wo 20187167565 A1 | 0E 0000 RO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2018/167565 Al

20 September 2018 (20.09.2018) WIPQOI|PCT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06Q 10/06 (2012.01) GO6F 9/44 (2018.01) kind of national protection available): AE, AG, AL, AM,
GOGF 8/00 (2018.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
. C o CA,CH,CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
(21) International Application Number: PCT/B2018/000332 DZ. EC, EE, EG, ES, FIL, GB, GD, GE, GH. GM., GT., HIN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KF, KG, KH, KN, KP,
(22) International Filing Date: KR,KW,KZ,LA,LC,LK,LR,LS,LU, LY, MA, MD, ME,
12 March 2018 (12.03.2018) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
- . OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
15/457,180 13 March 2017 (13.03.2017) Us kind of regional protection available). ARIPO (BW, GH,
. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
(71) Applicant: ORACLE FINANCIAL SERVICES SOFT- UG, ZM, ZW), Furasian (AM, AZ, BY, KG. KZ, RU. T,
WARE LIMITED [IN/INJ; Oracle Park, Of. Western Ex- TM). European (AL, AT, BE, BG, CH, CY. CZ. DE, DK,
press Highway, Goregaon (East), 400063 Mumbai, Maha- EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
rashtra (IN). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK, SM,
(72) Inventors: VADAPANDESHWARA, Rajaram, N.; 111, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

4th Main, 5th Cross, Vijaya Bank Layout, (Sundarram Shet-
ty Nagar), Bannerghetta Road, Bangalore 560076 (IN). RA-
JKUMAR, Charles; B307, Amara Courtyard, SGR Den-
tal College Road, Munnekolala, Marathahalli, Bangalore

KM, ML, MR, NE, SN, TD, TG).

560037 (IN).

(54) Title: USER INTERFACE AND RUNTIME ENVIRONMENT FOR PROCESS DEFINITION AND PROCESS EXECUTION

TRACKING

200 By
208
EXECUTE DEFINITION INTERFACE WITHIN RUNTIME ENVIRONMENT FOR /_
DEFINING PROCESS
210
RECEWE INPUT OF PROCESS DEFINITION OF PROCESS THROUGH /—
DEFINITION INTERFACE
215
STORE PROCESS DEFINITION INTO DATA STRUCTURE STORED WITHIN /
STORAGE
GENERATE AND DISPLAY SELECTION INTERFACE POPULATED WITH 220
PLURALITY OF EXECUTION TYPES CORRESPONDING TO A WORKFLOW, A /—
BATCH EXECUTION JOB, AN ANALYTICAL PIPELINE, AND AN INTERACTIVE
APPLICATION INTERFACE
| s
RECEIVE SELECTED EXECUTION TYPE THROUGH SELECTION INTERFACE
EXECUTE PROCESS USING PROCESS DEFINITION, WHEREIN PROCESS /— 230
DEFINITION IS TRANSFORMED DURING EXECUTION TO BE COMPATIBLE
WITH SELECTED EXECUTION TYPE
EXECUTE EXECUTION INTERFACE IN RUNTIME ENVIRONMENT, WHEREIN / 235
EXECUTION INTERFACE IS POPULATED WITH INFORMATION REGARDING
EXECUTION OF PROCESS

(57) Abstract: Systems, methods, and other embodiments associated with defin-
ing and executing a process within a single runtime environment are described.
In one embodiment, a method includes executing a definition interface in the
runtime environment for defining the process. The example method may also in-
clude receiving input of a process definition of the process through the definition
interface and storing the process definition into a data structure. The example
method may also include generating and displaying a selection interface popu-
lated with a plurality of execution types such as a workflow, a batch execution
job, an analytical pipeline, and an interactive application interface. The example
method may also include receiving a selected execution type through the selec-
tion interface and executing the process using the process definition that is trans-
formed during execution to be compatible with the selected execution type. An
execution interface, populated with process execution information, is executed
in the runtime environment.

[Continued on next page]

WO 2018/167565 A1 {10000 0 OO

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

WO 2018/167565 PCT/IB2018/000332

USER INTERFACE AND RUNTIME ENVIRONMENT FOR PROCESS
DEFINITION AND PROCESS EXECUTION TRACKING

BACKGROUND

[0001] Many businesses use multiple tools for defining and implementing
processes. For example, regulatory compliance, such as in a financial sector, a
risk sector, or a criminal sector, use multiple software applications and tools to
address regulatory compliance requirements. In one example, a financial
institution may have multiple departments that focus on different aspects of a
solution to addressing a regulatory compliance requirement. Each aspect is
addressed with a purpose specific software tool with no visible tie-in or traceability
across tools. For example, a business department may use one tool to draft and
record a regulatory compliance process. Another department may use other tools
to individually build solution components to implement each part of the regulatory
compliance process. Users may work in isolation to implement worklist items of
the solution components with datasets in private sandboxes, such as using
information locally stored on a personal computer accessible only to a particular
user. Thus, numerous unlinked software tools are used by different departments
of the finahcial institution to define a process, build solution components to
implement parts of the process, implement workflow items of the solution

components, etc.

[0002] Unfortunately, there is a lack of traceability between the application tools
used to define the process, build the solution components, implement workflow
items, and define and implement other sub-parts of a solution. Thus, a substantial
amount of manual effort is used to link the sub-parts of the solution, which can lead

to increased costs and user error. For example, a compliance reviewer may be

10

15

20

WO 2018/167565 PCT/IB2018/000332

unable to adequately trace and understand how compliance with a regulatory

compliance requirement was defined and implemented.

SUMMARY

[0003] In one embodiment, a non-transitory computer-readable medium and/or
a computer program is described that stores computer-executable instructions that

when executed by a processor of a computer causes the processor to:
define and execute a process within a single runtime environment by:

executing a module of a definition interface in the runtime environment to

render a graphical definition interface on a display for defining the process;

receiving input of a process definition of the process through the graphical

definition interface;
storing the process definition into a data structure stored within storage;

generating and displaying, on the display, a selection interface populated
with a plurality of execution types that are selectable, wherein an execution type is
(i) a workflow of a series of tasks to be performed by one or more entities, (ii) a
batch execution job of a task to be performed for a plurality of targets, (i) an
analytical pipeline of analytics to be performed upon input to create an output, or
(iv) an interactive application interface for user interaction with performance of the

process; and

in response to receiving, from the selection interface, a selected execution

type from the plurality of execution types:

executing the process using the process definition from the data structure,
wherein the process definition is transformed during execution to be compatible

with the selected execution type; and

10

15

20

25

WO 2018/167565 PCT/IB2018/000332

executing an execution interface in the runtime environment to render the
execution interface on the display, wherein the execution interface is populated

with information regarding execution of the process.

[0004] In one or more other embodiments, the non-transitory computer-
readable medium may include executable instructions, in combination with the

features above, for performing one or more combinations of the following features:

determine that the process definition specifies a third party component that
is to perform a task of the process; establish a communication connection over a
network to a remote computing device hosting the third party component; query
the third party component over the communication connection to identify metadata
defining parameters and functionality used by the third party component; and
populate the execution interface with an identification of the parameters and

functionality,

execute the process in a synchronous execution mode where data is
synchronously communicated between a first entity performing a first task of the

process and a second entity performing a second task of the process;

execute the process in an asynchronous execution mode where callback
functionality is implemented, for the process, for waiting on messages to arrive in

a message queue;

invoke a first entity to execute a first task of the process in parallel with

invoking a second entity to execute a second task of the process;

determine that a first version of the process definition and a second version
of the process definition are available; and select the first version for execution

based upon a version control metric;

determine that a transaction of the process is to be committed as a
committed transaction; and create an undo data structure used to undo the

committed transaction;

10

15

20

WO 2018/167565 PCT/IB2018/000332

determine that a second task is dependent upon completion of a first task;
and upon determining that a first entity has completed the first task, invoke a
second entity to perform the second task;

[0005] In another embodiment, a computer system is disclosed herein that
comprises: a processor connected to memory; and a process framework module
stored on a non-transitory computer readable medium and configured with

instructions that when executed by the processor cause the processor to:

execute a module of a definition interface in a runtime environment to render

a graphical definition interface on a display for defining a process;

receive input of a process definition of the process through the graphical
definition interface;

store the process definition into a data structure stored within storage;

generate and display, on the display, a selection interface populated with
a plurality of execution types that are selectable, wherein an execution type is (i) a
workflow of a series of tasks to be performed by one or more entities, (ii) a batch
execution job of a task to be performed for a plurality of targets, (iii) an analytical
pipeline of analytics to be performed upon input to create an output, or (iv) an
interactive application interface for user interaction with performance of the

process; and

in response to receiving, from the selection interface, a selected execution

type from the plurality of execution types:

executing the process using the process definition from the data structure,
wherein the process definition is transformed during execution to be compatible

with the selected execution type; and

10

15

20

WO 2018/167565 PCT/IB2018/000332

executing an execution interface in the runtime environment to render the
execution interface on the display, wherein the execution interface is populated

with information regarding execution of the process.

[0006] In one or more other embodiments, the computer system further
comprises executable instructions, in combination with the features above, for

performing one or more combinations of the following features:

populate the execution interface with tracing data regarding an association

between a first task of the process and a second task of the process;

maintain a state machine regarding progress of the process; and populate
the execution interface with a current state of the state machine;

construct a real-time visualization depicting real-time progress of one or
more tasks of the process; and populate the execution interface with the real-time

visualization;

utilize a first portion of the process definition that is compatible with the
selected execution type and ignore a second portion of the process definition that

is not compatible with the selected execution type;

transform a series of tasks, defined within the process definition, into one of
the workflow, the batch execution job, the analytical pipeline, or interactive
application interface.

[0007] In another embodiment, a computer-implemented method is disclosed
that is performed by a computing device comprising at least one processor and a
memory with executable instructions. The computer-implemented method
comprising steps for performing the functions of the process framework module

described herein and combinations of the functions described above.

10

15

20

WO 2018/167565 PCT/IB2018/000332

[0008] In another embodiment, a program is disclosed for causing a computer
to execute one or more of the methods above and may include any combination

of additional steps as disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorporated in and constitute a
part of the specification, illustrate various systems, methods, and other
embodiments of the disclosure. It will be appreciated that the illustrated element
boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent
one embodiment of the boundaries. In some embodiments one element may be
implemented as multiple elements or that multiple elements may be implemented
as one element. In some embodiments, an element shown as an internal
component of another element may be implemented as an external component

and vice versa. Furthermore, elements may not be drawn to scale.

[0010] FIG. 1 illustrates an embodiment of a system associated with defining

and implementing a process within a single runtime environment.

[0011] FIG. 2 illustrates an embodiment of a method associated with defining

and implementing a process within a single runtime environment.

[0012] FIG. 3 illustrates an embodiment of a system associated with defining
and implementing a process within a single runtime environment, where a process
is defined through a definition interface.

[0013] FIG. 4 illustrates an embodiment of a system associated with defining
and implementing a process within a single runtime environment, where a process

definition is used to execute a process as a workflow.

10

15

20

25

WO 2018/167565 PCT/IB2018/000332

[0014] FIG. 5 illustrates an embodiment of a system associated with defining
and implementing a process within a single runtime environment, where a process

definition is used to execute a process as an analytical pipeline.

[0015] FIG. 6 illustrates an embodiment of a non-transitory computer-readable

medium.

[0016] FIG. 7 illustrates an embodiment of a computing system configured with

the example systems and/or methods disclosed.

DETAILED DESCRIPTION

[0017] Computerized systems and methods are described herein that provide
for defining and implementing a process within a single runtime environment. A
runtime environment, such as an application software suite executed and
displayed through a single user interface, hosts various tools for defining,
executing, and tracking progress of a process. Because the tools, such as a
definition interface and an execution interface, are hosted by the single runtime
environment, traceability can be provided between various aspects of defining,
executing, implementing, and tracking progress of the process. A user can easily
identify and track correlations as to how individual tasks of a process are defined
and how the process is executed as a workflow, a batch execution job, an
analytical pipeline, an interactive application interface, or other execution type.
The user can also track real-time progress of the individual tasks through the
runtime environment. The runtime environment provides a single unified tool that
can be used to define, implement, and track workflows, batch execution jobs,
analytical pipelines, and interactive application interfaces with traceability between
tasks, what drives those tasks, and how the tasks are implemented. In this way,

the amount of computing resources, time, and probability of manual human error

10

15

20

25

WO 2018/167565 PCT/IB2018/000332

from manual attempts to correlate information between multiple separate tools of

information stored in unrelated ways across multiple user devices is reduced.

[0018] The runtime environment allows for a process to be defined as a single
process definition. The process definition can be used to execute the process from
the single process definition according to various execution types. The process
definition is transformed during execution to be compatible with a particular
execution type. The process definition can be transformed into a workflow of a
series of tasks to be performed by one or more entities. An entity may correspond
to a user, a computing system, a third party component, a web service, a database
transaction, a script, etc. The process definition can be transformed into a batch
execution job of a task to be performed for a plurality of targets, such as for a
payment process used to pay a plurality of vendors. The process definition can be
transformed into an analytical pipeline of analytics to be performed upon input to
create an output, such as the use a statistical model to evaluate user information
to output a probability of loan default. The process definition can be transformed
into an interactive application interface for user interaction with performance of the
process, such as where a user can view relevant documentation and perform tasks
of the process.

[0019] In one embodiment, the execution type can be selected by a user
through a selection interface that is generated and displayed with a plurality of
available execution types. In other embodiments, the execution type can be
programmatically determined based upon a current context. The current context
is derived from user submitted commands, software component commands,
thresholds, triggers, database information, requests received from remote
computers over a network, etc. In one embodiment, if loan default analysis is
requested by a user through the runtime environment, then an analytical pipeline
execution type is selected. In another embodiment, if a biling component

determines that payments are due to a plurality of vendors, then a batch execution

10

15

20

25

WO 2018/167565 PCT/IB2018/000332

job execution type is selected. In another embodiment, if a request for a single
large complex payment is received from a remote vendor computer, then a
workflow execution type is selected for tracking and implementing individual tasks
of the payment. In another embodiment, if a calendar entry or email of a user
indicates a request for manual performance of a task, then the interactive
application interface execution type is selected. In this way, computing resources
are conserved because multiple separate process definitions for each execution

type do not have to be define, stored, maintained, and implemented.

[0020] With reference to FIG. 1, one embodiment of a computer system 100
associated with defining and executing a process within a single runtime
environment is illustrated. The system 100 includes a process framework module
105, which can be configured to execute on a computer, such as computer 715 of
FIG. 7. The process framework module 105 is configured to define and execute a
process within a single runtime environment 115, such as an application or user
interface within which a definition interface 120, an execution interface 125, and/or
other interfaces are executed and displayed. In one embodiment, each interface
is an executable program module configured to generate and render a
corresponding graphical user interface (GUI) on a display screen as described
herein.

[0021] The process framework module 105 executes the module of the
definition interface 120 in the runtime environment 115 for rendering a GUI| on a
display. The displayed graphical definition interface GUI 120 is used for defining
the process. A user can interface with the graphical definition interface 120 to
define data sources of data to use as input into the process during execution. The
data sources may corresponds to a database, a website, a document, a file,

information received from a remote computer such as a third party component, etc.

[0022] The user can interface with the graphical definition interface 120 to

define one or more tasks to be performed for implementing the process. In one

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
10

embodiment, a regulatory compliance process may comprise a document
acquisition task, a document review task, an obtain signatures task, a compliance
regulation rule review task, an audit task, etc. The user can define instructions for
performing the task, delegate who will perform the task, set thresholds and
parameters for performing the task, set milestones for completion progress
tracking, define input and output of the task, define relationships of the task to other
tasks or components of the process, etc.

[0023] The user can interface with the graphical definition interface 120 to
define delegations of tasks to entities 130 that are to perform such tasks. In one
embodiment, a task can be delegated to an analytics user, a business user, a third
party component, a web service, a runtime component (e.g., an application), a
database script, etc.

[0024] The user can interface with the graphical definition interface 120 to
define parameters used to define tasks. In one embodiment, the user can specify
a threshold, a due date, an algorithm, a form to fill out, documents to review, or

any other parameter defining a task.

[0025] The user can interface with the graphical definition interface 120 to
define models, algorithms, equations, statistics, business logic, or other
functionality that are executed upon input data to create output data. In one
embodiment, a default probability model can be defined to evaluate user

information for outputting a probability of a user defaulting on a loan.

[0026] In this way, the user can define the process through the graphical
definition interface 120 as a process definition. Multiple users can collaborate
through the runtime environment 115 to define various aspects of the process
definition. In one embodiment, an analytics user can define a statistical model, a
business user can define workflow items, a programmer can define data sources,

etc.

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
11

[0027] In one embodiment, the graphical definition interface 120 is displayed
as a visual modeling environment through which visual representations of tasks,
processes, statistical models, data sources, parameters, entities, and/or other
components of the process can be visually defined. For example, the user may
place a task icon within the graphical definition interface 120 such as through a
drag and drop operation from a process component interface of
representations/icons of configurable components used to define processes. The
user may place a user entity icon within the graphical definition interface 120 such
as through a drag and drop operation from the process component interface. The
user may create a connection between the task icon and the user entity icon to
indicate that a user, represented by the user entity icon, is to perform a task
represented by the task icon. The user can select such icons and specify further
information regarding such. In one embodiment, the user may specify an email
address of the user, define what steps are to be performed for the task, set a
threshold for the task, define a data source for input information to use for
implementing the task, etc.

[0028] The process definition is stored into a data structure such as a file, a
database, etc. The data structure is stored within storage accessible to the
process framework module 105, such as within disks 755 or memory 735 of Fig.
7. In one embodiment, the data structure is used to load the process definition into
the graphical definition interface 120 for further defining/refining the process
definition. The data structure is also used to load the process definition for
executing the process. In one embodiment, multiple versions of the process

definition may be stored in one or more data structures.

[0029] The process framework module 105 executes the execution interface
125 in the runtime environment 115 for rendering on the display. The execution
interface 125 is used for displaying information regarding execution of the process,

providing input interfaces for users to complete tasks or input information regarding

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
12

progress of a task, provide users with access to data used to perform a task,
provide relationship information between tasks, etc. In one embodiment, a
selection interface 110 is generated. The selection interface 110 is populated with
a plurality of execution types that can be supported for the process definition. An
execution type is determined as being able to be supported if the process definition
has task definition data, data source input definition data, parameter definition
data, analytic model definition data, and/or other data that is used to execute a
process according to that execution type. In one embodiment, an execution type
may expect a certain data type as an input, a designation of an entity to perform a
task, a statistical model or other business logic to implement, a definition of steps

of how to perform a task, etc.

[0030] The selection interface 110 is populated with an execution type
corresponding to a workflow of a series of task to be performed by one or more
entities. In one embodiment, workflow is used for tasks, such as a database script
entity performing a user account retrieval task, an accountant performing a user
account update task, and other tasks to update user address information. The
selection interface 110 is populated with an execution type corresponding to a
batch execution job of a task to be performed for a plurality of targets, such as for
a single task to send bills to a large number of vendors. The selection interface
110 is populated with an execution type corresponding to an analytical pipeline of
analytics (e.g., statistical models, algorithms, etc.) to be performed upon input to
create an output. The selection interface 110 is populated with an execution type
corresponding to an interactive application interface for user interaction with
performance of the process. In one embodiment, interactive application interface
comprises a user interface through which the user can input data relating to
performance of the process or a task of the process, view data used to perform the

process or task, etc.

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
13

[0031] The selection interface 110 is displayed to a user through the runtime
environment 115 such as through the execution interface 125. A selected
execution type is received through the selection interface 110. In one embodiment,

the user selects a batch execution job execution type.

[0032] In other embodiments, the execution type can be programmatically
determined based upon a current context. The current context can be determined
based upon various metadata, user input, signals, data received from remote
computers, alerts, alarms, calendar data, task data, email data, and/or other
information. In one embodiment, a user input into the runtime environment 115
may indicate that a task is to be performed a threshold number of times, such as
where a bill is to be sent to a large number of clients. Accordingly, the process
framework module 105 determines that the batch execution job execution type
should be used to send bills as a batch job. In another embodiment, an email or
any other communication is evaluated by the runtime environment 115 to
determine that the email indicates that various tasks requiring user input and
interaction with a user interface are to be performed. Accordingly, the process
framework module 105 determines that the interactive application interface
execution type should be used to provide users with a user interface to perform
such tasks.

[0033] The process is executed using the process definition from the data
structure. If there are multiple versions of the process definition, then a version
control metric is used to select which version to use, such as a latest version, a
version marked as complete, a version having an approval rating above a
threshold, etc. In particular, the process definition is transformed during execution
to be compatible with the selected execution type. In one embodiment, the
process definition is transformed by selectively using a first portion of the process
definition that is compatible with the selected execution type and ignoring (e.g., not

extracting from the process definition for use) a second portion of the process

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
14

definition that is not compatible with the selected execution type. In one
embodiment where a bill sending process to a plurality of clients is to be executed
as the batch execution job, an obtain client address task within the process
definition may correspond to an expected component (e.g., input, output,
functionality, a model, a data type, an algorithm, etc.), and thus is used. An update
client age task or a designation of a data source table of bank branch locations
may not correspond to an expected component, and thus is not used or extracted
for use from the process definition. In one embodiment, the second portion of the
process definition that is not compatible is transformed into a type of data
compatible with the selected execution type. For example, a name of a user may
be changed into an email address of the user that is an expected input (e.g., a user
information database may be queried with the user name to obtain the email

address for transformation).

[0034] In this way, a series of tasks, data source designations, statistical
models, inputs, outputs, instructions, user interface elements, algorithms, and/or
other information within the process definition is transformed into the workflow, the

batch execution job, the analytical pipeline, or the interactive application interface.

[0035] In one embodiment, the process is executed in a synchronous execution
mode where data is synchronously communicated between a first entity performing
a first task (e.g., a web service generating billing statements) and a second entity
performing a second task (e.g., a third party component providing real-time billing
data used to generate billing statements). In another embodiment, the process is
executed in an asynchronous execution mode where callback functionality is
implemented. The callback functionality allows the process, such as a long
running complex process, to wait on messages (e.g., data needed by the process
to continue forward progress, such as billing data needed for generating a billing

statement) to arrive in a message queue.

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
15

[0036] In one embodiment, the process comprises a first task and a second
task. A first entity such as a first user may be invoked to execute the first task in
parallel with a second entity such as a database script to execute the second task.
In another embodiment, a determination is made that the second task is dependent
upon completion of the first task. Accordingly, the second entity is invoked to
perform the second task upon a determination that the first entity has completed
the first task.

[0037] The execution interface 125 is populated with information regarding the
execution and performance of the process. The execution interface 125 is
populated with documents, links to data, and other information that can be used to
perform a task. The execution interface 125 is populated with user interfaces
through which a user can perform a task, specify how a task was performed, input

results of the task, etc.

[0038] In one embodiment, the execution interface 125 is populated with task
completion functionality such as a user interface through which a user can perform
an assigned task. In another embodiment, the execution interface 125 is populated
with tracing data regarding an association between a first task of the process and
a second task of the process, such as a dependency of the first task upon
completion of or data from the second task. In another embodiment, the execution
interface125 is populated with completion indicators of task completion, such as
percentage indicators or a real-time visualization depicting real-time progress of
individual tasks. The execution interface 125 is populated with inputs, outputs,
descriptions of analytics, descriptions of functionality, descriptions of algorithms,
errors, computational results, task results, and/or other information relating to
various aspects of the process being implemented. The execution interface 125
is populated with auditing functionality to audit performance of one or more tasks
of the process, such as to whom a task has been delegated, progress of the task,

how the task is/was performed, output data from the task, etc.

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
16

[0039] Inone embodiment, undo functionality is provided through the execution
interface 125. A transaction of the process (e.g., a database transaction) is
identified for being committed as a committed transaction. An undo data structure
is created. The undo data structure can be invoked through the execution interface

125 to undo the committed transaction.

[0040] in one embodiment, a state machine is maintained regarding process of
implementing the process. The state machine may have various states relating to
completion of individual tasks of the process. The execution interface 125 is
populated with a current state of the state machine, such as a visualization
depicting the current state of individual tasks, relationships and dependencies

between tasks, etc.

[0041] In one embodiment, automated escalation of a task to a user is
performed when a time to complete the task has expired without the task being
completed. Information regarding the automated escalation is provided through
the execution interface 125. In one embodiment, automated delegation of a task
to an entity is performed, such as delegation to a user based upon a characteristic
of the task matching a characteristic of the entity. For example, a review employee
history task may be assigned to a human resources user based upon a job title of

the human resources user corresponding to employee employment review.

[0042] In one embodiment, the process framework module 105 determines that
the process definition specifies a third party component that is to perform a task of
the process. Because functionality and parameters of the third party component
may otherwise be hidden from users of the runtime environment 115, the process
framework module 105 is configured to extract and expose such information. In
particular, a communication connection is established over a network to a remote
computing device hosting the third party component. The third party component
is registered with the process framework module 105 through a registration

process. The third party component is queried over the communication connection

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
17

to identify metadata defining parameters, functionality, and/or other information
used by the third party component (e.g., algorithms, statistical models, inputs,
outputs, equations, etc.). The execution interface 125 is populated with an

identification of the parameters and functionality.

[0043] This is way, a process can be defined and executed through the runtime
environment 115.

[0044] With reference to FIG. 2, one embodiment of a computer implemented
method 200 associated with defining and executing a process through a single
runtime environment is illustrated. In one embodiment, the method 200 is
performed by the process framework module 105 utilizing various computing
resources of the computer 715, such as the processor 720 for executing
instructions associated with executing a definition interface, a process, and an
execution interface. Memory 735 and/or disks 755 are used for storing a data
structure of a process definition and/or other data. Network hardware is used for
communicating data structures between the computer 715 and remote computers
over a network, such as a third party component accessed by a process. The

method 200 is triggered upon a command to access a runtime environment.

[0045] At 205, a program module of the definition interface 120 is executed
within the runtime environment to render the graphical definition interface 120
(GUI) on a display for defining the process, as illustrated by example system 300
of Fig. 3. At 210, input of a process definition 405 of the process is received
through the graphical definition interface 120. In one embodiment, the input is
provided through a visual modeling environment where processes, tasks,
instructions, data output, data sources, statistical models, dependencies, entities,
rules, and/or other components are visually represented by icons, connecting lines,
execution order lines, or other user interface elements. For example, the user may

place a process tree icon 310 into the visual modeling environment to represent a

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
18

process tree. The user may place a capital computation run icon 305, representing

a capital computation function to perform, into the visual modeling environment.

[0046] The user may place component icons into the visual modeling
environment, such as a data ingestion task icon 315 of a data ingestion task that
is to execute concurrently (e.g., represented by concurrent execution icon 325)
with a data ingestion process represented by a data ingestion process icon 320.
The user may place a data quality check task icon 330 and a data correction task
icon 335 to represent tasks of the data ingestion process. A dependency icon 340
is used to show that the data correction task is dependent upon the data quality
check task. The user may place a statistical model icon 345, representing a
statistical model to execute, within the visual modeling environment. The user may
place a data population function icon 350, representing data population into a
result area with traceability to a process area and staging area, into the virtual
modeling environment. It may be appreciated that Fig. 3 is merely an example of
some user interface elements used to represent tasks, processes, models,
functions, dependencies, order of execution/implementation, and/or other
components of a process that a user can visually configure to define the process
definition 405. At 215, the process definition 405 is stored into a data structure
stored within storage.

[0047] At 220, a selection interface 110 is generated and displayed, as
illustrated in example 400 of Fig. 4. In one embodiment, the selection interface
110 is populated with a plurality of execution types available for executing
processes. The selection interface 110 is populated with an execution type
corresponding to a workflow of a series of tasks to be performed by one or more
entities. The selection interface 110 is populated with an execution type
corresponding to a batch execution job of a task to be performed for a plurality of
targets. The selection interface 110 is populated with an execution type

corresponding to an analytical pipeline of analytics to be performed upon input to

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
19

create an output. The selection interface 110 is populated with an execution type
corresponding to an interactive application interface for user interaction with
performance of the process. At 225, a selected execution type is received through

the selection interface 110. For example, a user may select a workflow execution

type.

[0048] In an alternative embodiment, the selected execution type is
programmatically selected based upon a context, as opposed to the selection
interface 110 being generated, displayed, and used to receive a selection of the
selected execution type. The context is determined by the process framework
module 105 based upon various data, such as a scheduled task to perform (e.g.,
a billing software module indicating that bills are due to be sent to clients), a
request from a client or computing system for a task to be performed (e.g., a vendor
computing system sends a request for payment of a bill), a calendar entry indicated
that a document review task is to be done by a user, an email instructing a user to

perform an employee review task, etc.

[0049] At 230, the process is executed using the process definition 405 from
the data structure. The process definition 405 is transformed 445 during execution
to be compatible with the selected execution type, such as the workflow execution
type. In one embodiment, the process definition 405 has portions that are
compatible with certain execution types and not other execution types. A portion
can correspond to a task, a data source, a statistical model, an input, an output, a
data type, an entity, a function, a database script, an algorithm, a user identifier,
task dependency and order of implementation data, and/or a variety of other
information used to implement the process. Accordingly, the process definition
405 is transformed 445 by using portions of the process definition that are
compatible with the workflow execution type (e.g., match a data type, a function
type, a task type, a data source type, or other expect information). Other portions

of the process definition 405 are either ignored (e.g., not used or extracted from

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
20

the process definition 405 when executing and implementing the process) or can
be converted into a format compatible with the workflow execution type (e.g., a

data type conversion, a modification to a function to match an expected function
type, etc.).

[0050] In one embodiment, the process definition 405 utilizes a third party
component 440 to perform some sort of functionality for implementing the process.
The third party component 440 may not generally expose internal parameters and
functionality used by the third party component 440. Instead, the third party
component 440 may accept input and provide output. Accordingly, the process
framework module 105 can register the third party component 440 in order to query
and obtain information regarding the parameters and functionality used by the third
party component 440. Such third party component information can be provided
425 to a user through an execution interface 125 that is populated with information

regarding execution of the process.

[0051] At 235, the execution interface 125 is executed in the runtime
environment to render the execution interface 125 on the display. Various
information regarding the execution and implementation of the process is
populated within the execution interface 125. In one embodiment, an indication
410 is provided that the process is being executed as a workflow. In another
embodiment, task progress information 415 is provided, such as an ability to view
progress of a document review task delegated to a user (A). In another
embodiment, result data 420 of a task, function, analytical model, etc. is provided,
such as an ability to check results of a statistical model that was executed as part
of implementing the process as the workflow. In another embodiment, auditing
information 430 is provided so that a user can view what input information was
considered, how the input information was processed, and what output information

was determined at each step of implementing the process. In another

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
21

embodiment, access 435 to information, such as files, used to perform a task is
provided.

[0052] Fig. 5 is an illustration of a system 500 for defining and executing a
process within a single runtime environment. A process definition 505, of the
process, may have been defined through a definition interface of the runtime
environment. The process definition 505 may define a document analysis task, a
prediction modeling task, a statistical model to execute, entities to perform tasks

such as a web service, input data, data sources, associations between tasks, etc.

[0053] The process framework module 105 is configured to determine a context
indicative of how the process definition 505 should be used to execute the process.
In one embodiment, an invoice component of a retailer may receive a customer
complaint regarding an invoice. The receipt of the customer complaint is evaluated
to determine the context as a workflow of evaluating the complaint. In another
embodiment, an inventory component of a retailer may determine that there is a
serious discrepancy between inventory levels, which will require human
intervention and review through a user interface. Accordingly, an interactive
application interface through which an inventory control employee can perform
inventory auditing may be determined as the context. In another embodiment, a
billing component may determine that a plurality of bills should be sent to

customers. Accordingly, a batch execution job may be determined as the context.

[0054] In another embodiment, a user submits a command to predict success
of a marketing campaign. Accordingly, an analytical pipeline used to execute
analytics for predicting a success rate may be determined as the context. The
process framework module 105 selectively utilizes portions of the process
definition 505 that are compatible with an analytical pipeline execution type. In
one embodiment, expect data types, tasks, and a statistical model executable by
an analytical pipeline are determined as compatible. Other portions may be left

unused or may be transformed into a format compatible with the analytical pipeline

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
22

(e.g., modification to a data type, a task, a function, an algorithm, etc.). In this way,
the process framework module 105 transforms 535 the process definition 505

during execution to be compatible with the analytical pipeline execution type.

[0055] An execution interface 125 is executed within the runtime environment
to render the execution interface 125 on a display. The execution interface 125 is
populated with information regarding execution of the process. In one
embodiment, an indication 510 that the process is being executed as the analytical
pipeline execution type is provided. An ability 515 to check progress of a document
analysis by a web service is provided. An ability 520 to check results of execution
of a statistical model is provided. An ability 525 to view an association or
relationship between a document analysis task and a prediction modeling task is
provided. An ability 530 to perform an audit of implementation of the process is
provided, such as to view inputs, outputs, executed functionality, tasks, and/or

other information regarding each step of implementing the process.

[0066] FIG. 6 is an illustration of a scenario 600 involving an example non-
transitory computer-readable medium 605. In one embodiment, one or more of
the components described herein are configured as program modules, such as the
process framework module 105, stored in the non-transitory computer-readable
medium 605. The program modules are configured with stored instructions, such
as processor-executable instructions 620, that when executed by at least a
processor, such as processor 640, cause the computing device to perform the
corresponding function(s) as described herein. In one embodiment, the,
functionality of the process framework module 105, stored in the non-transitory
computer-readable medium 605, may be executed by the processor 640 as the
processor-executable instructions 620 to perform an embodiment 625 of the
method 200 of Fig. 2.

[0057] The non-transitory computer-readable medium 605 includes the

processor-executable instructions 620 that when executed by a processor 640

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
23

cause performance of at least some of the provisions herein. The non-transitory
computer-readable medium 605 includes a memory semiconductor (e.g., a
semiconductor utilizing static random access memory (SRAM), dynamic random
access memory (DRAM), and/or synchronous dynamic random access memory
(SDRAM) technologies), a platter of a hard disk drive, a flash memory device, or a
magnetic or optical disc (such as a compact disk (CD), a digital versatile disk
(DVD), or floppy disk). The example non-transitory computer-readable medium
605 stores computer-readable data 610 that, when subjected to reading 615 by a
reader 635 of a device 630 (e.g., a read head of a hard disk drive, or a read
operation invoked on a solid-state storage device), express the processor-

executable instructions 620.

[0058] Insome embodiments, the processor-executable instructions 620, when
executed cause performance of operations, such as at least some of the example
method 200 of FIG. 2, for example. In some embodiments, the processor-
executable instructions 620 are configured to cause implementation of a system,

such as at least some of the example system 100 of FIG. 1, for example.

[0059] FIG. 7 illustrates an example computing device 700 that is configured
and/or programmed with one or more of the example systems and methods
described herein, and/or equivalents. The example computing device 700 may be
the computer 715 that includes a processor 720, a memory 735, and I/O ports 745
operably connected by a bus 725. In one embodiment, the, the computer 715 may
include logic of the process framework module 105 configured to facilitate the
system 100 and/or the method 200 shown in FIGS. 1-2. In different embodiments,
the logic of the process framework module 105 may be implemented in hardware,
a non-transitory computer-readable medium 705 with stored instructions, firmware,
and/or combinations thereof. While the logic of the process framework module
105 is illustrated as a hardware component attached to the bus 725, it is to be

appreciated that in other embodiments, the logic of the process framework module

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
24

105 could be implemented in the processor 720, stored in memory 735, or stored
in disk 755.

[0060] In one embodiment, logic of the process framework module 105 or the
computer 715 is a means (e.g., structure: hardware, non-transitory computer-
readable medium, firmware) for performing the actions described. In some
embodiments, the computing device may be a server operating in a cloud
computing system, a server configured in a Software as a Service (SaaS)

architecture, a smart phone, laptop, tablet computing device, and so on.

[0061] The means may be implemented, for example, as an application specific
integrated circuit (ASIC) programmed to implement rule based source sequencing
for allocation. The means may also be implemented as stored computer
executable instructions that are presented to computer 715 as data 710 that are

temporarily stored in memory 735 and then executed by processor 720.

[0062] The logic of the process framework module 105 may also provide means
(e.g., hardware, non-transitory computer-readable medium 705 that stores
executable instructions, firmware) for performing rule based source sequencing for

allocation.

[0063] Generally describing an example configuration of the computer 715, the
processor 720 may be a variety of various processors including dual
microprocessor and other multi-processor architectures. The memory 735 may
include volatile memory and/or non-volatile memory. Non-volatile memory may
include, for example, read-only memory (ROM), programmable read-only memory
(PROM), and so on. Volatile memory may include, for example, random access
memory (RAM), static random-access memory (SRAM), dynamic random access
memory (DRAM), and so on.

[0064] The disks 755 may be operably connected to the computer 715 via, for
example, the I/O interface 740 (e.g., card, device) and the I/O ports 745. The disks

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
25

755 may be, for example, a magnetic disk drive, a solid state disk drive, a floppy
disk drive, a tape drive, a Zip drive, a flash memory card, a memory stick, and so
on. Furthermore, the disks 755 may be a CD-ROM drive, a CD-R drive, a CD-RW
drive, a DVD ROM, and so on. The memory 735 can store a process, such as
within the non-transitory computer-readable medium 705, and/or data 710, for
example. The disk 755 and/or the memory 735 can store an operating system that

controls and allocates resources of the computer 715.

[0065] The computer 715 may interact with input/output (I/O) devices via the
I/0 interfaces 740 and the 1/O ports 745. The I/O devices may be, for example, a
keyboard, a microphone, a pointing and selection device, cameras, video cards,
displays, the disks 755, the network devices 750, and so on. The I/O ports 745
may include, for example, serial ports, parallel ports, and USB ports. /O
controllers 730 may connect the 1/0O interfaces 740 to the bus 725.

[0066] The computer 715 can operate in a network environment and thus may
be connected to the network devices 750 via the I/O interfaces 740, and/or the 1/0
ports 745. Through the network devices 750, the computer 715 may interact with
a network. Through the network, the computer 715 may be logically connected to
remote computers (e.g., the computer 715 may reside within a distributed
computing environment to which clients may connect). Networks with which the
computer 715 may interact include, but are not limited to, a local area network
(LAN), a new area network (WAN), and other networks.

[0067] In another embodiment, the described methods and/or their equivalents
may be implemented with computer executable instructions. Thus, in one
embodiment, a non-transitory computer readable/storage medium is configured
with stored computer executable instructions of an algorithm/executable
application that when executed by a machine(s) cause the machine(s) (and/or
associated components) to perform the method. Example machines include but

are not limited to a processor, a computer, a server operating in a cloud computing

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
26

system, a server configured in a Software as a Service (SaaS) architecture, a
smart phone, and so on). In one embodiment, a computing device is implemented
with one or more executable algorithms that are configured to perform any of the
disclosed methods.

[0068] In one or more embodiments, the disclosed methods or their equivalents
are performed by either: computer hardware configured to perform the method; or
computer instructions embodied in a module stored in a non-transitory computer-
readable medium where the instructions are conﬁgured as an executable algorithm
configured to perform the method when executed by at least a processor of a

computing device.

[0069] While for purposes of simplicity of explanation, the illustrated
methodologies in the figures are shown and described as a series of blocks of an
algorithm, it is to be appreciated that the methodologies are not limited by the order
of the blocks. Some blocks can occur in different orders and/or concurrently with
other blocks from that shown and described. Moreover, less than all the illustrated
blocks may be used to implement an example methodology. Blocks may be
combined or separated into multiple actions/components. Furthermore, additional
and/or alternative methodologies can employ additional actions that are not

illustrated in blocks.

[0070] The following includes definitions of selected terms employed herein.
The definitions include various examples and/or forms of components that fall
within the scope of a term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms of terms may be
within the definitions.

[0071] References to “one embodiment”’, “an embodiment”, “one example”, “an
example”, and so on, indicate that the embodiment(s) or example(s) so described
may include a particular feature, structure, characteristic, property, element, or

limitation, but that not every embodiment or example necessarily includes that

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
27

particular feature, structure, characteristic, property, element or limitation.
Furthermore, repeated use of the phrase “in one embodiment” does not

necessarily refer {o the same embodiment, though it may.

[0072] A “data structure”, as used herein, is an organization of data in a
computing system that is stored in a memory, a storage device, or other
computerized system. A data structure may be any one of, for example, a data
field, a data file, a data array, a data record, a database, a data table, a graph, a
tree, a linked list, and so on. A data structure may be formed from and contain
many other data structures (e.g., a database includes many data records). Other
examples of data structures are possible as well, in accordance with other

embodiments.

[0073] “Computer-readable medium” or “computer storage medium”, as used
herein, refers to a non-transitory medium that stores instructions and/or data
configured to perform one or more of the disclosed functions when executed. Data
may function as instructions in some embodiments. A computer-readable medium
may take forms, including, but not limited to, non-volatile media, and volatile media.
Non-volatile media may include, for example, optical disks, magnetic disks, and so
on. Volatile media may include, for example, semiconductor memories, dynamic
memory, and so on. Common forms of a computer-readable medium may include,
but are not limited to, a floppy disk, a flexible disk, a hard disk, a magnetic tape,
other magnetic medium, an application specific integrated circuit (ASIC), a
programmable logic device, a compact disk (CD), other optical medium, a random
access memory (RAM), a read only memory (ROM), a memory chip or card, a
memory stick, solid state storage device (SSD), flash drive, and other media from
which a computer, a processor or other electronic device can function with. Each
type of media, if selected for implementation in one embodiment, may include
stored instructions of an algorithm configured to perform one or more of the

disclosed and/or claimed functions. .

10

15

20

25

WO 2018/167565 PCT/IB2018/000332
28

[0074] “Logic”, as used herein, represents a component that is implemented
with computer or electrical hardware, a non-transitory medium with stored
instructions of an executable application or program module, and/or combinations
of these to perform any of the functions or actions as disclosed herein, and/or to
cause a function or action from another logic, method, and/or system to be
performed as disclosed herein. Equivalent logic may include firmware, a
microprocessor programmed with an algorithm, a discrete logic (e.g., ASIC), at
least one circuit, an analog circuit, a digital circuit, a programmed logic device, a
memory device containing instructions of an algorithm, and so on, any of which
may be configured to perform one or more of the disclosed functions. In one
embodiment, logic may include one or more gates, combinations of gates, or other
circuit components configured to perform one or more of the disclosed functions.
Where multiple logics are described, it may be possible to incorporate the multiple
logics into one logic. Similarly, where a single logic is described, it may be possible
to distribute that single logic between multiple logics. In one embodiment, one or
more of these logics are corresponding structure associated with performing the
disclosed and/or claimed functions. Choice of which type of logic to implement
may be based on desired system conditions or specifications. For example, if
greater speed is a consideration, then hardware would be selected to implement
functions. If a lower cost is a consideration, then stored instructions/executable

application would be selected to implement the functions.

[0075] An ‘“operable connection”, or a connection by which entities are
“‘operably connected”, is one in which signals, physical communications, and/or
logical communications may be sent and/or received. An operable connection may
include a physical interface, an electrical interface, and/or a data interface. An
operable connection may include differing combinations of interfaces and/or
connections sufficient to allow operable control. For example, two entities can be

operably connected to communicate signals to each other directly or through one

10

15

20

WO 2018/167565 PCT/IB2018/000332
29

or more intermediate entities (e.g., processor, operating system, logic, non-
transitory computer-readable medium). Logical and/or physical communication

channels can be used to create an operable connection.

[0076] “User”, as used herein, includes but is not limited to one or more

persons, computers or other devices, or combinations of these.

[0077] While the disclosed embodiments have been illustrated and described
in considerable detalil, it is not the intention to restrict or in any way limit the scope
of the appended claims to such detail. It is, of course, not possible to describe
every conceivable combination of components or methodologies for purposes of
describing the various aspects of the subject matter. Therefore, the disclosure is
not limited to the specific details or the illustrative examples shown and described.
Thus, this disclosure is intended to embrace ailterations, modifications, and
variations that fall within the scope of the appended claims. The modifications and

variations include any relevant combination of the disclosed features.

[0078] To the extent that the term “includes” or “including” is employed in the
detailed description or the claims, it is intended to be inclusive in a manner similar
to the term “comprising” as that term is interpreted when employed as a transitional

word in a claim.

[0079] To the extent that the term “or” is used in the detailed description or
claims (e.g., A or B) it is intended to mean “A or B or both”. When the applicants
intend to indicate “only A or B but not both” then the phrase “only A or B but not
both” will be used. Thus, use of the term “or” herein is the inclusive, and not the

exclusive use.

WO 2018/167565 PCT/IB2018/000332
30

Claims

What is claimed is:

1. A non-transitory computer-readable medium storing computer-executable
instructions that when executed by a processor of a computer causes the

processor {o:
define and execute a process within a single runtime environment by:

executing a module of a definition interface in the runtime environment to

render a graphical definition interface on a display for defining the process;

receiving input of a process definition of the process through the graphical
definition interface;

storing the process definition into a data structure stored within storage;

generating and displaying, on the display, a selection interface populated with
a plurality of execution types that are selectable, wherein an execution type
is (i) a workflow of a series of tasks to be performed by one or more
entities, (ii) a batch execution job of a task to be performed for a plurality of
targets, (iii) an analytical pipeline of analytics to be performed upon input to
create an output, or (iv) an interactive application interface for user

interaction with performance of the process; and

in response to receiving, from the selection interface, a selected execution

type from the plurality of execution types:

executing the process using the process definition from the data structure,
wherein the process definition is transformed during execution to be

compatible with the selected execution type; and

WO 2018/167565 PCT/IB2018/000332
31

executing an execution interface in the runtime environment to render the
execution interface on the display, wherein the execution interface is

populated with information regarding execution of the process.

2. The non-transitory computer-readable medium of claim 1, wherein the

computer-executable instructions cause the processor to:

determine that the process definition specifies a third party component that

is to perform a task of the process;

establish a communication connection over a network {o a remote

computing device hosting the third party component;

query the third party component over the communication connection to
identify metadata defining parameters and functionality used by the

third party component; and

populate the execution interface with an identification of the parameters and

functionality.

3. The non-transitory computer-readable medium of claim 1 or 2, wherein the
computer-executable instructions for executing the process comprise computer-

executable instructions to cause the processor to:

execute the process in a synchronous execution mode where data is
synchronously communicated between a first entity performing a first
task of the process and a second entity performing a second task of the

process.

WO 2018/167565 PCT/IB2018/000332
32

4. The non-transitory computer-readable medium of any one of claims 1 to 3,
wherein the computer-executable instructions for executing the process comprise

computer-executable instructions to cause the processor to:

execute the process in an asynchronous execution mode where callback
functionality is implemented, for the process, for waiting on messages

to arrive in a message queue.

5. The non-transitory computer-readable medium of any one of claims 1 to 4,
wherein the computer-executable instructions for executing the process comprise

computer-executable instructions to cause the processor to:

invoke a first entity to execute a first task of the process in parallel with

invoking a second entity to execute a second task of the process.

6. The non-transitory computer-readable medium of any one of claims 1 to 5,
wherein the computer-executable instructions for executing the process comprise

computer-executable instructions to cause the processor to:

determine that a first version of the process definition and a second version

of the process definition are available; and

select the first version for execution based upon a version control metric.

7. A computing system, comprising:
a processor connected to memory; and

a process framework module stored on a non-transitory computer readable
medium and configured with instructions that when executed by the processor

cause the processor to:

WO 2018/167565 PCT/IB2018/000332
33

execute a module of a definition interface in a runtime environment to render

a graphical definition interface on a display for defining a process;

receive input of a process definition of the process through the graphical

definition interface;
store the process definition into a data structure stored within storage;

generate and display, on the display, a selection interface populated with a
plurality of execution types that are selectable, wherein an execution type
is (i) a workflow of a series of tasks to be performed by one or more
entities, (i) a batch execution job of a task to be performed for a plurality of
targets, (iii) an analytical pipeline of analytics to be performed upon input to
create an output, or (iv) an interactive application interface for user

interaction with performance of the process; and

in response to receiving, from the selection interface, a selected execution

type from the plurality of execution types:

executing the process using the process definition from the data structure,
wherein the process definition is transformed during execution to be

compatible with the selected execution type; and

executing an execution interface in the runtime environment to render the
execution interface on the display, wherein the execution interface is

populated with information regarding execution of the process.

8. The computing system of claim 7, wherein the instructions for executing the
execution interface comprise instructions to cause the processor to:
populate the execution interface with tracing data regarding an association

between a first task of the process and a second task of the process.

WO 2018/167565 PCT/IB2018/000332
34

9. The computing system of claim 7 or 8, wherein the instructions for executing
the execution interface comprise instructions to cause the processor to:

maintain a state machine regarding progress of the process; and

populate the execution interface with a current state of the state machine.

10. The computing system of any one of claims 7 to 9, wherein the instructions
for executing the process comprise instructions to cause the processor to:
construct a real-time visualization depicting real-time progress of one or

more tasks of the process; and

populate the execution interface with the real-time visualization.

11. The computing system of any one of claims 7 to 10, wherein the instructions
for executing the process comprise instructions to cause the processor to:
utilize a first portion of the process definition that is compatible with the
selected execution type and ignore a second portion of the process

definition that is not compatible with the selected execution type.

12. A computer-implemented method, the computer-implemented method
involving a computing device comprising a processor, and the computer-
implemented method comprising:
executing, by the processor, a module of a definition interface in a runtime
environment to render a graphical definition interface on a display for

defining a process;

receiving, by the processor, input of a process definition of the process through

the graphical definition interface;

storing, by the processor, the process definition into a data structure stored

within storage;

WO 2018/167565 PCT/IB2018/000332

35

generating and displaying, by the processor on the display, a selection
interface populated with a plurality of execution types, wherein an execution
type is (i) a workflow of a series of tasks to be performed by one or more
entities, (i) a batch execution job of a task to be performed for a plurality of
targets, (iii) an analytical pipeline of analytics to be performed upon input to
create an output, or (iv) an interactive application interface for user

interaction with performance of the process; and

in response to receiving, from the selection interface, a selected execution type
from the plurality of execution types:

executing, by the processor, the process using the process definition from the
data structure, wherein the process definition is transformed during

execution to be compatible with the selected execution type; and

executing, by the processor, an execution interface in the runtime
environment to render the execution interface on the display, wherein the

execution interface is populated with information regarding execution of the
process.

13. The computer-implemented method of claim 12, further comprising:

determining, by the processor, that the selected execution type utilizes a
first type of data;

utilizing, by the processor, a first portion of the process definition that is
compatible with the first type of data; and

transforming, by the processor, a second portion of the process definition
that is not compatible with the selected execution type into a type of

data compatible with the selected execution type.

14. The computer-implemented method of claim 12 or 13, further comprising:

WO 2018/167565 PCT/IB2018/000332
36

performing, by the processor, automated escalation of a task to a user

based upon a due date for the task lapsing; and

populating, by the processor, the execution interface with information

regarding the automated escalation.

15. The computer-implemented method of any one of claims 12 to 14, further
comprising:

performing, by the processor, automated delegation of a task to an entity
based upon a characteristic of the task matching a characteristic of the entity;
and

populating, by the processor, the execution interface with information

regarding the automated delegation.

16. A program for causing a computer to execute the method recited in any

one of claims 12 to 15.

WO 2018/167565 PCT/IB2018/000332
1/7

100
N\
105
AN

PROCESS FRAMEWORK MODULE

115
RN J
RUNTIME ENVIRONMENT
120\ 125—\
DEFINITION INTERFACE EXECUTION INTERFACE
110-\
« DEFINE DATA SOURCES SELECTION INTERFACE
o DEFINE TASKS « TASK PROGRESS
o DEFINE DELEGATIONS « 3%P PARTY INFO
« DEFINE PARAMETERS « ESCALATIONS
« DEFINE MODELS « AUDIT INFO
[] »®
130—_ I
2 \
| ENTITIES |
| | ANALYTICS |
| USER - DATABASE | |
3™ PARTY SCRIPT |
| COMPONENT ‘
|
| RUNTIME l
| COMPONENT |
BUSINESS ®© © ¢
[l USER WEB SERVICE :
|
)

WO 2018/167565 PCT/IB2018/000332
2/7

200
N

05
EXECUTE DEFINITION INTERFACE WITHIN RUNTIME ENVIRONMENT FOR /— 2
DEFINING PROCESS

1

21
RECEIVE INPUT OF PROCESS DEFINITION OF PROCESS THROUGH |~ 0
DEFINITION INTERFACE

l

STORE PROCESS DEFINITION INTO DATA STRUCTURE STORED WITHIN / 215
STORAGE

l

GENERATE AND DISPLAY SELECTION INTERFACE POPULATED WITH 220
PLURALITY OF EXECUTION TYPES CORRESPONDING TO A WORKFLOW, A /_
BATCH EXECUTION JOB, AN ANALYTICAL PIPELINE, AND AN INTERACTIVE

APPLICATION INTERFACE

225
RECEIVE SELECTED EXECUTION TYPE THROUGH SELECTION INTERFACE

'

EXECUTE PROCESS USING PROCESS DEFINITION, WHEREIN PROCESS /— 230
DEFINITION IS TRANSFORMED DURING EXECUTION TO BE COMPATIBLE
WITH SELECTED EXECUTION TYPE

Y

EXECUTE EXECUTION INTERFACE IN RUNTIME ENVIRONMENT, WHEREIN /— 235
EXECUTION INTERFACE 18 POPULATED WITH INFORMATION REGARDING
EXECUTION OF PROCESS

FIG. 2

PCT/IB2018/000332

WO 2018/167565

3/7

¢ Old

oLe
J

S . Ng IUNLO ¥ooy |-----
NO N3N | a NLONYLS ILVOTHOD |
T ! 0g¢
L MSVL NOLLSIONI V1va |
| /
() $$300%d <——- (G) VIUV-ONIOVLS ONV YIUV-ONISSIOOHd OLMOVE |a———~— =
3ON303034d ALMIEYIOVYL HLIM VINY-LINSTY OL NOLLYINdOd V.iva !
|||||||||||||||||||||||||||||||||||| .
(2) $8300Yd H] _
A —— ——
vt ! (€) (T3COW TYOILSILYLS) 13a0W sbnimo 40 ALIigvaodd L_A 1
FT- MSYLIINYNOILVLNWOD f—--- st — "
NO INJAN3d3a ! ! !
T_ | MSVYLIINY NOLLYOIHISSYIO-3Y ! !
1 i
(€) 830044) e !
39NIAI0THd gee ¥) SSIV0Hd ILNAWOD LHOIFM HSHY - -
N S
I
NO IN3IANIJIa _ﬂ-- - MSVL NOILOIHHOO VIVD | o o o o “!..
f |
ove L MSVL MOIHOD ALINVND Y.Lva b |
> | s 0ze “ > 3341 $S300¥d
oce : !
- @ $S3I00Yd NOILSIONI Viva [—————= 5
NOILNO3X3 iNF¥MNONOOD |7 @ — M}k — — o e T/ /- ™
// - 1 o
see ~J W MSVLNOILSIONI VIV [®~—=—~~ 4
i
]
qle NNY NOILVLINGINOD TVLIdYD
G0¢ —

FOVIHILNI NOLLINIAZA

/uomr

— 00¢

WO 2018/167565 PCT/IB2018/000332
4/7

400
T\
440
N\

3R0 PARTY COMPONENT
(PARAMETERS)
(FUNCTIONALITY)

105'\ l

PROCESS FRAMEWORK MODULE

405 44
N M N

PROCESS DEFINITION : PROCESS DEFINITION :
(PORTION A, PORTION B, ...) : TRANSFORMATION |

125
N\ :

EXECUTION INTERFACE

110 —\
SELECTION INTERFACE

WORKFLOW

BATCH EXECUTION JOB

ANALYTICAL PIPELINE

INTERACTIVE APPLICATION INTERFACE

ﬂg " % PROCESS EXECUTED AS WORKFLOW
"™ CHECK PROGRESS OF DOCUMENT REVIEW TASK
420 DELEGATED TO USER (A)
475 > CHECKRESULT OF STATISTICAL MODEL EXECUTION
T VIEW PARAMETERS AND FUNCTIONALITY PERFORMED BY
430 3R? PARTY COMPONENT
PERFORM AUDIT
435 —, ACCESS INFORMATION TO PERFORM TASK

FIG. 4

WO 2018/167565 PCT/IB2018/000332
577

500
T\

105 —\
PROCESS FRAMEWORK MODULE
505 ——\ 835 \-
___________________ ’
PROCESS DEFINITION : PROCESS DEFINITION :
(PORTION A, PORTIONB, ...) : TRANSFORMATION i
A)

125
\ |

EXECUTION INTERFACE

WORKFLOW

BATCH EXECUTION JOB

ANALYTICAL PIPELINE

INTERACTIVE APPLICATION INTERFACE

e & & o

::g " N PROCESS EXECUTED AS ANALYTICAL PIPELINE
" CHECK PROGRESS OF DOCUMENT ANALYSIS BY WEB
SERVICE
505 CHECK RESULT OF STATISTICAL MODEL EXECUTION
T ™ VIEW ASSOCIATION BETWEEN DOCUMENT ANALYSIS
530 TASK AND PREDICTION MODELING TASK
" ™S PERFORM AUDIT

FIG. 5

WO 2018/167565 PCT/IB2018/000332
6/7

600
605 —~
NON-TRANSITORY COMPUTER-READABLE MEDIUM
610
001001 0100001 0101111 0101111 0000000
00000 0110010 010100 0110011 0000000
;T 7T \
/ A
615 // \\
W/' \ 630 —
/ \\ DEVICE
620 -\f') 635 —
PROCESSOR-
EXECUTABLE READER
INSTRUCTIONS
\ — 640 —
625 3 PROCESSOR
EMBODIMENT
200 —, X

l
!
l
l
l
l
I

b d e b L] ed L

FIG. 6

WO 2018/167565 PCT/IB2018/000332
717

700
N\

705 —T10
PROCESS DATA
1715
COMPUTER
720
prOCESSOR ||
725
BUS
730 105 735
/O PROCESS
CONTROLLERS FRAMEWORK MEMORY
MODULE
VO INTERFACES |/ 740
745
fOPORTS [

NETWORK
DEVICES DISKS

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2018/000332

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6Q10/06 GO6F8/00
ADD.

GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6Q GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

5 March 2009 (2009-03-05)

paragraphs [0023], [0012],

paragraph [0030]; figures 2B,2C
[0013]
paragraph [0035] - paragraph [0036]

_/__

Y US 2009/064104 Al (BAEYENS TOM [BE] ET AL) 1-16

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

29 June 2018

Date of mailing of the international search report

09/07/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Hoareau, Samuel

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2018/000332

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

Sonja Zaplata ET AL: "Flexible Execution
of Distributed Business Processes based on
Process Instance Migration",

Journal of Systems Integration,

1 January 2010 (2010-01-01), pages 3-16,
XP055489165,

Prague

Retrieved from the Internet:
URL:https://vsis-www.informatik.uni-hambur
g.de/getDoc.php/publications/411/ZHKL2010-
JSI.pdf

[retrieved on 2010-12-20]

page 6, third paragraph

page 7, paragraphs 4-5

VICTORIA TORRES ET AL: "Building Business
Process Driven Web Applications",

5 September 2006 (2006-09-05), BUSINESS
PROCESS MANAGEMENT LECTURE NOTES IN
COMPUTER SCIENCE;;LNCS, SPRINGER, BERLIN,
DE, PAGE(S) 322 - 337, XP019171591,

ISBN: 978-3-540-38901-9

paragraphs [0003], [0005]

DONGSOO KIM ET AL: "Dynamic Business
Process Management Based on Process Change
Patterns",

CONVERGENCE INFORMATION TECHNOLOGY, 2007.
INTERNATIONAL CONFERENCE ON, IEEE,
PISCATAWAY, NJ, USA,

21 November 2007 (2007-11-21), pages
1154-1161, XP031225357,

ISBN: 978-0-7695-3038-3

paragraph [04.1]

1-16

1-16

1-16

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/1B2018/000332
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2009064104 Al 05-03-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report
	Page 48 - wo-search-report

