Title: WOUND TREATMENT

Abstract: Use of a moulding composition comprising a polymer and a setting agent for wound debridement, wherein said use comprises adding water to said moulding composition to form a moulding fluid, applying said moulding fluid to a surface of a wound, allowing said moulding fluid to set in contact with said surface to form a solid covering on said surface, followed by removing said solid covering from the wound. The alginate composition adheres strongly to bacterial biofilms on the wound, whereby the biofilms are removed with the alginate composition. The moulding composition may be used in conjunction with a staining agent that undergoes a colour change in the presence of bacteria or bacterial polysaccharides to show the presence and removal of the biofilm. Also provided are methods of treating wounds using the compositions.
WOUND TREATMENT

The present invention relates to wound treatment, in particular the detection and removal of biofilm, and wound debridement.

When the skin is broken and a wound is produced, the normal wound healing process begins. In healthy individuals there are essentially three phases of wound healing – the inflammatory phase, proliferation phase and the remodelling phase. The inflammatory phase begins at the time of injury and usually lasts for four to six days. The wound is cleansed of bacteria and debris, and is prepared for healing. During the proliferation stage the wound contracts and granulation tissue is formed to fill in the defect. In an acute wound with no factors to impair the healing, two to three weeks is all that is necessary to close even large wounds. In the final remodelling phase, the wound healing process continues, and the tissue ideally returns to its original strength. This phase may last from twenty one days to two years.

Wound healing becomes less straightforward in individuals who have associated medical problems. In some cases wounds cease to heal and become “chronic wounds” which remain in the inflammatory stage.

Wound bacterial biofilms can contribute to the development of non-healing wounds. It is well known that bacteria naturally form biofilms when they are able to associate with an open wound. Non-healing wounds are often associated with individuals with impaired inflammatory response, so bacteria can persist within a wound and establish a biofilm community with cannot be overcome by the individual’s natural defences alone.

Biofilm removal from wounds is usually carried out via debridement. Debridement is the removal of necrotic, damaged or infected tissue from and around a wound to expose healthy tissue. There are number of debridement techniques, the quickest and most selective of which is surgical debridement, in which a scalpel, scissors, or other instrument (including a laser) is used to cut necrotic tissue from a wound. However, during surgical debridement, underlying tendons, blood vessels and other structures may be damaged. Surface bacteria may also be introduced deeper into the body. Less invasive debridement methods may be used; for example mechanical debridement, in which a saline-moistened dressing is allowed to dry and adhere to the dead tissue. When the dressing is removed, the dead tissue is also removed. However, the method is non-selective and may traumatisie healthy or healing tissue, causing the patient severe pain.
Anti-biofilm agents may also be used to reduce the presence of biofilm. Anti-biofilm agents have been used in a number of industries such as water treatment, food processing, beef processing, dairy and dentistry. One such agent is bovine lactoferrin. *Pseudomonas* in the presence of bovine lactoferrin will divide normally but is unable to attach, and therefore unable to form biofilm structures. Bovine lactoferrin is used in the beef industry on the carcasses of meat to prevent biofilm formation.

An associated problem is the detection of biofilm at first instance. Even if there is no evidence of clinical infection, it is likely that biofilm bacteria play a large role in preventing the normal healing process from occurring. The nature of biofilm means that, unlike planktonic bacteria, it has a number of pathways to down-regulate its virulence, so that does not significantly damage the host. Due to this modulation of risk factors, clinical signs of infection are often not obvious.

Accordingly, it is an object of the present invention to provide an improved method of treatment of wounds. In particular, the present invention is directed to improved compositions, kits and methods for treatment of bacterial biofilms in wounds. The present invention is also directed to improved compositions, kits and methods for debridement of wounds.

Alginate impression materials have been used for many years in dentistry to make impressions for prosthodontic, orthodontic or other appliances. Alginate casting materials are also widely used for craft and hobby preparation of moulding casts. The present inventors have found that, surprisingly, alginate-containing compositions have a high affinity for biofilm and necrotic tissue. Accordingly, alginate-containing compositions may be of use in the treatment of wounds, in particular for wound debridement and biofilm removal.

The use of alginates, in particular alginate fibers, fabrics and hydrogels, as wound dressing materials is known. The alginate provides a wound-friendly, hydrophilic, non-adherent and bioabsorbable wound contacting surface to the dressing. The alginate dressings are left in contact with the wound for extended periods of at least several hours to promote wound healing. They are designed to be non-adherent to reduce wound trauma when the dressing is removed. In particular, they form an alginate hydrogel with wound fluid. The hydrogel has low physical strength and is non-adherent to the wound surface.
DE-A-102006029500 describes alginate compositions that harden to a dimensionally stable alginate mass for application to wounds. The compositions contain an antimicrobial agent, and also contain a water-absorbing component such as a hydrocolloid to produce an absorbent wound dressing composition in situ on a wound.

WO-A-2007048193 describes wound dressing compositions that are solid, particulate mixtures of alginates in a low-water-activity antimicrobial matrix such as honey.

WO-A-2005023176 describes hydrogel compositions for the delivery and sustained release of active agents to a wound. The hydrogel is formed in situ on the wound by gelling of an anionic polysaccharide with calcium ions present in biological fluids. GB-A-1122796 and WO-A-2004080343 describe applying an alginate hydrogel dressing onto wounds by sequentially applying a sodium alginate solution and a calcium chloride solution to the wound.

EP-A-1666020 describes fluid alginate compositions containing a gelling agent that can be applied to a wound. The compositions set to form a hydrogel wound dressing in contact with the wound. The compositions further contain foaming agents to generate carbon dioxide. EP-A-0380253 describes another alginate composition that forms a foamed hydrogel following application to a wound.

WO-A-9733632 describes fluid gel compositions that can be applied to wounds containing a slow release gelling agent and an antimicrobial agent.

US-B-6174544 describes the use of an alginate gel for wound filling, in combination with a dressing containing calcium salts that leach into the gel to harden the gel so that the gel can be removed easily.

US-A-2007218285 describes alginate casting compositions for forming porous moulded articles. The moulded articles may be used for cosmetic purposes, such as skin pads and face packs. The porous moulded articles may be used as wound dressings.

WO-A-2008072117 describes incorporating dyes into cyanoacrylate skin sealants. The dyes change colour in the presence of microorganisms to provide an indication of infection.

WO-A-2010070292 describes compositions for application to skin or wounds, wherein the compositions contain colorants that are capable of preferentially staining biofilms.

WO-A-2006065349 describes elastomeric articles, such as surgical gloves, that contain a dye that changes colour in the presence of microorganisms.

In a first aspect, the present invention provides the use of a moulding composition comprising a polymer and a setting agent for wound debridement, wherein said use comprises adding water to said moulding composition to form a moulding fluid, applying said moulding fluid to a surface of a wound, allowing said moulding fluid to set in contact with said surface to form a solid covering on said surface, followed by removing the solid covering from the wound.

Certain polymers and salts thereof are water soluble, but when combined with a setting agent and water, form a moulding fluid, which will set in time, to form a moulded solid on the surface with which it is in contact. In accordance with the present invention, the moulding fluid is allowed to set in contact with the surface of a wound. The set moulding composition adheres only weakly to the skin and wound surface. When the solidified moulding material is then removed from the wound, biofilm is also removed. The term “wound debridement” herein refers to such removal of bacterial biofilms from the wound. Necrotic tissue, when present, is also removed from the wound.

Suitably, the polymer and the setting agent are in the form of particulate solids, such as powders. The powders may be provided separately or in admixture prior to use. In any event, water is added to the components with mixing to form a moulding fluid. Suitably, the moulding composition and water are vigorously mixed until a pourable or spreadable consistency is reached.

Once the moulding fluid has set, the resulting moulded solid may be left on the surface of the wound for a period of time. Alternatively, once the moulding fluid has set in contact with the surface of the wound, it may then be removed immediately from the surface of the wound. Suitably, the setting time of the moulding fluid is sufficient that the moulding composition may be applied to the wound surface, without undue haste. Suitably, the moulded solid is removed...
from the wound from about 2 minutes to about 6 hours after application, typically from about 5 minutes to about 1 hour after application, for example within 30 minutes of application.

More than one application and subsequent removal of the moulding fluid may be carried out, depending on the bacterial biofilm population.

Suitably, the polymer comprises or consists essentially of one or more polysaccharides. The polysaccharide may suitably be a polyanionic polysaccharide. Suitably, the anionic polysaccharide is a polycarboxylate. Suitable polysaccharides include alginates, agar, guar gum, hyaluronates, pectins, carrageenans, xanthan gums, sulfate dextrans, cellulose derivatives such as carboxymethyl celluloses, and oxidized celluloses. Especially suitable anionic polysaccharides are water soluble alginates such as sodium alginate. It is thought that the polysaccharide moulding materials have high affinity for glycopolysaccharides and mucopolysaccharides of the biofilm, and that this accounts for the good adhesion of biofilms to the polysaccharide polymers.

Water soluble alginate salts include sodium alginate, potassium alginate, and ammonium alginate. Most suitably, the alginate comprises or consists essentially of sodium alginate.

The polymer may initially be dry mixed with a suitable setting agent to form a composition such that, when the composition is mixed with water, a fluid (pourable or spreadable) moulding composition is obtained. Suitably, the moulding fluid is a spreadable, viscous or thixotropic material, for example it may have a viscosity of from about 1 Pa s to about 300 Pa s, for example from about 10 Pa s to about 100 Pa s. It is therefore considerably more fluid than, for example, alginate dental impression materials. Suitably, the amount of water added to the moulding composition to form the moulding fluid is in a solids:water ratio by weight of about 1:1 to about 3:1. The water content of the moulding composition after it has solidified is therefore suitably from about 25wt.% to about 50wt%. The moulding composition does not absorb significant amount of water in contact with wound fluid, and is non-porous. It therefore differs from the hydrogel-forming alginate wound dressings known in the art, which have high equilibrium water contents and low tensile strength. Suitably, the set moulding composition has an equilibrium water content less than about 50%.

The setting agent for polyanionic polymers may be a divalent (or higher) metal salt. Suitably, the setting agent is a divalent metal salt. Preferably, the setting agent is a calcium salt, suitably a sparingly soluble calcium salt such as calcium sulphate or calcium silicate. Additional salts may
be present, in particular antimicrobial salts such as silver salts or zinc salts, or adjusting salts such as phosphates, silicates or carbonates of sodium, calcium or the like. The compositions may comprise a retarder such as trisodium phosphate, which reacts primarily with the calcium salt to retard release of the calcium.

In other embodiments, the polymer may be a guar gum and the setting agent may be a borate salt, such as sodium tetraborate. In yet other embodiments, the polymer may be a water soluble xanthan gum and the setting agent may be a water soluble galactomannan gum, as described in EP-A-0792653.

Suitably, the moulding compositions of the present invention comprise from about 10 wt.% to about 40 wt.% of the polymer, for example from about 12 wt.% to about 30 wt.% of the polymer. Suitably, the moulding compositions of the present invention comprise from about 10 wt.% to about 50 wt.% of the setting agent, for example from about 12 wt.% to about 40 wt.% of the setting agent. All of these percentages are dry weight basis of the moulding composition.

Setting of the polymer suitably results in a coherent solid, plastic, elastic or gel-like mass. The mass suitably has sufficient tensile strength be lifted from the wound in one piece. For example, the set composition may have a tensile strength of at least about 0.1 MPa, suitably at least about 0.3 MPa, more suitably at least about 0.5 MPa. The tensile strength is measured by casting a sheet of the composition approximately 2 mm thick in a flat mould, cutting a strip of dimensions 5 cm x 1 cm from the sheet, and measuring the tensile strength of the strip in an Instron or similar apparatus. These tensile strengths are considerably higher than the tensile strength of the alginate hydrogels that have previously been used for wound treatment.

The moulding composition may be chromatic moulding composition, which will undergo a colour change when mixed with water to form a moulding fluid and/or said composition is set (i.e. it is no longer a pourable or spreadable fluid). Suitable indicators include thymolphthalein and phenolphthalein, or mixtures thereof. These indicators turn a sodium alginate/calcium sulphate moulding composition from white to pink when water is added to form the moulding fluid, then back to white when the composition has set.

It is envisaged that the moulding composition could be mixed with water to form a moulding fluid. This mixing could be carried out in the vicinity of the patient, as no specialist equipment is required. The moulding fluid could then be spread onto/poured onto and around the wound area

6
and allowed to set (i.e. until the composition is no longer fluid). Advantageously, the moulding composition can cover an area of any required size. Conventional wound dressings are manufactured in various different sizes, and the most appropriate size must be selected. Using the moulding fluid of the present invention, a wound treatment of potentially any size or shape is provided.

Furthermore, conventional wound dressings may not make contact with the wound surface without the application of pressure, potentially causing the patient discomfort. The nature of the moulding fluid used in the present invention allows an exact impression of the wound surface to be made— in effect providing a custom made wound treatment.

Wounds located on joints or protrusions (such as the ankle) may be difficult to treat using conventional wound dressings, due to their non-uniform shape. The moulding fluid used in the present invention may be easily poured onto the area, before being allowed to set.

Suitably, the moulding composition used in the present invention is sterile. This could be achieved by autoclaving, treatment with ethylene oxide, dry heat sterilisation or gamma irradiation. The sterilization would suitably be performed on the dry polymer and setting agent, for example packaged, either separately in admixture. Addition of sterile water would then result in a sterile moulding composition for application to the wound.

The moulding composition of the present invention may comprise further elements. The moulding composition may comprise a filler. Suitable fillers include diatomaceous earth, anhydrous silicate, talc, calcium carbonate, pearlite, silica, cellulose and aluminium hydroxide. The filler is suitably admixed with the polymer and optionally also with the setting agent prior to use. For example, the invention contemplates dry mixtures of filler, polymer and setting agent, preferably sterile and packaged. Suitably, the moulding compositions of the present invention comprise from about 10wt.% to about 80wt.% of one or more inert fillers, for example from about 40wt.% to about 70wt.% of one or more inert fillers on dry weight basis.

The compositions used in the invention may further comprise one or more plasticisers. The optional plasticisers assist in providing a flexible, soft cured material in situ in the wound. Suitable plasticisers include medically acceptable mineral oils, silicone oils, vegetable oils, stearates, hydrogenated ethers and esters, and mixtures thereof. The plasticisers may be present,
for example, in an amount of from about 1wt.% to about 20wt.% of the composition on dry weight basis.

The compositions used in the invention may further comprise one or more humectants. The optional humectants assist in maintaining the desired hydrophilic property of the composition. Suitable humectants include medically acceptable polyhydric alcohols such as glycerol, sorbitol, soft paraffin, urea 25 creams, lanoline, sodium pyrrolidone carboxylate (PCANa), gamma linolenic acid (evening primrose oil) and soya oil, tea tree oil, coconut oil (or any other nut oil), camomile, aloe vera, jojoba oil, cocoamidol or mixtures thereof. The humectants may be present, for example, in an amount of from about 0.1wt.% to about 10wt.% of the composition on dry weight basis.

The moulding composition of the present invention may further comprise an active pharmaceutical ingredient, such as a topical antimicrobial agent. Suitable topical antimicrobials include antibiotics such as Bacitracin or Neosporin, chlorhexidine, lauric arginate, metallic silver, and silver compounds such as Silver sulfadiazine. Suitably, the active pharmaceutical ingredient is present in an amount of from about 0.001wt.% to 5wt.%, for example from about 0.1wt.% to about 2wt.% based on the dry weight of the composition.

In embodiments, the method further comprises applying to the wound a staining agent that undergoes a colour change in the presence of bacteria or bacterial polysaccharides.

The water soluble polymer and the setting agent may be dry packaged together before use, for example as a kit with the staining agent packaged separately from the water soluble polymer and the setting agent.

The staining agent will undergo a colour change in the presence of bacteria or bacterial polysaccharide. Staining agents of this type are described in WO-A-2010070292, WO-A-2006065349 and WO-A-2008072117. A suitable staining agent is a copper phthalocyanine dye. An example of a copper phthalocyanine dye is Alcian blue, which is also known as Alcian blue 8GX, Ingrain blue 1, and C.I. 74240. Alcian blue specifically binds to polysaccharides, staining them blue-green. As biofilm contains polysaccharide, Alcian blue can be used as stain to indicate the presence of biofilm on a wound surface.
The use of a staining agent to indicate areas of significant biofilm will allow areas of high bacterial burden to be directly treated by debridement. This visual indication of biofilm burden will prevent over-debridement and incorrect diagnosis. The removal of the coloured staining agent onto the solidified alginate composition also gives visual proof of the effectiveness of the debridement.

In a further aspect, the present invention provides a method of treating a wound comprising the steps of: mixing a moulding composition comprising a polymer and a setting agent for said polymer with water to form a moulding fluid; applying said moulding fluid to a surface of a wound, allowing said moulding fluid to set in contact with said surface, followed by removing said moulding composition from the wound. Suitably, the moulding composition is as described above in relation to the first aspect of the invention. Suitably, the method further comprises applying a staining as described above to the wound prior to the application of the moulding fluid.

In embodiments, the wound may be a chronic wound such as a dermal ulcer. The uses and methods according to the present invention suitably do not comprise application the composition to mucous membranes, teeth, or gums.

It will be appreciated that any feature or embodiment disclosed herein in relation to any one embodiment of the invention may also be applicable to any of the other embodiments. This applies in particular to the components and composition of the moulding composition.

All patent publications referred to herein are hereby expressly incorporated in their entirety.

Example 1 – Use of Alcian blue as a biofilm staining agent

Pieces of raw chicken breast meat were studied as a model for biofilm and necrotic tissue formation. The first three pieces were inoculated with *Pseudomonas aeruginosa* before being left at 37°C for 24-48hr. A solution of Alcian blue was then applied to the surface of the chicken. Areas of blue-green staining indicated the presence of bacterial biofilm. As expected, the chicken pieces that were inoculated had a higher bacterial biofilm population than non-inoculated pieces containing the normal flora.

Example 2 – Formation and application of the moulding fluid
Life Casting Alginate (obtained from Craftwise Ltd) was mixed vigorously with an equal volume of cold water. Once a porridge-like consistency was obtained, the moulding fluid was applied to pieces of chicken, prepared according to Example 1. The composition was left for about 30 minutes to set completely, after which the resulting flexible mould material was separated from the chicken pieces. It was observed that the removal of the composition from the chicken pieces also removed large amounts of biofilm, as indicated by the blue-green staining on the inner surface of the removed moulding material. The procedure was repeated for a piece of chicken which was subjected to two consecutive applications (followed by removals) of the fluid forming composition. It was evident that the second cast also removed necrotic material, indicated by the presence of the blue-green stain on the inside of the cast and of the necrotic, yellow tissue itself.
CLAIMS

1. Use of a moulding composition comprising a polymer and a setting agent for wound debridement, wherein said use comprises adding water to said moulding composition to form a moulding fluid, applying said moulding fluid to a surface of a wound, allowing said moulding fluid to set in contact with said surface to form a solid covering on said surface, followed by removing said solid covering from the wound.

2. Use according to claim 1, wherein said polymer comprises or consists essentially of a polysaccharide.

3. Use according to claim 2, wherein said polysaccharide is a polyanionic polysaccharide.

4. Use according to claim 3, wherein said setting agent comprises a divalent metal anion.

5. Use according to claim 3, wherein said polysaccharide is sodium alginate and said setting agent comprises or consists essentially of calcium sulphate.

6. Use according to any preceding claim, wherein said moulding composition further comprises a filler in an amount of from about 10% to about 70% dry weight basis.

7. Use according to any preceding claim, wherein said polymer and said setting agent are in the form of particulate solids in admixture.

8. Use according to any preceding claim, wherein said moulding composition comprises from about 12wt.% to about 30wt.% of the polymer and from about 12wt.% to about 40wt.% of the setting agent based on dry weight of the moulding composition.

9. Use according to any preceding claim, wherein said moulding composition further comprises an antimicrobial agent.

10. Use according to any preceding claim, wherein said method further comprises applying to said wound a staining agent that undergoes a colour change in the presence of bacteria or bacterial polysaccharides.
11. Use according to claim 10, wherein the staining agent is a copper phthalocyanine dye.

12. Use according to any preceding claim, wherein said step of removing is performed not more than about 1 hour after said step of applying.

13. Use according to any preceding claim, wherein said step of removing is performed not more than about 30 minutes after said step of applying.

14. Use according to any preceding claim, wherein said moulding fluid is a chromatic composition that undergoes a colour change when it sets.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61L26/00 A61K9/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61L A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EP0-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | DE 10 2006 029500 A1 (SCHULZ HANS H [DE])
3 January 2008 (2008-01-03)
paragraphs [0001], [0008] - [0010], [0017] - [0033]; claims; example 1 | 1-9, 12-14 |
page 2, lines 15-26
page 3, lines 13-23
page 4, lines 13-30
page 6, lines 1-9; claims; examples | 1,10,11 |

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 June 2012

Date of mailing of the international search report

22/06/2012

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3018

Authorized officer

Derrien, Anne-Cécile
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 97/33632 A2 (GILTECH LTD [GB]; GILCHRIST EILIDH [GB]; GILCHRIST THOMAS [GB]) 18 September 1997 (1997-09-18)</td>
<td>1-4, 6-9, 12-14</td>
</tr>
<tr>
<td></td>
<td>page 2, line 15 - page 3, line 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 6, lines 6-16</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 5 804 213 A (ROLF DAVID [US]) 8 September 1998 (1998-09-08)</td>
<td>1-9, 12-14</td>
</tr>
<tr>
<td></td>
<td>column 3, line 23 - column 4, line 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 6, lines 23-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 7, lines 12-41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 8, lines 21-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 12; claims</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 567 311 A2 (SQUIBB BRISTOL MYERS CO [US] SQUIBB & SONS INC [US]) 27 October 1993 (1993-10-27)</td>
<td>1, 2, 4, 6, 8, 9, 12-14</td>
</tr>
<tr>
<td></td>
<td>page 2, lines 1-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, lines 36-39; claims; examples</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DE 102006029500 A1</td>
<td>03-01-2008</td>
<td>DE 102006029500 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008000466 A2</td>
</tr>
<tr>
<td>WO 2010070292 A1</td>
<td>24-06-2010</td>
<td>AU 2009329394 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2745059 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2373312 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011319808 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010070292 A1</td>
</tr>
<tr>
<td>WO 9733632 A2</td>
<td>18-09-1997</td>
<td>AU 2032997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2247986 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0888139 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006506920 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9733632 A2</td>
</tr>
<tr>
<td>US 5804213 A</td>
<td>08-09-1998</td>
<td>US 5804213 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6406712 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9207749 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3703593 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2094533 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69321389 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69321389 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0567311 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0567311 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2123619 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3485593 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6009373 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 931468 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 247431 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 272995 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5503847 A</td>
</tr>
</tbody>
</table>