发明名称
一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法

摘要
本发明涉及有色金属冶炼弃渣的综合利用技术，一种镍冶炼弃渣净化除杂的综合利用技术，尤其是涉及一种将镍冶炼弃渣在高温热液状态下净化除杂生产硅酸亚铁产品的一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，该方法包括如下步骤：a、将镍渣加热至熔融状态或直接取熔融状态的镍渣；b、保温使镍渣保持熔融状态，同时向镍渣中通入以便发生反应生成固体残渣的氧气或空气；c、除去上述固体残渣，除去底部占渣总重量的4%~6%重金属层的残渣即可；本发明提供的方法节能环保、低成本，能将镍冶炼弃渣在热液状态下1150℃~1300℃下净化除杂生产硅酸亚铁产品。
1. 一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，其特征在于，该处理方法包括如下步骤：
 a. 将镍渣加热至熔融状态或直接取熔融状态的镍渣；
 b. 保温使镍渣保持熔融状态，同时向镍渣中通入以便发生反应生成固体残渣的氧气或空气；
 c. 除去上述固体残渣，除去底部占渣总重量的 4% - 6% 重金属层的残渣即可；其中在步骤 b 后还要保温使镍渣保持熔融状态，同时向镍渣中通入氯气以便发生反应，氯气的量为每吨镍渣 0.1-0.25 立方米，氯气的通入时间为 5-10 分钟。

2. 如权利要求 1 所述的一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，其特征在于：
 其中在步骤 b 中通入氧气的量为每吨镍渣 0.4-1 立方米，氧气的通入时间为 5-10 分钟。

3. 如权利要求 1 所述的一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，其特征在于：
 其中在步骤 b 中通入空气的量为每吨镍渣 2-5 立方米，空气的通入时间为 5-10 分钟。

4. 如权利要求 1 至 4 中任意一项所述的一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，其特征在于：
 其中熔融状态的镍渣是指温度在 1150℃ - 1300℃。
一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法

技术领域
[0001] 本发明涉及一种有色金属冶炼弃渣的综合利用技术，特别是镍冶炼弃渣的综合利用技术，尤其是涉及一种将镍冶炼弃渣在高温即1150℃—1300℃热液状态下净化除杂生产硅酸亚铁产品的用镍冶炼弃渣的生产硅酸亚铁的方法。

背景技术
[0002] 镍金属是一种有色金属，在国民经济中有广泛用途，特别特别是在钢铁工业、机械、无机化工，新材料工业等有十分重要的用途。火法镍冶炼工业是有色金属工业的一个重要分支，是一种重要有色金属原材料行业。镍冶炼过程中，炉料中的SiO₂、CaO、MgO、Al₂O₃、Fe₃O₄混合物一起进入电炉，在1150℃—1250℃高温下形成液态炉渣。炉渣是以铁橄榄石为主的混合氧化物熔体，其主要成分为硅酸亚铁，硅酸亚铁的分子式是FeSiO₃·2FeO·SiO₂。
[0003] 镍冶炼弃渣是火法镍冶炼生产中排放的一种固体废渣。镍冶炼弃渣冷却后堆放占用大量土地和对环境造成严重污染。
[0004] 目前，我国已积存的镍冶炼弃渣有1000万吨左右，并仍以每年180万吨左右的速度递增，造成资源的极大浪费和环境的严重污染。
[0005] 镍冶炼弃渣中含有Ni、Cu、Fe、Co、CaO、MgO、SiO₂等，利用镍冶炼弃渣单纯回收铁金属，国内外已有成熟的技术工艺借鉴，但是，到目前为止，这些技术工艺在处理镍冶炼弃渣时，主要考虑单纯回收铁金属，这些技术的共同特点是能耗过大，二次污染比较严重，综合生产成本偏高，经济效益和环保效益较差，没有生存能力和可持续发展能力，因此，这些方法没有实用价值，至今未得到实际推广使用。

发明内容
[0006] 本发明的目的是克服现有技术的不足，提供一种节能环保、低成本，能将镍冶炼弃渣在热液状态下净化除杂生产硅酸亚铁产品的一种用镍冶炼弃渣净化除杂生产硅酸亚铁的方法。
[0007] 本发明通过如下方法实现：
[0008] 一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，其特征在于，该处理方法包括如下步骤：
[0009] a. 将镍渣加热至熔融状态或直接取熔融状态的镍渣；
[0010] b. 保证镍渣保持熔融状态，同时向镍渣中通入以便发生反应生成固态残留的氧气或空气；
[0011] c. 除去上述固体残渣，除去底部占总重量的4%—6%重金属层的残渣，即可；
[0012] 其中在步骤b后还要保持镍渣保持熔融状态，同时向镍渣中通入氯气以便发生反应，氯气的量为每吨镍渣0.1—0.25立方米，氯气的通入时间为5—10分钟；
[0013] 其中在步骤b中通入氧气的量为每吨镍渣0.4—1立方米，氧气的通入时间为5—10分钟。
其中在步骤b中通入空气的量为每吨镍渣2-5立方米，空气的通入时间为5-10分钟；
其中熔融状态的镍渣是指温度在1150℃~1300℃。
本发明有如下效果：
1）工艺方法独特：本发明充分利用镍冶炼溢渣排放时的显热先对热渣进行电炉保温加热措施，使炉渣保持一定温度，并具有良好流动性和化学活性。然后利用炉外精炼技术，分批次对热渣进行净化除渣处理，将高温氧化、高压氢气先后分别喷吹入热渣之中，使其与热渣中的有害杂质如氧化铝、氧化镁、氧化钙、硫化物等进行充分反应，生成的反应物比重较小而上浮，漂浮于热渣上面而析出，从而将热渣中的有害杂质如氧化铝、氧化镁、氧化钙、硫化物等降低到规定范围内，得到较为纯净的合格热渣，硫化镍镍矿中氧化铁变成硅酸亚铁的反应原理如下：
 \[FeS + 3Fe_2O_3 + 5SiO_2 = 5(2FeO \cdot SiO_2) + SO_2 \ \uparrow \]
镍渣冷凝时很难结晶，常成玻璃体，软化温度低，软化温度1150℃~1300℃。镍渣渣的高温处理是节能降耗的关键技术，在高温下除去杂质制成块状硅酸亚铁，都是有效利用了热渣的显热，是最先进的节能技术。在这个热渣处理过程中，首先应用炉外精炼技术除去热渣中的有害杂质如氧化铝、氧化镁、氧化钙、硫化物等得到合格的硅酸亚铁熔液。
2）本发明采用电炉、破位、可靠的冶金新技术，将严重污染环境的镍渣处理变废为宝，最大限度的综合利用了资源，不仅符合国家产业政策，而且节约能源，减少污染，对于节能减排，发展循环经济具有重大现实意义。
3）高效综合利用了镍冶炼溢渣资源，节能环保、低成本：本发明既能使杂质和硅酸亚铁有效分离，又能实现对镍冶炼溢渣中的氧化亚铁和二氧化硅的全部回收利用，同时生产出合格的硅酸亚铁产品，从而高效综合利用了镍冶炼溢渣资源。该方法是一种节能环保、低成本，将镍冶炼渣在热液状态下净化除杂生产硅酸亚铁产品的镍冶炼溢渣综合利用方法。
4）本发明为钢铁工业、铁合金工业开辟了一种新的铁资源，具有巨大的经济效益和环保效益。
5）产品用途广泛：本发明提供的方法生产出的硅酸亚铁为次将其制成球状硅酸亚铁，再利用熔化还原技术将球状硅酸亚铁熔炼炉整体脱氧还原成硅钙合金。这种硅酸亚铁球块是一种冶金新产品，是一种冶金新资源，是生产铁合金和钢铁的重要的新型原材料，可以用于硅铁合金的生产，既可以替代硅粒、氧化铁皮，还可以替代硅石，而且还是原材料。使用时可以节能降耗，不仅可以大幅度降低硅铁生产成本，而且可以减少二氧化硅的排放，具有良好的循环经济效益和社会环境效益。这种硅酸亚铁还可以做为铬铁、锰铁生产时的新型原料，还可以做为炼铁烧结炉料使用，如果按一定比例使用具有良好的经济效益和社会环境效益。因此这种硅酸亚铁产品具有良好的市场前景。利用硅酸亚铁生产的这种硅铁合金是炼钢必需的原料之一，也是生产金属钢的原料之一，目前市场前景良好。
6）回收率高：采用本发明提供的方法处理镍冶炼溢渣，铁金属回收率达到95%。镍、铜、钴回收率在93%，硅回收率92%。
具体实施方式

[0025] 实施例一：一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，该处理方法包括如下步骤：将镍渣加热至熔融状态，保温使镍渣保持熔融状态，其中熔融状态的镍渣是指温度在1150℃-1300℃，同时向镍渣中通入以便发生反应生成固体残渣的氧气，通入氧气的量为每吨镍渣0.4-1立方米，氧气的通入时间为5-10分钟，直至该固体残渣不再生成为止，除去上述固体残渣，除去底部占渣总重量的4%-6%重金属层的残渣，即可得硅酸亚铁，硅酸亚铁的分子式为FeSiO$_3$·2FeO·SiO$_2$。

[0026] 实施例二：一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，该处理方法包括如下步骤：将镍渣加热至熔融状态，保温使镍渣保持熔融状态，其中熔融状态的镍渣是指温度在1150℃-1300℃，同时向镍渣中通入以便发生反应生成固体残渣的氧气，通入氧气的量为每吨镍渣2-5立方米，氧气的通入时间为5-10分钟，直至该固体残渣不再生成为止，除去上述固体残渣，除去底部占渣总重量的4%-6%重金属层的残渣，即可得硅酸亚铁，硅酸亚铁的分子式为FeSiO$_3$·2FeO·SiO$_2$。

[0027] 实施例三：一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，该处理方法包括如下步骤：将镍渣加热至熔融状态，保温使镍渣保持熔融状态，其中熔融状态的镍渣是指温度在1150℃-1300℃，测定镍渣中钾离子、钠离子的含量，当钾离子的含量百分含量大于0.05%，钠离子的含量百分含量大于0.05%时，向镍渣中通入以便发生反应生成固体残渣的氯气，通入氯气的量为每吨镍渣0.1-0.25立方米，氯气的通入时间为5-10分钟，直至该固体残渣不再生成为止，除去上述固体残渣，除去底部占渣总重量的4%-6%重金属层的残渣，即可得硅酸亚铁，硅酸亚铁的分子式为FeSiO$_3$·2FeO·SiO$_2$。

[0028] 实施例四：一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，该处理方法包括如下步骤：直接取温度为1150℃-1300℃熔融状态的镍渣，保温使镍渣保持熔融状态，同时向镍渣中通入以便发生反应生成固体残渣的氧气，通入氧气的量为每吨镍渣0.4-1立方米，氧气的通入时间为5-10分钟，直至该固体残渣不再生成为止，除去上述固体残渣，除去底部占渣总重量的4%-6%重金属层的残渣，即可得硅酸亚铁，硅酸亚铁的分子式为FeSiO$_3$·2FeO·SiO$_2$。

[0029] 实施例五：一种利用镍冶炼弃渣净化除杂生产硅酸亚铁的方法，该处理方法包括如下步骤：直接取温度为1150℃-1300℃熔融状态的镍渣，保温使镍渣保持熔融状态，同时向镍渣中通入以便发生反应生成固体残渣的氧气，通入氧气的量为每吨镍渣2-5立方米，氧气的通入时间为5-10分钟，直至该固体残渣不再生成为止，除去上述固体残渣，除去底部占渣总重量的4%-6%重金属层的残渣，即可得硅酸亚铁，硅酸亚铁的分子式为FeSiO$_3$·2FeO·SiO$_2$。
上述反应均在热渣包中进行。
在上述除去固体残渣之前还需要震荡热渣包 30-40 分钟，然后静置 8-12 分钟。
上述气体是使用石墨化碳素材料气体导管伸入该热渣包内以通气。