PROCESS FOR THE PREPARATION OF ARYLETHANOLAMINE DERIVATIVES HAVING AN ANTI-OBESETY AND ANTI-DIABETIC PROPERTIES

R¹ OH

N

R³ R⁴

IA

(II)

Abstract: A process for the preparation of a compound of Formula (IA) or a pharmaceutically acceptable salt thereof: wherein R¹ is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C₂₋₄ alkyl, hydroxymethyl, trifluoromethyl, -NR¹R², and -NHSO₂R⁴, where each R² is independently hydrogen or C₁₋₄ alkyl; R² is hydrogen or C₁₋₄ alkyl; R³ is CO₂R⁷ where R⁷ is hydrogen or C₁₋₄ alkyl; R⁴ and R⁵ are independently hydrogen, C₁₋₄ alkyl, or -CO₂C₁₋₄ alkyl; and Y is N or CH comprising the step of preparing a diamide of Formula (II) or a pharmaceutically acceptable salt thereof: wherein R¹ is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C₂₋₄ alkyl, C₁₋₄ alkyl, hydroxymethyl, trifluoromethyl, -NR¹R², and -NHSO₂R⁴, where each R² is independently hydrogen or C₁₋₄ alkyl; R² is hydrogen or C₁₋₄ alkyl; R³ is CO₂R⁷ where R⁷ is C₁₋₄ alkyl; R⁴ and R⁵ are independently hydrogen, C₁₋₄ alkyl, -CO₂C₁₋₄ alkyl; and Y is N or CH.
PROCESS FOR THE PREPARATION OF ARYLETHANOLAMINE DERIVATIVES HAVING ANTI-OBESEITY AND ANTI-DIABETIC PROPERTIES

Field of the Invention

This invention relates to a method for the preparation of certain biaryl derivatives.

Background of the Invention

Atypical beta-adrenoceptors are known to occur in adipose tissue and the gastrointestinal tract. Atypical beta-adrenoceptor agonists have been found to be particularly useful as thermogenic anti-obesity agents and as anti-diabetic agents. Compounds having atypical beta-adrenoceptor agonist activity have also been described as being useful in the treatment of hyperglycaemia, as animal growth promoters, as blood platelet aggregation inhibitors, as positive inotropic agents and as antiatherosclerotic agents, and as being useful in the treatment of glaucoma.

A UK patent application filed on 13 June 1998 as GB 9812709.5 (and corresponding International patent application WO99/65877), discloses compounds of Formula (I) and pharmaceutically acceptable derivatives thereof:

![Chemical Structure](image)

wherein R_1^1 is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C_{1-4} alkoxy, C_1-alkyl, nitro, cyano, hydroxymethyl, trifluoromethyl, $-NR^6R^6$, and $-NH\text{SO}_2R^6$, where each R^6 is independently hydrogen or C_{1-4} alkyl; R^2 is hydrogen or C_{1-4} alkyl; X is oxygen, NH, or NC$_{1-4}$ alkyl; R^3 is cyano, tetrazol-5-yl, or CO$_2R^7$ where R^7 is hydrogen or C_{1-4} alkyl; R^4 and R^5 are independently hydrogen, C_{1-4} alkyl, -CO$_2$H, -CO$_2$C$_{1-6}$ alkyl, cyano, tetrazol-5-yl, halogen, trifluoromethyl, or C_{1-4} alkoxy, or, when R^4 and R^5 are bonded to adjacent carbon atoms, R^4 and R^5 may, together with the carbon atoms to which they are bonded, form a fused 5 or 6 membered ring optionally containing one or two nitrogen, oxygen, or sulfur atoms; and Y is N or CH.
Summary of the Invention

Briefly, in one aspect, the present invention provides a process for the preparation of a compound of Formula (IA) or a pharmaceutically acceptable salt thereof:

![Formula IA](image)

wherein \(R^1 \) is an aryl, pyridyl, thiazolyl, phenoxy methyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkyl, hydroxymethyl, trifluoromethyl, -NR\(^2\)R\(^6\), and -NHSO\(_2\)R\(^6\), where each R\(^6\) is independently hydrogen or \(C_{1-6} \) alkyl;

\(R^2 \) is hydrogen or \(C_{1-6} \) alkyl;

\(R^3 \) is CO\(_2\)R\(^7\) where R\(^7\) is hydrogen or \(C_{1-6} \) alkyl;

\(R^4 \) and \(R^5 \) are independently hydrogen, \(C_{1-6} \) alkyl, -CO\(_2\)C\(_{1-6}\) alkyl; and

\(Y \) is N or CH

comprising the step of preparing a diamide of Formula (II) or a pharmaceutically acceptable salt thereof:

![Formula II](image)

wherein \(R^1 \) is an aryl, pyridyl, thiazolyl, phenoxy methyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, \(C_{1-6} \) alkoxy, \(C_{1-6} \) alkyl, hydroxymethyl, trifluoromethyl, -NR\(^2\)R\(^6\), and -NHSO\(_2\)R\(^6\), where each R\(^6\) is independently hydrogen or \(C_{1-6} \) alkyl;

\(R^2 \) is hydrogen or \(C_{1-6} \) alkyl;

\(R^3 \) is CO\(_2\)R\(^7\) where R\(^7\) is \(C_{1-6} \) alkyl;

\(R^4 \) and \(R^5 \) are independently hydrogen, \(C_{1-6} \) alkyl, -CO\(_2\)C\(_{1-6}\) alkyl; and

\(Y \) is N or CH.

In an alternative aspect, the invention provides a process for the preparation of a compound of Formula (IA):
wherein R_1 is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C_{1-6}alkoxy, C_1-C_{18}alkyl, hydroxymethyl, trifluoromethyl, -NR6R6, and -NHSO$_2$R6, where each R6 is independently

5 hydrogen or C_{1-4}alkyl;

R^2 is hydrogen or C_{1-4}alkyl;

R^3 is CO$_2$R7 where R7 is hydrogen or C_{1-6}alkyl;

R^4 and R^5 are independently hydrogen, C_{1-4}alkyl, -CO$_2$C$_{1-4}$alkyl; and

Y is N or CH, or a pharmaceutically acceptable salt thereof, comprising reduction of a compound

of Formula (II):

wherein R^1 is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C_{1-6}alkoxy, C_1-C_{18}alkyl, hydroxymethyl, trifluoromethyl, -NR6R6, and -NHSO$_2$R6, where each R6 is independently

15 hydrogen or C_{1-4}alkyl;

R^2 is hydrogen or C_{1-6}alkyl;

R^3 is CO$_2$R7 where R7 is C_{1-6}alkyl;

R^4 and R^5 are independently hydrogen, C_{1-6}alkyl, -CO$_2$C$_{1-6}$alkyl; and

Y is N or CH, or a pharmaceutically acceptable salt thereof, and optionally the step of hydrolysis of

the resulting ester group R7 in Formula (IA) to produce a compound of Formula (IA) wherein R7 is

H.

In another aspect, the present invention provides a compound of Formula (II), wherein R^1

is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or

more substituents selected from the group consisting of halogen, hydroxy, C_{1-6}alkoxy, C_{1-4}alkyl,

hydroxymethyl, trifluoromethyl, -NR6R6, and -NHSO$_2$R6, where each R6 is independently hydrogen

or C_{1-4}alkyl;

R^2 is hydrogen or C_{1-6}alkyl;

R^3 is CO$_2$R7 where R7 is C_{1-4}alkyl;

R^4 and R^5 are independently hydrogen, C_{1-6}alkyl, -CO$_2$C$_{1-6}$alkyl; and

Y is N or CH, or a pharmaceutically acceptable salt thereof.

30
Detailed Description of the Invention

As used herein, the terms "alkyl" and "alkoxy" mean a straight or branched alkyl group or alkoxy group respectively, containing the indicated number of carbon atoms. For example, \(\text{C}_1 \), \(\text{ealkyl} \) means a straight or branched alkyl containing at least 1 and at most 6 carbon atoms.

As used herein, the term "aryl" means monocyclic or bicyclic aromatic carbocyclic groups such as phenyl and naphthyl.

Preferably, \(R^1 \) is phenoxy methyl or phenyl optionally substituted by one, two or three substituents selected from halogen, hydroxy, \(\text{C}_1-\text{C}_6 \)-alkoxy, \(\text{C}_1-\text{C}_6 \)-alkyl, hydroxymethyl and trifluoromethyl. More preferably, \(R^1 \) is phenoxy methyl or phenyl substituted by a chlorine, fluorine or bromine atom or a methyl or trifluoromethyl group, which atom or group is preferably located in the meta position. Most preferably \(R^1 \) is phenyl substituted by a chlorine atom located in the meta position.

Preferably, \(R^2 \) is hydrogen or methyl. Most preferably \(R^2 \) is hydrogen.

Preferably, \(R^3 \) is bonded to the carbon atom meta to the bonded phenyl ring. In a compound of Formula (IA), \(R^3 \) is preferably \(\text{CO}_2 \text{H} \). In a compound of Formula (II), \(R^3 \) is preferably \(\text{CO}_2 \text{CH}_3 \).

Preferably, at least one of \(R^4 \) and \(R^5 \) is hydrogen. Most preferably, both \(R^4 \) and \(R^5 \) are hydrogen.

Preferably \(Y \) is \(\text{CH} \).

Particularly preferred compounds, or compounds of the processes, of the invention include those in which each variable is selected from the preferred groups for each variable. Even more preferable compounds of the invention include those where each variable is selected from the more preferred or most preferred groups for each variable.

Reagents for the transformation of a compound of Formula (II) to a compound of Formula (I) include any suitable reagent for the reduction of amide carbonyl bonds, e.g. borane-ether, borane-sulfide, borane-amine complexes and also conditions which form borane in situ (for example, sodium borohydride and iodine or sulfuric acid). Suitable solvents include hydrocarbons, e.g. toluene or ethers, e.g. tetrahydrofuran. The reaction may be conveniently carried out on a solid substrate, such as a bead or standard substrate used in solid-phase synthesis. For example, a compound of Formula (II) may be attached to the solid substrate through the group \(R^5 \), i.e. \(-\text{CO}_2 \)-solid substrate.

In order to form a compound of Formula (IA) wherein \(R^7 \) is hydrogen, the step of reduction of a compound of Formula (II) should be followed by hydrolysis of the resulting ester group \(R^7 \).

A compound of Formula (II) may be prepared by reaction of a compound of Formula (III) with a compound of Formula (IV)
using any suitable method for forming an amide link, e.g. suitable coupling agents include diimides,
e.g. diisopropylcarbodiimide, dicyclohexylcarbodiimide, or carbonyl diimidazole, hydroxytriazenes
and equivalents, or chloroformates, whilst suitable solvents include esters, e.g. ethyl acetate,
ethers, halogenated solvents, N-methylpyrrolidinone, acetonitrile or trifluorobenzene.

As a further aspect of the present invention, there is provided a compound of Formula
(IV), wherein \(R^2 \) is hydrogen or \(C_{1-6} \)alkyl; \(R^2 \) is \(CO_2 \) where \(R^1 \) is \(C_{1-6} \)alkyl; \(R^4 \) and \(R^5 \) are
independently hydrogen, \(C_{1-6} \)alkyl, \(-CO_2C_{1-6} \)alkyl; and \(Y \) is \(N \) or \(CH \), or a pharmaceutically
acceptable salt thereof.

Compounds of Formula (III) are commercially available or may be prepared by standard
methods, for example, as described in the examples herein.

Compounds of Formula (IV) may be prepared from compounds of Formula (V)

using any suitable method for forming an amide link. For example, a compound of Formula (V)
may be treated with a compound of Formula (VIII)

using standard coupling procedures, e.g. diimide coupling agents, e.g. diisopropylcarbodiimide,
dicyclohexylcarbodiimide or carbonyl diimidazole with a suitable glycine compound, e.g. N-Boc-
glycine, in a suitable solvent such as esters, e.g. ethyl acetate, ethers, or hydrocarbons. \(P_2 \) is a
standard protecting group for a nitrogen, for example butoxy carbonyl.

Compounds of Formula (V) may be prepared by reaction of a compound of Formula (VI)
with a compound of Formula (VII) according to the method of Thompson, (J.Org. Chem. 1984, 49, 5237),

\begin{align*}
\text{(III)}
\end{align*}

\begin{align*}
\text{(IV)}
\end{align*}

\begin{align*}
\text{(V)}
\end{align*}

\begin{align*}
\text{(VIII)}
\end{align*}
where Z is halogen or triflate, using a suitable boronic acid coupling conditions, e.g. palladium on carbon and sodium carbonate or Pd(PPh₃)₄ (tetrakis(triphenylphosphine)palladium (0)), followed by reduction of the nitro group using standard methods, e.g. under hydrogen using a suitable catalyst, such as palladium on carbon, in a suitable solvent such as an alcohol, tetrahydrofuran, DME, ethyl acetate, toluene, iso-octane, cyclohexane or water or mixtures thereof, optionally at elevated temperature.

Compounds of Formula (IV) may also be conveniently prepared using a two step one-pot reaction starting from reaction of a compound of Formula (VI) with a compound of Formula (VII) under conditions described above, i.e. in the presence of a palladium on carbon catalyst, followed by reduction of the nitro group under hydrogen, using the reagents described above.

Compounds of Formula (V) may also be prepared by reaction of a compound of Formula (VII) with a compound of Formula (IX) using standard boronic acid coupling methods described above.

Examples

The invention is further illustrated by the following intermediates and examples. All temperatures are in degrees centigrade. Mass spectra (ms) were obtained using electrospray (positive or negative ion) analysis.

Methyl 3'-amino[1,1'-biphenyl]-3-carboxylate

Method 1
A mixture of 3-nitrobenzenboronic acid (20g), methyl 3-bromobenzoate (27g), sodium carbonate (14g) and 10% palladium on carbon (50% wet paste, 1g) in methanol (120ml) was heated under reflux for 2 hours. The mixture was taken off reflux, diluted with iso-propyl acetate (240ml) and cooled to room temperature. The mixture is stirred under an atmosphere of hydrogen until uptake
ceases, water (80ml) is added and the suspension is filtered. The filtrate is separated and the organic phase is washed with brine. The organic solution is concentrated by distillation to a low volume, treated with cyclohexane and filtered to give the title compound as a beige solid (24.5g). Mass spec. M+H = 228 (electrospray).

Method 2
A mixture of 3-aminophenylboronic acid hemisulfate (0.5g), methyl 3-bromobenzoate (0.61g), sodium carbonate (0.57g) and 10% palladium on carbon (50% wet paste, 30mg) in methanol (5.4ml) was heated under reflux for 14 hours. The mixture was taken off reflux, diluted with ethyl acetate (20ml) and filtered through a Celite pad, rinsing through with ethyl acetate. The filtrate was washed with water (10ml) and saturated brine (10ml). The organic phase was dried over sodium sulfate and concentrated in vacuo to give the title compound as a dark oil, which slowly solidifies (0.58g).

Methyl 3-′-[aminooctyl]amino[1,1′-biphenyl]-3-carboxylate hydrochloride
A mixture of 3-nitrobenzeneboronic acid (20g), methyl 3-bromobenzoate (27g), sodium carbonate (14g) and 10% palladium on carbon (50% wet paste, 1g) in methanol (120ml) was heated under reflux for 2 hours. The mixture was taken off reflux, diluted with iso-propyl acetate (240ml) and cooled to room temperature. The mixture is stirred under an atmosphere of hydrogen until uptake ceases, water (80ml) is added and the suspension is filtered. The filtrate is separated and the organic phase is washed with brine. The organic solution is concentrated by distillation and treated with anhydrous hydrochloric acid (prepared from acetyl chloride (19ml) and isopropanol (82ml)) to give the title compound as a white solid (29.5g).

Methyl 3-′-[aminooctyl]amino[1,1′-biphenyl]-3-carboxylate hydrochloride

Method 1
A mixture of methyl 3′-amino[1,1′-biphenyl]-3-carboxylate (4.0g), N-tert-butoxycarbonylglycine (3.24g) and dicyclohexyl carbodiimide (3.81g) in ethyl acetate (48ml) was stirred at room temperature for 1 hour, cooled to 5°C and filtered. The solid was washed with ethyl acetate (8ml) and the combined organic layers were washed with aqueous sodium bicarbonate and then water. The organic solution is treated with concentrated hydrochloric acid (3.5ml), stirred overnight and the mixture is filtered to give the title compound as a white solid (4.4g).

\(^{1}H\) NMR (400MHz, DMSO) δ ppm : 3.64(s broad); 3.90(s); 7.45(ddd); 7.49(dd); 7.66(dd); 7.68(ddd); 7.93(ddd); 7.98(ddd); 8.00(dd); 8.17(dd); 8.32(broad peak); 10.97(s).

Method 2
A mixture of 3-nitrobenzenesboronic acid (20g), methyl 3-bromobenzoate (27g), sodium carbonate (14g) and 10% palladium on cart on (50% wet paste, 1g) in methanol (120ml) was heated under reflux for 2 hours. The mixture was taken off reflux, and diluted with iso-propyl acetate (240ml) and cooled to room temperature. The mixture is stirred under an atmosphere of hydrogen until uptake ceases, water (80ml) is added and the suspension is filtered. The filtrate is separated and the organic phase is washed with brine. The organic solution is concentrated by distillation to a low volume, cooled to room temperature and then treated sequentially with N-tert-butoxycarbonylglucose (21g) and 1,3-disopropylcarbodiimide (19ml) at less than 30°C. The mixture is stirred for 1 hour, filtered and the solid is washed with further iso-propyl acetate. The combined filtrates are washed with 2M aqueous sodium carbonate and then water. The organic solution is treated with concentrated hydrochloric acid (35ml), stirred overnight and the mixture is filtered to give the title compound as a white solid (33g).

Methyl 3’-[[((2S)-2-((3-chlorophenyl)-2-hydroxyethanoyl)amino)acetyl]amino][1,1’-biphenyl]-3-carboxylate

A suspension of methyl 3’-[[aminoacetyl]amino][1,1’-biphenyl]-3-carboxylate hydrochloride (50g) in ethyl acetate (350ml) is treated with 1M aqueous sodium carbonate (250ml) at room temperature. The lower aqueous phase is discarded, 1-hydroxybenzotriazole hydrate (10g) and then dicyclohexylcarbodiimide (30.6g) is added to the organic phase and the mixture is cooled to approximately 10°C. This mixture is treated with a solution of (R)-3-chloromandelic acid (5.8g) in ethyl acetate (40ml) over approximately 1 hour. The mixture is stirred for several hours and filtered. The filtrate is washed with 6%w/w aqueous sodium bicarbonate and water, and the organic phase is concentrated to low volume. Isopropanol is added and the organic solution is further concentrated to low volume. The organic solution is warmed to 70°C, treated with water, cooled to room temperature and the mixture is filtered to give the title product (60g).

Methyl 3’-[[2-[[((2R)-2-((3-chlorophenyl)-2-hydroxyethyl)amino)ethyl]amino][1,1’-biphenyl]-3-carboxylate hydrochloride

Method 1

A solution of methyl 3’-[[((2S)-2-((3-chlorophenyl)-2-hydroxyethanoyl)amino) acetyl]amino][1,1’-biphenyl]-3-carboxylate (10g) in tetrahydrofuran (40ml) is heated to 40-60°C and treated with a solution of 1M borane-tetrahydrofuran complex in tetrahydrofuran (51ml) over 15-60 minutes. The mixture is heated at this temperature for approximately 2 hours, then treated with further of 1M borane-tetrahydrofuran complex in tetrahydrofuran (6.7ml). After approximately 2 hours further, 1M borane-tetrahydrofuran complex in tetrahydrofuran (4.4ml) is added. The reaction is stirred overnight at this temperature, and then methanol (13ml) is added. A solution of anhydrous
hydrogen chloride (prepared from acetyl chloride (4.7ml) and methanol (50ml) is added to the mixture, and the resulting suspension is concentrated to low volume, diluted with ethyl acetate, cooled to 0-5°C and filtered to give the title compound as a white solid (8.2g).

Method 2
A suspension of methyl 3’-(((2S)-2-(3-chlorophenyl)-2-hydroxyethanoyl] amino) acetyl]amino[1,1’-biphenyl]-3-carboxylate (10g) in toluene (44ml) is heated to 100°C and treated with a solution of borane-dimethylsulfide complex (4.9ml) over 60-120 minutes. The mixture is heated for a further 1-4h, cooled and treated with ethanol (44ml). Concentrated hydrochloric acid (5.6ml) is added, the suspension is stirred for 2-20 hours and filtered to give the title compound as a white solid (6.6g).

3’-[[2-[[2(R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]ethyl]amino][1,1’-biphenyl]-3-carboxylic acid hydrochloride

A suspension of methyl 3’-[[2-[[2(R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]ethyl]amino][1,1’-biphenyl]-3-carboxylate hydrochloride (10g) and methanol (67ml) at 40-50°C is treated with 1.5N aqueous sodium hydroxide (60ml) and held at this temperature for at least 1 hour. This solution is added to a solution of concentrated hydrochloric acid (10ml) in water (20ml) and methanol (33ml) at 50°C. The resulting suspension is cooled to room temperature and filtered to give the title compound (8g).

Mass spec. M+H = 411/413 (electrospray).

1H NMR (400MHz, DMSO) δ ppm: 3.06(dd); 3.17(t); 3.25(dd); 3.52(t); 5.07(d); 6.10(broad peak); 6.36(broad peak); 6.70(dd); 6.89(d); 6.92(s); 7.23(dd); 7.38(m, broad); 7.47(s); 7.57(dd); 7.86(d); 7.92(d); 8.14(s); 9.03(broad peak); 9.41(broad peak); 13.04(broad peak).
Claims

1. A process for preparation of a compound of Formula (IA) or a pharmaceutically acceptable salt thereof:

![Chemical Structure](image)

wherein \(R^1\) is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, \(C_{1-6}\)alkoxy, \(C_{1-6}\)alkyl, hydroxymethyl, trifluoromethyl, \(-NR^6R^6\), and \(-NHSO_2R^6\), where each \(R^6\) is independently hydrogen or \(C_{1-6}\)alkyl;

\(R^2\) is hydrogen or \(C_{1-6}\)alkyl;

\(R^3\) is \(CO_2R^7\) where \(R^7\) is hydrogen or \(C_{1-6}\)alkyl;

\(R^4\) and \(R^5\) are independently hydrogen, \(C_{1-6}\)alkyl, or \(-CO_2C_{1-6}\)alkyl; and

\(Y\) is N or CH

comprising the step of preparing a diamide of Formula (II) or a pharmaceutically acceptable salt thereof:

![Chemical Structure](image)

wherein \(R^1\) is an aryl, pyridyl, thiazolyl, phenoxymethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, \(C_{1-6}\)alkoxy, \(C_{1-6}\)alkyl, hydroxymethyl, trifluoromethyl, \(-NR^6R^6\), and \(-NHSO_2R^6\), where each \(R^6\) is independently hydrogen or \(C_{1-6}\)alkyl;

\(R^2\) is hydrogen or \(C_{1-6}\)alkyl;

\(R^3\) is \(CO_2R^7\) where \(R^7\) is \(C_{1-6}\)alkyl;

\(R^4\) and \(R^5\) are independently hydrogen, \(C_{1-6}\)alkyl, or \(-CO_2C_{1-6}\)alkyl; and

\(Y\) is N or CH.

2. A process for the preparation of a compound of Formula (IA):
wherein R¹ is an aryl, pyridyl, thiazolyl, phenoxyethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C₁₋₄ alkoxy, C₁₋₄ alkyl, hydroxymethyl, trifluoromethyl, -NR²R⁶, and -NHSO₂R⁶, where each R⁵ is independently hydrogen or C₁₋₄ alkyl;
R² is hydrogen or C₁₋₄ alkyl;
R³ is CO₂R⁷ where R⁷ is hydrogen or C₁₋₄ alkyl;
R⁴ and R⁵ are independently hydrogen, C₁₋₄ alkyl, -CO₂C₁₋₄ alkyl; and
Y is N or CH, or a pharmaceutically acceptable salt thereof, comprising reduction of a compound of Formula (II):

wherein R¹ is an aryl, pyridyl, thiazolyl, phenoxyethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C₁₋₄ alkoxy, C₁₋₄ alkyl, hydroxymethyl, trifluoromethyl, -NR²R⁶, and -NHSO₂R⁶, where each R⁵ is independently hydrogen or C₁₋₄ alkyl;
R² is hydrogen or C₁₋₄ alkyl;
R³ is CO₂R⁷ where R⁷ is C₁₋₄ alkyl;
R⁴ and R⁵ are independently hydrogen, C₁₋₄ alkyl, or -CO₂C₁₋₄ alkyl; and
Y is N or CH, or a pharmaceutically acceptable salt thereof, and optionally the step of hydrolysis of the resulting ester group R⁷ in Formula (I) to produce a compound of Formula (I) wherein R⁷ is H.

3. The process as claimed in claims 1 or 2 wherein R¹ represents phenoxyethyl or phenyl optionally substituted by one, two or three substituents selected from halogen, hydroxy, C₁₋₄ alkoxy, C₁₋₄ alkyl, hydroxymethyl and trifluoromethyl.

4. The process as claimed in claim 3 wherein R¹ represents phenoxyethyl or phenyl substituted by a chlorine, fluorine or bromine atom or a methyl or trifluoromethyl group.

5. The process as claimed in any one of claims 1-4 wherein R² is hydrogen or methyl.
6. A process as claimed in any one of claims 1-5 wherein at least one of R⁴ and R⁵ is hydrogen.

7. The process of any one of claims 1-6 wherein said compound of Formula (Ia) is selected from the group consisting of:
3'-[[2R-[[2-(3-chlorophenyl)-2R-hydroxyethyl]amino]propyl][amino]-[1,1'-biphenyl]-2,4-dicarboxylic acid;
(R)-3'-[[2-[[2-hydroxy-3-phenoxypropyl]amino]ethyl]amino]-[1,1'-biphenyl]-3-carboxylic acid;
(R)-3'-[[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]ethyl]amino]-[1,1'-biphenyl]-2-methyl-5-carboxylic acid;
(R)-3'-[[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]ethyl]amino]-[1,1'-biphenyl]-3-carboxylic acid; and pharmaceutically acceptable salts thereof.

8. A compound of Formula (II) or a pharmaceutically acceptable salt thereof:

![Chemical Structure](image)

wherein R¹ is an aryl, pyridyl, thiazolyl, phenoxyethyl, or pyrimidyl group, optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxy, C₁₋₆alkoxy, C₁₋₆alkyl, hydroxymethyl, trifluoromethyl, -NR⁵R⁶, and -NHSO₂R⁶, where each R⁶ is independently hydrogen or C₁₋₆alkyl;
R² is hydrogen or C₁₋₆alkyl;
R³ is -CO₂C₁₋₆alkyl;
R⁴ and R⁵ are independently hydrogen, C₁₋₆alkyl, or -CO₂C₁₋₆alkyl; and
Y is N or CH.

9. A process for the preparation of a compound of Formula (II) comprising reaction of a compound of Formula (III) with a compound of Formula (IV).

![Chemical Structure](image)
10. A process as claimed in claim 9 which further comprises preparing a compound of Formula (IV) using a one-pot reaction in which a compound of Formula (IV) is reacted with a compound of Formula (VII) in the presence of a palladium on carbon catalyst and then reduced under hydrogen.

(VI)
(VII)

11. A compound of Formula (IV) or a pharmaceutically acceptable salt thereof:

(IV)

wherein:
R² is hydrogen or C₁₋₆ alkyl;
R³ is -CO₂C₁₋₆ alkyl;
R⁴ and R⁵ are independently hydrogen, C₁₋₆ alkyl, or -CO₂C₁₋₆ alkyl; and
Y is N or CH.
A. CLASSIFICATION OF SUBJECT MATTER

IPC 7: C07C237/06 C07C229/52 C07D213/80 A61K31/44 A61K31/24
A61P3/04 A61P3/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07C C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 97 21666 A (GLAXO GROUP LTD ;HARTLEY CHARLES DAVID (GB); CARTER MALCOLM CLIVE) 19 June 1997 (1997-06-19) page 10, line 4 -page 13, line 5</td>
<td>2,9</td>
</tr>
<tr>
<td>A</td>
<td>GB 1 551 260 A (ALLEN & HANBURYS LTD) 30 August 1979 (1979-08-30) page 2, line 55 -page 6, line 19</td>
<td>2,9</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. X Patent family members are listed in annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"*" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"**" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"***" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"*" member of the same patent family

Date of the actual completion of the international search

16 February 2001

Date of mailing of the international search report

23/02/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Seitner, I
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
Continuation of Box I.2

Claims Nos.: 1

Present claim 1 relates to a process for the preparation of compounds of formula (IA). In fact, claim 1 does not provide any technical features related to the process that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claim impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear (and/or concise), namely claims 2-11.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 655689 B</td>
<td>05-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2849392 A</td>
<td>27-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 670007 B</td>
<td>27-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7751894 A</td>
<td>12-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2083323 A</td>
<td>21-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1073428 A,B</td>
<td>23-06-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1106396 A,B</td>
<td>09-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1151401 A,B</td>
<td>11-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9500345 A</td>
<td>17-04-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 280328 B</td>
<td>13-12-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69213892 D</td>
<td>24-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69213892 T</td>
<td>17-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 543662 T</td>
<td>03-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2094308 T</td>
<td>16-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 925255 A</td>
<td>21-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3021245 T</td>
<td>31-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 218496 A</td>
<td>27-12-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 66816 A</td>
<td>30-01-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 103825 A</td>
<td>05-04-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TL 110804 A</td>
<td>13-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2991985 B</td>
<td>20-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9188669 A</td>
<td>22-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2654323 B</td>
<td>17-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6025118 A</td>
<td>01-02-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 149679 B</td>
<td>15-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9206740 A</td>
<td>31-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 179246 B</td>
<td>28-05-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 245188 A</td>
<td>26-07-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2095344 C</td>
<td>10-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2081113 C</td>
<td>10-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5977374 A</td>
<td>02-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5576340 A</td>
<td>19-11-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5635534 A</td>
<td>03-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9208960 A</td>
<td>19-05-1993</td>
</tr>
</tbody>
</table>

GB 1551260	30-08-1979	AU 509065 B	17-04-1980
		AU 2213377 A	17-08-1978
		BE 851232 A	09-08-1977
		CH 630603 A	30-06-1982
		DE 2704895 A	11-08-1977
		DK 52977 A,B	10-08-1977
		ES 455741 A	16-04-1978
		ES 467069 A	16-10-1979
		FR 2362114 A	17-03-1978
		JP 52097926 A	17-08-1977
		NL 7701304 A	11-08-1977
		SE 440348 B	29-07-1985
		SE 7701379 A	10-08-1977
		US 4154761 A	15-05-1979
		ZA 7700508 A	28-12-1977