METHODS OF DETECTING CARDIOVASCULAR DISEASES OR CONDITIONS

This invention provides methods of using phagocytic cells alone or in combination with non-phagocytic cells in the diagnosis, prognosis, or monitoring of cardiovascular diseases or conditions. The invention also provides methods of using phagocytic cells alone or in combination with non-phagocytic cells to identify markers of cardiovascular diseases or conditions.
METHODS OF DETECTING CARDIOVASCULAR DISEASES OR CONDITIONS

Related Application Data

[0001] This application claims priority to U.S. Provisional Patent Application No. 61/367,051, filed on July 23, 2010 and is hereby incorporated herein by reference in its entirety for all purposes.

Field of the Invention

[0002] This invention relates generally to methods of using phagocytic cells alone or in combination with non-phagocytic cells in the diagnosis, prognosis, or monitoring of cardiovascular diseases or conditions. The invention also relates to methods of using phagocytic cells alone or in combination with non-phagocytic cells to identify markers of cardiovascular diseases or conditions.

Background of the Invention

[0003] Early diagnosis of a disease often increases the likelihood of successful treatment or cure of such disease. Current diagnostic methods, however, depend largely on population-derived average values obtained from healthy individuals. Personalized diagnostic methods are needed that enable the diagnosis, especially the early diagnosis, of the presence of a disease or a condition in individuals who are not known to have the disease or who have recurrent disease. This is of particular importance in cardiovascular diseases or conditions, which are the leading cause of death in the United States.

[0004] Leukocytes begin as pluripotent hematopoietic stem cells in the bone marrow and develop along either the myeloid lineage (monocytes, macrophages, neutrophils, eosinophils, and basophils) or the lymphoid lineage (T and B lymphocytes and natural killer cells). The major function of the myeloid lineage cells (e.g., neutrophils and macrophages) is the phagocytosis of infectious organisms, live unwanted damaged cells, senescent and dead cells (apoptotic and necrotic), as well as the clearing of cellular debris. Phagocytes from healthy
animals do not replicate and are diploid, i.e., have a DNA index of one. On
average, each cell contains <10 ng DNA, <20 ng RNA, and <300 ng of protein.

[0005] One object of the present invention is to provide diagnostic methods that
can facilitate the detection of cardiovascular disease or condition-specific markers,
e.g., nucleic acids, proteins, carbohydrates, and/or lipids and the like by using
phagocytic cells alone, or in combination with non-phagocytic cells. Another
object of this invention is to provide methods of identifying cardiovascular disease
or condition-specific markers and further use such markers alone or together with
any known markers to diagnose diseases or conditions.

Summary of the Invention

[0006] We have invented new and useful methods for detecting/diagnosing
cardiovascular diseases or conditions by using phagocytic cells alone or in
combination with non-phagocytic cells. In some embodiments, phagocytic cells
serve as surrogates for diseased cells and non-phagocytic cells serve as control
cells. In other embodiments, two sub-populations of phagocytic cells are used,
wherein the phagocytic cells that have a DNA content greater than 2n (the >2n
phagocytic cells) serve as surrogates for diseased cells, while the phagocytic cells
that have a DNA content of 2n (the =2n phagocytic cells) serve as control cells.

[0007] In one aspect, this invention provides a method for diagnosing or aiding
in the diagnosis of a cardiovascular disease or condition in a subject comprising: a)
determining a first profile of one or more markers of the disease or condition from
a population of phagocytic cells; b) determining a second profile of at least one of
the one or more markers from a population of non-phagocytic cells; and c)
identifying a difference between the first and second profiles of at least one or
more of said markers, wherein the difference is indicative of the presence of said
disease or condition in the subject.

[0008] In another aspect, this invention provides a method for assessing the risk
of developing a cardiovascular disease or condition in a subject comprising: a)
determining a first profile of one or more markers of the disease or condition from
a population of phagocytic cells; b) determining a second profile of at least one of
the one or more markers from a population of non-phagocytic cells; and c)
identifying a difference between the first and second profiles of at least one or
more of said markers, wherein the difference is indicative of the risk of developing
said disease or condition in the subject.

[0009] In yet another aspect, this invention provides a method for prognosing or
aiding in the prognosis of a cardiovascular disease or condition in a subject
comprising: a) determining a first profile of one or more markers of the disease or
condition from a population of phagocytic cells; b) determining a second profile of
at least one of the one or more markers from a population of non-phagocytic cells;
and c) identifying a difference between the first and second profiles of at least one
or more of said markers, wherein the identified difference is indicative of the
prognosis of said disease or condition in the subject.

[0010] In yet another aspect, this invention provides a method for assessing the
efficacy of a treatment for a cardiovascular disease or condition in a subject
comprising: a) determining a first profile of one or more markers of the disease or
condition from a population of phagocytic cells from the subject before the
treatment; determining a second profile of at least one of the one or more markers
from a population of non-phagocytic cells from the subject before the treatment;
identifying a first difference between the first and second profiles of at least one or
more of said markers; b) determining a third profile of the one or more markers
from a population of phagocytic cells from the subject after the treatment;
determining a fourth profile of at least one of the one or more markers from a
population of non-phagocytic cells from the subject after the treatment; identifying
a second difference between the third and fourth profiles of at least one or more of
said markers; and c) identifying a difference between the first difference and the
second difference, wherein the identified difference is indicative of the efficacy of
the treatment for said disease or condition in the subject.

[0011] In yet another aspect, this invention provides a method for monitoring the
progression or regression of a cardiovascular disease or condition in a subject
comprising: a) determining a first profile of one or more markers of the disease or
condition from a population of phagocytic cells from the subject at a first time
point; determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject at the first time point; identifying a first difference between the first and second profiles of at least one or more of said markers; b) determining a third profile of the one or more markers from a population of phagocytic cells from the subject at a second time point; determining a fourth profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject at the second time point; identifying a second difference between the third and fourth profiles of at least one or more of said markers; and c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the progression or regression of said disease or condition in the subject.

[0012] In yet another aspect, this invention provides a method for identifying a compound capable of ameliorating or treating a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells from the subject before administering the compound to the subject; determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject before administering the compound to the subject; identifying a first difference between the first and second profiles of at least one or more of said markers; b) determining a third profile of the one or more markers from a population of phagocytic cells from the subject after the administration of the compound; determining a fourth profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject after the administration of the compound; identifying a second difference between the third and fourth profiles of at least one or more of said markers; and c) identifying a difference between the first difference and the second difference, wherein the identified difference indicates that the compound is capable of ameliorating or treating said disease or condition in the subject.

[0013] In yet another aspect, this invention provides a method for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or
condition from a population of phagocytic cells having a DNA content more than 2n (>2n phagocytic cells); b) determining a second profile of at least one of the one or more markers from a population of phagocytic cells having a DNA content of 2n (=2n phagocytic cells); and c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the presence of said disease or condition in the subject.

[0014] In yet another aspect, this invention provides a method for assessing the risk of developing a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells; b) determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells; and c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the risk of developing said disease or condition in the subject.

[0015] In yet another aspect, this invention provides a method for prognosing or aiding in the prognosis of a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells; b) determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells; and c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the prognosis of said disease or condition in the subject.

[0016] In yet another aspect, this invention provides a method for assessing the efficacy of a treatment for a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells from the subject before the treatment; determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells from the subject before the treatment; identifying a first difference between the first and second profiles of at least one or more of said markers; b) determining a third profile of the one or more markers from a population of >2n phagocytic cells from the subject after the treatment;
determining a fourth profile of at least one of the one or more markers from a population of \(=2n\) phagocytic cells from the subject after the treatment; identifying a second difference between the third and fourth profiles of at least one or more of said markers; and c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the efficacy of the treatment for said disease or condition in the subject.

[0017] In yet another aspect, this invention provides a method for monitoring the progression or regression of a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of \(>2n\) phagocytic cells from the subject at a first time point; determining a second profile of at least one of the one or more markers from a population of \(=2n\) phagocytic cells from the subject at the first time point; identifying a first difference between the first and second profiles of at least one or more of said markers; b) determining a third profile of the one or more markers from a population of \(>2n\) phagocytic cells from the subject at a second time point; determining a fourth profile of at least one of the one or more markers from a population of \(=2n\) phagocytic cells from the subject at the second time point; identifying a second difference between the third and fourth profiles of at least one or more of said markers; and c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the progression or regression of said disease or condition in the subject.

[0018] In yet another aspect, this invention provides a method for identifying a compound capable of ameliorating or treating a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of \(>2n\) phagocytic cells from the subject before administering the compound to the subject; determining a second profile of at least one of the one or more markers from a population of \(=2n\) phagocytic cells from the subject before administering the compound to the subject; identifying a first difference between the first and second profiles of at least one or more of said markers; b) determining a third profile of the one or more markers from a population of \(>2n\) phagocytic cells from the subject after the administration of the
compound; determining a fourth profile of at least one of the one or more markers from a population of ≥2n phagocytic cells from the subject after the administration of the compound; identifying a second difference between the third and fourth profiles of at least one or more of said markers; c) identifying a difference between the first difference and the second difference, wherein the identified difference indicates that the compound is capable of ameliorating or treating said disease or condition in the subject.

[0019] In yet another aspect, this invention provides a method for identifying one or more markers for a cardiovascular disease or condition comprising: a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from non-phagocytic cells from the subject having said disease or condition; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from phagocytic cells from a control subject not having said disease or condition; determining a fourth profile of analytes from non-phagocytic cells from the control subject not having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. Optionally, this method further comprises d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition in the subject having said disease or condition; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition in the subject having said disease or condition; identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.

[0020] In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a)
determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from phagocytic cells from a control subject not having said disease or condition; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from non-phagocytic cells from the subject having said disease or condition; determining a fourth profile of analytes from non-phagocytic cells from the control subject not having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. And optionally, the method further comprises d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition in the subject having said disease or condition; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition in the subject having said disease or condition; identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.

[0021] In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; obtaining a second profile of analytes from phagocytic cells from a control subject not having said disease or condition by data mining; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from non-phagocytic cells from the subject having said disease or condition; obtaining a fourth profile of analytes from non-phagocytic cells from a control subject not having said disease or condition by data mining; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third
profile relative to the fourth profile; and c) identifying one or more analytes
specific to the first set of differences relative to the second set of differences, the
identified analytes being markers of said disease or condition. And optionally, the
method further comprises d) obtaining a fifth profile of analytes from cells or
tissues affected by said disease or condition by data mining; obtaining a sixth
profile of analytes from cells or tissues not affected by said disease or condition by
data mining; identifying a third set of differences between the fifth and sixth
profiles, wherein the third set of differences is specific to the fifth profile relative
to the sixth profile; and e) identifying at least one of the one or more markers of c)
present in the third set of differences.

[0022] In yet another aspect, this invention provides a method for identifying one
or more markers of a cardiovascular disease or condition comprising: a)
determining a first profile of analytes from phagocytic cells from a subject having
said disease or condition; determining a second profile of analytes from non-
phagocytic cells from the subject having said disease or condition; identifying a
first set of differences between the first and second profiles, wherein the first set of
differences is specific to the first profile relative to the second profile; b)
determining a third profile of analytes from cells or tissues affected by said disease
or condition from the subject having said disease or condition; determining a
fourth profile of analytes from cells or tissues not affected by said disease or
condition from the subject having said disease or condition; identifying a second
set of differences between the third and fourth profiles, wherein the second set of
differences is specific to the third profile relative to the fourth profile; c)
identifying one or more analytes present in both the first set of differences and the
second set of differences, the identified analytes being markers of said disease or
condition. And optionally, the method further comprises d) determining a fifth
profile of analytes from phagocytic cells from a control subject not having said
disease or condition; identifying a third set of differences between the first and
fifth profiles, wherein the third set of differences is specific to the first profile
relative to the fifth profile; e) identifying at least one of the one or more markers of
c) present in the third set of differences.
In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a) determining a first profile of analytes from \(>2n \) phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from \(=2n \) phagocytic cells from the subject having said disease or condition;

identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from \(>2n \) phagocytic cells from a control subject not having said disease or condition; determining a fourth profile of analytes from \(=2n \) phagocytic cells from the control subject not having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; and c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. And optionally, the method further comprises: d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition from the subject having said disease or condition; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition from the subject having said disease or condition;

identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.

In some embodiments, the markers or the analytes are nucleic acids (e.g., nucleotides, oligonucleotides, DNAs, RNAs, or DNA-RNA hybrids), proteins (e.g., amino acids, peptides, enzymes, antigens, antibodies, cytokines, lipoproteins, glycoproteins, or hormones), lipids (e.g., fatty acids, phosphatides, cholesterol), carbohydrates (e.g., monosaccharides, disaccharides, polysaccharides), metabolites (e.g., vitamins, primary metabolites, secondary metabolites), or combinations thereof.
In some embodiments, the profile is a nucleic acid profile (e.g., genotypic profile, a single nucleotide polymorphism profile, a gene mutation profile, a gene copy number profile, a DNA methylation profile, a DNA acetylation profile, a chromosome dosage profile, a gene expression profile), a protein profile (e.g., protein expression, protein activation), a lipid profile, a carbohydrate profile, a metabolite profile, or a combination thereof. In some embodiments, the profile is determined by a qualitative assay, a quantitative assay, or a combination thereof.

In some embodiments, at least one of the one or more markers is up-regulated or activated in the phagocytic cells compared to the non-phagocytic cells. In some embodiments, at least one of the one or more markers is down-regulated or inhibited in the phagocytic cells compared to the non-phagocytic cells. In some embodiments, at least one of the one or more markers is up-regulated or activated in the >2n phagocytic cells compared to the =2n phagocytic cells. In some embodiments, at least one of the one or more markers is down-regulated or inhibited in the >2n phagocytic cells compared to the =2n phagocytic cells.

In some embodiments, the first profile, the second profile, the third profile, the fourth profile, the fifth profile, or the sixth profile comprises the absence of at least one of the one or more markers.

In some embodiments, the difference is at least 1.05-fold, 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold difference.

In some embodiments, the methods of this invention also comprise lysing the phagocytic cells (e.g., >2n phagocytic cells, or =2n phagocytic cells), and the non-phagocytic cells; and also extracting the cellular contents from those cells. In some embodiments, the cellular contents of the phagocytic cells comprise viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof. In some embodiments, the cellular contents of the >2n phagocytic cells comprise viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof.
[0030] In some embodiments, at least one of the one or more markers of the disease or condition is present in the cellular contents of the phagocytic cells. In some embodiments, the one or more markers of said disease or condition are not present in the cellular contents of the non phagocytic cells. In some embodiments, the phagocytic cells express at least one of the one or more markers of said disease or condition.

[0031] In some embodiments, at least one of the one or more markers of the disease or condition is present in the cellular contents of the >2n phagocytic cells. In some embodiments, the one or more markers of said disease or condition are not present in the cellular contents of the =2n phagocytic cells. In some embodiments, the phagocytic cells express at least one of the one or more markers of said disease or condition. In some embodiments, the >2n phagocytic cells express at least one of the one or more markers of said disease or condition.

[0032] In some embodiments, the methods of this invention also comprise comparing the identified difference of c) to a repository of one or more known markers of said disease or condition (e.g., data obtained by data mining).

[0033] In some embodiments, the phagocytic cells are professional phagocytic cells (e.g., neutrophils, macrophages, monocytes, dendritic cells, foam cells, mast cells, eosinophils), non-professional phagocytic cells (e.g., epithelial cells, endothelial cells, fibroblasts, mesenchymal cells), or mixtures thereof. In some embodiments, the non-phagocytic cells are T cells, B cells, null cells, basophils, or mixtures thereof.

[0034] In some embodiments, the phagocytic cells (e.g., >2n phagocytic cells, =2n phagocytic cells) and the non-phagocytic cells are isolated from a bodily fluid sample (e.g., blood, urine), tissues, or cells (e.g., white blood cells, fetal cells) of the subject.

[0035] In some embodiments, a standard/known cell separation/isolation/purification technique, such as antibody, flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation
technique, nanostructure, quantum dots, high throughput microscope-based platforms, or a combination thereof, is used to isolate phagocytic cells (e.g., >2n phagocytic cells and =2n phagocytic cells) and non-phagocytic cells from bodily fluids, tissues or cells, or to separate phagocytic cells from non-phagocytic cells, or to separate >2n phagocytic cells from =2n phagocytic cells. In some embodiments, the phagocytic cells (e.g., >2n phagocytic cells) can also be isolated by using a product secreted by the phagocytic cells, or by using a cell surface target (e.g., a receptor protein, a marker of said disease or condition) on the surface of the phagocytic cells. In some embodiments, the target is expressed by the phagocytic cells. In other embodiments, the target is not expressed by the phagocytic cells. In some embodiments, the phagocytic cells (e.g., >2n phagocytic cells and =2n phagocytic cells) and the non-phagocytic cells are isolated using a ligand that binds to a molecular receptor expressed on the plasma membranes of white blood cells.

[0036] Also provided by this invention are markers that can be used in the methods of this invention and that can be identified by the methods of this invention.

Brief Description of the Drawings

[0037] FIG. 1A schematically depicts one embodiment of a method of the invention for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition. In this embodiment, phagocytic cells and non-phagocytic cells are separated from white blood cells of a subject. The phagocytic cells serve as surrogates for diseased cells, while the non-phagocytic cells serve as control cells.

[0038] FIG. 1B schematically depicts one proposed pathway leading to acquisition of a cardiovascular disease-specific DNA, RNA, protein and/or lipid markers by phagocytic cells. Blood phagocytes engulf viable circulating diseased cells, apoptotic diseased cells, and/or fragmented diseased cells. Accordingly, the disease-specific markers (e.g., DNAs, RNAs, proteins, or lipids) that are contained within these diseased cells/fragments are also internalized by phagocytic cells. By contrast, non-phagocytic cells do not internalize these diseased cells/fragments, and, therefore, do not contain and/or express the disease-specific markers.
[0039] FIG. 1C schematically depicts a general flowchart of one embodiment of a method of the invention.

[0040] FIG. 1D schematically depicts a general flowchart of one embodiment of a method of the invention.

[0041] FIG. 2A schematically depicts one embodiment of a method of this invention for identifying one or more markers of a cardiovascular disease or condition. D represents diseased cells/tissues from a patient having a cardiovascular disease or condition; and ND represents not-diseased cells/tissues from the patient; M_D represents macrophages taken from the patient; TCD represents T cells taken from the patient(s); M_c represents macrophages taken from a control subject not having the disease or condition; TCc represents T cells taken from the control subject.

[0042] FIG. 2B schematically depicts one embodiment of a method of this invention for identifying one or more markers of a cardiovascular disease or condition. D represents diseased cells/tissues from a patient having a cardiovascular disease or condition; and ND represents not-diseased cells/tissues from the patient; M_D represents macrophages taken from the patient; TCD represents T cells taken from the patient; M_c represents macrophages taken from a control subject not having the disease or condition; TCc represents T cells taken from the control subject.

[0043] FIG. 2C schematically depicts one embodiment of a method of this invention for identifying one or more markers of a cardiovascular disease or condition. D represents information obtained by data mining about diseased cells/tissues from patients having a cardiovascular disease or condition; and ND represents information obtained by data mining about not-diseased cells/tissues from patients having the same disease or condition; M_D represents macrophages taken from a patient having the disease or condition; TCD represents T cells taken from the patient; M_c represents information obtained by data mining about macrophages from control subjects not having the disease or condition; TCc
represents information obtained by data mining about T cells obtained from control subjects not having the disease or condition.

[0044] FIG. 3 depicts a schematic of gene expression profile data that could be compared to identify cardiovascular disease-specific genes selectively acquired/expressed by macrophages.

[0045] FIG. 4A schematically depicts one embodiment of a method of this invention for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition. In this embodiment, a blood sample is withdrawn from an individual to be diagnosed. After a centrifugation step, white blood cells are isolated from the blood sample and further separated into two populations of phagocytic cells: phagocytic cells (e.g., macrophages or neutrophils) having a DNA content more than 2n (>2n phagocytic cells) and phagocytic cells (e.g., macrophages or neutrophils) having a DNA content of 2n (=2n phagocytic cells). The >2n phagocytic cells serve as surrogates for diseased cells and the 2n phagocytic cells serve as control cells.

[0046] FIG. 4B schematically depicts one proposed pathway leading to acquisition of cardiovascular disease or condition-specific markers (e.g., DNA, RNA, protein and lipid markers) by phagocytic cells. Blood phagocytes engulf viable circulating diseased cells, apoptotic diseased cells, and/or fragmented diseased cells. Accordingly, the cardiovascular disease or condition-specific markers (e.g., DNAs, RNAs, proteins, or lipids) that are contained within these diseased cells/fragments are also internalized by phagocytic cells, which then become >2n phagocytic cells containing and/or expressing these specific markers. By contrast, phagocytic cells that do not internalize these diseased cells/fragments, and thus, do not contain or express these markers, and remain DNA content of 2n.

[0047] FIG. 5 schematically depicts one embodiment of a method of this invention for identifying one or more markers of a cardiovascular disease or condition. D represents diseased tissues/cells from a patient having a cardiovascular disease or condition; and ND represents not-diseased tissues/cells from the patient; M (2) represents macrophages having a DNA content of >2n.
taken from a patient with the disease or condition; MD(N=2) represents macrophages having a DNA content of =2n taken from the patient; MC(N>2) represents macrophages having a DNA content of >2n taken from a control subject not having the disease or condition; M_{c}(N>2) represents macrophages having a DNA content of >2n taken from the control subject.

[0048] FIG. 6 schematically depicts one embodiment of a method of this invention for identifying cardiovascular disease or condition-specific markers selectively acquired/expressed by >2n phagocytic cells of a patient.

[0049] FIG. 7 schematically depicts one embodiment of a method of this invention for diagnosing/detecting a cardiovascular disease or condition by comparing expression profiles obtained from arrays.

[0050] FIG. 8 schematically depicts one embodiment of a method of this invention for identifying one or more markers of a cardiovascular disease or condition. D represents diseased cells/tissues from a patient having a cardiovascular disease or condition; and ND represents not-diseased cells/tissues from the patient; N_{D} represents neutrophils taken from the patient; TCD represents T cells taken from the patient; Nc represents neutrophils obtained from a control subject not having the disease or condition.

Detailed Description of the Invention

[0051] Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well known and commonly used in the art.

[0052] All of the above, and any other publications, patents and published patent applications referred to in this application are specifically incorporated by
reference herein. In case of conflict, the present specification, including its specific definitions, will control.

[0053] Throughout this specification, the word "comprise" or variations such as "comprises" or "comprising" will be understood to imply the inclusion of a stated integer (or components) or group of integers (or components), but not the exclusion of any other integer (or components) or group of integers (or components).

[0054] The singular forms "a," "an," and "the" include the plurals unless the context clearly dictates otherwise.

[0055] The term "including" is used to mean "including but not limited to". "Including" and "including but not limited to" are used interchangeably.

[0056] A "patient", "subject", or "individual" are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (e.g., bovines, porcines), companion animals (e.g., canines, felines) and rodents (e.g., mice and rats).

[0057] As used herein, a control subject refers to any individual that has not been diagnosed as having the disease or condition being assayed. The terms "normal control", "healthy control", and "not-diseased cells" likewise mean a sample (e.g., cells, serum, tissue) taken from a source (e.g., subject, control subject, cell line) that does not have the condition or disease being assayed and therefore may be used to determine the baseline for the condition or disorder being measured. It is also understood that the control subject, normal control, and healthy control, include data obtained and used as a standard, i.e. it can be used over and over again for multiple different subjects. In other words, for example, when comparing a subject sample to a control sample, the data from the control sample could have been obtained in a different set of experiments, for example, it could be an average obtained from a number of healthy subjects and not actually obtained at the time the data for the subject was obtained.
The term "diagnosis" as used herein refers to methods by which the skilled artisan can estimate and/or determine whether or not a patient is suffering from a given disease or condition. The skilled artisan often makes a diagnosis on the basis of one or more diagnostic indicators, e.g., a marker, the presence, absence, amount, or change in amount of which is indicative of the presence, severity, or absence of the condition.

The term "prognosis" as used herein refers to the likelihood of a cardiovascular disease or condition progression, including recurrence of a disease or condition.

The disclosure of the International Application PCT/US2009/03 1395 is incorporated herein by reference for all purposes.

Description of Methods of the Invention

The present invention provides methods for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition by comparing profiles (e.g., gene/protein/lipid/carbohydrate expression profiles, genotypes, gene copy number, gene dosage, DNA methylation, etc.) of disease or condition-associated markers (e.g., nucleic acids, proteins, lipids, carbohydrates, metabolites) between phagocytic cells having different DNA contents (>2n vs. =2n) taken from the same individual, or between phagocytic cells and non-phagocytic cells taken from the same individual.

This invention also provides methods for assessing the risk of developing a cardiovascular disease or condition, prognosing said disease, monitoring said disease progression or regression, assessing the efficacy of a treatment, or identifying a compound capable of ameliorating or treating said disease or condition.

Such a subject-specific profile comparison eliminates the dependence on a population-derived average profile for a particular disease or condition, which may introduce error into the detection or diagnosis of a particular disease or condition.
condition in the subject. The methods of this invention allow detection, diagnosis, and treatment to be personalized to the individual.

[0064] The methods of this invention (i) have high specificity, sensitivity, and accuracy and are capable of detecting disease or condition-specific markers present within a bodily fluid sample, cells or tissues; and (ii) eliminate the "inequality of baseline" that is known to occur among individuals due to intrinsic (e.g., age, gender, ethnic background, health status and the like) and temporal variations in marker expression. Accordingly, in certain aspects, the invention provides non-invasive assays for the early detection of a disease or condition, i.e., before the disease can be diagnosed by conventional diagnostic techniques, e.g., imaging techniques, and, therefore, provide a foundation for improved decision-making relative to the needs and strategies for intervention, prevention, and treatment of individuals with such disease or condition.

[0065] The methods of this invention can be used together with any known diagnostic methods, such as physical inspection, visual inspection, biopsy, scanning, histology, radiology, imaging, ultrasound, use of a commercial kit, genetic testing, immunological testing, analysis of bodily fluids, or monitoring neural activity.

[0066] Phagocytic cells that can be used in the methods of this invention include all types of cells that are capable of ingesting various types of substances (e.g., apoptotic cells, infectious agents, dead cells, viable cells, cell-free DNAs, cell-free RNAs, cell-free proteins). In some embodiments, the phagocytic cells are professional phagocytic cells, such as neutrophils, macrophages, monocytes, dendritic cells, foam cells, mast cells, or eosinophils. In some embodiments, the phagocytic cells are non-professional phagocytic cells, such as epithelial cells, endothelial cells, fibroblasts, or mesenchymal cells. In other embodiments, the phagocytic cells can be a mixture of different types of phagocytic cells. Non-phagocytic cells that can be used in this invention include, but are not limited to, T cells, B cells, null cells, basophils, or mixtures thereof.
As used herein, "the >2n phagocytic cells" refer to phagocytic cells that have a DNA content of greater than 2n, while "the =2n phagocytic cells" refer to phagocytic cells that have a DNA content of 2n. According to the present invention, some phagocytic cells engulf live/dying/dead diseased cells (and subcellular fragments thereof) and/or cell-free disease-specific nucleic acids, proteins, carbohydrates and/or lipids present in bodily fluids. Such phagocytosis leads to the internalization of these disease markers into the phagocytic cell and, therefore, the DNA content of these phagocytic cells will become greater than 2n. By contrast, some phagocytic cells have not engulfed living/dying/dead diseased cells or fragments and/or cell-free disease-specific nucleic acids, proteins, lipids, and/or carbohydrates present in bodily fluids. The DNA contents of this group of phagocytic cells remain 2n. In some embodiments, the disease-specific markers (e.g., DNA with disease-specific mutations) can be expressed by the >2n phagocytic cells. For example, the mutated DNA of diseased cells is integrated into the normal DNA of the >2n phagocytic cells. The subsequent transcription of the "integrated" DNA of the >2n phagocytic cells into RNA and the translation of the latter into proteins produces a phenotype different from the phagocytic cells that have not phagocytosed the diseased cells (i.e., the =2n phagocytic cells). In other embodiments, the internalized disease-specific markers are not expressed by the >2n phagocytic cells. The markers may be translocated onto the membranes of the >2n phagocytic cells, or secreted out by the >2n phagocytic cells.

As used herein, a "profile" of a marker of a disease or condition can broadly refer to any information concerning the marker. This information can be either qualitative (e.g., presence or absence) or quantitative (e.g., levels, copy numbers, or dosages). In some embodiments, a profile of a marker can indicate the absence of this marker. The profile can be a nucleic acid (e.g., DNA or RNA) profile, a protein profile, a lipid profile, a carbohydrate profile, a metabolite profile, or a combination thereof. A "marker" as used herein generally refers to an analyte which is differentially detectable in phagocytes and is indicative of the presence of a disease or condition. An analyte is differentially detectable if it can be distinguished quantitatively or qualitatively in phagocytes.
The methods of this invention can be applied to various cardiovascular diseases or conditions. As used herein, "cardiovascular disease or condition" can refer to any disease, disorder, or condition affecting or associated with the cardiovascular system. Examples of cardiovascular diseases or conditions include, but are not limited to, myocardial infarction, coronary artery disease, percutaneous transluminal coronary angioplasty (PTCA), coronary artery bypass surgery (CABG), restenosis, peripheral arterial disease, stroke, abdominal aorta aneurysm, intracranial aneurysm, large artery atherosclerotic stroke, cardiogenic stroke, an early onset myocardial infarction, heart failure, pulmonary embolism, acute coronary syndrome (ACS), angina, cardiac hypertrophy, arteriosclerosis, myocarditis, pancarditis, endocarditis, hypertension, congestive heart failure, atherosclerosis, cerebrovascular disease, declining cardiac health, ischemic heart disease, pericarditis, cardiogenic shock, alcoholic cardiomyopathy, congenital heart disease, ischemic cardiomyopathy, hypertensive cardiomyopathy, valvular cardiomyopathy, inflammatory cardiomyopathy, cardiomyopathy secondary to a systemic metabolic disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, noncompaction cardiomyopathy, valvular heart disease, hypertensive heart disease, myocardial ischemic attack, unstable angina, myocardial rupture, cardiogenic shock, embolism, deep vein thrombosis, arrhythmia, arrhythmogenic right ventricular cardiomyopathy, diabetic cardiomyopathy, mitral regurgitation, mitral valve prolapse, peripheral vascular disease, artery disease, carotid artery disease, deep vein thrombosis, venous diseases, cerebrovascular disease, arterial aneurysm, left ventricular hypertrophy, hypertensive renal disease, hypertensive retinal disease, vasculitis, left main disease, arterial vascular disease, venous vascular disease, thrombosis of the microcirculation, a transient cerebrovascular accident, limb ischemia, aneurysm, thrombosis, superficial venous thrombosis, and deep venous thrombosis.

The methods of this invention can also be applied to the cardiovascular diseases or conditions disclosed in, for example, United States Patent Application Publications 20100068705, 20100009356, 20090305265, 20070148661, 20070141625, and International Patent Application Publications.
As used herein, "treating" a disease or condition refers to taking steps to obtain beneficial or desired results, including clinical results. Beneficial or desired clinical results include, but are not limited to, alleviation or amelioration of one or more symptoms associated with cardiovascular diseases or conditions.

As used herein, "administering" or "administration of" a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, intravenously, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinaly, intracerebrally, and transdermally (by absorption, e.g., through a skin duct). A compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow, or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods. In some aspects, the administration includes both direct administration, including self-administration, and indirect administration, including the act of prescribing a drug. For example, as used herein, a physician who instructs a patient to self-administer a drug, or to have the drug administered by another and/or who provides a patient with a prescription for a drug is administering the drug to the patient. In some embodiments, a compound or an agent is administered orally, e.g., to a subject by ingestion, or intravenously, e.g., to a subject by injection. In some embodiments, the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.

In certain embodiments, markers used in the methods of invention are up-regulated or activated in the phagocytic cells compared to the non-phagocytic cells. In certain embodiments, markers used in the methods of invention are down-regulated or inhibited in the phagocytic cells compared to the non-
phagocytic cells. In certain embodiments, markers used in the methods of invention are up-regulated or activated in the >2n phagocytic cells compared to the =2n phagocytic cells. In certain embodiments, markers used in the methods of invention are down-regulated or inhibited in the >2n phagocytic cells compared to the =2n phagocytic cells. Different diseases or conditions can be associated with either up-regulation (or activation) or down-regulation (or inhibition) of different markers. As used herein, "up-regulation or up-regulated" can refer to an increase in expression levels (e.g., gene expression or protein expression), gene copy numbers, gene dosages, and other qualitative or quantitative detectable state of the markers. Similarly, "down-regulation or down-regulated" can refer to an increase in expression levels, gene copy numbers, gene dosages, and other qualitative or quantitative detectable state of the markers. As used herein, "activation or activated" can refer to an active state of the marker, e.g., a phosphorylation state, a DNA methylation state, or a DNA acetylation state. Similarly, "inhibition or inhibited" can refer to a repressed state or an inactivated state of the marker, e.g., a de-phosphorylation state, a ubiquitination state, a DNA de-methylation state.

[0074] In certain embodiments, methods of this invention also comprise at least one of the following steps before determination of various profiles: i) lysing the phagocytic cells and the non-phagocytic cells; ii) extracting cellular contents from the lysed phagocytic cells, the lysed non-phagocytic cells. Any known cell lysis and extraction methods can be used herein. In certain embodiments, the cellular contents of the phagocytic cells comprise various types of materials that they have engulfed, such as, viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof. In certain embodiments, at least one or more markers of a cardiovascular disease or condition are present in the cellular contents of the phagocytic cells. In certain embodiments, there is no marker present in the cellular contents of the non-phagocytic cells.

[0075] In certain embodiments, methods of this invention also comprise at least one of the following steps before determination of various profiles: i) lysing the >2n phagocytic cells and the =2n phagocytic cells; and ii) extracting cellular
contents from the lysed >2n phagocytic cells and the lysed =2n phagocytic cells. In certain embodiments, the cellular contents of the >2n phagocytic cells comprise various types of materials that they have engulfed, such as, viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof. In certain embodiments, at least one or more markers of a cardiovascular disease or condition are present in the cellular contents of the >2n phagocytic cells. In certain embodiments, there is no marker present in the cellular contents of the =2n phagocytic cells.

[0076] In certain embodiments, methods of this invention further comprise comparing the identified difference of the disease or condition-specific markers to a repository of at least one markers known in the art. Such comparison can further confirm the presence of the disease or condition. In some embodiments, the repository of the known markers can be obtained by data mining. The term "data mining", as used herein, refers to a process of finding new data patterns, relations, or correlations derived from the known data of the databases and of extracting practicable information in the future. Typically a computer-based system can be trained on data to perform the data mining, e.g., to classify the input data and then subsequently used with new input data to make decisions based on the training data. These systems include, but are not limited, expert systems, fuzzy logic, non-linear regression analysis, multivariate analysis, decision tree classifiers, and Bayesian belief networks.

[0077] In certain embodiments, the phagocytic cells (e.g., the >2n and the =2n subpopulations) and the non-phagocytic cells are isolated from a bodily fluid sample, tissues, or cells. Exemplar bodily fluid sample can be whole blood, urine, stool, saliva, lymph fluid, cerebrospinal fluid, synovial fluid, cystic fluid, ascites, pleural effusion, fluid obtained from a pregnant woman in the first trimester, fluid obtained from a pregnant woman in the second trimester, fluid obtained from a pregnant woman in the third trimester, maternal blood, amniotic fluid, chorionic villus sample, fluid from a preimplantation embryo, maternal urine, maternal saliva, placental sample, fetal blood, lavage and cervical vaginal fluid, interstitial fluid, or ocular fluid. In some embodiments, the phagocytic cells (e.g., the >2n and
the =2n subpopulations) and the non-phagocytic cells are isolated from white blood cells. In certain embodiments, the >2n phagocytic cells and the =2n phagocytic cells are separated from a population of phagocytic cells.

[0078] In the methods of this invention, cell separation/isolation/purification methods are used to isolate populations of cells from bodily fluid sample, cells, or tissues of a subject. A skilled worker can use any known cell separation/isolation/purification techniques to isolate phagocytic cells or non-phagocytic cells from a bodily fluid, or to separate phagocytic cells from non-phagocytic cells, or to separate >2n phagocytic cells from =2n phagocytic cells. Exemplar techniques include, but are not limited to, using antibodies, flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation technique, nanostructure, quantum dots, high throughput microscope-based platform, or a combination thereof.

[0079] In certain embodiments, the phagocytic cells and the non-phagocytic cells are isolated by using a product secreted by the phagocytic cells. In certain embodiments, the phagocytic cells and the non-phagocytic cells are isolated by using a cell surface target (e.g., receptor protein) on the surface of phagocytic cells. In some embodiments, the cell surface target is a protein that has been engulfed by the phagocytic cells. In some embodiments, the cell surface target is expressed by the phagocytic cells on their plasma membranes. In some embodiments, the cell surface target is an exogenous protein that is translocated on the plasma membranes, but not expressed by the phagocytic cells. In some embodiments, the cell surface target is a marker of the disease or condition to be detected.

[0080] In certain embodiments, the >2n phagocytic cells and the =2n phagocytic cells are isolated by using a product secreted by the >2n phagocytic cells. In certain embodiments, the >2n phagocytic cells and the =2n phagocytic cells are isolated by using a cell surface target (e.g., receptor protein) on the surface of phagocytic cells. In some embodiments, the cell surface target is a protein that has been engulfed by the >2n phagocytic cells. In some embodiments, the cell surface target is expressed by the >2n phagocytic cells on their plasma membranes. In
some embodiments, the cell surface target is an exogenous protein that is translocated on the plasma membranes, but not expressed by the >2n phagocytic cells. In some embodiments, the cell surface target is a marker of the disease or condition to be detected.

[0081] In certain aspects of the methods described herein, analytes include nucleic acids, proteins, lipids, carbohydrates, metabolites, or any combinations of these. In certain aspects of the methods described herein, markers include nucleic acids, proteins, lipids, carbohydrates, metabolites, or any combinations of these. As used herein, the term "nucleic acid" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), DNA-RNA hybrids, and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be a nucleotide, oligonucleotide, double-stranded DNA, single-stranded DNA, multi-stranded DNA, complementary DNA, genomic DNA, non-coding DNA, messenger RNA (mRNAs), microRNA (miRNAs), small nucleolar RNA (snoRNAs), ribosomal RNA (rRNA), transfer RNA (tRNA), small interfering RNA (siRNA), heterogeneous nuclear RNAs (hnRNA), or small hairpin RNA (shRNA).

[0082] As used herein, the term "amino acid" includes organic compounds containing both a basic amino group and an acidic carboxyl group. Included within this term are natural amino acids (e.g., L-amino acids), modified and unusual amino acids (e.g., D-amino acids and β-amino acids), as well as amino acids which are known to occur biologically in free or combined form but usually do not occur in proteins. Natural protein occurring amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tyrosine, tryptophan, proline, and valine. Natural non-protein amino acids include arginosuccinic acid, citrulline, cysteine sulfuric acid, 3,4-dihydroxyphenylalanine, homocysteine, homoserine, ornithine, 3-monoiodotyrosine, 3,5-diiodotyrosine, 3,5,5-triiodothyronine, and 3,3',5,5'-tetraiodothyronine. Modified or unusual amino acids include D-amino acids, hydroxylysine, 4-hydroxyproline, N-Cbz-protected amino acids, 2,4-diaminobutyric acid, homoaarginine, norleucine, N-
methylaminobutyric acid, naphthylalanine, phenylglycine, \alpha\text{-}phenylproline, tert-leucine, 4-aminocyclohexylalanine, N-methyl-norleucine, 3,4-dehydroproline, N,N-dimethylaminoglycine, N-methylaminoglycine, 4-amino-piperidine-4-carboxylic acid, 6-aminocaproic acid, trans-4-(aminomethyl)-cyclohexanecarboxylic acid, 2-, 3-, and 4-(aminomethyl)-benzoic acid, 1-aminocyclopentanecarboxylic acid, 1-aminocyclopropanecarboxylic acid, and 2-benzyl-5-aminopentanoic acid.

As used herein, the term "peptide" includes compounds that consist of two or more amino acids that are linked by means of a peptide bond. Peptides may have a molecular weight of less than 10,000 Daltons, less than 5,000 Daltons, or less than 2,500 Daltons. The term "peptide" also includes compounds containing both peptide and non-peptide components, such as pseudopeptide or peptidomimetic residues or other non-amino acid components. Such compounds containing both peptide and non-peptide components may also be referred to as a "peptide analog."

As used herein, the term "protein" includes compounds that consist of amino acids arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. Proteins used in methods of the invention include, but are not limited to, amino acids, peptides, antibodies, antibody fragments, cytokines, lipoproteins, or glycoproteins.

As used herein, the term "antibody" includes polyclonal antibodies, monoclonal antibodies (including full length antibodies which have an immunoglobulin Fc region), antibody compositions with polyepitopic specificity, multispecific antibodies (e.g., bispecific antibodies, diabodies, and single-chain molecules, and antibody fragments (e.g., Fab or F(ab')2, and Fv). For the structure and properties of the different classes of antibodies, see e.g., Basic and Clinical Immunology, 8th Edition, Daniel P. Sties, Abba I. Terr and Tristram G. Parsolw (eds), Appleton & Lange, Norwalk, Conn., 1994, page 71 and Chapter 6.

As used herein, the term "cytokine" refers to a secreted protein or active fragment or mutant thereof that modulates the activity of cells of the immune
system. Examples of cytokines include, without limitation, interleukins, interferons, chemokines, tumor necrosis factors, colony-stimulating factors for immune cell precursors, and the like.

[0087] As used herein, the term "lipoprotein" includes negatively charged compositions that comprise a core of hydrophobic cholesteryl esters and triglyceride surrounded by a surface layer of amphipathic phospholipids with which free cholesterol and apolipoproteins are associated. Lipoproteins may be characterized by their density (e.g. very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and high density lipoprotein (HDL)), which is determined by their size, the relative amounts of lipid and protein. Lipoproteins may also be characterized by the presence or absence of particular modifications (e.g. oxidization, acetylation, or glycation).

[0088] As used herein, the term "glycoprotein" includes glycosides which have one or more oligo- or polysaccharides covalently attached to a peptide or protein. Exemplary glycoproteins can include, without limitation, immunoglobulins, members of the major histocompatibility complex, collagens, mucins, glycoprotein IIb/IIIa, glycoprotein-41 (gp41) and glycoprotein-120 (gpl2), follicle-stimulating hormone, alpha-fetoprotein, erythropoietin, transferrins, alkaline phosphatase, and lectins.

[0089] As used herein, the term "lipid" includes synthetic or naturally-occurring compounds which are generally amphipathic and biocompatible. Lipids typically comprise a hydrophilic component and a hydrophobic component. Exemplary lipids include, but are not limited to fatty acids, neutral fats, phosphatides, cholesterol, cholesterol esters, triglycerides, glycolipids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, polyketides, choline glycerophospholipid, ethanolamine glycerophospholipid, phosphatidylinositol, phosphatidylylglycerol, phosphatidylserine, lyso-choline glycerophospholipid, lyso-ethanolamine glycerophospholipid, phosphatidic acid, lyso-phosphatic acid, sphingomyelin, galactosylceramide, glucosylceramide, sulfatide, free fatty acids, prostaglandins, triacylglycerol, diacylglycerol, monoacylglycerol, acyl-CoA, acylcarnitine, oxysterol, ceramide, cardiolipin,
sphingoid base-1-phosphate, shingosine, lyso-sphingomyelin, gangliosides, plasmalogen, sulfatide, ceramide, low density lipoproteins (LDLs), very low density lipoproteins (VLDLs), high density lipoproteins (HDLs), sphingoid base-1-phosphates or derivatives thereof.

[0090] As used herein, the term "carbohydrate" includes, but is not limited to, compounds that contain oxygen, hydrogen and carbon atoms, typically \((\text{CH}_2\text{O})_n\) wherein \(n\) is an integer. Exemplary carbohydrates include, but are not limited to, monosaccharides, disaccharides, polysaccharides, or oligosaccharides.

[0091] As used herein, the term "metabolite" includes any molecule used in metabolism. Metabolites can be products, substrates, or intermediates in metabolic processes. Included within this term are primary metabolites, secondary metabolites, organic metabolites, or inorganic metabolites. Metabolites include, without limitation, amino acids, peptides, acylcarnitines, monosaccharides, lipids and phospholipids, prostaglandins, hydroxyeicosatetraenoic acids, hydroxyoctadecadienoic acids, steroids, bile acids, and glycolipids and phospholipids. Exemplary metabolites can be sphingolipids, glycosphingolipids, sphingosine, ceramide, sphingomyelin, sphingosylphosphorylcholin, dihydrosphingosine, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, lyso phosphatidylcholine, lysophosphatidylinositol, lysophosphatidylserine, plasmenylphosphatidylcholine, plasmanylphosphatidylcholine, proteinogenic amino acids,Alanine, Aspartic acid, Glutamic acid, Phenylalanine, Glycine, Histidine, Leucine, Isoleucine, Lysine, Methionine, Proline, Arginine, Serine, Threonine, Valine, Tryptophan, Tyrosine, asymmetrical dimethyl arginine, symmetrical dimethyl arginine, Glutamine, Asparagine, Nitrotyrosine, Hydroxyproline, Kynurenine, 3-Hydroxy kynurenine, non-proteinogenic amino acids, Ornithine, Citrulline, acylcarnitines, carnitine, free carnitine, acylcarnitine, hydroxyacylcarnitine, dicarboxyacylcarnitines, reducing monosaccharides, hexose, pentose, deoxyhexose, creatinine, creatine, spermidine spermine, putrescine, dopamine, serotonin, prostaglandins, hydroxyeicosatetraenoic acid, hydroxyoctadecadienoic acid, leukatrienes, thromboxanes, bile acids, sterols, cholesterols, vitamins and cofactors, drugs, and drug metabolites.
In some embodiments of the invention, profiles of at least one or more markers of a cardiovascular disease or condition are compared. This comparison can be quantitative or qualitative. Quantitative measurements can be taken using any of the assays described herein. For example, sequencing, direct sequencing, random shotgun sequencing, Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, gel electrophoresis, duplex sequencing, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing, emulsion PCR, sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD® sequencing, MS-PET sequencing, mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), polymerase chain reaction (PCR) analysis, quantitative PCR, real-time PCR, fluorescence assay, colorimetric assay, chemiluminescent assay, or a combination thereof.

Quantitative comparisons can include statistical analyses such as t-test, ANOVA, Kruskal-Wallis, Wilcoxon, Mann-Whitney, and odds ratio. Quantitative differences can include differences in the levels of markers between profiles or differences in the numbers of markers present between profiles, and combinations thereof. Examples of levels of the markers can be, without limitation, gene expression levels, nucleic acid levels, protein levels, lipid levels, and the like. Qualitative differences can include, but are not limited to, activation and
inactivation, protein degradation, nucleic acid degradation, and covalent modifications.

[0094] In certain embodiments of the invention, the profile is a nucleic acid profile, a protein profile, a lipid profile, a carbohydrate profile, a metabolite profile, or a combination thereof. The profile can be qualitatively or quantitatively determined.

[0095] A nucleic acid profile can be, without limitation, a genotypic profile, a single nucleotide polymorphism profile, a gene mutation profile, a gene copy number profile, a DNA methylation profile, a DNA acetylation profile, a chromosome dosage profile, a gene expression profile, or a combination thereof.

[0096] The nucleic acid profile can be determined by any methods known in the art to detect genotypes, single nucleotide polymorphisms, gene mutations, gene copy numbers, DNA methylation states, DNA acetylation states, chromosome dosages. Exemplar methods include, but are not limited to, polymerase chain reaction (PCR) analysis, sequencing analysis, electrophoretic analysis, restriction fragment length polymorphism (RFLP) analysis, Northern blot analysis, quantitative PCR, reverse-transcriptase-PCR analysis (RT-PCR), allele-specific oligonucleotide hybridization analysis, comparative genomic hybridization, heteroduplex mobility assay (HMA), single strand conformational polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), RNAase mismatch analysis, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), surface plasmon resonance, Southern blot analysis, in situ hybridization, fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH), immunohistochemistry (IHC), microarray, comparative genomic
hybridization, karyotyping, multiplex ligation-dependent probe amplification (MLPA), Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF), microscopy, methylation specific PCR (MSP) assay, HpaII tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay, radioactive acetate labeling assays, colorimetric DNA acetylation assay, chromatin immunoprecipitation combined with microarray (ChIP-on-chip) assay, restriction landmark genomic scanning, Methylated DNA immunoprecipitation (MeDIP), molecular break light assay for DNA adenine methyltransferase activity, chromatographic separation, methylation-sensitive restriction enzyme analysis, bisulfite-driven conversion of non-methylated cytosine to uracil, methyl-binding PCR analysis, or a combination thereof.

[0097] As used herein, the term "sequencing" is used in a broad sense and refers to any technique known in the art that allows the order of at least some consecutive nucleotides in at least part of a nucleic acid to be identified, including without limitation at least part of an extension product or a vector insert. Exemplar sequencing techniques include direct sequencing, random shotgun sequencing, Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, gel electrophoresis, duplex sequencing, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing, emulsion PCR, sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD® sequencing, MS-PET sequencing, mass spectrometry, and a combination thereof. In some embodiments, sequencing comprises an detecting the sequencing product using an instrument, for example but not limited to an ABI PRISM® 377 DNA Sequencer, an ABI PRISM® 310, 3100, 3100-Avant, 3730, or 3730x1 Genetic Analyzer, an ABI PRISM® 3700 DNA Analyzer, or an Applied Biosystems SOLiD™ System (all from Applied Biosystems), a Genome Sequencer 20 System (Roche Applied Science), or a mass spectrometer. In certain embodiments,
sequencing comprises emulsion PCR. In certain embodiments, sequencing comprises a high throughput sequencing technique, for example but not limited to, massively parallel signature sequencing (MPSS).

[0098] In further embodiments of the invention, a protein profile can be a protein expression profile, a protein activation profile, or a combination thereof. In some embodiments, a protein activation profile can comprise determining a phosphorylation state, an ubiquitination state, a myristoylation state, or a conformational state of the protein.

[0099] A protein profile can be detected by any methods known in the art for detecting protein expression levels, protein phosphorylation state, protein ubiquitination state, protein myristoylation state, or protein conformational state. In some embodiments, a protein profile can be determined by an immunohistochemistry assay, an enzyme-linked immunosorbent assay (ELISA), in situ hybridization, chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, microscopy, microfluidic chip-based assays, surface plasmon resonance, sequencing, Western blotting assay, or a combination thereof.

[0100] In some embodiments of the invention, a lipid profile can be determined by chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser
deorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, microfluidic chip-based assay, detection of fluorescence, detection of chemiluminescence, or a combination thereof. Further methods for analyzing lipid content in a biological sample are known in the art (See, e.g., Kang et al. (1992) Biochim. Biophys. Acta. 1128:267; Weylandt et al. (1996) Lipids 31:977; J. Schiller et al. (1999) Anal. Biochem. 267:46; Kang et al. (2001) Proc. Natl. Acad. Sci. USA 98:4050; Schiller et al. (2004) Prog. Lipid Res. 43:499). One exemplary method of lipid analysis is to extract lipids from a biological sample (e.g. using chloroform-methanol (2:1, vol/vol) containing 0.005% butylated hydroxytoluene (BHT, as an antioxidant)), prepare fatty acid methyl esters (e.g., using 14% BF3-methanol reagent), and quantify the fatty acid methyl esters (e.g., by HPLC, TLC, by gas chromatography-mass spectroscopy using commercially available gas chromatographs, mass spectrometers, and/or combination gas chromatograph/mass spectrometers). Fatty acid mass is determined by comparing areas of various analyzed fatty acids to that of a fixed concentration of internal standard.

[0101] In some embodiments of the invention, a carbohydrate profile can be determined by chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry
(SIMS), radioimmunoassays, microfluidic chip-based assay, detection of fluorescence, detection of chemiluminescence, or a combination thereof.

[0102] In some embodiments of the invention, a metabolite profile can be determined by chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, microfluidic chip-based assay, detection of fluorescence, detection of chemiluminescence, or a combination thereof.

[0103] As used herein, the "difference" between different profiles detected by the methods of this invention can refer to different gene copy numbers, different DNA, RNA, protein, lipid, or carbohydrate expression levels, different DNA methylation states, different DNA acetylation states, and different protein modification states. The difference can be a difference greater than 1 fold. In some embodiments, the difference is a 1.05-fold, 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold difference. In some embodiments, the difference is any fold difference between 1-10, 2-10, 5-10, 10-20, or 10-100 folds.

[0104] A general principle of assays to detect markers involves preparing a sample or reaction mixture that may contain the marker (e.g., one or more of DNA, RNA, protein, polypeptide, carbohydrate, lipid, metabolite, and the like) and a probe under appropriate conditions and for a time sufficient to allow the marker and probe to interact and bind, thus forming a complex that can be removed and/or detected in the reaction mixture. These assays can be conducted in a variety of ways.
For example, one method to conduct such an assay would involve anchoring the marker or probe onto a solid phase support, also referred to as a substrate, and detecting target marker/probe complexes anchored on the solid phase at the end of the reaction. In one embodiment of such a method, a sample from a subject, which is to be assayed for presence and/or concentration of marker, can be anchored onto a carrier or solid phase support. In another embodiment, the reverse situation is possible, in which the probe can be anchored to a solid phase and a sample from a subject can be allowed to react as an unanchored component of the assay.

There are many established methods for anchoring assay components to a solid phase. These include, without limitation, marker or probe molecules which are immobilized through conjugation of biotin and streptavidin. Such biotinylated assay components can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). In certain embodiments, the surfaces with immobilized assay components can be prepared in advance and stored.

Other suitable carriers or solid phase supports for such assays include any material capable of binding the class of molecule to which the marker or probe belongs. Well known supports or carriers include, but are not limited to, glass, polystyrene, nylon, polypropylene, nylon, polyethylene, dextran, amylases, natural and modified cellulosics, polyacrylamides, gabbros, and magnetite.

In order to conduct assays with the above mentioned approaches, the non-immobilized component is added to the solid phase upon which the second component is anchored. After the reaction is complete, uncomplexed components may be removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized upon the solid phase. The detection of marker/probe complexes anchored to the solid phase can be accomplished in a number of methods outlined herein.
In certain exemplary embodiments, the probe, when it is the unanchored assay component, can be labeled for the purpose of detection and readout of the assay, either directly or indirectly, with detectable labels discussed herein and which are well-known to one skilled in the art.

It is also possible to directly detect marker/probe complex formation without further manipulation or labeling of either component (marker or probe), for example by utilizing the technique of fluorescence energy transfer (see, for example, U.S. Patent Nos. 5,631,169 and 4,868,103). A fluorophore label on the first, 'donor' molecule is selected such that, upon excitation with incident light of appropriate wavelength, its emitted fluorescent energy will be absorbed by a fluorescent label on a second 'acceptor' molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the 'donor' protein molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the 'acceptor' molecule label may be differentiated from that of the 'donor'. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, spatial relationships between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the 'acceptor' molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).

In another embodiment, determination of the ability of a probe to recognize a marker can be accomplished without labeling either assay component (probe or marker) by utilizing a technology such as real-time Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander, S. and Urbaniczky, C, 1991, Anal. Chem. 63:2338 2345 and Szabo et al, 1995, Curr. Opin. Struct. Biol. 5:699 705). As used herein, "BIA" or "surface plasmon resonance" is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in
a detectable signal which can be used as an indication of real-time reactions
between biological molecules.

[0112] Alternatively, in another embodiment, analogous diagnostic and
prognostic assays can be conducted with marker and probe as solutes in a liquid
phase. In such an assay, the complexed marker and probe are separated from
uncomplexed components by any of a number of standard techniques, including
but not limited to: differential centrifugation, chromatography, electrophoresis and
immunoprecipitation. In differential centrifugation, marker/probe complexes may
be separated from uncomplexed assay components through a series of centrifugal
steps, due to the different sedimentation equilibria of complexes based on their
different sizes and densities (see, for example, Rivas and Minton (1993) Trends
Biochem. Sci. 18:284). Standard chromatographic techniques may also be
utilized to separate complexed molecules from uncomplexed ones. For example,
gel filtration chromatography separates molecules based on size, and through the
utilization of an appropriate gel filtration resin in a column format, for example,
the relatively larger complex may be separated from the relatively smaller
uncomplexed components. Similarly, the relatively different charge properties of
the marker/probe complex as compared to the uncomplexed components may be
exploited to differentiate the complex from uncomplexed components, for example
through the utilization of ion-exchange chromatography resins. Such resins and
chromatographic techniques are well known to one skilled in the art (see, e.g.,
Chromatogr. B. Biomed. Sci. Appl. 12:499). Gel electrophoresis may also be
employed to separate complexed assay components from unbound components
(see, e.g., Ausubel et al, ed., Current Protocols in Molecular Biology, John Wiley
& Sons, New York, 1987 1999). In this technique, protein or nucleic acid
complexes are separated based on size or charge, for example. In order to maintain
the binding interaction during the electrophoretic process, non-denaturing gel
matrix materials and conditions in the absence of reducing agent are typically
preferred. Appropriate conditions to the particular assay and components thereof
will be well known to one skilled in the art.
In certain exemplary embodiments, the level of mRNA corresponding to
the marker can be determined either by in situ and/or by in vitro formats in a
biological sample using methods known in the art. Many expression detection
methods use isolated RNA. For in vitro methods, any RNA isolation technique
that does not select against the isolation of mRNA can be utilized for the
purification of RNA from blood cells (see, e.g., Ausubel et al., ed., Current
Additionally, large numbers of cells and/or samples can readily be processed using
techniques well known to those of skill in the art, such as, for example, the single-

Isolated mRNA can be used in hybridization or amplification assays that
include, but are not limited to, Southern or Northern analyses, polymerase chain
reaction analyses and probe arrays. In certain exemplary embodiments, a
diagnostic method for the detection of mRNA levels involves contacting the
isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the
mRNA encoded by the gene being detected. The nucleic acid probe can be, for
example, a full-length cDNA, or a portion thereof, such as an oligonucleotide of at
least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to
specifically hybridize under stringent conditions to an mRNA or genomic DNA
encoding a marker of the present invention. Other suitable probes for use in the
diagnostic assays of the invention are described herein. Hybridization of an
mRNA with the probe indicates that the marker in question is being expressed.

In one format, the mRNA is immobilized on a solid surface and contacted
with a probe, for example by running the isolated mRNA on an agarose gel and
transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an
alternative format, the probe(s) are immobilized on a solid surface and the mRNA
is contacted with the probe(s), for example, in a gene chip array. A skilled artisan
can readily adapt known mRNA detection methods for use in detecting the level of
mRNA encoded by the markers of the present invention.

An alternative method for determining the level of mRNA corresponding
to a marker of the present invention in a sample involves the process of nucleic
acid amplification, e.g., by RT-PCR (the experimental embodiment set forth in U.S. Patent Nos. 4,683,195 and 4,683,202), COLD-PCR (Li et al. (2008) Nat. Med. 14:579), ligase chain reaction (Barany, 1991, Proc. Natl. Acad. Sci. USA, 88:189), self sustained sequence replication (Guatelli et al, 1990, Proc. Natl. Acad. Sci. USA 87:1874), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:173), Q- Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (U.S. Patent No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5′ or 3′ regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.

[0117] For in situ methods, mRNA does not need to be isolated from the sample (e.g., a bodily fluid (e.g., blood cells)) prior to detection. In such methods, a cell or tissue sample is prepared/processed using known histological methods. The sample is then immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to mRNA that encodes the marker.

[0118] As an alternative to making determinations based on the absolute expression level of the marker, determinations may be based on the normalized expression level of the marker. Expression levels are normalized by correcting the absolute expression level of a marker by comparing its expression to the expression of a gene that is not a marker, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene, or epithelial cell- specific genes. This normalization allows the comparison of the expression level in a patient sample from one source
to a patient sample from another source, e.g., to compare a phagocytic blood cell from an individual to a non-phagocytic blood cell from the individual.

[0119] In one embodiment of this invention, a protein or polypeptide corresponding to a marker is detected. In certain embodiments, an agent for detecting a protein or polypeptide can be an antibody capable of binding to the polypeptide, such as an antibody with a detectable label. As used herein, the term "labeled," with regard to a probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. Antibodies can be polyclonal or monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. In one format, antibodies, or antibody fragments, can be used in methods such as Western blots or immunofluorescence techniques to detect the expressed proteins. In such uses, it is generally preferable to immobilize either the antibody or proteins on a solid support. Suitable solid phase supports or carriers include any support capable of binding an antigen or an antibody. Well known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, magnetite and the like.

[0120] A variety of formats can be employed to determine whether a sample contains a protein that binds to a given antibody. Examples of such formats include, but are not limited to, competitive and non-competitive immunoassay, enzyme immunoassay (EIA), radioimmunoassay (RIA), antigen capture assays, two-antibody sandwich assays, Western blot analysis, enzyme linked immunoabsorbant assay (ELISA), a planar array, a colorimetric assay, a chemiluminescent assay, a fluorescent assay, and the like. Immunoassays, including radioimmunoassays and enzyme-linked immunoassays, are useful in the methods of the present invention. A skilled artisan can readily adapt known
protein/antibody detection methods for use in determining whether cells (e.g., bodily fluid cells such as blood cells) express a marker of the present invention.

[0121] One skilled in the art will know many other suitable carriers for binding antibody or antigen, and will be able to adapt such support for use with the present invention. For example, protein isolated from cells (e.g., bodily fluid cells such as blood cells) can be run on a polyacrylamide gel electrophoresis and immobilized onto a solid phase support such as nitrocellulose. The support can then be washed with suitable buffers followed by treatment with the detectably labeled antibody. The solid phase support can then be washed with the buffer a second time to remove unbound antibody. The amount of bound label on the solid support can then be detected by conventional means.

[0122] In certain exemplary embodiments, assays are provided for diagnosis, prognosis, assessing the risk of developing a disease, assessing the efficacy of a treatment, monitoring the progression or regression of a disease, and identifying a compound capable of ameliorating or treating a disease. An exemplary method for these methods involves obtaining a bodily fluid sample from a test subject and contacting the bodily fluid sample with a compound or an agent capable of detecting one or more of the markers of the disease or condition, e.g., marker nucleic acid (e.g., mRNA, genomic DNA), marker peptide (e.g., polypeptide or protein), marker lipid (e.g., cholesterol), or marker metabolite (e.g., creatinine) such that the presence of the marker is detected in the biological sample. In one embodiment, an agent for detecting marker mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to marker mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length marker nucleic acid or a portion thereof. Other suitable probes for use in the diagnostic assays of the invention are described herein.

[0123] As used herein, a compound capable of ameliorating or treating a cardiovascular disease or condition can include, without limitations, any substance that can improve symptoms or prognosis, prevent progression of the disease or condition, promote regression of the disease or condition, or eliminate the disease or condition.
In yet another aspect, this invention provides a method for identifying a compound capable of ameliorating or treating a cardiovascular disease or condition in a subject comprising: a) determining a first profile of one or more markers of the disease or condition from a population of $>2n$ phagocytic cells from the subject before administering the compound to the subject; determining a second profile of at least one of the one or more markers from a population of $=2n$ phagocytic cells from the subject before administering the compound to the subject; identifying a first difference between the first and second profiles of at least one or more of said markers; b) determining a third profile of the one or more markers from a population of $>2n$ phagocytic cells from the subject after the administration of the compound; determining a fourth profile of at least one of the one or more markers from a population of $=2n$ phagocytic cells from the subject after the administration of the compound; identifying a second difference between the third and fourth profiles of at least one or more of said markers; c) identifying a difference between the first difference and the second difference, wherein the identified difference indicates that the compound is capable of ameliorating or treating said disease or condition in the subject.

In yet another aspect, this invention provides a method for identifying one or more markers for a cardiovascular disease or condition comprising: a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from non-phagocytic cells from the subject having said disease or condition; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from phagocytic cells from a control subject not having said disease or condition; determining a fourth profile of analytes from non-phagocytic cells from the control subject not having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. Optionally, this method further comprises d)
obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition in the subject having said disease or condition; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition in the subject having said disease or condition; identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.

[0126] In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from phagocytic cells from a control subject not having said disease or condition; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from non-phagocytic cells from the subject having said disease or condition; determining a fourth profile of analytes from non-phagocytic cells from the control subject not having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. And optionally, the method further comprises d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition in the subject having said disease or condition; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition in the subject having said disease or condition; identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.

[0127] In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a)
determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; obtaining a second profile of analytes from phagocytic cells from a control subject not having said disease or condition by data mining; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from non-phagocytic cells from the subject having said disease or condition; obtaining a fourth profile of analytes from non-phagocytic cells from a control subject not having said disease or condition by data mining; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; and c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. And optionally, the method further comprises d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition by data mining; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition by data mining; identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.

[0128] In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from non-phagocytic cells from the subject having said disease or condition; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from cells or tissues affected by said disease or condition from the subject having said disease or condition; determining a fourth profile of analytes from cells or tissues not affected by said disease or condition from the subject having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of
differences is specific to the third profile relative to the fourth profile; c) identifying one or more analytes present in both the first set of differences and the second set of differences, the identified analytes being markers of said disease or condition. And optionally, the method further comprises d) determining a fifth profile of analytes from phagocytic cells from a control subject not having said disease or condition; identifying a third set of differences between the first and fifth profiles, wherein the third set of differences is specific to the first profile relative to the fifth profile; e) identifying at least one of the one or more markers of c) present in the third set of differences.

[0129] In yet another aspect, this invention provides a method for identifying one or more markers of a cardiovascular disease or condition comprising: a) determining a first profile of analytes from >2n phagocytic cells from a subject having said disease or condition; determining a second profile of analytes from =2n phagocytic cells from the subject having said disease or condition; identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile; b) determining a third profile of analytes from >2n phagocytic cells from a control subject not having said disease or condition; determining a fourth profile of analytes from =2n phagocytic cells from the control subject not having said disease or condition; identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; and c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition. And optionally, the method further comprises: d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition from the subject having said disease or condition; obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition from the subject having said disease or condition; identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and e) identifying at least one of the one or more markers of c) present in the third set of differences.
[0130] An exemplary method for detecting the presence or absence of an analyte (e.g., DNA, RNA, protein, polypeptide, carbohydrate, lipid or the like) corresponding to a marker of the invention in a biological sample involves obtaining a bodily fluid sample (e.g., blood) from a test subject and contacting the bodily fluid sample with a compound or an agent capable of detecting one or more markers. Detection methods described herein can be used to detect one or more markers in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of a polypeptide corresponding to a marker of the invention include enzyme linked immunoassays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of a polypeptide corresponding to a marker of the invention include introducing into a subject a labeled antibody directed against the polypeptide. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Because each marker is also an analyte, any method described herein to detect the presence or absence of a marker can also be used to detect the presence or absence of an analyte.

[0132] The marker that is useful in the methods of the invention can also include those markers disclosed in, for example, RS Vasan, Circulation (2006), 113:2335-

[0133] The marker that is useful in the methods of the invention can include any mutation in any one of the above-identified markers. Mutation sites and sequences can be identified, for example, by databases or repositories of such information, e.g., The Human Gene Mutation Database (www.hgmd.cf.ac.uk), the Single Nucleotide Polymorphism Database (dbSNP, www.ncbi.nlm.nih.gov/projects/SNP), and the Online Mendelian Inheritance in Man (OMIM) website (www.ncbi.nlm.nih.gov/omim).

[0134] The marker that is useful in the methods of the invention can include any marker that is known to be associated with a cardiovascular disease or condition.

[0135] The present invention also provides kits that comprise marker detection agents that detect at least one or more of the markers identified by the methods of this invention. This present invention also provides methods of treating or preventing a cardiovascular disease or condition in a subject comprising administering to said subject an agent that modulates the activity or expression of at least one or more of the markers identified by the methods of this invention.

[0136] It is to be understood that the embodiments of the present invention which have been described are merely illustrative of some of the applications of the principles of the present invention. Numerous modifications may be made by those skilled in the art based upon the teachings presented herein without departing from the true spirit and scope of the invention.

[0137] The following examples are set forth as being representative of the present invention. These examples are not to be construed as limiting the scope of the invention as these and other equivalent embodiments will be apparent in view of the present disclosure, figures, and accompanying claims.
Examples

Example 1: A Representative Method for the Separation of Phagocytic Cells from Non-Phagocytic Cells and the Analysis of Expression Profiles

[0139] 2. Add biotinylated antibody to non-phagocytic blood cell (e.g., T cells) to the wells, incubate for 30 min at RT, wash wells.

[0140] 3. Add magnetic beads.

[0142] 5. Incubate at 37°C (30 minutes - 1 hour).

[0143] 6. Following phagocytosis of beads by phagocytic cells and binding of avidin-biotin-antibody to non-phagocytic cells, place plate on top of magnet and wash (the phagocytic cells that internalized the magnetic beads and the non-phagocytic cells bound to the antibody will stay; all other cells will be washed away).

[0145] 8. Isolate RNA from phagocytic cells (e.g., cells bound to a magnetic bead) and of non-phagocytic cells (e.g., those cells attached to the bottom of the wells via the anti-non-phagocytic cell biotinylated antibody-avidin bound), prepare cDNA, cRNA and use to differentiate genetic profiles (e.g., whole gene arrays and/or cancer gene arrays) of phagocytic and non-phagocytic cells.

[0146] 9. Isolate DNA from each cell sample and identify disease-DNA signatures selectively present in phagocytes (i.e., absent in non-phagocytes); compare the profiles (e.g., whole gene arrays, DNA mutations and/or SNPs obtained in phagocytic and non-phagocytic cells).

[0147] 10. Isolate protein from each cell sample, run Western blots using antibodies to known proteins overexpressed in an individual with a cardiovascular
disease or condition, and compare the profiles obtained in phagocytic and non-
phagocytic cells. Alternatively, use mass spectroscopy to identify the proteins.

[0148] 11. Isolate lipids from each cell sample and compare quantity and
quality, for example using HPLC.

5 Example 2: A Representative Method for the Separation of Phagocytic Cells
from Non-Phagocytic Cells and the Analysis of Expression Profiles

[0149] 1. With reference to FIG. 1C, lyse RBCs in blood sample.

[0150] 2. Cytospin WBC on glass slides.

[0151] 3. Fix cells in acetone/methanol (-20°C for 5 minutes).

[0152] 4. Stain with hematoxylin and eosin stain and anti-T cell antibody.

[0153] 5. Isolate T cells (non-phagocytic) and macrophages (phagocytic) using
laser capture microscopy (LCM).

[0154] 6. Isolate RNA from phagocytic cells and of non-phagocytic cells,
prepare cDNA, cRNA and use to differentiate genetic profiles (e.g., whole gene
arrays and/or disease gene arrays) of phagocytic and non-phagocytic cells.

[0155] 7. Isolate DNA from each cell sample, run DNA arrays, and compare the
profiles (e.g., whole gene arrays, DNA mutations and/or SNPs) obtained in
phagocytic and non-phagocytic cells.

[0156] 8. Isolate protein from each cell sample, run Western blots using
antibodies to known proteins overexpressed in an individual with a cardiovascular
disease or condition, and compare the profiles obtained in phagocytic and non-
phagocytic cells. Alternatively, use mass spectroscopy to identify the proteins.

[0157] 9. Isolate lipids from each cell sample and compare quantity and quality,
for example using HPLC.
Example 3: A Representative Method for the Separation of Phagocytic Cells from Non-Phagocytic Cells and the Analysis of Expression Profiles

[0158] 1. With reference to FIG. 1C, lyse RBC from a blood sample.

[0159] 2. Use magnetic antibody-conjugated beads to isolate non-phagocytic (e.g., T cells) and phagocytic cells (e.g., neutrophils and/or macrophages and/or monocytes) from whole blood.

[0160] 3. Isolate RNA from each cell sample, prepare cDNA, cRNA and use to differentiate genetic profiles (e.g., cancer gene array) of phagocytic and non-phagocytic cells.

[0161] 4. Isolate DNA from each cell sample, run DNA arrays, and compare the profiles obtained in phagocytic and non-phagocytic cells.

[0162] 5. Isolate protein from each cell sample, run Western blots using antibodies to known proteins overexpressed in an individual with a cardiovascular disease or condition, and compare the profiles obtained in phagocytic and non-phagocytic cells. Alternatively, use mass spectroscopy to identify the proteins.

[0163] 6. Isolate lipids from each cell sample and compare quantity and quality, for example using HPLC.

Example 4: A Representative Method for the Separation of Phagocytic Cells from Non-Phagocytic Cells and the Analysis of Expression Profiles

[0164] 1. With reference to FIG. 1C, stain WBC with fluorescent antibodies specific against a particular cell subpopulation (e.g., neutrophils, macrophages, monocytes, T cells and the like).

[0165] 2. Sort the cells (e.g., by FACS).

[0166] 3. Isolate RNA from each cell sample, prepare cDNA, cRNA and use to differentiate genetic profiles (e.g., gene array) of phagocytic and non-phagocytic cells.
4. Isolate DNA from each cell sample, run DNA arrays, and compare the profiles obtained in phagocytic and non-phagocytic cells.

5. Isolate protein from each cell sample, run Western blots using antibodies to known proteins overexpressed in an individual with a cardiovascular disease or condition, and compare the profiles obtained in phagocytic and non-phagocytic cells. Alternatively, use mass spectroscopy to identify the proteins.

6. Isolate lipids from each cell sample and compare quantity and quality, for example using HPLC.

Example 5: A Representative Method for the Separation of Phagocytic Cells from Non-Phagocytic Cells and the Analysis of Expression Profiles

1. With reference to FIG. 1D, stain WBC with fluorescent antibodies to each cell subpopulation (e.g., neutrophils, macrophages, monocytes, and T cells), and then stain with DNA dye (e.g., propidium iodide).

2. Sort the cells (FACS) into T cells, neutrophils (2n), neutrophils (>2n), macrophages (2n), macrophages (>2n), monocytes (2n), and monocytes (>2n).

3. Isolate RNA from T cells, neutrophils (>2n), macrophages (>2n), and monocytes (>2n). Then prepare cDNA, cRNA and use to differentiate genetic profiles (e.g., disease gene array) of phagocytic and non-phagocytic cells.

4. Isolate DNA from T cells, neutrophils (>2n), macrophages (>2n), and monocytes (>2n). Run DNA arrays and compare the profiles obtained in phagocytic and non-phagocytic cells.

5. Isolate protein from T cells, neutrophils (>2n), macrophages (>2n), and monocytes (>2n). Run Western blots using antibodies to known proteins overexpressed in an individual with a cardiovascular disease or condition, and compare the profiles obtained in phagocytic and non-phagocytic cells. Alternatively, use mass spectroscopy to identify the proteins.
6. Isolate lipids from T cells, neutrophils (>2n), macrophages (>2n), and monocytes (>2n). Compare quantity and quality of lipids, for example using HPLC.
What is Claimed is:

1. A method for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition, or assessing the risk of developing the cardiovascular disease or condition, or prognosing or aiding in the prognosis of the cardiovascular disease or condition, in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells or a population of phagocytic cells having a DNA content more than 2n (>2n phagocytic cells);

 b) determining a second profile of at least one of the one or more markers from a population of phagocytic cells having a DNA content of 2n (=2n phagocytic cells) or a population of non-phagocytic cells;

 c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the presence of said disease or condition, or the risk of developing said disease or condition, or the prognosis of said disease or condition, in the subject.

2. A method for assessing the efficacy of a treatment for a cardiovascular disease or condition, or monitoring the progression or regression of the cardiovascular disease or condition, or identifying a compound capable of ameliorating or treating the cardiovascular disease or condition, in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells or a population of >2n phagocytic cells from the subject at a first time point;

 determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells or a population of non-phagocytic cells from the subject at the first time point;

 identifying a first difference between the first and second profiles of at least one or more of said markers;
b) determining a third profile of the one or more markers from a population of phagocytic cells or a population of >2n phagocytic cells from the subject at a second time point;

determining a fourth profile of at least one of the one or more markers from a population of =2n phagocytic cells or a population of non-phagocytic cells from the subject at the second time point;

identifying a second difference between the third and fourth profiles of at least one or more of said markers; and

c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the efficacy of the treatment for said disease or condition, or the progression or regression of said disease or condition, or indicates that the compound is capable of ameliorating or treating said disease or condition, in the subject.

3. A method for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition in a subject comprising:

a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells;

b) determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells; and

c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the presence of said disease or condition in the subject.

4. A method for assessing the risk of developing a cardiovascular disease or condition in a subject comprising:

a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells;
b) determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells; and

c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the risk of developing said disease or condition in the subject.

5. A method for prognosing or aiding in the prognosis of a cardiovascular disease or condition in a subject comprising:

a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells;

b) determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells; and

c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the identified difference is indicative of the prognosis of said disease or condition in the subject.

6. A method for assessing the efficacy of a treatment for a cardiovascular disease or condition in a subject comprising:

a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells from the subject before the treatment;

determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject before the treatment;

identifying a first difference between the first and second profiles of at least one or more of said markers;

b) determining a third profile of the one or more markers from a population of phagocytic cells from the subject after the treatment;
determining a fourth profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject after the treatment;

identifying a second difference between the third and fourth profiles of at least one or more of said markers; and

c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the efficacy of the treatment for said disease or condition in the subject.

7. A method for monitoring the progression or regression of a cardiovascular disease or condition in a subject comprising:

a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells from the subject at a first time point;

determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject at the first time point;

identifying a first difference between the first and second profiles of at least one or more of said markers;

b) determining a third profile of the one or more markers from a population of phagocytic cells from the subject at a second time point;

determining a fourth profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject at the second time point;

identifying a second difference between the third and fourth profiles of at least one or more of said markers; and

c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the progression or regression of said disease or condition in the subject.
8. A method for identifying a compound capable of ameliorating or treating a cardiovascular disease or condition in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells from the subject before administering the compound to the subject;

 determining a second profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject before administering the compound to the subject;

 identifying a first difference between the first and second profiles of at least one or more of said markers;

 b) determining a third profile of the one or more markers from a population of phagocytic cells from the subject after the administration of the compound;

 determining a fourth profile of at least one of the one or more markers from a population of non-phagocytic cells from the subject after the administration of the compound;

 identifying a second difference between the third and fourth profiles of at least one or more of said markers; and

 c) identifying a difference between the first difference and the second difference, wherein the identified difference indicates that the compound is capable of ameliorating or treating said disease or condition in the subject.

9. A method for diagnosing or aiding in the diagnosis of a cardiovascular disease or condition in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of phagocytic cells having a DNA content more than 2n (>2n phagocytic cells);
b) determining a second profile of at least one of the one or more markers from a population of phagocytic cells having a DNA content of 2n (=2n phagocytic cells); and

c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the presence of said disease or condition in the subject.

10. A method for assessing the risk of developing a cardiovascular disease or condition in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells;

 b) determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells; and

 c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the risk of developing said disease or condition in the subject.

11. A method for prognosing or aiding in the prognosis of a cardiovascular disease or condition in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells;

 b) determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells; and

 c) identifying a difference between the first and second profiles of at least one or more of said markers, wherein the difference is indicative of the prognosis of said disease or condition in the subject.

12. A method for assessing the efficacy of a treatment for a cardiovascular disease or condition in a subject comprising:
a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells from the subject before the treatment;

 determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells from the subject before the treatment;

 identifying a first difference between the first and second profiles of at least one or more of said markers;

b) determining a third profile of the one or more markers from a population of >2n phagocytic cells from the subject after the treatment;

 determining a fourth profile of at least one of the one or more markers from a population of =2n phagocytic cells from the subject after the treatment;

 identifying a second difference between the third and fourth profiles of at least one or more of said markers; and

c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the efficacy of the treatment for said disease or condition in the subject.

13. A method for monitoring the progression or regression of a cardiovascular disease or condition in a subject comprising:

 a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells from the subject at a first time point;

 determining a second profile of at least one of the one or more markers from a population of =2n phagocytic cells from the subject at the first time point;

 identifying a first difference between the first and second profiles of at least one or more of said markers;
b) determining a third profile of the one or more markers from a population of >2n phagocytic cells from the subject at a second time point;

determining a fourth profile of at least one of the one or more markers from a population of ≥2n phagocytic cells from the subject at the second time point;

identifying a second difference between the third and fourth profiles of at least one or more of said markers; and

c) identifying a difference between the first difference and the second difference, wherein the identified difference is indicative of the progression or regression of said disease or condition in the subject.

14. A method for identifying a compound capable of ameliorating or treating a cardiovascular disease or condition in a subject comprising:

a) determining a first profile of one or more markers of the disease or condition from a population of >2n phagocytic cells from the subject before administering the compound to the subject;

b) determining a second profile of at least one of the one or more markers from a population of ≥2n phagocytic cells from the subject before administering the compound to the subject;

identifying a first difference between the first and second profiles of at least one or more of said markers;

b) determining a third profile of the one or more markers from a population of >2n phagocytic cells from the subject after the administration of the compound;

b) determining a fourth profile of at least one of the one or more markers from a population of ≥2n phagocytic cells from the subject after the administration of the compound;

identifying a second difference between the third and fourth profiles of at least one or more of said markers;
c) identifying a difference between the first difference and the second difference, wherein the identified difference indicates that the compound is capable of ameliorating or treating said disease or condition in the subject.

15. The method of any one of the claims 3-8, wherein at least one of the one or more markers is up-regulated or activated in the phagocytic cells compared to the non-phagocytic cells.

16. The method of any one of the claims 3-8, wherein at least one of the one or more markers is down-regulated or inhibited in the phagocytic cells compared to the non-phagocytic cells.

17. The method of any one of the claims 9-14, wherein at least one of the one or more markers is up-regulated or activated in the >2n phagocytic cells compared to the =2n phagocytic cells.

18. The method of any one of the claims 9-14, wherein at least one of the one or more markers is down-regulated or inhibited in the >2n phagocytic cells compared to the =2n phagocytic cells.

19. The method of any one of the claims 3-14, wherein the first profile or the second profile comprises the absence of at least one of the one or more markers of said disease or condition.

20. The method of any one of the claims 6-8 and 12-14, wherein the third profile or the fourth profile comprises the absence of at least one of the one or more markers of said disease or condition.

21. The method of any one of the claims 3-8, further comprising lysing the phagocytic cells and the non-phagocytic cells before a).

22. The method of any one of the claims 3-8 and 21, further comprising extracting the cellular contents from the phagocytic cells and the non-phagocytic cells before a).
23. The method of claim 22, wherein the cellular contents of the phagocytic cells comprise viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof.

24. The method of claim 22, wherein at least one of the one or more markers of said disease or condition is present in the cellular contents of the phagocytic cells.

25. The method of claim 22, wherein the one or more markers of said disease or condition are not present in the cellular contents of the non-phagocytic cells.

26. The method of any one of the claims 3-8, wherein the phagocytic cells express at least one of the one or more markers of said disease or condition.

27. The method of any one of the claims 9-14, further comprising lysing the >2n phagocytic cells and the =2n phagocytic cells before a).

28. The method of any one of the claims 9-14 and 27, further comprising extracting cellular contents from the >2n phagocytic cells and the =2n phagocytic cells before a).

29. The method of claim 28, wherein at least one of the one or more markers of said disease or condition is present in the cellular contents of the >2n phagocytic cells.

30. The method of claim 28, wherein the one or more markers of said disease or condition are not present in the cellular contents of the =2n phagocytic cells.

31. The method of claim 28, wherein the cellular contents of the >2n phagocytic cells comprise viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof.

32. The method of any one of the claims 9-14, wherein the >2n phagocytic cells express at least one of the one or more markers of said disease or condition.
33. The method of any one of the claims 3-14, further comprising comparing the identified difference of c) to a repository of one or more known markers of said disease or condition.

34. The method of claim 33, wherein the repository is obtained by data mining.

35. The method of any one of the claims 3-14, wherein the phagocytic cells are professional phagocytic cells, non-professional phagocytic cells, or mixtures thereof.

36. The method of claim 35, wherein the professional phagocytic cells are neutrophils, macrophages, monocytes, dendritic cells, foam cells, mast cells, eosinophils, or mixtures thereof.

37. The method of claim 35, wherein the non-professional phagocytic cells are epithelial cells, endothelial cells, fibroblasts, mesenchymal cells, or mixtures thereof.

38. The method of any one of the claims 3-8, wherein the non-phagocytic cells are T cells, B cells, null cells, basophils, or mixtures thereof.

39. The method of any one of the claims 3-8, wherein the phagocytic cells and the non-phagocytic cells are isolated from a bodily fluid sample, tissues, or cells of the subject.

40. The method of claim 39, wherein the bodily fluid sample is blood, urine, stool, saliva, lymph fluid, cerebrospinal fluid, synovial fluid, cystic fluid, ascites, pleural effusion, fluid obtained from a pregnant woman in the first trimester, fluid obtained from a pregnant woman in the second trimester, fluid obtained from a pregnant woman in the third trimester, maternal blood, amniotic fluid, chorionic villus sample, fluid from a preimplantation embryo, maternal urine, maternal saliva, placental sample, fetal blood, lavage and cervical vaginal fluid, interstitial fluid, or ocular fluid.

41. The method of claim 39, wherein the cells are white blood cells.
42. The method of any one of the claims 39-41, wherein the phagocytic cells and the non-phagocytic cells are isolated using antibodies.

43. The method of any one of the claims 39-41, wherein the phagocytic cells and the non-phagocytic cells are isolated by flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation technique, nanostructure, quantum dots, high throughput microscope-based platforms, or a combination thereof.

44. The method of any one the claims 39-41, wherein the phagocytic cells are isolated by using a product secreted by the phagocytic cells.

45. The method of any one the claims 39-41, wherein the phagocytic cells are isolated by using a cell surface target on the surface of the phagocytic cells.

46. The method of claim 45, wherein the target is expressed by the phagocytic cells.

47. The method of claim 45, wherein the target is not expressed by the phagocytic cells.

48. The method of claim 45, wherein the target is a marker of said disease or condition.

49. The method of any one of the claims 39-41, wherein the phagocytic cells and the non-phagocytic cells are isolated using a ligand that binds to a molecular receptor expressed on the plasma membranes of white blood cells.

50. The method of any one of the claims 9-14, wherein the >2n phagocytic cells and the =2n phagocytic cells are isolated from a bodily fluid sample, tissues, or cells of the subject.

51. The method of any one of the claims 9-14, wherein the >2n phagocytic cells and the =2n phagocytic cells are isolated from a population of phagocytic cells.
52. The method of claim 51, wherein the >2n phagocytic cells and the =2n phagocytic cells are isolated from the population of phagocytic cells by flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation technique, nanostructure, quantum dots, high throughput microscope-based platform, or a combination thereof.

53. The method of claim 51, wherein the population of phagocytic cells is isolated from a bodily fluid sample, tissues, or cells of the subject.

54. The method of claim 50 or 53, wherein the bodily fluid sample is blood, urine, stool, saliva, lymph fluid, cerebrospinal fluid, synovial fluid, cystic fluid, ascites, pleural effusion, fluid obtained from a pregnant woman in the first trimester, fluid obtained from a pregnant woman in the second trimester, fluid obtained from a pregnant woman in the third trimester, maternal blood, amniotic fluid, chorionic villus sample, fluid from a preimplantation embryo, maternal urine, maternal saliva, placental sample, fetal blood, lavage and cervical vaginal fluid, interstitial fluid, or ocular fluid.

55. The method of claim 50 or 53, wherein the cells are white blood cells.

56. The method of any one of the claims 51 and 53-55, wherein the population of phagocytic cells is isolated using antibodies.

57. The method of any one of the claims 51 and 53-55, wherein the population of phagocytic cells is isolated by flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation technique, nanostructure, quantum dots, high throughput microscope-based platform, or a combination thereof.

58. The method of any one of the claims 50-52, wherein the >2n phagocytic cells are isolated by using a product secreted by the phagocytic cells.
59. The method of any one of the claims 50-52, wherein the >2n phagocytic cells are isolated by using a cell surface target on the surface of the phagocytic cells.

60. The method of claim 59, wherein the target is expressed by the phagocytic cells.

61. The method of claim 59, wherein the target is not expressed by the phagocytic cells.

62. The method of claim 59, wherein the target is a marker of said disease or condition.

63. The method of any one of the claims 50-52, wherein the >2n phagocytic cells are isolated using a ligand that binds to a molecular receptor expressed on the plasma membranes of white blood cells.

64. The method of any one of the claims 3-14, wherein the one or more markers are nucleic acids, proteins, lipids, carbohydrates, metabolites, or combinations thereof.

65. The method of claim 64, wherein the nucleic acids are nucleotides, oligonucleotides, DNAs, RNAs, or DNA-RNA hybrids.

66. The method of claim 65, wherein the DNAs are double-stranded DNAs, single-stranded DNAs, multi-stranded DNAs, complementary DNAs, genomic DNAs, or non-coding DNAs.

67. The method of claim 65, wherein the RNAs are messenger RNAs (mRNAs), microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small interfering RNAs (siRNAs), heterogeneous nuclear RNAs (hnRNAs), or small hairpin RNAs (shRNAs).

68. The method of claim 64, wherein the proteins are amino acids, peptides, enzymes, antigens, antibodies, cytokines, lipoproteins, glycoproteins, or hormones.
69. The method of claim 64, wherein the lipids are fatty acids, neutral fats, phosphatides, cholesterol, cholesterol esters, triglycerides, glycolipids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, polyketides, choline glycerophospholipid, ethanolamine glycerophospholipid, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, lyso-choline glycerophospholipid, lyso-ethanolamine glycerophospholipid, phosphatidic acid, lyso-phosphatidic acid, sphingomyelin, galactosylceramide, glucosylceramide, free fatty acids, prostaglandins, triacylglycerol, diacylglycerol, monoacylglycerol, acyl-CoA, acylcarnitine, oxysterol, ceramide, cardiolipin, sphingoid base-1-phosphate, shingosine, lyso-sphingomyelin, gangliosides, plasmalogen, sulfatide, low density lipoproteins (LDLs), very low density lipoproteins (VLDLs), high density lipoproteins (HDLs), sphingoid base-1-phosphates, or derivatives thereof.

70. The method of claim 64, wherein the carbohydrates are monosaccharides, disaccharides, polysaccharides, oligosaccharides, or derivatives thereof.

71. The method of claim 64, wherein the metabolites are primary metabolites, secondary metabolites, organic metabolites, inorganic metabolites, prostaglandins, hydroxyeicosatetraenoic acids, hydroxyoctadecadienoic acids, steroids, bile acids, vitamins, or derivatives thereof.

72. The method of any one of the claims 3-14, wherein the profile is a nucleic acid profile, a protein profile, a lipid profile, a carbohydrate profile, a metabolite profile, or a combination thereof.

73. The method of claim 72, wherein the profile is determined by a qualitative assay, a quantitative assay, or a combination thereof.

74. The method of claim 73, wherein the quantitative assay uses sequencing, direct sequencing, random shotgun sequencing, Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, gel electrophoresis, duplex sequencing, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing, emulsion PCR,
sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD® sequencing, MS-PET sequencing, mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), polymerase chain reaction (PCR) analysis, quantitative PCR, real-time PCR, fluorescence assay, colorimetric assay, chemiluminescent assay, or a combination thereof.

75. The method of claim 72, wherein the nucleic acid profile is a genotypic profile, a single nucleotide polymorphism profile, a gene mutation profile, a gene copy number profile, a DNA methylation profile, a DNA acetylation profile, a chromosome dosage profile, a gene expression profile, or a combination thereof.

76. The method of claim 75, wherein the nucleic acid profile is determined by polymerase chain reaction (PCR) analysis, sequencing analysis, electrophoretic analysis, restriction fragment length polymorphism (RFLP) analysis, Northern blot analysis, quantitative PCR, reverse-transcriptase-PCR analysis (RT-PCR), allele-specific oligonucleotide hybridization analysis, comparative genomic hybridization, heteroduplex mobility assay (HMA), single strand conformational polymorphism (SSCP), denaturing gradient gel electrophisis (DGGE), RNAase mismatch analysis, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization.
mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), surface plasmon resonance, Southern blot analysis, in situ hybridization, fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH), immunohistochemistry (IHC), microarray, comparative genomic hybridization, karyotyping, multiplex ligation-dependent probe amplification (MLPA), Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF), microscopy, methylation specific PCR (MSP) assay, HpaII tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay, radioactive acetate labeling assays, colorimetric DNA acetylation assay, chromatin immunoprecipitation combined with microarray (ChIP-on-chip) assay, restriction landmark genomic scanning, Methylated DNA immunoprecipitation (MeDIP), molecular break light assay for DNA adenine methyltransferase activity, chromatographic separation, methylation-sensitive restriction enzyme analysis, bisulfite-driven conversion of non-methylated cytosine to uracil, methyl-binding PCR analysis, or a combination thereof.

77. The method of claim 75, wherein the nucleic acid profile is determined by a sequencing technique selected from the group consisting of direct sequencing, random shotgun sequencing, Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, gel electrophoresis, duplex sequencing, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing, emulsion PCR, sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD® sequencing, MS-PET sequencing, mass spectrometry, and a combination thereof.
78. The method of claim 72, wherein the protein profile is a protein expression profile, a protein activation profile, or a combination thereof.

79. The method of claim 78, wherein the protein profile is determined by an immunohistochemistry assay, an enzyme-linked immunosorbent assay (ELISA), in situ hybridization, chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, microscopy, microfluidic chip-based assays, surface plasmon resonance, sequencing, Western blotting assay, or a combination thereof.

80. The method of claim 78, wherein the protein activation profile comprises determining a phosphorylation state, an ubiquitination state, a myristoylation state, a conformational state, or a combination thereof of the one or more markers.

81. The method of claim 72, wherein the lipid profile is determined by chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry
(SIMS), radioimmunoassays, microfluidic chip-based assay, detection of fluorescence, detection of chemiluminescence, or a combination thereof.

82. The method of claim 72, wherein the carbohydrate profile is determined by chromatography, liquid chromatography, size exclusion chromatography, high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), liquid chromatography, gas chromatography, fluorescent assay, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassay, microfluidic chip-based assay, detection of fluorescence, detection of chemiluminescence, or a combination thereof.

83. The method of any one the claims 3-14, wherein the subject has at least two diseases or conditions.

84. The method of claim 83, wherein the subject has at least one cardiovascular disease or condition.

85. The method of claim 83, wherein the subject has at least one disease or condition that is not a cardiovascular disease or condition.

86. The method of any one the claims 3-14, wherein the subject is a mammal.

87. The method of claim 86, wherein the subject is a human.

88. The method of any one the claims 3-14, wherein the cardiovascular disease or condition is selected from the group consisting of cardiovascular disease or condition is selected from the group consisting of myocardial infarction, coronary artery disease, percutaneous transluminal coronary angioplasty (PTCA),
coronary artery bypass surgery (CABG), restenosis, peripheral arterial disease, stroke, abdominal aorta aneurysm, intracranial aneurysm, large artery atherosclerotic stroke, cardiogenic stroke, an early onset myocardial infarction, heart failure, pulmonary embolism, acute coronary syndrome (ACS), angina, cardiac hypertrophy, arteriosclerosis, myocarditis, pancarditis, endocarditis, hypertension, congestive heart failure, atherosclerosis, cerebrovascular disease, declining cardiac health, ischemic heart disease, pericarditis, cardiogenic shock, alcoholic cardiomyopathy, congenital heart disease, ischemic cardiomyopathy, hypertensive cardiomyopathy, valvular cardiomyopathy, inflammatory cardiomyopathy, cardiomyopathy secondary to a systemic metabolic disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, noncompaction cardiomyopathy, valvular heart disease, hypertensive heart disease, myocardial ischemic attack, unstable angina, myocardial rupture, cardiogenic shock, embolism, deep vein thrombosis, arrhythmia, arrhythmogenic right ventricular cardiomyopathy, diabetic cardiomyopathy, mitral regurgitation, mitral valve prolapse, peripheral vascular disease, artery disease, carotid artery disease, deep vein thrombosis, venous diseases, cerebrovascular disease, arterial aneurysm, left ventricular hypertrophy, hypertensive renal disease, hypertensive retinal disease, vasculitis, left main disease, arterial vascular disease, venous vascular disease, thrombosis of the microcirculation, a transient cerebrovascular accident, limb ischemia, aneurysm, thrombosis, superficial venous thrombosis, and deep venous thrombosis.

89. The method of any one the claims 3-14, wherein the difference is greater than a 1-fold difference.

90. The method of claim 89, wherein the difference is at least 1.05-fold, 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold difference.

91. A method for identifying one or more markers for a cardiovascular disease or condition comprising:
a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition;

determining a second profile of analytes from non-phagocytic cells from the subject having said disease or condition;

identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile;

b) determining a third profile of analytes from phagocytic cells from a control subject not having said disease or condition;

determining a fourth profile of analytes from non-phagocytic cells from the control subject not having said disease or condition;

identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile;

c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition.

92. The method of claim 91, further comprising:

d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition in the subject having said disease or condition;

obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition in the subject having said disease or condition;

identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and
e) identifying at least one of the one or more markers of c) present in the third set of differences.

93. A method for identifying one or more markers of a cardiovascular disease or condition comprising:

 a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition;

 determining a second profile of analytes from phagocytic cells from a control subject not having said disease or condition;

 identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile;

 b) determining a third profile of analytes from non-phagocytic cells from the subject having said disease or condition;

 determining a fourth profile of analytes from non-phagocytic cells from the control subject not having said disease or condition;

 identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile;

 c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition.

94. The method of claim 93, further comprising:

 d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition in the subject having said disease or condition;

 obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition in the subject having said disease or condition;
identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and

e) identifying at least one of the one or more markers of c) present in the third set of differences.

95. A method for identifying one or more markers of a cardiovascular disease or condition comprising:

a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition;

obtaining a second profile of analytes from phagocytic cells from a control subject not having said disease or condition by data mining;

identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile;

b) determining a third profile of analytes from non-phagocytic cells from the subject having said disease or condition;

obtaining a fourth profile of analytes from non-phagocytic cells from a control subject not having said disease or condition by data mining;

identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; and

c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition.

96. The method of claim 95, further comprising:
d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition by data mining;

obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition by data mining;

identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and

e) identifying at least one of the one or more markers of c) present in the third set of differences.

97. A method for identifying one or more markers of a cardiovascular disease or condition comprising:

a) determining a first profile of analytes from phagocytic cells from a subject having said disease or condition;

determining a second profile of analytes from non-phagocytic cells from the subject having said disease or condition;

identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile;

b) determining a third profile of analytes from cells or tissues affected by said disease or condition from the subject having said disease or condition;

determining a fourth profile of analytes from cells or tissues not affected by said disease or condition from the subject having said disease or condition;

identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile;
c) identifying one or more analytes present in both the first set of differences and the second set of differences, the identified analytes being markers of said disease or condition.

98. The method of claim 97, further comprising:

 d) determining a fifth profile of analytes from phagocytic cells from a control subject not having said disease or condition;

 identifying a third set of differences between the first and fifth profiles, wherein the third set of differences is specific to the first profile relative to the fifth profile;

 e) identifying at least one of the one or more markers of c) present in the third set of differences.

99. A method for identifying one or more markers of a cardiovascular disease or condition comprising:

 a) determining a first profile of analytes from >2n phagocytic cells from a subject having said disease or condition;

 determining a second profile of analytes from =2n phagocytic cells from the subject having said disease or condition;

 identifying a first set of differences between the first and second profiles, wherein the first set of differences is specific to the first profile relative to the second profile;

 b) determining a third profile of analytes from >2n phagocytic cells from a control subject not having said disease or condition;

 determining a fourth profile of analytes from =2n phagocytic cells from the control subject not having said disease or condition;
identifying a second set of differences between the third and fourth profiles, wherein the second set of differences is specific to the third profile relative to the fourth profile; and

c) identifying one or more analytes specific to the first set of differences relative to the second set of differences, the identified analytes being markers of said disease or condition.

100. The method of claim 99, further comprising:

d) obtaining a fifth profile of analytes from cells or tissues affected by said disease or condition from the subject having said disease or condition;

obtaining a sixth profile of analytes from cells or tissues not affected by said disease or condition from the subject having said disease or condition;

identifying a third set of differences between the fifth and sixth profiles, wherein the third set of differences is specific to the fifth profile relative to the sixth profile; and

e) identifying at least one of the one or more markers of c) present in the third set of differences.

101. The method of any one of the claims 91-98, further comprising lysing the phagocytic cells and the non-phagocytic cells before a).

102. The method of any one of the claims 91-98 and 101, further comprising extracting the cellular contents from the phagocytic cells and the non-phagocytic cells before a).

103. The method of claim 102, wherein the cellular contents of the phagocytic cells comprise viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof.

104. The method of any one of the claims 99-100, further comprising lysing the >2n phagocytic cells and the =2n phagocytic cells before a).
105. The method of any one of the claims 99-100 and 104, further comprising extracting cellular contents from the \(>2n \) phagocytic cells and the \(=2n \) phagocytic cells before a).

106. The method of claim 105, wherein the cellular contents of the \(>2n \) phagocytic cells comprise viable diseased cells, dead diseased cells, apoptotic diseased cells, circulating tumor cells, infectious agents, fetal cells, trophoblasts, or fragments thereof.

107. The method of any one of the claims 91-100, wherein the first profile or the second profile comprises the absence of at least one of the one or more markers of said disease or condition.

108. The method of any one of the claims 91-100, wherein the third profile or the fourth profile comprises the absence of at least one of the one or more markers of said disease or condition.

109. The method of any one of the claims 92, 94, 96, 98, and 100, wherein the fifth profile comprises the absence of at least one of the one or more markers of said disease or condition.

110. The method of any one of the claims 92, 94, 96, and 100, wherein the sixth profile comprises the absence of at least one of the one or more markers of said disease or condition.

111. The method of any one of the claims 91-100, wherein the phagocytic cells are professional phagocytic cells, non-professional phagocytic cells, or mixtures thereof.

112. The method of claim 111, wherein the professional phagocytic cells are neutrophils, macrophages, monocytes, dendritic cells, foam cells, mast cells, eosinophils, or mixtures thereof.

113. The method of claim 111, wherein the non-professional phagocytic cells are epithelial cells, endothelial cells, fibroblasts, mesenchymal cells, or mixtures thereof.
114. The method of any one of the claims 91-98, wherein the non-phagocytic cells are T cells, B cells, null cells, basophils, or mixtures thereof.

115. The method of any one of the claims 91-98, wherein the phagocytic cells and the non-phagocytic cells are isolated from a bodily fluid sample, tissues, or cells of the subject.

116. The method of claim 115, wherein the bodily fluid sample is blood, urine, stool, saliva, lymph fluid, cerebrospinal fluid, synovial fluid, cystic fluid, ascites, pleural effusion, fluid obtained from a pregnant woman in the first trimester, fluid obtained from a pregnant woman in the second trimester, fluid obtained from a pregnant woman in the third trimester, maternal blood, amniotic fluid, chorionic villus sample, fluid from a preimplantation embryo, maternal urine, maternal saliva, placental sample, fetal blood, lavage and cervical vaginal fluid, interstitial fluid, or ocular fluid.

117. The method of claim 115, wherein the cells are white blood cells.

118. The method of any one of the claims 115-117, wherein the phagocytic cells and the non-phagocytic cells are isolated using antibodies.

119. The method of any one of the claims 115-117, wherein the phagocytic cells and the non-phagocytic cells are isolated by flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation technique, nanostructure, quantum dots, high throughput microscope-based platform, or a combination thereof.

120. The method of any one the claims 115-117, wherein the phagocytic cells are isolated by using a product secreted by the phagocytic cells.

121. The method of any one the claims 115-117, wherein the phagocytic cells are isolated by using a cell surface target on the surface of the phagocytic cells.

122. The method of claim 121, wherein the target is expressed by the phagocytic cells.
123. The method of claim 121, wherein the target is not expressed by the phagocytic cells.

124. The method of claim 121, wherein the target is a marker of the cardiovascular disease or condition.

125. The method of any one of the claims 115-117, wherein the phagocytic cells and the non-phagocytic cells are isolated using a ligand that binds to a molecular receptor expressed on the plasma membranes of white blood cell populations.

126. The method of any one of the claims 99-100, wherein the >2n phagocytic cells and the =2n phagocytic cells are isolated from a bodily fluid sample, tissues, or cells of the subject.

127. The method of any one of the claims 99-100, wherein the >2n phagocytic cells and the =2n phagocytic cells are isolated from a population of phagocytic cells.

128. The method of claim 127, wherein the >2n phagocytic cells and the =2n phagocytic cells are isolated from a population of phagocytic cells by flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation technique, fluorescent-magnetic separation technique, nanostructure, quantum dots, high throughput microscope-based platform, or a combination thereof.

129. The method of any one of the claims 126-128, wherein the population of phagocytic cells is isolated from a bodily fluid sample, tissues, or cells of the subject.

130. The method of claim 126 or 129, wherein the bodily fluid sample is blood, urine, stool, saliva, lymph fluid, cerebrospinal fluid, synovial fluid, cystic fluid, ascites, pleural effusion, fluid obtained from a pregnant woman in the first trimester, fluid obtained from a pregnant woman in the second trimester, fluid obtained from a pregnant woman in the third trimester, maternal blood, amniotic
fluid, chorionic villus sample, fluid from a preimplantation embryo, maternal urine, maternal saliva, placental sample, fetal blood, lavage and cervical vaginal fluid, interstitial fluid, or ocular fluid.

131. The method of claim 126 or 129, wherein the cells are white blood cells.

132. The method of any one of the claims 127 and 129-131, wherein the population of phagocytic cells is isolated using antibodies.

133. The method of any one of the claims 127 and 129-131, wherein the population of phagocytic cells is isolated by flow cytometry, fluorescence activated cell sorting, filtration, gradient-based centrifugation, elution, microfluidics, magnetic separation techniques, fluorescent-magnetic separation, nanostructures, quantum dots, high throughput microscope-based platform, or combinations thereof.

134. The method of any one of the claims 126-128, wherein the >2n phagocytic cells are isolated by using a product secreted by the >2n phagocytic cells.

135. The method of any one of the claims 126-128, wherein the >2n phagocytic cells are isolated by using a cell surface target on the surface of phagocytic cells.

136. The method of claim 135, wherein the target is expressed by the phagocytic cells.

137. The method of claim 135, wherein the target is not expressed by the phagocytic cells.

138. The method of claim 135, wherein the target is a marker of said disease or condition.

139. The method of any one of the claims 126-128, wherein the >2n phagocytic cells are isolated using a ligand that binds to a molecular receptor expressed on the plasma membranes of white blood cell populations.
140. The method of any one of the claims 91-100, wherein the one or more markers are nucleic acids, proteins, lipids, carbohydrates, metabolites, or combinations thereof.

141. The method of any one of the claims 91-100, wherein the analytes are nucleic acids, proteins, lipids, carbohydrates, metabolites, or combinations thereof.

142. The method of claim 140 or 141, wherein the nucleic acids are nucleotides, oligonucleotides, DNAs, RNAs, or DNA-RNA hybrids.

143. The method of claim 142, wherein the DNAs are double-stranded DNAs, single-stranded DNAs, multi-stranded DNAs, complementary DNAs, genomic DNAs or non-coding DNAs.

144. The method of claim 142, wherein the RNAs are messenger RNAs (mRNAs), microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small interfering RNAs (siRNAs), heterogeneous nuclear RNAs (hnRNAs), or small hairpin RNAs (shRNAs).

145. The method of claim 140 or 141, wherein the proteins are amino acids, peptides, enzymes, antigens, antibodies, cytokines, lipoproteins, glycoproteins, or hormones.

146. The method of claim 140 or 141, wherein the lipids are fatty acids, neutral fats, phosphatides, cholesterol, cholesterol esters, triglycerides, glycolipids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, polyketides, choline glycerophospholipid, ethanolamine glycerophospholipid, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, lyso-choline glycerophospholipid, lyso-ethanolamine glycerophospholipid, phosphatidic acid, lyso-phosphatidic acid, sphingomyelin, galactosylceramide, glucosylceramide, free fatty acids, prostaglandins, triacylglycerol, diacylglycerol, monoacylglycerol, acyl-CoA, acylcarnitine, oxysterol, ceramide, cardiolipin, sphingoid base-1-phosphate, shingosine, lyso-sphingomyelin, gangliosides, plasmalogen, sulfatide, low density lipoproteins.
(LDLs), very low density lipoproteins (VLDLs), high density lipoproteins (HDLs), sphingoid base-1-phosphates or derivatives thereof.

147. The method of claim 140 or 141, wherein the carbohydrates are monosaccharides, disaccharides, polysaccharides, oligosaccharides, or derivatives thereof.

148. The method of claim 140 or 141, wherein the metabolites are primary metabolites, secondary metabolites, organic metabolites, inorganic metabolites, prostaglandins, hydroxyeicosatetraenoic acids, hydroxyoctadecadienoic acids, steroids, bile acids, vitamins, or derivatives thereof.

149. The method of any one of the claims 91-100, wherein the profile is a nucleic acid profile, a protein profile, a lipid profile, a carbohydrate profile, a metabolite profile, or a combination thereof.

150. The method of claim 149, wherein the profile is determined by a qualitative assay, a quantitative assay, or a combination thereof.

151. The method of claim 150, wherein the quantitative assay uses sequencing, direct sequencing, random shotgun sequencing, Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, gel electrophoresis, duplex sequencing, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing, emulsion PCR, sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD® sequencing, MS-PET sequencing, mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier
transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), polymerase chain reaction (PCR) analysis, quantitative PCR, real-time PCR, fluorescence assay, colorimetric assay, chemiluminescent assay, or a combination thereof.

152. The method of claim 149, wherein the nucleic acid profile is a genotypic profile, a single nucleotide polymorphism profile, a gene mutation profile, a gene copy number profile, a DNA methylation profile, a DNA acetylation profile, a chromosome dosage profile, a gene expression profile, or a combination thereof.

153. The method of claim 152, wherein the nucleic acid profile is determined by polymerase chain reaction (PCR) analysis, sequencing analysis, electrophoretic analysis, restriction fragment length polymorphism (RFLP) analysis, Northern blot analysis, reverse-transcriptase-PCR analysis (RT-PCR), quantitative PCR, quantitative RT-PCR, allele-specific oligonucleotide hybridization analysis, comparative genomic hybridization, heteroduplex mobility assay (HMA), single strand conformational polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), RNAase mismatch analysis, mass spectrometry, mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser deorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), Southern blot analysis, in situ hybridization, fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH), immunohistochemistry (IHC), microarray, comparative genomic hybridization, karyotyping, multiplex ligation-dependent probe amplification (MLPA), Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF), microscopy, methylation specific PCR (MSP) assay, Hpall tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay, radioactive
acetate labeling assays, colorimetric DNA acetylation assay, chromatin immunoprecipitation combined with microarray (ChIP-on-chip) assay, restriction landmark genomic scanning, Methylated DNA immunoprecipitation (MeDIP), molecular break light assay for DNA adenine methyltransferase activity, chromatographic separation, methylation-sensitive restriction enzyme analysis, surface plasmon resonance, bisulfite-driven conversion of non-methylated cytosine to uracil, methyl-binding PCR analysis, or a combination thereof.

154. The method of claim 152, wherein the nucleic acid profile is determined by a sequencing technique selected from direct sequencing, random shotgun sequencing, Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, gel electrophoresis, duplex sequencing, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing, emulsion PCR, sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD® sequencing, MS-PET sequencing, mass spectrometry, and a combination thereof.

155. The method of claim 149, wherein the protein profile is a protein expression profile, a protein activation profile, or a combination thereof.

156. The method of claim 155, wherein the protein activation profile comprises determining a phosphorylation state, an ubiquitination state, a myristoylation state, or a conformational state of the one or more markers.

157. The method of claim 155, wherein the protein profile is determined by an immunohistochemistry assay, an enzyme-linked immunosorbent assay (ELISA), chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, tandem mass spectrometry, matrix assisted laser
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, surface plasmon resonance, microfluidic chip-based assays, Western blotting assay, or a combination thereof.

158. The method of claim 155, wherein the lipid profile is determined by chromatography, liquid chromatography, size exclusion chromatography, high performance liquid chromatography (HPLC), gas chromatography, mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, tandem mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, microfluidic chip-based assays, detection of fluorescence, detection of chemiluminescence, or a combination thereof.

159. The method of claim 155, wherein the carbohydrate profile is determined by chromatography, liquid chromatography, size exclusion chromatography, high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), liquid chromatography, gas chromatography, fluorescent assay, mass spectrometry, tandem mass spectrometry, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, electrospray ionization (ESI) mass spectrometry, surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry, quadrupole-time of flight (Q-TOF) mass spectrometry, atmospheric pressure photoionization
mass spectrometry (APPI-MS), Fourier transform mass spectrometry (FTMS), matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance (MALDI-FT-ICR) mass spectrometry, secondary ion mass spectrometry (SIMS), radioimmunoassays, microfluidic chip-based assays, detection of fluorescence, detection of chemiluminescence, or a combination thereof.

160. The method of any one the claims 91-100, wherein the subject is a mammal.

161. The method of claim 160, where in the subject is a human.

162. The method of any one the claims 91-100, wherein the cardiovascular disease or condition is selected from the group consisting of myocardial infarction, coronary artery disease, percutaneous transluminal coronary angioplasty (PTCA), coronary artery bypass surgery (CABG), restenosis, peripheral arterial disease, stroke, abdominal aorta aneurysm, intracranial aneurysm, large artery atherosclerotic stroke, cardiogenic stroke, an early onset myocardial infarction, heart failure, pulmonary embolism, acute coronary syndrome (ACS), angina, cardiac hypertrophy, arteriosclerosis, myocarditis, pancarditis, endocarditis, hypertension, congestive heart failure, atherosclerosis, cerebrovascular disease, declining cardiac health, ischemic heart disease, pericarditis, cardiogenic shock, alcoholic cardiomyopathy, congenital heart disease, ischemic cardiomyopathy, hypertensive cardiomyopathy, valvular cardiomyopathy, inflammatory cardiomyopathy, cardiomyopathy secondary to a systemic metabolic disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, noncompaction cardiomyopathy, valvular heart disease, hypertensive heart disease, myocardial ischemic attack, unstable angina, myocardial rupture, cardiogenic shock, embolism, deep vein thrombosis, arrhythmia, arrhythmogenic right ventricular cardiomyopathy, diabetic cardiomyopathy, mitral regurgitation, mitral valve prolapse, peripheral vascular disease, artery disease, carotid artery disease, deep vein thrombosis, venous diseases, cerebrovascular disease, arterial aneurysm, left ventricular hypertrophy, hypertensive renal disease, hypertensive retinal disease, vasculitis, left main disease, arterial vascular disease, venous vascular disease,
thrombosis of the microcirculation, a transient cerebrovascular accident, limb ischemia, aneurysm, thrombosis, superficial venous thrombosis, and deep venous thrombosis.

163. The method of any one the claims 91-100, wherein the difference is greater than a 1-fold difference.

164. The method of claim 163, wherein the difference is at least 1.05-fold, 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold difference.

165. The method of claim 3 or 9, further comprising determining at least one diagnostic parameter of said disease or condition.

166. The method of claim 165, wherein the diagnostic parameter is determined by physical inspection, visual inspection, biopsy, scanning, histology, radiology, imaging, ultrasound, use of a commercial kit, genetic testing, immunological testing, analysis of bodily fluids, or monitoring neural activity.

168. The method of any one of the claims 3-14, wherein the one or more markers comprise at least one or more of the markers identified by the methods of any one the claims 91-100.
169. A kit comprising a plurality of marker detection agents that detect at least one or more of the markers identified by the methods of any one of the claims 91-100.

170. A method of treating or preventing a cardiovascular disease or condition in a subject comprising administering to said subject an agent that modulates the activity or expression of at least one or more of the markers identified by the methods of any one the claims 91-100.
FIG. 2B

Genes expressed/upregulated (≥2-fold) in patient T cells after filtration of signatures from normal blood

Genes acquired/expressed/upregulated (≥2-fold) in patient macrophages after filtration of signatures from normal blood

Genes acquired/expressed/upregulated (≥2-fold) in patient macrophages after filtration of those expressed in T cells from patient

Patient tissue

Patient blood

Normal blood

TC

MC

M

ND

TC

TC

D
FIG. 2C

Genes expressed/upregulated (≥2-fold) in patient T cells identified by data mining (individuals without disease — NCBI genes)

Genes acquired/expressed/upregulated (≥2-fold) in patient macrophages after filtration of signatures identified by data mining (individuals without disease — NCBI genes)

Genes acquired/expressed/upregulated (≥2-fold) in patient macrophages after filtration of those expressed in T cells from patient

Disease-specific genes selectively acquired by macrophages
Disease-specific genes selectively acquired by macrophages (= disease presence)

FIG. 3
Phagocytic WBC (e.g., neutrophils)

$\frac{n}{n} \geq 2$

Tissue Biopsies

Normal

Diseased

Compare genomic profiles

FIG. 6
Phagocytic WBC (e.g., macrophage)

n = 2

n > 2

FIG. 7