Office de la Propriete Canadian CA 2501667 A1 2005/04/24

Intellectuell Intellectual P
du Canada_ Office T ey 2 501 667
g,rngags?:i‘:g:na " ﬁgﬁg‘?y‘éyaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2004/07/27 (51) Cl.Int.’/Int.Cl." GOBF 17/00

(87) Date publication PCT/PCT Publication Date: 2005/04/24 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2005/04/14 MICROSOFT CORPORATION, US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2004/024299 MOORE JASON F. US

(87) N° publication PCT/PCT Publication No.: 2005/04557/6 BANKS. RICHARD M., US:

(30) Priorité/Priority: 2003/10/24 (10/693 666) US VAN DOK, CORNELIS K., US;
DE VORCHIK, DAVID G., US:

MCKEE, TIMOTHY P., US;
SMITH, WALTER R., US;
GUZAK, CHRIS J., US;
IVANOVIC, RELJA, US;
BELT, JEFFREY C., US

(74) Agent: SMART & BIGGAR

54) Titre : SYSTEME ET METHODE DE GESTION DE DONNEES A L'AIDE DE LISTES STATIQUES
54) Title: SYSTEM AND METHOD FOR MANAGING DATA USING STATIC LISTS

1 022 m——— e ——— SI 04 el
' |
| LISTENTRY
SOURCE] RELATIONSHIp |—TARGET—» PICTURE 4
' 5104 l 5204
{wsmith} %104
COMMENT =
“What a long neck!”
wzz T
fwsmith}
r SOURCE RATING = 4
| ENTRY TEMPLATE
I fwsmith} Comment *
' {wsmith} rating
! 340
104 Fmmmmmm o me
TARGET—» PICTURE B
i 5208
fwsmith) 2202
COMMENT =
“Say Cheese!”

5408
R {wsmith} ~ ‘
RATING = §
(57) Abréegée/Abstract:

A method and system are provided In which static lists facilitate arbitrary grouping of items of data independent of their locations
and In ways that are meaningful to the user. A static list is a set of items defined by a root item, a direction, and the entry
relationships with that root item In that direction. The static list also defines the properties that each entry relationship in the list Is
required to have. Verbs are provided to manage a static list. A verb is an action that may be performed on the items In the static list,
and includes; among others, move, copy, add, remove, and delete. A view Is provided to specify characteristics for displaying data
from a static list, including visibility, order, and formatting, among other characteristics.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

10

CA 02501667 2005-04-14

21742PCT

ABSTRACT OF THE DISCLOSURE
A method and system are provided in which static lists facilitate arbitrary
grouping of items of data independent of their locations and in ways that are meaningful
to the user. A static list is a set of items defined by a root item, a direction, and the entry
relationships with that root item in that direction. The static list also defines the

properties that each entry relationship in the list is required to have. Verbs are provided
to manage a static list. A verb is an action that may be performed on the items in the
static list, and includes, among others, move, copy, add, remove, and delete. A view is
provided- to specify characteristics for displaying data from a static list, including

visibility, order, and formatting, among other characteristics.

-18-

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT B (- (

SYSTEM AND METHOD FOR MANAGING DATA USING STATIC LISTS

FIELD OF THE INVENTION

In general, the present invention relates to data storage systems and, in particular, -

to systems and methods for managing data using static lists.
BACKGROUND OF THE INVENTION

'As the use of electronic media to store text, music, pictures, and other types of
data grows and the restrictions on .data storage capacities lessen, computer users find
themselves faced with enormous numbers of files to manage. Conizentional file systems,
such as those based on a file allocation table, or FAT file system, can make management
of files difficult. For example, the traditional directory access to files that is provided
with conventional file systems assumes that the users wishes to maintain their files in a
hierarchical directory tree. However, besides being location dependent, a hierarchical
organization may not be the most advantageous way to access the files from the user's
point of view.

In the context of the Windows® operating system user interface, one technique for
making access to files easier is the shortcut. A shortcut that provides a link to a file may

be created on the desktop or in a folder, and is a quick way to start a program or open a
file or folder without having to go to its permanent location. But shortcuts may not be

reliable since they are not updated to reflect changes in the location or status of the

underlying file. For example, moving the file to a different directory results in an error

when accessing the shortcut.

Another technique for making access to files easier is the playlist. Media players:

offer users playlists as a way to organize certain types of files for lé.ter playback. For
example, in the Windows Media Player®, the playlist contains references to music files
for playback through the media player in a designated order. But playlists suffer from the
same drawback as shortcuts in that the references in the playlist are not updated to reflect
changes in the location or status of the underlying files. If a music file is moved or
deleted, the user must hunt through all of his or her playlists to update or remove the

outdated references.
Both the shortcut and playlist model of accessing files are further limited by their

inability to provide to the user with alternative ways to access items other than through

another folder, or in a certain order.

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT

SUMMARY OF THE INVENTION
| To overcome the above-described problems, a system, method, and computer-
accessible medium for managing data using static lists are provided. Static lists facilitate
arbitrary grouping of items of data independent of their locations and in ways that are

meaningful to the user.
In accordance with one aspect of the present invention, a static list is a set of items

defined by a root item, a direction, and the entry relationships with that root item in that
direction. The items in the set are determined by following the entry relationships with
the root item. The direction is either to or from the root item, depending on whether the

- root 1tem 1is the target or the source of the entry relationship. The static list also defines
 the properties that each entry relationship in the list is required to have.

In accordance with another aspect of the present invention, verbs are provided to
manage a static list. A verb is an action that may be performed on the items in the static
list, and includes, among others, move, copy, add, remove, and delete. The actions
performed on the items include actions performed on the entry relationships between the
item and the root item. |

In accordance with a further aspect of the present in\?ention, a view is provided to
specify characteristics for displaying data from a static list, including visibility, order, and
formatting, among other characteristics.

In accordance with yet another aspect of the present invention, using static lists,
the user is able to propagate certain security attributes to the items in the list so that others
may access them via the list. The user may also add other information to the list as
metadata to enhance the usefulness of the list and the items contained therein.

In accordance-with a still further éspect of the present invention, using static lists,
each item in the list is automatically managed so that the references to the data are always
valid, even when the location, status, or other characteristic of the data ch'anges.'

In accordance with yet other aspects of the present invention, a computer
accessible medium for managing data using static lists is provided. The computer
accessible medium comprises data and computer executable components to create and
manage static lists. The data defines the static list and the items contained therein. The
computer executable components are capable of performing actions generally consistent
with the above-described method.

10

15

20

25

30

CA 02501667 2005-04-14

N
P
A
- -~
»

21742PCT

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will
become more readily appreciated as the same become better understood by reference to
the following detailed description, when taken in cenjunction with the accompanying
drawings, wherein: '

FIGURE 1 is a depiction of a conceptual storage model for managing data using
static lists, formed in accordance with the present invention;

FIGURE 2 is a depiction of further aspects of the conceptual storage model for
defining a static set, formed in accordance with the present invcntioh;

FIGURE3 is a depicﬁon of further aspects of the conceptual storage model for
defining a static list, formed in accordance with the present invention;

FIGURE 4 is a depiction of further aspects of the conceptual storage model for
defining a list entry in a static list, formed in accordance with the present invention;

FIGURE § is a depiction of further aspects of the conceptual storage model for
defining an exemplary static list, formed in accordance with the present invention;

FIGURE 6 i1s a depiction of a gnd containing values for property names and hst

items depicted in the exemplary static list in FIGURE 5;
FIGURE 7 1s a depiction of a user interface contaxmng a set of items that may be

used 1n a static list, formed in accordance with the present invention;

FIGURE 8 is a depiction of a user interface displaying an exemplary static list
containing items depicted in FIGURE 7, as formed in accordance with the present
invention; -

FIGURE 9 1s a depiction of a user interface displaying yet another exemplary
static list that contains the exemplary static list depicted in FIGURE 8, as formed in
accordance with the present invention;

FIGURE 10 is a depiction of further aspects of the conceptual storage model for
defining a view that may be applied to a static list, formed in accordance with the present
invention;

FIGURE 11 1s a block diagram of a general-purpose computer system suitable for
containing static lists, formed in accordance with the present invention; \

FIGURE 12 1s a flow diagram illustrating the logic performed by a general-
purpose computer system for managing data using static lists, formed in accordance with

the present invention;

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT

FIGURE 13 is a flow diagram illustrating the logic performed by a general-
purpose computer system for moving items between static lists, formed in accordance
with the present invention;

FIGURE 14 is a flow diagram illustrating the logic performed by a general-
purpose computer system for copying items between static lists, formed in accordance

with the present invention;
FIGURE 15 is a flow diagram illustrating the 1ogic performed by a general-
purpose computer system for adding items to static lists, formed in accordance with the

present invention;
FIGURE 16 is a flow diagram illustrating the logic performed by a general-
purpose computer system for removing items from static lists, formed in accordance with

the present invention; o

FIGURE 17 is a fiow diagram illustrating the logic performed by a general-
purpose computer system for deleting items from static lists, formed in accordance with
the present invention; |

FIGURE 18 is a block diagram overview of an implementation of static lists

formed in accordance with the present invention using XML files; and

FIGURE 19 is a block diagram overview of an implementation of static lists,
formed in accordance with the present invention, using file system containers.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following discussion is intended to provide a brief, general description of a
computing system suitable for implementing various features of the invention. While the
computing system will be described in the general context of a personal computer usable
in a distributed computing environment, where complementary tasks are performed by
remote computing devices linked together through a communication network, those
skilled in the art will appreciate that the invention may be practiced with many other
computer system configurations, including multiprocessor systems, minicomputers,
mainframe computers, and the like. In addition to the more conventional computer
systems described above, those skilled in the art will recognize that the invention may be
practiced on other computing devices, including laptop computers, tablet computers,
personal digital assistants (PDAs), and other devices upon which computer software or
other digital content is installed.

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT . N

While aspects of the invention may be described in terms of programs executed
by applications in conjunction with a personal computer, those skilled in the art will
recognize that those aspects also may be implemented in combination with other program

modules. Generally, program modules include routines, programs, components, data
structures, etc., which perform particular tasks or implement particular abstract data

types.

FIGURE 1 is a depiction of a conceptual storage model for managing data using
static lists formed in accordance with the present invention. An item 150 is a primary
container of data. Each item contains multiple propefties 130 to. hold the data, and a
reference to a type 120 that defines what properties the item has. An item 150 may
contain additional properties 130 that are not defined by the item's type 120.

A relationship 110 is an association between two items. Each relationship refers
to two items 150 called a source 102 or a térget 104, depending on direction of the
relationship 110. Source items 102 originate the relationship 110, and target items 104
receive the relationship 110. . .

An extension 140 is similar to an item 150, in that it contains properties 130
defined by a type 120. But extensions 140 are associated with exactly one item 150 and

have different types 120,
The type 120 defines the structure of an item 150, relationship 110, or

extension 140 by defining its properties. Since types 120 can be used with items,
relationships, or extensions, they are commonly referred to as item types, relationship
types, or extension types.

FIGURE 2 1s a depiction of further aspects of the conceptual storage model for
defining a static set-formed in accordance with the present invention. Specifically,
FIGURE 2 depicts a static set 220. As illustrated, a static set 220 is a set 210 that
explicitly associates an item 150 with other items using relationship types 230. A static
set 220 contains a root item 150, a relationship type 230, and a particular direction of the
root item to the associated items, either a target direction 104 or a source 102 direction.
The static set's membership is determined by following relationships of the given type
that have the root item as either the source or the target, depending on the direction
specified in the set.)

Any combination of an item 150, a relationship type 230, and a direction 102/104
determines a static set 220. For example, the set of authors of a document can be found

5.

10

15

20

25

30

s A sl

CA 02501667 2005-04-14

|
TN
i

21742PCT

by following author relationships from the document root item, as can the set of
document authored by a person by following the same relationship in the other direction.

FIGURE 3 is a depiction of further aspects of the conceptual storage model for
defining a static list formed in accordance with the present invention. A static list 310 is
a type of static set 220 that allows users to organize items 150 into collections in arbitrary
ways. The static list 310 comprises a list item 320 and a list entry relationship type 330.
The list item 320 is the root item and the list entry relationship type 330 defines the set of -
properties 130 and direction 102/104 that each relationship 110 in the list must have in an
entry template 340 that specifies property names 350 for each df the properties 130.
Because each relationship 110 has the same properties 130, the static list 310 can be
thought of as a table or grid where each entry relationship 110 is a row, and each
property 130 1s a column, an example of which is described below with reference to
FIGURES 5 and 6. ,

'FIGURE 4 is a depiction of further aspects of the conceptual storage model for
defining a list entry in a static list formed in accordance with the present invention.
Speciﬁcally, a list entry 410 is a relationship 110 that has one or more properties 130.
FIGURE 3 is a depiction of further aspects of the conceptual storage model for defining
an exemplary static list formed in accordance with the present .inventio'n. The list
item 320 that is the root item of the static list 310 is the source 102 of two list entry
relationships 510A and 510B that associate the list item 320 with target items
picture A 520A, and picture B 520B. Each relationship 510A and 510B has two
properties 530 and 540, as defined in entry template 340. Properties 530A and 530B are
comments to the referenced pictures--picture A 520A and picture B 520B--having
respective values "What a long neck!" and "Say Cheese!" Properties 540A and 540B are
ratings of the referenced pictures--picture A 520A and picture B 520B--having respective
values "4" and "5."

FIGURE 6 is a depiction of a grid containing values for property names and list
items depicted in the exemplary static list in FIGURE 5. As shown, the list items 320
compnsing picture A 650 and picture B 660 form the rows of the grid 600, and the
property names 350 associated with those list items 320 are the columns of the grid 600.
The property names 350 are based on the entry template 340, and in the illustrated
example, are comment 620 and rating 630, as previously described. Other property

names 350 may be added as well, such as order 610, specifying the order in which the list

-6-

10.

15

20

25

30

CA 02501667 2005-04-14

21782PCT

items 320 should be presented in a display, and any other info 640 that the user might

deem useful for items of this type (e.g., where or when the picture was taken).
FIGURE 7 is a depiction of a user interface containing a set of items that may be

used in a static list formed in accordance with the present invention. As shown, the set of
items is for My Pictures 710, and contains six pictures--picture A 720A, picture B 720B,
picture C 720C, picture D 720D, picture E 720E, and picture F 720F.

FIGURE 8 is a depiction of a user interface 800 displaying an exemplary static
list 810 containing some of the items depicted in FIGURE 7 as formed in accordance
with the present invention. Using the exemplary static list described in FIGURE 5, a
static list labeled "good giraffe pictures" 810 is shown with two of the six pictures shown
in FIGURE 6, including picture A 720A and picture B 720B, corresponding to target
items 520A and 520B (FIGURE 5). The accompanying texts "what a long neck!" 820A
and "say cheese!" 820B correspond to the comment properties 530A and 530B.

FIGURE 9 1s a depiction of a user interface 900 diSplaying yet another exemplary
static list 910 that contains the exemplary static list 810 depicted in FIGURE 8 as formed
in accordance with the present invention. In addition, the static list 910 labeled "My
Safari Notes" further contains texts "We saw giraffes..." 920X and "Then we saw
elephants . . ." 920Y, which would correspond to properties 130 defined for the
relationships 110 in static list 910, say, for example, a property 130 of note as defined by
the entry template 340 for a root list item 320 for a safari journal. Here, the térget
items 150 are the pictures of the elephants--picture D 720D and picture F 720F--as well .
as the original static list 810 depicted in FIGURE 8. This illustrates that static lists can
have target items that are actually other static lists, i.e., that static lists can be nested.

FIGURE 10 is a depiction of further aspects of the conceptual storage model for
defining a view that may be applied to a static list formed in accordance with the present

invention. A view 1010 is a collection of property infos 1020. The property infos 1020
specify a property name 1030 of a property 130, and the display characteristics for the
corresponding properties 130 that are defined for the items 150 and relationships 110 that
comprise the static list 310. The view 1010 is applied to a static list 310 by retrieving the
properties 130 by property names 1030 and applying the display characteristics to the
values of the properties 130 in preparation for incorporating the values into a user

interface to display the list to the user, such as the user interfaces illustrated in
FIGURES 8 and 9.

10

15

20

25

30

CA 02501667 2005-04-14

- (- (

21742PCT

FIGURE 11 1s a block diagram of a general-purpose computer system suitable for

containing static lists formed in accordance with the present invention. The system 1100
includes a personal computer 1102 comprising a processing unit 1122, a system

memory 1124, and a system bus 1126 that couples the system memory to the processing

‘unit 1122. The system memory 1124 includes read-only memory (ROM) 1128 and

random-access memory (RAM)1130. A basic input/output system 1132 (BIOS),
containing the basic routines that help to transfer information between elements within

the personal computer 1102, such as during startup, is stored in ROM 1128. The personal
computer 1102 further includes a hard disk drive 1134, a rnagnetic. disk drive 1138, e.g.,
to read from or write to a removable disk 1140, and an optical disk drive 1142, e.g., for
reading a CD-ROM disk 1144 or to read from or write to other optical media. The hard
disk drive 1134, magnetic disk drive 1138, and optical disk drive 1142 are connected to
the system bus1126 by a hard disk drive interface 1154, a magﬂetic disk. drive
interface 1156, and an optical drive interface 1160, respectively. The drives and their
associated computer-readable media provide nonvolatile storage for the personal
computer 1102. Although the description of computer-readable media above refers to a
hard disk, a removable magnetic disk, and a CD-ROM disk, it should be appreciated by
those skilled in the art that other types of media that are readable by a computer; such as
magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, ZIP
disks, and the like may also be used in the exemplary operating environment.

A number of program modules may be stored in the drives and RAM 1130,
including an operating system 1146, one or more application brograms 1148, other
program modules 1150, such as the extensions and inte'rfaces of the present invention,
and program data 1152, including the command item and insert location data of the
present invention. A user may enter commands and information into the personal
computer 1102 through input devices such as a keyboard 1160 or a mouse 1162. Other
input devices (not shown) may include a microphone, touch pad, joystick, game pad,
satellite dish, scanner, or the like. These and other input devices are often connected to
the processing unit 1122 through a user input interface 1164 that is coupled to the system
bus, but may be connected by other interfaces (not shown), such as a game port or a
universal serial bus (USB). A display device 1190 is also connected to the system
bus 1126 via a display subsystem that typically includes a graphics display interface (not

shown) and a code module, sometimes referred to as a display driver, to interface with the

-8-

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT S - -

graphics display interface. While illustrated as a stand-alone device, the display
device 1190 could be integrated into the housing of the personal computer 1102.
Furthermore, 1n other computing systems suitable for implementing the invention, such as
a PDA, the display could be overlaid with a touch-screen. In addition to the elements
illustrated in FIGURE 11, client devices also iypically include other peripheral output
devices (not shown), such as speakers or printers. |

The personal computer 1102 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer 11685.
The remote computer 1165 may be a server, a router, a peer devi'ce, or other common
network node, and typically includes many or all of the elements described relative to the
personal computer 1102. The logical connections depicted in FIGURE 11 include a local

area network (LAN) 1166 and a wide area network (WAN) 1167. The LAN 1166 and

- WAN 1167 may be wired, wireless, or a combination thereof. Such networking

environments are commbnplace in offices, enterprise-wide computer networks, Intranets,

and the Internet.
When used in a LAN networking environment, the personal computer 1102 is

connected to the LAN 1166 through a network interface 1168. When used in a WAN
networking environment, the personal computer 1102 typically includes a modem 1169
or other means for establishing communications over the WAN 1167, such as the
Internet. The modem 1169, which may be internal or external, is connected to the system
bus 1126 via the user input interface 1164. In a networked environment, program
modules depicted relative to the personal computer 1102, or portions thereof, may be
stored 1n the remote memory storage device. It will be appreciated that the network
connections shown are exemplary and other means of establishing a communication link
between the computers may be used. In addition, the LAN 1166 and WAN 1167 may be
used as a source of nonvolatile storage for the system.

FIGURE 12 is a flow diagram illustrating the logic performed by a general-
purpose computer system for managing data using static lists formed in accordance with
the present invention. At processing block 1210, the user further defines which
properties he or she wishes to require for each list entry relationship, i.e., the list entry
template. Again, using the same example, the list entry relationship is defined to have at
least two properties that describe the comment associated with the target pictures as well

as arating. At processing block 1220, a processor uses the definitions to generate a static

9.

PRI S 4 AR (VAR (3 B Ty e . Pl S A, OPTMPTTCRICL vl 4 WA WASMEI A o B ST LV g i Ve

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT

list, including generating the list entry relationships in response to user input to the entry
template. For example, depending on the type of graphical user interface employed in the
embodiment, the user might drag and drop the arbitrarily selected target pictures (here,
picture A 520A/720A and picture B 520B/720B) from the user interface 710 depicted in
FIGURE 7 into the user interface 810 depicted in FIGURE 8. This user action will
trigger generation of the list entry relationships in the static list in accordance with the list
entry template 340 (FIGURE 3 and FIGURE 5). |

In one embodiment, processing continues at process block 1230, where the user
can elect to apply a previously defined View 1010 to the list in order to display, at

process block 1240, the list contents in a user interface such as the user interface 810

depicted in FIGURE 8. |
FIGURE 13 is a flow diagram illustrating the logic performed by a general-
purpose computer system for moving items between static lists formed in accordance

with the present invention. The process begins at predefined process block 1310 invoked

in response to a user input to move an item from one static list to another. Processing

begins at process block 1320, where a processor deletes the list entry relationship

associated with the selected item from the current static list. At processing block 1330,
the processor creates a new instance of an entry relationship type for the new list. At
decision block 1340, the process determines whether the type of entry relationship being
created 1s the same as the type of entry relationship just deleted from the old list. If yes,
the processing continues at process block 1350, where the processor copies the entry
relationship’s properties from old to new. So, for example, if the type of entry
relationship i1s denoted as good giraffe pictures, then the same properties of comments
and ratings will be copied to the new list. o

FIGURE 14 is a flow diagram illustrating the logic performed by a general-
purpose computer system for copying items between static lists formed in accordance
with the present invention. The process begins at predefined process block 1410 invoked
In response to a user input to copy an item from one static list to another. Similar to the
move logic described in reference to FIGURE 13, at processing block 1420, the proceséor
creates a new instance of an entry relationship type for the new list. At decision
block 1430, the process determines whether the type of entry relationship being created is
the same as the type of entry relationship defined in the original list. If yes, the

-10-

AP mn Al R O A A =y e S P4, e

10

15

20

25

30

CA 02501667 2005-04-14

21742PCT

processing continues at process block 1440, where the processor copies the entry
relationship’s properties from original to new.

FIGURE 15 is a flow diagram illustrating the logic performed by a general-
purpose computer system for adding items to static lists formed in accordance with the
present invention. The process begins at predefined process block 1510 invokéd In
response to a user input to add an item to a static list. At processing block 1520, the
processor creates a new instance of an entry relationship type for the list. '

FIGURE 16 is a flow diagram illustrating the logic performed by a general-
purpose computer system for removing items from static lists forméd in accordance with
the present invention. The process begins at predefined process block 1610 invoked in
response to a user input to remove an item from a static list. At processing block 1620,
the processor deletes the list entry relationship from the list. -

FIGURE 17 is a flow diagram illustrating the logic performed by a general-
purpose computer system for deleting items from static lists formed in accordance with
the present invention. The process begins at predefined probess block 1710 invoked in
response to a user input to delete an item from a static list. At processing bloék 1720, the
processor first determines all of the list entry relationships that exist where the deleting
item 1s the target. Once completed, the processor deletes all list entry relationships from
the list where the list item is the target item 104. At processing block 1730, the processor
deletes the item itself.

FIGURE 18 is a block diagram overview of an implementation of static lists
formed in accordance with the present invention using XML files. In a processing
system 1102 (FIGURE 11) that uses a conventional file system, it may be preferable to
implement static lists using an XML file 1810 to represent the non-holding
references 1830 to the items 150 within the list 310. The non-holding references 1830 are
those references that cannot be dynamically resolved should the item itself change
location or be deleted. The XML file 1810 permits the processing system 1102 to
advantageously serialize the links to the referenced items in the form of shell link
data 1840. The shell link data 1840 is used in favor of any absolute path referring to the
item 150 as it contains a persisted moniker to the referenced item. The shell link
data 1840 also includes hints that permit the processing system 1102 to resolve the
reference 1830 in cases where the target item has been moved. For example, the hints

may include such things as item creation date and various forms of the file system path.

-11-

AT 07 S FOTORATs AL ALY VM TV /i, K/ OO AU oy SR s TR H

10

15

20

25

30

CA 02501667 2005-04-14

21782PCT

The XML file 1810 further permits the processing system 1102 to store and track
user-defined arbitrary metadata 1820 to represent the properties 130 of the items 150 and
the relationships 110. In such an implementation, the properties 130 are identified by
their assigned globally unique identification (GUID) plus the property identification, also
referred to in the Windows® operating system as the PROPERTYKEY. The
metadata 1820 may also be advantageously employed to propagate certain security

features for the static list to the referenced items 150. .
FIGURE 19 is a block diagram overview of an implementation 1900 of static lists

formed in accordance with the present invention using file system containers. In a

processing system 1102 (FIGURE 11) employing a more advanced file system to manage
data using a relational database, it is preferable to model the static list 320 as a file system

container 1910. A file system container 1910 is a file object that includes holding
references 1920 to items 150 as well as the relatibnships 110 between the items,

depending on whether the referenced items are stored on the same volume as the

container 1910.
In an example scenario, a user wants to produce a list of documents used to give

presentations to clients about his company's new product, a brake pad. The documents
include various Word® documents that describe the brake pad technology in depth, a
PowerPoint® presentation, pictures of the brake pads, and even some video files shown
the brake pads in action using an infrared camera. The user gives the presentation to
different clients having different needs, cares, and wants. As a result, the user wishes to
customize the presentation. Using static lists, the user can create different static lists,
each with references to the same items, but in a different order (to tune the presentation to
the audience). The user can also include different important properties. For example, for
one chent the sales price on all items is shown in the clear (and may even be specific to a
chient), whereas for other clients, the sales price is masked. In yet another example, the
user may include properties that reveal the latest details of guarantees and awards they
have won. , |

In the example scenario, the static lists are maintained automatically. When the
user deletes one of the documents from one of the lists, the document is still available in
all of the other lists where it is referenced. On the other hapd, when the user deletes one
of the documents from the folder where it resides, all lists referencing that document are

updated to remove the reference so that the reference does not display as a dead link.

-12-

10

15

CA 02501667 2005-04-14

21742PCT

As a result of the foregoing, the user can advantageously create an unlimited

number of static lists customized for a particular audience, and yet avoid the hassles of

managing all of the references in those lists.
While the presently preferred embodiments of the invention have been illustrated

and described, it will be appreciated that various changes may be made therein without

departing from the spirit and scope of the invention. For example, it should be noted that

either of the above-described implementations may be employed on a processing
system 1102 regardless of what type of file system is employed. It may be advantageous
to represent a static list as an XML file 1810, even on processing syétems 1102 capable of
using containers 1910, where interoperability with systems using more conventional file

systems 1s desired. Moreover, in other embodiments, regardless of the type of file system

employed, the items in the static list may be presented to the user using any user

interface, including in a folder of the Windows® Shell user interface. As various

operations are performed on the static list or the items in the list, the operations are either
handled by the folder or delegated to a target of the referenced item, i.e., the target item.
While the preferred embodiment of the invention has been illustrated and

described, it will be appreciated that various changes can be made therein without

- departing from the spirit and scope of the invention.

-13-

IS I G Nl SN O Ao’ s = ANl -y Sl i - C i e iy

A s w A -

CA 02501667 2005-04-14

21742PCT

The embodiments of the invention in which an exclusive property or privilege is

blaimed are defined as follows:

1. A method for managing data in a list, the method comprising:

creating a list having an item type and a relationship type; and
adding an item to the list by generating an entry in the list in accordance with the

relationship type, the entry representing an association between an item and the item type.-

2. The method of Claim 1, further comprising changing a location of the item
and updating the entry to refer to the changed location.

3. 'The method of Claim 1, wherein the status of the item changes when the
item is deleted, and updating the entry includes removing the entry from the list.

4. The method of Claim 1, further comprising defining a property for the
relationship type, wherein generating an entry in the list in accordance with the

relationship type includes generating a value for the property.

5. The method of Claim 4, further comprising moving the item to a new list,
wherein moving includes deleting the entry from the 6riginal list and generating an entry
in the new list and copying the value for any property that the new list’s relationship type
has in common with the original list’s relationship type..

6. The method of Claim 5, further comprising copying the item to a new list,
wherein copying includes generating an entry in the new list and copying the value for
any property that the new list’s relationship type has in common with the original list’s
relationship type. .

7. The method of Claim 1, the method further comprising deleting an item,

wherein deleting includes removing the entry from the list and removing any other entry

in other lists, where the other entry also represents an association with the item.

8. The method of Claim 1, the method further comprising applying a view to
the list, wherein applying the view includes retrieving entries in the list having properties
that match properties specified in the view and applying a display characteristic to the
values of the matching properties.

D il i

CA 02501667 2005-04-14

217%2PCT

9. The method of Claim 1, wherein the list is a file in XML format, wherein
the entry is a non-holding reference to the item associated with the item type and the
property 1S a metadata associated with the item, and updating the entry includes

serializing a shell link to the reference.

10. The method of Claim 1, wherein the list is a file system container, and the

entry 1s a holding reference to an item, thé holding reference reflecting a current status of

the item.

11. A system for managing data, the system comprisihg;
a storage medium for storing items of data gnd a list entry template; =~
a processing unit for operating a process to generate a list of selected items in
- response to a user input, wherein each entry of the list represents a reference to the item
independent of the item’s location in the storage medium, and wherein each entry
includes a property value generated in accordance with the list entry Mplate; and

a display unit for displaying a view of the items in the list, the view including a
display of the property values of the entry in accordance with a display characteristic.

12. The system of Claim 11, wherein the stored items of data are moved to a
new location and the process to generate the list of items includes a process to update the

entry to refer to the new location.

13. The system of Claim 12, wherein the process to update the entry includes
removing the entry from the list when the item is no longer stored on the storage medium.

14. The system of Claim 11, wherein the process to generate the list includes a
process to copy the item to a new list comprising making an entry in the new list and
copying the property value from the original entry to the new entry in accordance with
the new list’s entry template.

15. The system of Claim 13, wherein the process to generate the list includes a
process to move the item to a new list including the process to copy the item to the new

list plus a process to delete the entry from the original list.

15

CA 02501667 2005-04-14

21742PCT

16. The system of Claim 11, wherein the processing unit is to further operate a

process to delete an item from the storage medium that includes removing all entries that

refer to the item.

17. The system of Claim 11, wherein the generated list is a file in XML
format, and wherein the entry in the list is a non-holding reference to the item and the
property 1s a metadata associated with the item, and updating the entry includes

serializing a shell link to the reference.

18. The system. of Claim 11, wherein the generated list 1s a file system

container, and the entry is a holding reference to the item, the holding reference referring

to a current location of the item.

19. A computcr-accessible medium having a computer-executable component

for:

defining a list having an item type and a relationship type;

adding an item to the list by generating an entry in the list in accordance with the
relationship type, the entry representing an association between an item and the item type;

and
- updating the entry whenever a status of the item changes.

20. The computer-accessible medium of Claim 19, wherein the
computer-exechtable component updates the entry to refer to a current location of the

item, regardless of an actual location of the item.

21. The ,computer-accessible medium of Claim19, wherein the

computer-executable component automatically removes the entry from the list when the

item is deleted.

22. The computer-accessible medium of Claim 19, wherein the computer- '

executable component further defines a property for the relationship type, wherein

generating an entry in the list in accordance with the relationship type includes generating

a value for the property.

23. The computer-accessible medium of Claim 19, wherein the computer-

executable component further moves the item to a new list, wherein moving includes

-16-

CA 02501667 2005-04-14

R _ |

21742PCT

deleting the entry from the original list and generating an entry in the new list and
copying the value for any property that the new list’s relationship type has in common

with the original list’s relationship type.

24. The computer-accessible medium of Claim 19, wherein the computer-

executable component further copies the item to a new list, wherein copying includes

generating an entry in the new list and copying the value for any property that the new
list’s relationship type has in common with the original list’s relationship type.

25. The computer-accessible medium of Claim 19, wherein the computer-
executable component further applies a view to the list, wherein applying the view
includes retrieving entries in the list having properties that match properties specified in
the view and appl'ying a display characteristic to the values of the matching properties.

26. The computer-accessible medium of Claim 19, wherein the list is stored in

XML format, wherein the entry is a non-holding reference to the item associated with the
item type and the property is a metadata associated with the item, and updating the entry

includes serializing a shell link to the reference.

27. The computer-accessible medium of Claim 19, wherein the list is stored in
a file system container, and the entry is a holding reference to an item, the holding

reference reflecting a current status of the item.

Smart & Biggar

. Ottawa, Canada
Patent Agents

-17-

gl lil-L. 3 el = A VP, A

,

CA 02501667 2005-04-14

1/19

RELATIONSHIP

T RSP N AL A SR (N i e v,

CA 02501667 2005-04-14

/19

Izoo

SET
210

ITEM
150

STATIC SET

220

RELATIONSHIP
- TYPE

230

T

-~ CA 02501667 2005-04-14

) I
3/19
S [y
LIST
310
LIST ITEM

320

340

PROPERTY
NAME

350

‘[- 300

CA 02501667 2005-04-14

Fi1g.4.
[400

RELATIONSHIP K
o 0

PROPERTY
130

--“-““—ﬁ

1022

CA 02501667 2005-04-14

| LISTENTRY

SOURCE ' RELATIONSHIP

aiah ayE TR GED TN A R TR wkiry o WP S RS

ENTRY TEMPLATE
{wsmith} Comment
{wsmith} rating

340

IPIURATD PR A WS A TSI AR s 4 e el w1 o=, € sk aafia e

3 5104

SOURCE

LIST ENTRY

RELATIONSHIP
5108

(_
F1g.5.
| [500
SW e
| |
TARGET—» PICTURE A
|

| 5204

330A

{wsmith} ——
COMMENT =
“What a long neck!”}

8104 :..........f.. ________

TARGET—» PICTURE B
: - 520B

3308

{wsmith) ——
COMMENT =
“Say Cheese!”

CA 02501667 2005-04-14

Fig.6.

_ [600

_) e
6/19
' 610 620
PROP eI IAME/! oRrDER COMMENT '

WHAT A LONG NECK!

PICTUREB

660 |

640

630
anva] omeR e

CA 02501667 2005-04-14

((_
7/19 ,
Fig.7.
S 700
710
I
MY PICTURES
PICTURE PICTURE |
C D
720 720
PICTURE
E
720E

CA 02501667 2005-04-14

8/19

810

-

GOOD GIRAFFE
PICTURES

PICTURE

7208

o J{saaa '
WHAT A

LONG NECK!

vl s VgL

S8203
SAY

CHEESE!

stbo

..........

A LTV e, v § v g prad

CA 02501667 2005-04-14

919 ,
F1g.9.
910 5—900

’T

MY SAFARI
| NOTES

920X
~ We saw giraffes ... <f
| 810
B

| GOOD GIRAFFE

PICTURES

WHAT A < 5294

LONG NECK!

PICTURE | ¢,y o/ 5%0B
B CHEESE!

7208 -

|

| 920Y
Then we saw elephants ... <
| | PICTURE PICTURE

D F
, ’ 720D 720F

A HAVTA VR o S L A T S PP IAARI AI A ACAEAITIA AN AV Ay rwieh wwrw v, - v T Prouep M - ot

maaa s e e] . e S ~

VIEW

1010

CA 02501667 2005-04-14

10/19

PROPERTY

INFO
1020

F12.10.

‘!~1000

PROPERTY
NAME
1030

CA 02501667 2005-04-14

T T T L TN K N R ¥

il 2 Ghisisigts AN AOTEEEE SRR

HIVAAAINI
LNdNI Y380 |

HOVAHHINI
HAITNd
TVIILdO

HOVAAAINI || TOVAHAINI
HATNd ¥STd JAINA
IILANODVIA XSId d¥VH

9CTT SNg WALSAS

F444 4
LIN(
ONISSHIONd

|
|
|
0611 |
|
|

!Ii[llil!lillllili;ilillliii[
PEvirdih Sl U

AT ATRAL kb, 44T g A H A S AT T TR RNl Cds e A T

CA 02501667 2005-04-14

DEFINE REQUIRED
PROPERTIES FOR THE

| LIST ENTRY RELATIONSHIPS,
LE. THE ENTRY TEMPLATE

GENERATE LIST ENTRY
RELATIONSHIPS IN RESPONSE TO
USER INPUT TO THE ENTRY
TEMPLATE

APPLY VIEW TO THE LIST

DISPLAY THE LIST TO THE USER

1210

1220

1230

1240

Fi1g.12.

‘1—1200

CA 02501667 2005-04-14

13/19

MOVE ITEMS FROM £310

ONE LISTTO
ANOTHER LIST

1320

DELETE THE LIST ENTRY
RELATIONSHIP FROM THE
OLD LIST

~1330
CREATE A NEW INSTANCE '
OF ENTRY RELATIONSHIP

TYPE FOR THE NEW LIST

1340

NEW ENTRY
RELATIONSHIP
TYPE SAME AS
OLD?

NO

YES 1350

COPY THE ENTRY
RELATIONSHIP’S PROPERTIES
. FROM OLD TO NEW

1360

(-.

et “"'*"'“'MW'*M“"WWW“M‘MM&Vb&Wm ann

CA 02501667 2005-04-14

1410

COPY ITEMS FROM
ONE LISTTO

ANOTHER LIST

CREATE A NEW INSTANCE |L14%0

OF ENTRY RELATIONSHIP
TYPE FOR THE NEW LIST

1430

NEW ENTRY
RELATIONSHIP
TYPE SAME AS
ORIGINAL?

NO

YES

COPY THE ENTRY
RELATIONSHIP’S PROPERTIES

FROM ORIGINAL TO NEW

END 1450

1440

CA 02501667 2005-04-14

ADD ITEMS TO A LIST

CREATE A NEW INSTANCE

| OF ENTRY RELATIONSHIP

TYPE FOR THE LIST

1530

‘j~15oo

~1510

1520

Y PRIPCAAATE B4 A WA S e W WL S e 24 e e

P SN Y L A Sy

CA 02501667 2005-04-14

REMOVE ITEMS
FROM A LIST

DELETE THE LIST
ENTRY RELATIONSHIP
FROM THE LIST

1610

1620

II 600

VERTETPPEL 4 CE M G AT el

CA 02501667 2005-04-14

17/19

DELETE ITEMS

FROM A LIST

DELETE ALL LIST ENTRY
RELATIONSHIPS WHERE
THE ITEM IS THE TARGET

DELETE THE

ITEM ITSELF

(e)y

1710

1720

1730

Fig.17.

II 700

(

!

,"’0'.

CA 02501667 2005-04-14

18/19

STATIC
LIST

NON-HOLDING

REFERENCES
1830

310

F1g.18.

. ‘I-1800

1810

PROPERTIES
130

. b davaciabica cwbe . Ay .
1A sRisiviVE v ndewiuireiie P RATARABATIVEAS - IR AT LR Y $0 20 AR A UM i S e A RS b e Y s b a3 e v——r W B AP P Yy e L T et dram reb i b v b,

CA 02501667 2005-04-14

1919

F1g.19.

II 900

~310

1910
FILE
SYSTEM
CONTAINER
ITEMS
130
L

HOLDING
REFERENCES
. 1920

RELATIONSHIPS

110

1022 r
{
|

SOURCE ,' RELATIONSHIP
5104

ENTRY TEMPLATE
fwsmith} Comment
{wsmith} rating

340

. W ey WY Rm wmm— g ww—

!

. LIST ENTRY
| RELATIONSHIP
i

Whieh mbmm vl duleh dylgn AMRR SR VR iy iy

LIST ENTRY

310B

Na—

COMMENT =

“What a long neck!”

{wsmith} 2208

COMMENT =
“Say Cheese!”

5408
{wsmith}
RATING = §

fwsmith} 3304

PICTURE A4
3204

. B I A = W Al mae e Ay SR

PICTURE B
5208

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

