



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



①Número de publicación: 2 951 588

51 Int. Cl.:

A61B 5/03 (2006.01)
A61B 5/026 (2006.01)
A61B 5/11 (2006.01)
A61B 5/0215 (2006.01)
A61B 5/341 (2011.01)
A61B 5/352 (2011.01)

(12)

### TRADUCCIÓN DE PATENTE EUROPEA

T3

- (86) Fecha de presentación y número de la solicitud internacional: 01.10.2015 PCT/CZ2015/000114
- (87) Fecha y número de publicación internacional: 14.04.2016 WO16055036
- 96 Fecha de presentación y número de la solicitud europea: 01.10.2015 E 15784924 (1)
- (97) Fecha y número de publicación de la concesión europea: 21.06.2023 EP 3203966
  - 54 Título: Dispositivo y método para medir la presión intracraneal
  - (30) Prioridad:
    - 11.10.2014 CZ 20140696
  - 45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.10.2023
- (73) Titular/es:

LINET SPOL. S R.O. (100.0%) Zelevcice 5 274 01 Slany, CZ

(72) Inventor/es:

SEBA, PETR y STUDNICKA, FILIP

74 Agente/Representante:

SÁEZ MAESO, Ana

#### **DESCRIPCIÓN**

Dispositivo y método para medir la presión intracraneal

Sector técnico

35

55

La invención se refiere a dispositivos y métodos para la medición no invasiva de la presión intracraneal (PIC). El dispositivo de monitorización se implementa usando una almohadilla con uno o más elementos piezoeléctricos y usando un dispositivo para detectar la oscilación R en la señal de ECG y opcionalmente usando un dispositivo de medición invasivo para determinar la presión sanguínea arterial (PAA).

Estado actual de la técnica

La medición de la presión intracraneal (PIC) es de gran importancia en muchos métodos clínicos y de diagnóstico.

El monitoreo PIC es esencial especialmente para pacientes en el departamento de neurología y pacientes después de un politraumatismo, por ejemplo, después de un accidente. Un aumento en la PIC puede indicar una lesión cerebral grave y potencialmente mortal y casi siempre requiere una intervención quirúrgica inmediata. Una PIC alta puede indicar, por ejemplo, la presencia de un tumor, edema, insuficiencia hepática aguda y otras enfermedades potencialmente mortales. Del mismo modo, un descenso en la PIC no es fisiológicamente favorable, se acompaña de náuseas, cefaleas o alteraciones visuales.

Actualmente, el método más común y el único preciso para medir la PIC es un método invasivo en el que los sensores de presión se insertan directamente en el tejido cerebral del paciente, lo que requiere que el médico taladre orificios en el cráneo del paciente. Este método es arriesgado para el paciente en términos de riesgos para la salud y la recuperación posterior, y también conlleva el riesgo de infección.

- 20 Entre los métodos no invasivos conocidos hasta el momento, podemos incluir los métodos de medición de la presión intraocular, emisiones otoacústicas o timpanometría, potenciales evocados estimulados visualmente o medición del flujo sanguíneo intracraneal por Doppler. Desafortunadamente, estos métodos no garantizan la suficiente precisión y confiabilidad de las mediciones.
- Uno de los métodos no invasivos utilizados para medir la PIC se detalla en el registro US2013289422, donde se describe un dispositivo para medir la PIC basado en la relación entre la presión dentro de la arteria carótida y el flujo/magnitud de la velocidad del flujo sanguíneo en la arteria carótida. El flujo de sangre se detecta mediante un sensor piezoeléctrico que se sujeta en la arteria carótida. La derivación del valor de la PIC se basa entonces en la forma de onda de pulso detectada mediante el sensor piezoeléctrico.
- Otro acceso para determinar la PIC se detalla en el documento US6761695, que describe un dispositivo para determinar la PIC que consiste en un sensor de presión fijado a la cabeza del sujeto medido. La salida del sensor contiene un componente de PIC y un componente de presión arterial. Posteriormente, el procesador resta el valor de la presión arterial de la señal de salida en la misma fase, de esta manera se calcula la PIC.
  - Otro posible acceso y dispositivo para monitorear la PIC se describe en el documento US2009012430. Se trata principalmente de un dispositivo destinado a controlar el flujo sanguíneo en el cerebro, que también se puede utilizar para determinar la PIC. El principio consiste en inyectar microburbujas en el torrente sanguíneo del paciente y luego evaluar el flujo turbulento causado por estas microburbujas. Estas vibraciones son registradas por un grupo de acelerómetros colocados en la cabeza del paciente.
- Otro método para medir el valor de la PIC se detalla en el documento US2010049082, donde se describe un procedimiento en el que, con base en una serie de parámetros vitales (pCO2, pO2, presión arterial, velocidad del flujo sanguíneo, etc.), se puede determinar estadísticamente la PIC prevista. Sin embargo, este método implica dos fases de proceso, a saber, el aprendizaje, cuando se recopilan los datos, y la simulación, cuando los datos se comparan con los modelos de PIC potenciales. La desventaja de este acceso es el valor de salida relativamente irrelevante, que puede no siempre corresponder completamente a la realidad.
- En contraste con los accesos mencionados anteriormente, el acceso presentado en la patente US8366627 es considerablemente más complejo e incluso más confiable. Para calcular el valor de la PIC se utiliza un sensor de presión (tonómetro o catéter) para medir la presión arterial; el modelo de cálculo incluye los parámetros resistencia, distensibilidad, presión arterial y flujo sanguíneo. También se conocen soluciones en forma de un sensor que se fija a la cabeza mediante una diadema, como se ve en el documento US2013085400, que describe un sensor cuya señal de salida es procesada y transformada mediante operaciones matemáticas en un espectro de frecuencia y sus componentes. Estas operaciones son principalmente la transformada de Fourier, o transformada rápida de Fourier, o transformada de ondícula (Wavelet transform).

Otro acceso alternativo para medir un parámetro cerebral, no directamente la PIC, sino un parámetro similar, a saber, la presión arterial en la arteria temporal, se trata en el documento US2011213254, que describe un dispositivo de medición similar a unos auriculares que están en contacto con el oído, pero el sensor se coloca sobre la arteria temporal, donde detecta las pulsaciones y deriva la presión sanguínea en la arteria temporal.

Otro dispositivo para la medición no invasiva de la PIC conocido en el estado de la técnica se describe, por ejemplo, en el documento DE3130326A1.

Características de la invención

- Los problemas y deficiencias de los métodos y accesos para calcular la presión intracraneal (PIC) se resuelven mediante el dispositivo de monitorización de la PIC según la reivindicación de la patente 1 que comprende una almohadilla de medición que contiene al menos un sensor piezoeléctrico La almohadilla de medición se coloca debajo de la cabeza del paciente. Otros componentes opcionales de este dispositivo son un monitor de frecuencia cardíaca y un sensor de medición invasiva de la presión arterial (PAA).
- La almohadilla de medición detecta micromovimientos y vibraciones mecánicas de la cabeza (es decir, sacudidas mecánicas de la cabeza) que son causados por la hemodinámica de la circulación sanguínea del paciente, gracias a la cual la onda de pulso se refleja en el flujo sanguíneo dentro de la cabeza. Además, la oscilación R se puede detectar mediante un dispositivo de ECG. Otra parte del dispositivo puede ser un sensor para la medición invasiva de la PAA. Luego, la PIC se calcula a partir de una relación que utiliza el tiempo de retardo de la onda de pulso reflejada en relación con el instante de la oscilación R detectada.
- Tal como se descubrió experimentalmente y se verificó en el estudio, los cambios relativos en la PIC se pueden medir incluso sin necesidad de utilizar una medición invasiva de la PAA y sin necesidad de detectar la oscilación R. El método se basa en la detección de una secuencia de ondas de pulso y sus reflejos, relacionados con pulsos individuales y su retraso de tiempo recíproco.

Vista general de las imágenes en los dibujos

- 20 En las Figs. 1a, 1b y 1c se muestran esquemáticamente el dispositivo y sus componentes. En la Fig. 2 se muestra la almohadilla del sensor para medir la PIC. La Fig. 3 muestra esquemáticamente el sistema vascular.
  - La Fig. 4 muestra mediciones usando la invención en comparación con la PIC medida de forma invasiva. La Fig. 5 muestra una matriz de datos de una señal de ECG con oscilación R sincronizada.
- La Fig. 6 muestra una matriz de datos de la señal de la almohadilla de medición. La Fig. 7 muestra la coincidencia temporal del máximo de la PIC con uno de los máximos del movimiento de la cabeza. La Fig. 8 muestra una matriz de datos de una señal de ECG con vibraciones mecánicas acentuadas.

Ejemplos de realización de la invención

30

35

40

45

50

55

El dispositivo para la monitorización no invasiva de la presión intracraneal 1 (PIC) incluye una almohadilla de medición 2, una unidad de procesamiento 3, un dispositivo para medir la actividad eléctrica del corazón 4 (ECG), un dispositivo para la medición invasiva de la presión sanguínea arterial 5 (PAA), un dispositivo de visualización 6 y un conector de red 7.

La almohadilla de medición 2 incluye al menos un sensor piezoeléctrico 8 y se coloca en un ventajoso diseño debajo de la cabeza del paciente en un reposacabezas, como se muestra en la Fig. 1a. Preferiblemente se utiliza un sensor piezoeléctrico con un tercer electrodo capacitivo conductor descrito en las patentes EP3054837, US10376216 o CN105813551, que representan patentes concedidas en las fases nacionales de la solicitud internacional PCT/CZ2014/000112 presentada el 8 de octubre de 2014, que reclama prioridad para la solicitud checa PV2013-781 presentada el 8 de octubre de 2013, que hoy también es la patente CZ308222, porque un sensor piezoeléctrico con un tercer electrodo capacitivo conductor proporciona información adicional sobre el paciente. El soporte para la cabeza puede complementarse con una extensión 9, que está conformada para mantener la cabeza del paciente en una posición y no permitir que la cabeza del paciente se coloque de lado. La almohadilla de medición 2 está preferiblemente recubierta de un material que asegura una mayor comodidad durante el manejo y al mismo tiempo tiene mejores propiedades higiénicas. Alternativamente, la almohadilla de medición 2 se puede colocar debajo del colchón 10 puesto en la cama del hospital 11 debajo de la cabeza del paciente, como se puede ver en la Fig. 1b. En el diseño ventajoso, tres sensores 8 están conectados en la almohadilla de medición 2, como se puede ver en la Fig. 2; sin embargo, para las necesidades de monitorear las tendencias de salud a largo plazo, un sensor 8 en la almohadilla 2 es totalmente suficiente, ya que las formas de ondas de señales que se originan en los tres sensores 8 son similares. En realizaciones alternativas, las manifestaciones mecánicas de la dinámica del torrente sanguíneo pueden detectarse, por ejemplo, mediante un sensor piezorresistivo o un acelerómetro, o la dinámica del torrente sanguíneo puede controlarse ópticamente o de otra forma adecuada.

El dispositivo de medición 1 incluye además un dispositivo para medir la actividad eléctrica del corazón 4 (ECG), un sensor para la medición invasiva de la presión sanguínea arterial 5 (PAA). Ventajosamente, estas funciones pueden ser realizadas por un monitor de pacientes estándar 12 con salida de datos. La señal de salida es preferiblemente digital, sin embargo, es posible el uso de una salida analógica. En el caso de usar señales de salida analógicas, es necesario usar convertidores A/D 13. Un especialista con experiencia normal en el procesamiento de señales analógicas es capaz de diseñar varias conexiones posibles del convertidor A/D 13 para que la unidad de procesamiento 3 sea capaz de evaluar correctamente las señales y calcular la PIC. Asimismo, un

experto común familiarizado con el procesamiento de bioseñales puede usar otros dispositivos adecuados para monitorear la actividad eléctrica del corazón, como por ejemplo un vector cardiógrafo (VCG). Alternativamente, se puede utilizar una señal balistocardiográfica. En el diseño alternativo, también es posible medir la PAA de forma no invasiva, sin embargo, se supone que se monitorea a los pacientes bajo supervisión constante en las unidades de UCI y URPA, donde la PAA normalmente se mide mediante un método invasivo, por lo que se describe esta invención usando el ejemplo de un sensor invasivo 5 para medir la PAA.

5

10

25

30

35

40

45

50

55

La unidad de procesamiento 3 está preferiblemente ubicada dentro de la almohadilla de medición 2, como se puede ver en la Fig. 2a. En el diseño alternativo (en la Fig. 2b), su ubicación puede estar fuera de la almohadilla de medición 2, como un módulo separado con su propio dispositivo de visualización 6, también el ECG 4 y el dispositivo para la medición invasiva de la PAA 5 pueden estar separados. Luego, todas las señales medidas se envían a la unidad de procesamiento 3. En otro diseño alternativo, la unidad de procesamiento 3 puede ser parte de un monitor de pacientes especializado 12. En este caso, la señal de la almohadilla de medición 2 se envía directamente al monitor de pacientes especializado 12, donde la unidad de procesamiento 3 evalúa la PIC y la muestra en el dispositivo de visualización 6 del monitor de pacientes 12.

La unidad de procesamiento 3 está conectada a los sensores 8, el dispositivo 4 (ECG) y el sensor PAA 5. La unidad de procesamiento 3 evalúa las señales de estos sensores 8 y luego envía los datos evaluados al dispositivo de visualización 6. Este dispositivo de visualización 6 se puede colocar por separado, como se puede ver en la Fig. 2b, o puede formar parte del monitor de pacientes 12 en el diseño ventajoso. En este caso los datos se conectan al conector para la señal de salida externa. En este diseño no es necesario tener un dispositivo para medir la actividad eléctrica del corazón 4 (ECG) ni un dispositivo para la medición invasiva de la presión sanguínea arterial 5 (PAA), ya que las señales generadas por estos dispositivos se toman directamente de la almohadilla de medición 2 y por lo tanto la medición es totalmente no invasiva.

El dispositivo de visualización 6 puede mostrar cursos actuales, tendencias, valores medios de PIC, ECG, PAA u otras funciones vitales del paciente en el caso del monitor de pacientes 12. El dispositivo de visualización 6 está preferiblemente conectado al sistema hospitalario para recopilar datos del paciente 15. El dispositivo de visualización 6 también puede mostrar estados de crisis si el valor del parámetro mostrado se encuentra fuera de los valores establecidos. Los valores límite se pueden ajustar manualmente según las necesidades individuales del paciente. Se puede evaluar otra situación de crisis si el valor actual de la PIC se desvía del promedio a largo plazo. La notificación de estas situaciones puede volver a enviarse al sistema de recopilación de datos del paciente 15, que distribuye aún más la información, o la información sobre situaciones de crisis seleccionadas se puede enviar directamente al personal médico.

El método de cálculo de la PIC se basa en la relación existente entre la presión en el interior de la cavidad craneal 16 y la hemodinámica del torrente sanguíneo 17. Esta relación mutua se manifiesta, por ejemplo, por cambios sincrónicos en la PIC y la actividad cardíaca (como se ha afirmado, por ejemplo, en el artículo científico del autor Wagshul M. et al. (2011) The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility, Fluids and Barriers of the CNS, 8:5). Desde un punto de vista mecánico, ocurre una oscilación sincronizada de la PIC y la PAA, que es causada por cambios en la PAA, así como del volumen de sangre que está contenido en las arterias y vasos cerebrales. El volumen cerebral cambia en proporción directa a la PAA. Si el cerebro no estuviera almacenado en la cavidad craneal 16, las pulsaciones serían visiblemente evidentes. Pero en realidad el cerebro se almacena en el líquido cefalorraquídeo, un líquido incompresible, y se encierra junto con él en un caparazón sólido (cráneo). Un aumento en la PAA hace que el cerebro se expanda y conduce a un aumento en la PIC. En el momento en que PAA y PIC se igualan localmente, el cerebro ya no puede aumentar su volumen porque no puede aceptar más sangre debido al hecho de que la presión de la sangre que ingresa al cerebro ya no es mayor que la PIC, y la onda de pulso que ingresa se refleja. Esquemáticamente, esta situación se muestra en la Fig. 3, donde la PIC corresponde a p1 y la PAA corresponde a p2. El corazón 18 se muestra aquí en forma de un pistón de El modelo hidrodinámico simple de Windkessel se usa comúnmente para bombeo que bombea sangre. describir esta situación. En la práctica común, se utiliza el modelo de Windkessel para determinar la elasticidad de la aorta Este modelo se resuelve utilizando ecuaciones diferenciales, donde el corazón 18 se representa como una fuente de pulsos y la elasticidad arterial y la resistencia vascular entran como parámetros de entrada. Gracias a este modelo, es posible calcular y describir la forma de la onda de pulso. El modelo de Windkessel se describe en detalle, por ejemplo, en Westerhof N. et al. (2008) The arterial Windkessel, DOI 10.1007/s11517-008-0359-2.

La solución analítica de estas ecuaciones diferenciales es imposible, por lo que deben resolverse numéricamente. Este modelo se utiliza para la reflexión de ondas de pulso en la cabeza. Con base en el razonamiento físico, se puede deducir que la elasticidad del torrente sanguíneo en el cerebro C es inversamente proporcional a la PIC, por lo tanto, se cumple la relación I

$$ICP \sim \frac{1}{C}$$
 (I)

De las leyes del movimiento de Newton, concretamente de la ley de conservación de la cantidad de movimiento, se deduce que el reflejo de la onda de pulso va acompañado de un movimiento mecánico de la cabeza, que se puede medir con la mencionada almohadilla de medición 2. Estos movimientos mecánicos de la cabeza son visibles en la Fig. 6, donde están marcados en las zonas 19, 20 y 21.

El comienzo del pulso mecánico, que en la señal del ECG corresponde a la oscilación R, y el tiempo T1 del reflejo de la onda de pulso 20 (oscilación mecánica de la cabeza) determinarán el tiempo de retardo T entre la oscilación R y el movimiento mecánico de la cabeza 20. En la ecuación del modelo de Windkessel, la oscilación R representa la parte fuente de la ecuación, que describe la acción de una bomba de pistón correspondiente al corazón 18. La sangre se bombea al cerebro bajo una presión igual a la PAA. Esta presión se contrarresta con la presión del tejido cerebral y del líquido cefalorraquídeo, que es igual a la PIC. La diferencia entre la PIC y la presión arterial se denomina presión de perfusión cerebral (PPC). El retardo de tiempo T entre la oscilación R y el reflejo de la onda de pulso en la cabeza es entonces la resolución de la ecuación de Windkessel como en la relación II

$$CPP \sim -A \cdot log(T - T_0) \tag{II}$$

donde A es una constante determinada empíricamente,

25

45

T0 es el tiempo que correspondería al tiempo de rebote a una presión intracraneal infinitamente grande. Como tiempo T0, podemos establecer el tiempo en que aparece la onda de pulso en la arteria carótida.

En el siguiente paso, es suficiente calcular la PIC a partir del conocimiento de la PAA y la PPC. Para este cálculo se utiliza la relación III

$$ABP - CPP = ICP \tag{III}$$

Como puede verse en la Fig. 4, la tendencia de los resultados medidos utilizando el método mencionado es similar a la tendencia de los resultados medidos de forma invasiva utilizando sensores intracraneales. La conversión entre el tiempo de retardo T del movimiento de la cabeza y la PIC se realizó según las relaciones II y III.

La verificación del método no invasivo se realizó con varios sujetos de prueba. El aparato de verificación incluía un convertidor A/D 13 en el que se introdujeron la salida del sensor invasivo para medir la PIC, la señal de salida del dispositivo para medir la actividad eléctrica del corazón 4 (ECG) y la señal de la almohadilla de medición 2 debajo de la cabeza del paciente. Todas las señales se mostraron a 2 kHz.

En la señal de ECG obtenida, las oscilaciones R del complejo QRS se ubicaron utilizando procedimientos estándar, y luego la señal se dividió de acuerdo con las oscilaciones R en secciones individuales para que cada sección cubriera el intervalo de tiempo (Rn – 400, Rn +2000), donde Rn significa la enésima oscilación R y el tiempo se mide en puntos de muestreo, es decir, cada uno de esos intervalos contiene una sección de señales que comienza 400 puntos de muestreo (0,2 s) antes de la oscilación R y termina 2000 puntos de muestreo (1 s) después de ella.
 El rango de tiempo (Rn – 400, Rn + 2000) se eligió para el experimento de verificación de este modo, de manera que con absoluta certeza el intervalo dado afectó a dos oscilaciones R consecutivas. Si colocamos estos intervalos uno debajo del otro para que las primeras oscilaciones R estén sincronizadas en el tiempo, obtenemos para cada canal medido la matriz de datos que se muestra en la Fig. 5.

La señal del sensor piezoeléctrico 8 correspondiente a las oscilaciones R alineadas se puede ver en la Fig. 6. En la Fig. 6 son visibles los reflejos individuales de la onda de pulso en la cabeza representados por las áreas 19, 20, 21, provocados por cambios en la presión intracraneal y arterial. A los efectos de este método, el área más importante es 20.

Durante el período de diez oscilaciones R consecutivas, se puede suponer que los valores de PAA y PIC permanecen sin cambios y el sistema circulatorio permanece estable durante estos diez ciclos cardíacos consecutivos. En las Figs. 7a y 7b se muestran valores promedio obtenidos de dos pacientes diferentes. Como se puede ver en las Figs. 7a y 7b, el máximo de la presión intracraneal coincide en el tiempo con el máximo de la manifestación mecánica de la cabeza 20 (movimiento). Los datos del convertidor A/D se multiplicaron por las constantes apropiadas para que pudieran mostrarse en un solo gráfico.

#### MÉTODO II

El dispositivo para la monitorización no invasiva de la presión intracraneal 1 (PIC) incluye una almohadilla de medición 2, una unidad de procesamiento 3, una unidad de visualización 6, un conector de red 7 y un dispositivo que mide un parámetro relacionado con la presión arterial (PAA), que puede ser un dispositivo para medir la actividad eléctrica del corazón 4 o un dispositivo para la medición invasiva de la presión sanguínea arterial 5.

- Todos los cálculos y relaciones se explican en un solo ciclo cardíaco por simplicidad. En términos de tiempo, se trata específicamente del área entre dos oscilaciones R, donde la primera oscilación R se toma como el comienzo del evento T(0). Prácticamente justo después de la oscilación R, se produce una amplia gama de eventos mecánicos en el torrente sanguíneo, que se reflejan en la señal resultante en forma de oscilaciones, picos etc. Para un procesamiento posterior, es necesario identificar solo los picos importantes para más procesamiento.
- Uno de estos picos clave es el que corresponde al momento en que la onda de pulso rebota en la cabeza. Este tiempo se denota como T1, y el tiempo se determina usando el máximo ubicado en la región 24, como se muestra en la Fig. 8. La sangre se bombea al cerebro a una presión igual a la PAA. Esta presión se contrarresta con la presión del tejido cerebral y del líquido cefalorraquídeo, que es igual a la PIC. Aquí se puede ver una clara analogía, por ejemplo, con el inflado de un globo por la presión P2 dentro de una esfera hueca con una pared sólida (similar a la Fig. 3). Si el globo se inflara con una presión P2 baja, pronto ya no podría aumentar su volumen. Si la presión P2 que infla el globo fuera grande, se inflaría más tiempo y la cantidad de aire en el globo sería mayor, proporcional a la presión P2. Por el contrario, si hubiera una mayor presión P1 actuando contra la presión P2 que infla el globo, dejaría de inflarse antes porque las presiones P1 y P2 se igualarían antes. Como resultado de este proceso y del modelo análogo, se deduce que el tiempo T1 es inversamente proporcional al valor de la PIC. Por lo tanto, la relación IV se cumple

$$T_1 \sim e^{-ICP}$$
 (IV)

El segundo parámetro clave está relacionado con el cierre de la válvula aórtica. Este fenómeno es mecánicamente muy significativo y se conoce comúnmente como un golpe de ariete ("water hammer"). Este tiempo está marcado como T2, en la Fig. 8 este momento corresponde al máximo en el área 25. Se verificó experimentalmente que este tiempo se correlaciona con el momento en que la onda de presión llegó al sensor para la medición invasiva de la PAA 5.

De acuerdo con la ecuación de Moens-Korteweg a continuación (relación V)

$$ABP = \alpha \cdot ln \left( \frac{b}{\left( \frac{d}{PWV} - c \right)^2} - 1 \right) \tag{V}$$

30

45

25

donde PAA significa la presión sanguínea arterial;

PWV significa la velocidad de onda de pulso; y

a, b, c y d denotan ciertas constantes,

- es cierto que el tiempo T2, cuando el pulso de presión llega al punto de medición de la PAA, es inversamente proporcional a la presión, es decir, a medida que aumenta la presión, disminuye el tiempo de llegada de la onda de presión.
- La relación específica para la determinación de T2 corresponde a la siguiente relación (VI), tal como se indica en el texto profesional: F. Studnička: Analysis of biomedical signals using differential geometry invariants, ACTA PHYSICA POLONICA A, 120, A-154, 2011.

$$ln(T_2) \sim -ABP$$
 (VI)

Algunos otros resultados que surgen de la ecuación de Moens-Kortweg se pueden encontrar, por ejemplo, aquí: E. Pinheiro, O. Postolache, P. Girão: Non-Intrusive Device for Real-Time Circulatory System Assesment with Advanced Signal Processing Capabilities, MEASUREMENT SCIENCE REVIEW, Volume 10, No. 5, 2010.

Ahora se introduce el tiempo T0 en el modelo de Windkessel, que está relacionado con el momento en que la onda de pulso llega a la cabeza. Del modelo se deduce que la PIC es proporcional al logaritmo de la diferencia en los tiempos T1 y T0. El tiempo T0 puede ser reemplazado por el tiempo en que la onda de pulso pasa a través de la arteria carótida. En humanos, este tiempo se correlaciona con el momento en que la onda de impulso llega a la arteria radial, es decir, el lugar donde se mide de forma invasiva estándar con un sensor para la medición invasiva de la PAA 5. T0 es nuevamente inversamente proporcional a la PAA según la ecuación de Moens-Kortweg.

El tiempo T0 no se pudo definir experimentalmente, pero se verificó experimentalmente la correlación entre T0 y T2. Como se desprende de la descripción anterior, no es necesario medir el valor de la PAA, solo es suficiente el momento en que aparece la onda de pulso en la arteria radial. Para esta medida, parece adecuado utilizar un sensor para la medida invasiva de la PAA, ya que estas medidas se realizan de forma estándar en las unidades de cuidados intensivos. Sin embargo, para la detección de cambios relativos en la PIC, solo los datos de la almohadilla de medición 2 son suficientes, como lo demuestra el F. Studnička: Analysis of biomedical signals using differential geometry invariants, ACTA PHYSICA POLONICA A, 120, A-154, 2011.

15 De las relaciones anteriores (IV y VI) y del párrafo anterior se infiere que la relación VII se aplica

$$ICP \sim \ln|(T_2 - T_1)| \tag{VII}$$

Esta relación se verificó experimentalmente en sujetos de prueba, incluso en los casos en que se cambió la posición de la cabeza.

20 Con base en la descripción anterior, se puede ver que para monitorear los cambios relativos de la PIC es posible usar un dispositivo de monitoreo de la PIC que incluya solo la almohadilla de medición 2 y la unidad de procesamiento 3.

Para medir los valores absolutos de la PIC, es necesario que el dispositivo incluya una almohadilla de medición 2, una unidad de procesamiento 3 y un dispositivo para medir la actividad eléctrica del corazón 4 o un dispositivo de monitoreo de la PAA 5, o los dos al mismo tiempo.

La invención está definida por reivindicaciones de la patente.

5

10

25

### Lista de marcas de referencia

| 1  | dispositivo para la medición no invasiva de la PIC          |
|----|-------------------------------------------------------------|
| 2  | base de medición                                            |
| 3  | unidad de procesamiento                                     |
| 4  | dispositivo para medir la actividad eléctrica del corazón   |
| 5  | dispositivo para la medición invasiva de la presión arteria |
| 6  | dispositivo de visualización                                |
| 7  | conector de red                                             |
| 8  | sensor (en la almohadilla)                                  |
| 9  | extensión                                                   |
| 10 | colchón                                                     |
| 11 | cama de hospital                                            |
| 12 | monitor del paciente                                        |
| 13 | convertidor A/D                                             |
| 14 | dispositivo de visualización                                |
| 15 | sistema de recogida de datos del paciente                   |
| 16 | cavidad craneal                                             |
| 17 | torrente sanguíneo                                          |
| 18 | corazón                                                     |
| 19 | área I                                                      |
| 20 | área II                                                     |
| 21 | área III                                                    |
| 22 | PIC máxima                                                  |
| 23 | manifestación mecánica máxima                               |
| 24 | área T1                                                     |
| 25 | área T2                                                     |

#### REIVINDICACIONES

1. El dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente, caracterizado porque el dispositivo incluye una almohadilla de medición (2) con al menos un sensor (8) para medir las manifestaciones mecánicas de la cabeza cuando la almohadilla de medición (2) se coloca debajo de la cabeza del paciente, el dispositivo incluye además un dispositivo de referencia (4) cuya señal de salida contiene una señal de ECG, y una unidad de procesamiento (3) configurada para determinar el tiempo de retardo entre la primera señal relacionada con la oscilación R en la señal de ECG y la segunda señal relacionada con las manifestaciones mecánicas de la cabeza vinculadas con el reflejo de la onda de pulso en el torrente sanguíneo en la cabeza del paciente y para convertir este retardo de tiempo en la presión intracraneal del paciente.

5

10

40

- 2. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque el sensor (8) para medición de las manifestaciones mecánicas de la cabeza es una galga extensiométrica.
- Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación
   1, caracterizado porque el sensor (8) para medición de las manifestaciones mecánicas de la cabeza es un acelerómetro.
  - 4. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque el sensor (8) para medición de las manifestaciones mecánicas de la cabeza es un sensor capacitivo.
- 5. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque la unidad de procesamiento (3) está conectada a la almohadilla de medición (2) para el envío de la primera y segunda señales.
- 6. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque la unidad de procesamiento (3) está situada en el interior de la almohadilla de medición (2).
  - 7. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque la presión medida en el interior de la cabeza es la presión intracraneal.
  - 8. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque el valor calculado de la presión intracraneal es absoluto.
- 9. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque a la unidad de procesamiento (3) se conecta un dispositivo de visualización (14).
  - 10. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 9, caracterizado porque el dispositivo de visualización (14) forma parte del dispositivo de medición (1).
- 11. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 9, caracterizado porque el dispositivo de visualización (14) forma parte del monitor del paciente (12).
  - 12. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 9, caracterizado porque el dispositivo de visualización (14) está separado del dispositivo de medición (1).
  - 13. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 9, caracterizado porque el dispositivo de visualización (14) o la unidad de procesamiento (3) se conecta mediante un conector de red (7) al sistema hospitalario (15) para recopilar datos del paciente.
    - 14. Dispositivo (1) para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 9, caracterizado porque el dispositivo de visualización (14) o la unidad de procesamiento (3) se conecta mediante tecnología inalámbrica al sistema hospitalario (15) de recogida de datos del paciente.
- 15. Método de uso del dispositivo para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 1, caracterizado porque la unidad de procesamiento (3) se comunica con la almohadilla de medición (2), la unidad de procesamiento (3) registra y almacena el tiempo de recepción de la primera señal y el tiempo de recepción de la segunda señal, y la unidad de procesamiento (3) calcula el tiempo de retardo entre la primera señal y la segunda señal y convierte este tiempo de retardo en la presión intracraneal del paciente.
- 16. Método de uso del dispositivo para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 15, caracterizado porque la presión medida en el interior de la cabeza es la presión intracraneal.
  - 17. Método de uso del dispositivo para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 15, caracterizado porque la unidad de procesamiento (3) se comunica con el dispositivo de referencia (4) que envía información relacionada con la presión arterial.

- 18. Método de uso del dispositivo para la monitorización no invasiva de la presión intracraneal del paciente según la reivindicación 17, caracterizado porque la unidad de procesamiento (3) deduce el valor de la presión arterial del dispositivo de referencia (4).
- 19. Método de uso del dispositivo para la monitorización no invasiva de la presión intracraneal del paciente según
  la reivindicación 15, caracterizado porque la unidad de procesamiento (3) calcula el valor absoluto de la presión intracraneal en función del valor de la presión sanguínea arterial.

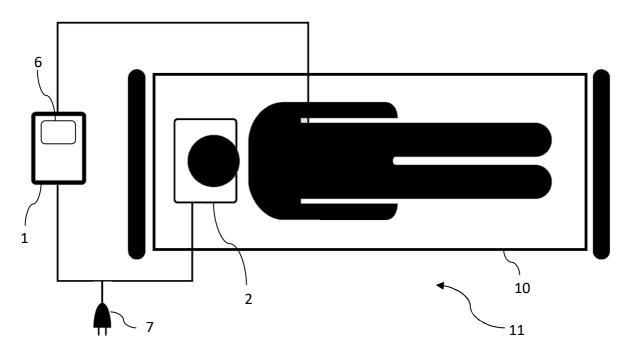
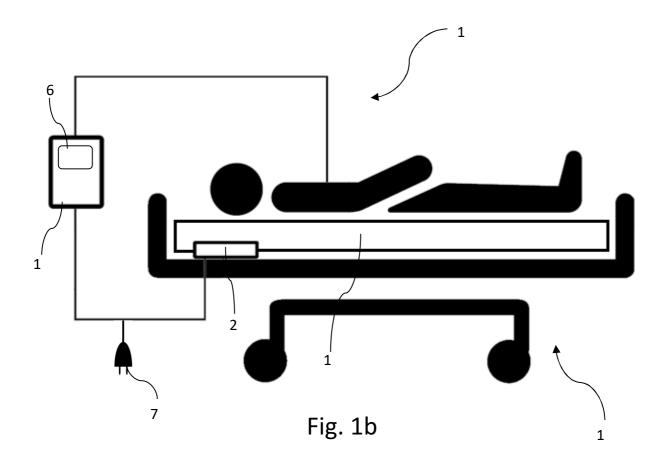
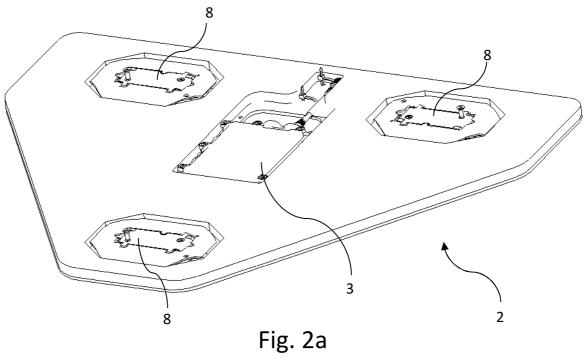





Fig. 1a





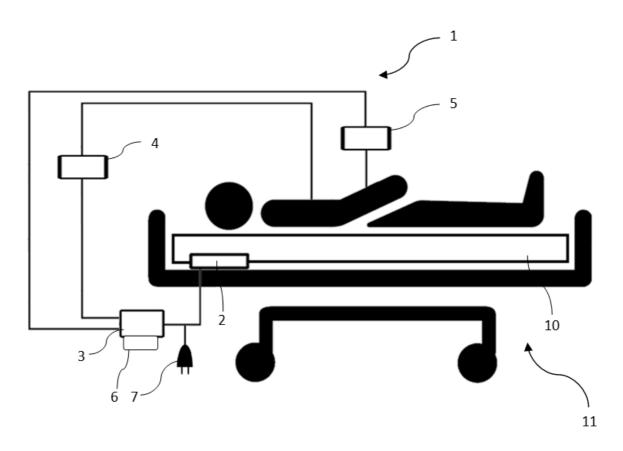



Fig. 2b

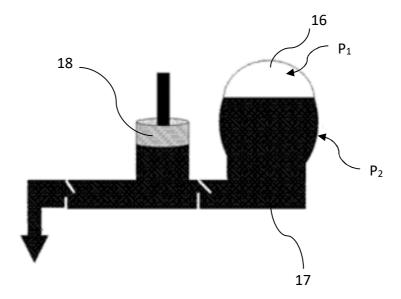



Fig. 3

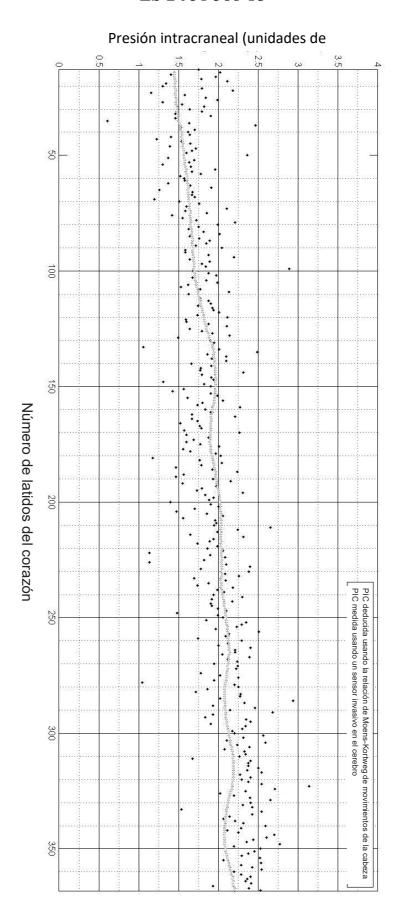



Fig. 4

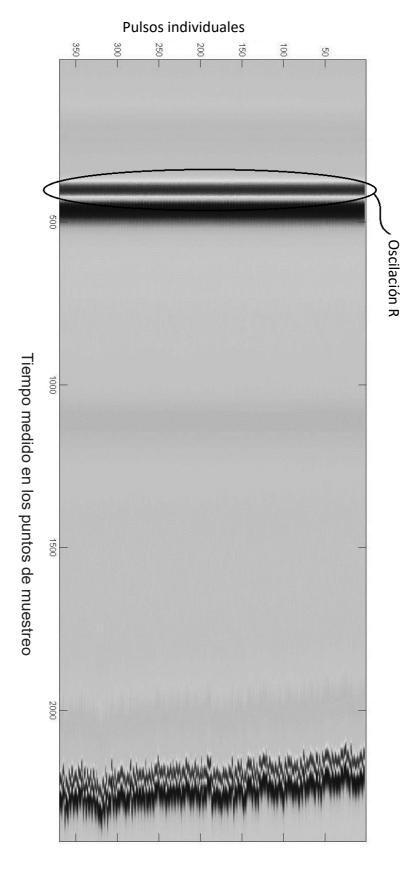



Fig. 5

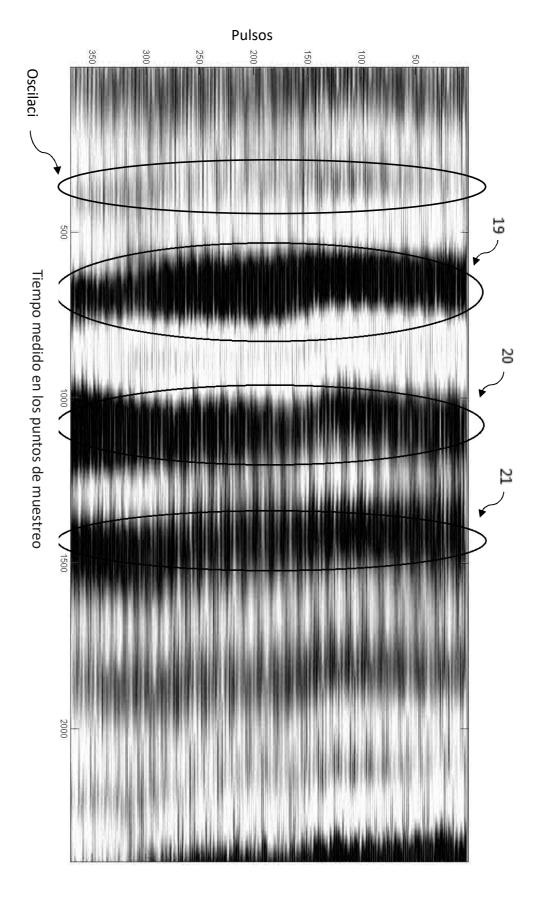



Fig. 6

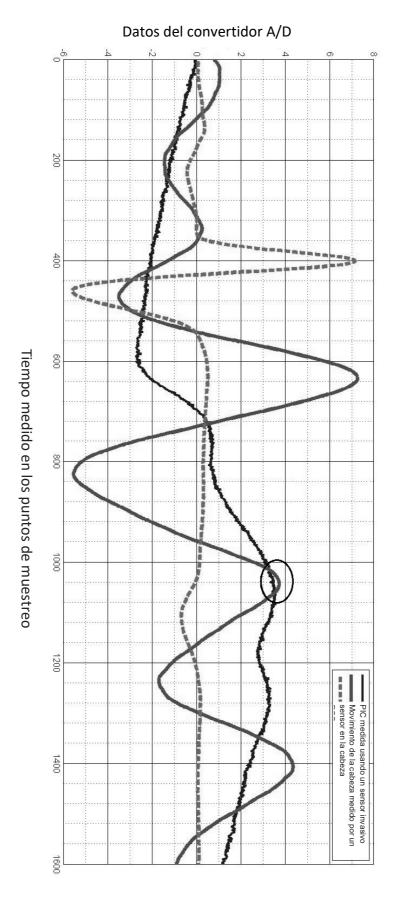



Fig. 7

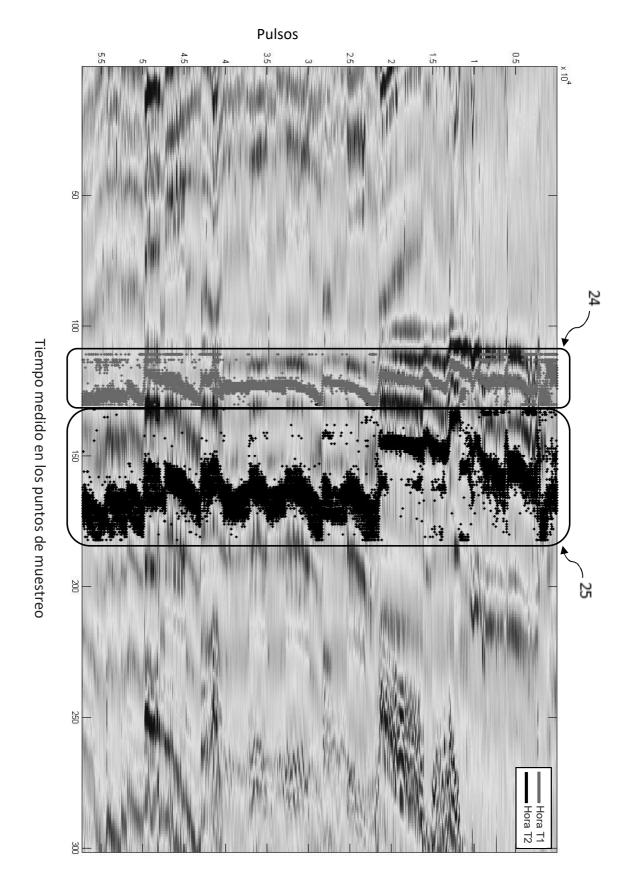



Fig. 8