file;
attaching a decompression engine to the output file,

wherein the decompression engine is capable of decom
pressing compressed data to a temporary file;

attaching a loader to the output file, wherein the loader
configures the output file so as to automatically launch
the temporary file after execution of the self-extracting
file; compressing the received input file according to a
data compression method; attaching an archive header
including information about the compressed input file;
and

closing the output file, wherein the closed output file is the
self-extracting file.

7. The method of claim 6, wherein the data compression
method is the same method for all received input files.

8. The method of claim 6, wherein the data compression
method is determined based on the file type of the received
input file.

9. The method of claim 6, wherein the loader attached to
the output file depends on the file type of the input file.

10. The method of claim 6, wherein the loader automati
cally unloads the temporary file.

11. The method of claim 6, further comprising attaching an
unloader to the output file to automatically unload the tem
porary file.

12. The method of claim 11, wherein the unloader performs
cleanup processes on the temporary file.

13. A computer-implemented method for creating an
executable file, comprising:

creating, by the computer, a self-extracting file from an
input file, wherein the input file is one of a plurality of
file types; and

automatically selecting, by the computer, a loader based on
the input file's type; and

wherein the input file will be automatically launched upon
execution of the self-extracting file.

14. A computer-implemented method of creating a self
extracting file comprising:

displaying, by the computer, a first frame used to allow a
user to specify an input file to be converted to a self
extracting file;

receiving, by the computer, the input file specified by the
user, wherein the received input file is automatically
configured as a self-extracting file, and wherein the input
file is automatically launched upon execution of the
self-extracting file; and

displaying, by the computer, a second frame, wherein the
second frame includes a link related to the self-extract
ing file created from the user specified input file.

10

15

25

30

35

40

45

50

55

60

65

18
15. A system for creating a self-extracting file comprising:
a receiving module configured to receive an input file,

wherein the input file received is one of a plurality of file
types and wherein the input file includes an associated
filename:

a naming module configured to create and name an output
file, wherein the output filename is generated from the
associated filename of the input file and wherein the
naming module receives the input file from the receiving
module;

a self-extracting module configured to transform the output
file into a executable file configured to launch the input
file upon execution of the executable file, wherein the
self-extracting module receives the input file and the
output file from the naming module; and

a compressing module configured to compress the input
file and attach the compressed input file to the executable
file, wherein the compressing module receives the input
file and the executable file from the self-extracting mod
ule:

wherein each module is embodied in hardware, in firm
ware, or in a plurality of computer-executable instruc
tions stored in one or more non-transitory computer
readable media executable by one or more processors.

16. The system of claim 15, wherein the executable file is
further configured to perform unload processes.

17. A system for creating a self-extracting file from an
associated input file, wherein the associated input file is auto
matically launched upon execution of the self-extracting file,
and wherein a user is not required to separately choose a data
compression method, create a compressed archive using the
chosen compression method, select an input file to be
launched upon decompression of the compressed archive,
and create a self-extracting file from the compressed archive,
the system comprising:

a first module for receiving a user selection of an input file
to be compressed, wherein the input file is one of a
plurality of file types:

a second module for compressing the received input file
according to a data compression method; and

a third module for creating an executable file from the
compressed input file, wherein the input file will be
automatically launched upon execution of the execut
able file.

18. One or more non-transitory computer-readable media
having a plurality of computer-executable instructions stored
thereon which, when executed by one or more processors,
cause the one or more processors to:

provide a compressed input data portion corresponding to
an input data file, the compressed input data portion
including data compressed according to a preselected
data compression method;

provide an archive header portion, wherein the archive
header portion includes information about the com
pressed input data portion; and

provide a self-extracting stub portion, wherein the self
extracting stub portion is automatically attached to the
compressed input data portion and the archive header
portion, and wherein the self-extracting stub portion
includes a decompression engine to decompress the
compressed input data portion, and a loader operable to
launch the decompressed input data portion with appro
priate application software for handling the input data
file.

US 9,081,786 B1
19

19. A computer-implemented method for creating an
executable file, the method comprising:

receiving, by the computer, an input file to be used in
creating an executable file, wherein the input file is one
of a plurality of file types; and

creating, by the computer, an executable file using the
received input file, wherein the executable file includes a
compressed copy of the input file, and wherein the com
pressed copy of the input file is automatically decom
pressed and launched upon execution of the executable
file.

20. A computer-implemented process for producing a com
puter file, the process comprising:

receiving, by the computer, an input file;
automatically opening, by the computer, an output file;
automatically adding, by the computer, a decompression

engine to the output file for decompressing compressed
data;

automatically adding, by the computer, loader code to the
output file for launching the input file with the appropri
ate application software for handling the input file;

automatically adding, by the computer, an archive header
to the output file, wherein the archive header includes
information relating to the input file;

automatically compressing, by the computer, the input file
according to a data compression method;

automatically updating, by the computer, the archive
header to include information about the compressed
input file; and

automatically closing, by the computer, the output file.
21. A product produced by a computer-implemented pro

cess for producing a computer file, the process comprising:
receiving, by the computer, an input file;
automatically opening, by the computer, an output file;
automatically adding, by the computer, a decompression

engine to the output file for decompressing compressed
data;

automatically adding, by the computer, loader code to the
output file for launching the input file with the appropri
ate application software for handling the input file;

automatically adding, by the computer, an archive header
to the output file, wherein the archive header includes
information relating to the input file;

automatically compressing, by the computer, the input file
according to a data compression method;

5

10

15

25

30

35

40

20
automatically updating, by the computer, the archive

header to include information about the compressed
input file; and

automatically closing, by the computer, the output file.
22. A computer-implemented method for creating an

executable file, the method comprising:
receiving, by the computer, an input file to be used in

creating an executable file, wherein the input file is one
of a plurality of file types; and

creating, by the computer, an executable file using the
received input file, wherein the executable file com
prises:
a compressed input data portion including data com

pressed according to a data compression method;
an archive header portion including information about

the compressed input data portion; and
a stub portion, wherein the stub portion is automatically

attached to the compressed input data portion and the
archive header portion, and wherein the stub portion
includes a decompression engine to decompress the
compressed input data portion and a loader to launch
the decompressed input data portion.

23. A computer-implemented method for using an execut
able file, the method comprising:

creating, by the computer, an executable file from an input
file, wherein the executable file includes a compressed
copy of the input file, and wherein the executable file
includes code to decompress and to load the compressed
input file; and

executing, by the computer, the executable file to decom
press the compressed copy of the input file and launch
ing the decompressed input file with appropriate appli
cation software.

24. A computer-implemented method for creating a self
extracting file, the method comprising:

receiving, by the computer, an input file to be used in
creating a self-extracting file;

creating, by the computer, a self-extracting file using the
input file and automatically launching the input file upon
execution of the self-extracting file.

25. The method of claim 24, wherein the input file is an
executable routine and wherein a function of the executable
routine is called upon loading of the executable routine.

26. The method of claim 24, wherein the input file is a
dynamic link library file.

