发明名称
利用阳离子交换树脂生产中废硫酸生产 7 水硫酸镁的方法

摘要
本发明涉及一种利用阳离子交换树脂生产中废硫酸生产 7 水硫酸镁的方法，其特征是：将氧化镁和废硫酸混合，反应终点 pH 值为 6-7，然后在混合溶液中加入絮凝剂，搅拌，静置，微小的碳化物絮凝成团并下沉后，取出澄清液，加酸，结晶后再脱去游离态的水，即可得到合格硫酸镁产品。本发明的有益效果在于：运用开拓性的思维，创造性的选择了利用阳离子交换树脂生产中废硫酸生产硫酸镁产品，并试验出可行的具体工序和参数，一方面解决了树脂行业的废硫酸处理难题，同时也增加了企业的效益。另外整个生产过程无二次污染，无废水产生。
1. 利用阳离子交换树脂生产中废硫酸生产7水硫酸镁的方法,其特征是:按重量百分比1:3-5将氧化镁和废硫酸混合,废硫酸的浓度为45%-75%,反应终点PH值为6-7,波美浓度在38-45之间;然后按照重量百分比1:0.002-0.004在混合溶液中加入絮凝剂,搅拌,静置,微小的碳化物絮凝成团并下沉后,取出澄清液,加酸,使PH值在3.8-4.5之间,此时澄清液结晶,再脱去游离态的水,即可得到合格硫酸镁产品。
利用阳离子交换树脂生产中废硫酸生产 7 水硫酸镁的方法

技术领域
[0001] 本发明涉及一种利用废硫酸生产 7 水硫酸镁的方法，尤其适合用于树脂行业的废物利用。

背景技术
[0002] 在离子交换树脂生产过程中，硫酸反应后所产生的废硫酸的浓度在 45%~75% 之间，其主要成分除硫酸外还含有大量的碳化物、碳化物非常微小无法用物理方法进行分离。
[0003] 目前国内几乎所有的离子交换树脂企业都面临如何处理阳离子交换树脂生产中的废硫酸这一难题。已有不少企业通过各种手段将废硫酸的浓度尽可能的提高，以达到能对外出售的目的，但是由于磺化反应后的废硫酸中含有大量的碳化物，颜色暗黑如墨汁，基本没有客户愿意接受，即使是送人也很难找到用户，除非有本地有钙镁磷肥等企业，此类企业可接受部分以降低化肥成本。但是采用现有工艺的阳离子交换树脂生产企业，不管采取什么样的手段所能回收的可供直接使用的废硫酸也不及 30%，超过 70% 的稀废硫酸需要用碱液进行中和处理后才能达到排放标准。由于企业在废硫酸的处理上花费很大，增加了企业的生产成本，真正完全处理掉废酸后树脂生产基本没有利润可言，所以偷排是很多企业的唯一选择，也有很多企业在地方环保的压力下关掉了企业。而，目前的离子交换树脂生产企业用回收的废硫酸自己生产硫酸盐的更是没有。因此该技术的成功运用将为整个行业的发展起到极大的推动作用，具有很高的经济效益和社会效益。

发明内容
[0004] 本发明的目的是提供一种利用阳离子交换树脂生产中废硫酸生产 7 水硫酸镁的方法以弥补现有技术之不足。
[0005] 本发明为实现目的采取的方案是：利用阳离子交换树脂生产中废硫酸生产 7 水硫酸镁的方法，其特征是：按重量百分比 1：3～5 将氧化镁和废硫酸混合，废硫酸的浓度为 45%～75%，反应终点 pH 值为 6～7，波美浓度在 38～45 之间，然后按照重量百分比 1：0.002～0.004 在混合溶液中加入絮凝剂，搅拌，静置，微小的碳化物絮凝成团并下沉后，取出澄清液，加酸，使 pH 值在 3.8～4.5 之间，此时澄清液结晶，再脱去游离态的水，即可得到合格硫酸镁产品。
[0006] 本发明的有益效果在于：运用开拓性的思维，创造性的选择了利用阳离子交换树脂生产中废硫酸生产硫酸镁产品，并试验出可行的具体工序和参数，一方面解决了树脂行业中的废硫酸处理难题；同时也增加了企业的效益，目前 7 水硫酸镁含税销售价格为 550 元／吨，而通过本发明生产的 7 水硫酸镁成本仅为 280 元／吨。另外整个生产过程无二次污染，无废水产生。
[0007] 具体实施方式。
[0008] 实施例：取浓度为 50% 的废硫酸 1400kg 到反应池，加入 350kg 氧化镁进行混合反应，反应时间为 80 分钟，反应后 pH 值为 6.5，波美浓度为 41。
[0009] 再加入 5kg 克絮凝剂（聚丙烯酰胺），搅拌，待微小的碳化物絮凝成团并下沉后取澄清液到结晶池，调酸，使整个溶液在 pH 值为 4 的条件下结晶，再将结晶后的 7 水硫酸镁送入离心脱水机，即可完成。

[0010] 申请人在最初的探索中发现，阳离子交换树脂生产中产生的废硫酸和其他生产中产生的废硫酸有很大不同；除了有碳化物外，不含其它金属离子和物质，这点很重要，是可以用于 7 水硫酸镁的前提。

[0011] 首先，选择用于生产硫酸镁产品在实际过程中基本是唯一可行的，因为该反应是放热反应，水分在较高温度下会蒸发，溶液才可能有较高的浓度，为顺利结晶成产品提供必要的条件。

[0012] 其次，絮凝剂的使用是具有创造性的，絮凝剂在强酸环境下是没有作用的，而恰好硫酸和氧化镁的反应是中和反应，反应后的溶液基本呈中性，所以这时絮凝剂的絮凝作用就得到了应用，絮凝了溶液中的微小碳化物，进而去除。在正常的硫酸生产氧化镁的工艺中是没有絮凝剂出现的可能的。同时，絮凝剂的量要准确的控制，过多或过少都会出现絮凝效果不好，或者硫酸镁产品指标不合格的现象，本发明提供的絮凝剂的使用量是经过多次试验，对比和检验得到并提供的。

[0013] 另外，在正常硫酸生产 7 水硫酸镁时，其反应终点是选择溶液 PH 值为 7（中性），开始我们按照这个标准来控制，结果发现生产出的 7 水硫酸镁产品色度不合格，呈微黄色，不能达到国家标准。开始始终没有克服这一难题，随后我们对每一个环节进行了调试，经过无数次的试验，最终发现是酸碱度的问题，只有将溶液澄清后调 PH 值到 4 左右，才能保证产品颜色成白色。这也是我们提供的技术创新点。

[0014] 在实际操作中，一方面要保证溶液在基本中性环境下顺利絮凝（以除去微小碳化物），另一方面又要保证在酸性条件下结晶产品呈白色，所以创造性的增加了调酸的工序。