
US 2005O102459A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0102459 A1

Zimmer (43) Pub. Date: May 12, 2005

(54) PMI LOADER AND EXECUTION Publication Classification
MECHANISM SUPPORTING EXTENSIBLE
PM EVENT HANDLERS (51) Int. Cl." ... G06F 9/00

(52) U.S. Cl. .. 710,260
(76) Inventor: Vincent J. Zimmer, Federal Way, WA

(21)

(22)

(62)

C DRIVER 1 D

"SMMHANDLER"

(US) (57) ABSTRACT

Correspondence Address: A method and System that enables executable content in the
BLAKELY SOKOLOFFTAYLOR & ZAFMAN form of one or more software drivers or firmware volumes
12400 WILSHIRE BOULEVARD to be loaded into the native mode of an Itanium- or IA-64
SEVENTH FLOOR based processor. The mechanism allows for multiple drivers,
LOS ANGELES, CA 90025-1030 (US) possibly written by different parties, to be installed for these

operations. An agent that registers event handlers provided
Appl. No.: 11/010,930 by the drivers runs in the EFI boot-services mode and is

composed of a processor-specific component that binds the
Filed: Dec. 13, 2004 drivers and a platform component that abstracts chipset

control of the PMI (Platform Management Interrupt) signals
corresponding to a PMI event triggering condition. Accord

Related U.S. Application Data ingly, the functionality of the native mode the processors can
be extended through add-on drivers written by parties other

Division of application No. 09/854,174, filed on May than the OEM from the computer system or the BIOS vendor
11, 2001, now Pat. No. 6,848,046. for the System.

INSTANTATESMM
EXTENSIBILITY FRAMEWORK

EFSMM BASE
PROTOCOL DRIVER

INSTALLATION

(LEGACY) - -xM.EVENT

EFI SYSTEM
PARTITION

1O
48 50

SMM-ONLY MEMORY
(SMRAM)

PUBLISH
- - - REGISTER

SERVICE MEMORY
ALLOC SVCS

FLE TYPE =

E.G.,
DRIVER7. SMH HANDLERS

2, 3, 4, 5, 6 & 7

WELSÅS I-HE („KOVEDET)

(WVHWS) /\?|OWNE W ATINO-WIWNS
09

Patent Application Publication May 12, 2005 Sheet 1 of 8

Patent Application Publication May 12, 2005 Sheet 2 of 8 US 2005/0102459 A1

XMIEVENT RECEIVED BY CPU(S)

VECTOR TO RELOCATED CODE ENTRY IN
SMRAM; BEGIN EXECUTION OF SMMNUB

56
MULTI

PROCESSOR
SYSTEM2

54

55

NO

SYNCRONIZE ALL PROCESSORS AND EXECUTE
THE FOLLOWING SMM FUNCTIONS ON A

SINGLE PROCESSOR

SAVE MACHINE STATE WITH CPU H/W
AND SMMNUB

ANY
EGACY 16-B
HANDLERS

SWITCH THE GDT FOR FLAT32 MODE

DISPATCH NATIVE 32-BIT HANDLERS IN ORDERN/62

64

57

58

EXECUTE LEGACY
16-BIT HANDLER(S)

60

NO

61

EXECUTE CODE TO
COMPLETION OF

HANDLER

PROPER
ANDLERT

NO

DISPATCH NEXT NATIVE 32-BIT HANDLER

63

RETURN PROCESSOR(S) XM EVENT
TO PRIOR EXECUTION HANDLING

MODE COMPLETE

67

66

FIG. 2

Patent Application Publication May 12, 2005 Sheet 3 of 8 US 2005/0102459 A1

INSTANTIATE SMM BASE: Initialize;
LOAD STARTUP CODE FOR SMMNUB INTO 68

SMRAMAT DEFAULT CPU ADDRESS

TRANSFER CONTROL TO REAL MODEAT
DEFAULT CPU ADDRESS 69

ASCERTAIN AND ALLOCATE PERMISSIBLE 70
ADDRESS RANGES

INVOKE SMM ACCESS:Open SERVICE 71

RELOCATE SMRAM FROM DEFAULT CPU 72
ADDRESS TO PLATFORMADDRESS

EXECUTE REAL-MODE COMPONENT TO
SERVICE LEGACY FUNCTION AND SWITCH U73

PROCESSORTO PROTECTED MODE

HAND-OFF CONTROL TO SMM. CORE 74

FIG. 3

Patent Application Publication May 12, 2005 Sheet 4 of 8

IF REQUIRED)

- FLAT32
- NO PAGING

- CACHE ENABLED

CONFIGURATION TABLE
REGISTRATION

SMMNUB

FIG. 4

SYNCHRONIZE ALL PROCESSORS IN
MULTIPROCESSOR CONFIG

SAVE MACHINE STATE (INCLUDING FP,

FLUSH CACHE

SWITCH MODE TO PROTECTED MODE

FREE ALL PROCESSORS IN A MULT
PROCESSOR CONFIGURATION

RESTORE MACHINE STATE (INCLUDING
FP, IF REQUIRED)

EXECUTE RSM INSTRUCTIONS ON ALL
PROCESSORS

US 2005/0102459 A1

75

7 6

7 8

24

88

90

92

Patent Application Publication May 12, 2005 Sheet 5 of 8 US 2005/0102459 A1

RECEIVE REGISTER REO UEST FROMANOTHER 100
BOOT SERVICE DRIVER OR APPLICATION

GENERATE ANSMI USING ANIP OR SMM. CONTROL
PROTOCOL. PASS ARGUMENT ON MEMORY STACK - 102

USINGESPAS IF CALLING ANOTHER C-MODE FIG. 5

104 PERFORMMEMORY RELOCATION; REPLACEST
POINTER WITH A POINTERTOSMST

OPEN SMRAM

ENOUGH
SMRAM

AVAILABLE

106

ALLOCATE BUFFER
FOR IMAGE

YES 116

No EXTEND RAM

ALERT CALLER

CLOSE SMRAM &
ERROR OUT

DID
ALLOCATION
SUCCEED?

LOAD IMAGE INTO
SMRAM

YES

SMMNUB
REGISTERS NEW

CLOSE SMRAM &

EXIT HANDLER

126 124

Patent Application Publication May 12, 2005 Sheet 6 of 8 US 2005/0102459 A1

SEARCH ALL FIRMWARE VOLUMES THAT ARE 130
MATERALIZED DURING PRE-BOOT

FOREACH FRMWARE VOLUME 132

CONFORMAN
FILE TYPES

136
YES

FOREACH FRMWARE FILE INFIRMWARE VOLUME 138

FILE TYPE =
"SMMHANDLER"

NO
142

YES

NO
DECOMPOSE THE SECTIONS OF THE FIRMWARE FILE 144

IF SECTION CONTAINS A PE32+ EXECUTABLE IMAGE
THAT IS OF THE SAME MECHANISMAS THE SMM BASE 146
IMPLEMENTED OR SMMBASE IS IA32 AND 16-BIT LEGACY
HANDLER: INSTALLEXECUTABLE IMAGE OR HANDLER

140

134

FIG. 6

Patent Application Publication May 12, 2005 Sheet 7 of 8 US 2005/0102459 A1

EFI2.0 SMM BASE DRIVER LOADS 64-BIT
VERSION OF SMMNUB

EFICALLS PALPMENTRYPOINT SERVICE
WITH LOADED IMAGE OF EF2.0 SMMNUB IN

MEMORY

PAL PROC REGISTERS ENTRY WITH
PROCESSOR-SPECIFIC RESOURCE (E.G., MSR)

FIG. 7

148

150

152

LAN/WAN/
INTERNET

FIG. 9 200

Patent Application Publication May 12, 2005 Sheet 8 of 8

154 PAL PMI HANDER RECEIVES PM| EVENT

PAL PMI HANDER CALLS SSMNUB;
PROCESSING VECTORED TONUB ENTRY POINT

156

155

MULTI
PROCESSOR
SYSTEM2

NO

YES

RENDEZVOUS ALL PROCESSORS, SAVE 157
MACHINE STATES OF PROCESSORS

SAVE MACHINE STATE OF SELECTED CPU WITH 158
CPU H/W AND SMMNUB

DISPATCH NATIVE 64-BIT HANDLERS IN ORDER-162

164
EXECUTE CODE TO

YES COMPLETON OF
HANDLER

NO

DISPATCH NEXT NATIVE 64-BIT HANDLER

163

RETURN PROCESSOR(S) PM EVENT
TO PRIOR EXECUTION HANDLING

MODE COMPLETE

165 PROPER

167

166

FIG. 8

US 2005/0102459 A1

US 2005/0102459 A1

PM LOADER AND EXECUTION MECHANISM
SUPPORTING EXTENSIBLE PM EVENT

HANDLERS

RELATED APPLICATIONS

0001. The present application is a divisional application
of application Ser. No. 09/854,174 entitled “SMM
LOADER AND EXECUTION MECHANISM FOR COM
PONENT SOFTWARE FOR MULTIPLE ARCHITEC
TURES,” filed May 11, 2001, the benefit of the filing date
for which is claimed under 35 U.S.C. S 120.

FIELD OF THE INVENTION

0002 The present invention concerns computer systems
in general, and a mechanism for extending the functionality
of the Processor Management Interrupt (PMI) operations of
Itanium and IA-64 based processors.

BACKGROUND INFORMATION

0003. Since the 386SL processor was introduced by the
Intel Corporation, SMM has been available on IA32 pro
ceSSors as an operation mode hidden to operating Systems
that executes code loaded by BIOS or firmware. SMM is a
Special-purpose operating mode provided for handling Sys
tem-wide functions like power management, System hard
ware control, or proprietary OEM-designed code. The mode
is deemed “hidden” because the operating system (OS) and
Software applications cannot see it, or even access it.
0004 IA32 processors are enabled to enter SMM via
activation of an SMI (System Management Interrupt) signal.
A similar signal called the PMI (Processor Management
Interrupt) Signal that is roughly analogous to the SMI signal
is used for Itanium TM-class processors. For simplicity, both
SMI and PMI signals are sometimes referred to as XMI
Signals herein.
0005 To date, most BIOS implementations that leverage
the SMM capability of the foregoing Intel processors simply
register a monolithic Section of code that is created during
the build of the BIOS to support a specific function or set of
functions particular to systems that use the BIOS. This code
comprises 16-bit assembly in IA32 and 64-bit assembly for
Itanium processors. The monolithic code Segments for these
legacy implementations runs from beginning to completion
in response to all XMI activations.
0006 There is no provision in today's systems for the
registration or execution of third-party SMM code, thus
allowing no extensibility to the SMM framework. Such
extensibility is often desired. For example, if the functions
provided by the SMM code provided by the original equip
ment manufacturer (OEM) or the BIOS vendor for a given
platform is insufficient, a developer or value-added reseller
(VAR) has to either license the existing code from the BIOS
vendor or OEM and attempt to graft their own logic into
their implementation of SMM code, or live with the insuf
ficiency, since the present SMM framework does not provide
an alternative way to modify or extend the functions pro
Vided by the monolithic code Segment. In addition, today's
implementations on IA32 processors are restricted to the
16-bit mode of the processor, thus limiting the Size of the
code and the possible leveraging of 32-bit or 64-bit software
engineering techniques. Also, in that SMM is often used for

May 12, 2005

chipset work-arounds (e.g., CPU or chipset errata that pro
duces an erroneous and/or unpredictable result due to a
design or manufacturing flaw in the chipset or CPU), the
ability to get this key Software update is gated by the
monolithic BIOS implementation of the BIOS vendor or
OEM.

0007. In today's environment, most chipset vendors opt
for having the operating System Vendor integrate Such work
arounds using an OS-driver. In general, BIOS updates for
SMM functions are problematic to effect and since the OS
already has a hardware extensibility mechanism via its own
driver model, BIOS vendors and OEMs are less motivated
to provide these types of BIOS updates.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. The foregoing aspects and many of the attendant
advantages of this invention will become more readily
appreciated as the same becomes better understood by
reference to the following detailed description, when taken
in conjunction with the accompanying drawings, wherein:

0009 FIG. 1 is a schematic diagram illustrating an
exemplary implementation of the present invention that
enables various event handlers to be loaded into a hidden
memory space and executed in response to a SMI or PMI
(XMI) event;
0010 FIG. 2 is a flowchart illustrating the logic used by
the present invention when handling the XMI event;
0011 FIG. 3 is a flowchart illustrating the logic used by
the present invention when loading and launching execution
of an System Management Mode (SMM) Nub that is used to
manage event handling when a processor is operating in
SMM;

0012 FIG. 4 is a block diagram illustrating various
function and service components of the SMM Nub;
0013 FIG. 5 is a flowchart illustrating the logic used by
the invention when registering an event handler;
0014 FIG. 6 is a flowchart illustrating the logic used by
the invention when registering and installing event handlers
that are Stored in firmware Volumes that are Scanned during
a pre-boot process,

0015 FIG. 7 is a flowchart illustrating operations per
formed by the invention when registering event handlers for
Servicing processor management interrupt (PMI) event with
an Itanium TM processor;
0016 FIG. 8 is a flowchart illustrating operations per
formed by the invention when handler a PMI event; and
0017 FIG. 9 is a schematic diagram of a person com
puter System Suitable for implementing the present inven
tion.

DETAILED DESCRIPTION

0018. In the following description, numerous specific
details are provided to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other
methods, components, etc. In other instances, well-known

US 2005/0102459 A1

Structures or operations are not shown or described in detail
to avoid obscuring aspects of various embodiments of the
invention.

0.019 Reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular
feature, Structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the
phrases “in one embodiment” or “in an embodiment” in
various places throughout this Specification are not neces
Sarily all referring to the same embodiment. Furthermore,
the particular features, Structures, or characteristics may be
combined in any Suitable manner in one or more embodi
mentS.

0020. The present invention provides a mechanism that
enables executable content in the form of one or more
Software drivers to be loaded into the System Management
Mode (SMM) of an Intel 32-bit family of microprocessor
(i.e., IA-32 processors), or the native mode of an Itanium
based processor with a PMI signal activation. The state of
execution of code in IA32 SMM is initiated by an SMI
signal and that in Itanium TM processors is initiated by a PMI
Signal activation; for Simplicity, these will generally be
referred to as SMM. The mechanism allows for multiple
drivers, possibly written by different parties, to be installed
for SMM operation. An agent that registers the drivers runs
in the EFI (Extensible Firmware Interface) boot-services
mode (i.e., the mode prior to operating System launch) and
is composed of a CPU-specific component that binds the
drivers and a platform component that abstracts chipset
control of the XMI (PMI or SMI) signals. The API's (appli
cation program interfaces) providing these sets of function
ality are referred to as the SMM Base and SMM. Access
Protocol, respectively.
0021. In conventional SMM implementations, SMM
space is often locked by the platform software/firmware/
BIOS via hardware mechanisms before handing off control;
this grants firmware the ability to abstract the control and
Security of this binding. In contrast, the Software abstraction
via the SMM. Access protocol provided by the invention
obviates the need of users of this facility to know and
understand the exact hardware mechanism, thus allowing
drivers to be portable acroSS many platforms.
0022 AS provided in further detail below, the present
invention includes the following features: a library in SMM
for the drivers usage, including an I/O access abstraction
and memory allocation Services, a means to communicate
with drivers and applications executing in non-SMM mode,
an optional parameter for periodic activation at a given
frequency; a means to authenticate the drivers on load into
SMM; the ability to close the registration capability; the
ability to run in a multi-processor environment where many
processors receive the XMI activation; and finally, the capa
bility to run legacy IA32 SMM code as a distinguished
registered event handler. A characteristic of the System is
that all event handlers run in the native processor mode of
Itanium TM or in the case of IA32, the framework will put the
processor into flat 32 mode prior to invoking the event
handlers, while running the optional legacy IA32 handler(s)
in real-mode (i.e., 16-bit mode).
0023. A high-level view of an exemplary implementation
of the invention is depicted in FIG. 1. The implementation

May 12, 2005

is enabled through use of the EFI framework, which defines
a new model for the interface between operating Systems
and platform firmware. The interface consists of data tables
that contain platform-related information, plus boot and
runtime Service calls that are available to the operating
System and its loader. Together, these provide a Standard
environment for booting an operating System and running
pre-boot applications.

0024. The process for producing the SMM extensibility
framework is initiated in a block 10, wherein The SMM
extensibility framework is instantiated. This includes install
ing an EFISMM base protocol driver in a block 12. The EFI
SMM base protocol, SMM BASE, is a CPU-specific pro
tocol that is published by the CPU driver or another agency
that can abstract the ISA-specific details of an IA32 or
Itanium processor. Once installed, SMM BASE publishes
an SMM handler register service in a block 14. Publication
of the handler register Service enables legacy and add-on
drivers that are Stored on various Storage devices, including
an EFI system partition 16, a BIOS flash chip 18 and on a
storage device accessed via a network 20 to register SMM
event handlers in a block 22. In addition to these types of
Storage devices, the driverS may be stored on other persistent
Storage devices that are accessible to the computer System in
which the invention is implemented, including motherboard
based ROMs, option-ROMs contained on add-on peripheral
cards, local hard disks and CD ROMs, which are collec
tively depicted by a firmware volume 23. (It is noted that EFI
system partition 16, BIOS flash chip 18 and the remote
Storage device on which driver 6 resides also may comprise
firmware volumes.) As depicted in FIG. 1, these drivers
include a legacy driver 1 and an add-on driver 2 Stored in
EFI system partition 16, add-on drivers 3, 4, and 5, which
are stored on BIOS flash chip 18, and an add-on driver 6 that
is accessed from a remote Storage device (e.g., file server)
via network 20. AS used herein, the term "add-on' corre
sponds to drivers and firmware files that were not provided
with the original firmware of the computer System as pro
vided by the original equipment manufacture (OEM) of that
System.

0025. In an optional mode, the EFI SMM base protocol
driver may scan various firmware volumes to identify any
drivers that are designated for Servicing XMI events via
SMM. In one embodiment, these drivers are identified by
their file type, such as exemplified by a “DRIVER7.SMH”
file 25 corresponding to an add-on driver 7.

0026. During the installation of the EFI SMM base
protocol driver, an SMM Nub 24 is loaded into SMRAM 26,
which comprises an SMM-only memory space. As
explained in further detail below, SMM Nub 24 is respon
Sible for coordinating all activities while control is trans
ferred to SMM, including providing an SMM library 28 to
event handlers that includes PCI and I/O services 30,
memory allocation Services 32, and configuration table
registration 34.

0027) Registration of an SMM event handler is the first
Step in enabling the handler to perform a particular XMI
event servicing function it is designed to perform. An SMM
event handler comprises a set of code (i.e., coded machine
instructions) that when executed by the System processor
(CPU) performs an event service function in a manner
similar to an interrupt service routine. Typically, each SMM

US 2005/0102459 A1

event handler will contain code to Service a particular
hardware component or Subsystem, or a particular class of
hardware. For example, SMM event handlers may be pro
Vided for Servicing errors cause by the System's real time
clock, I/O port errors, PCI device errors, etc. In general,
there may be Some correspondence between a given driver
and an SMM event handler. However, this is not a strict
requirement, as the handlers may comprise a set of func
tional blocks extracted from a single driver file or object.
0028. When the event handler for legacy driver 1 is
registered, it is loaded into SMRAM 26 as a legacy handler
36. A legacy handler is an event handler that is generally
provided with the original System firmware and represents
the conventional mechanism for handling an XMI event. AS
each add-on SMM event handler is registered in block 22, it
is loaded into an add-on SMM event handler portion 38 of
SMRAM 26; once all of add-on event handlers are loaded,
add-on SMM event handler portion 28 comprises a set of
event handlers corresponding to add-on drivers 2-7, as
depicted by a block 42. In addition, as each SMM event
handler is registered, it may optionally be authenticated in a
block 44 to ensure that the event handler is valid for use with
the particular processor and/or firmware for the computer
System. For example, an encryption method that implements
a public key may be used. As SMM event handlers are
registered, they are added to a list of handlers 46 maintained
by SMM Nub 24.
0029. Once all of the legacy and add-on SMM event
handlers have been registered and loaded into SMRAM 26
and proper configuration data (metadata) is written to SMM
Nub 24, the SMRAM is locked, precluding registration of
additional SMM event handlers. This system is now ready to
handle various XMI events via SMM.

0030. With reference to FIGS. 1 and 2, the process for
handling an XMI event with an IA32 processor proceeds as
follows: In a block 54, an XMI event signal 48 is received by
a CPU 50. In an IA32 multiprocessor environment, the XMI
event Signal is received by each of the processors. In general,
for IA32 processors, an XMI (SMI) event may be generated
in response to activation of a pin on the System chipset, buS
cycle type, or inter-processor interrupt (IPI) that cause an
IA32 processor to enter SMM. For Itanium TM processors, an
XMI (PMI) event may be generated in response to activation
of a pin on the System chipset, bus cycle type, or an IPI that
causes an Itanium TM processor to return to Physical Mode
and execute code registered with the PAL (Processor
Abstraction layer) for servicing PMI events.
0031. In response to the XMI event, CPU 50 switches to
SMM mode and redirects the instruction pointer to the first
instruction in SMM Nub 24, wherein the SMM Nub begins
executing, as provided by a block 55. In a decision block 56,
a determination is made to whether the System is a multi
processor System. If the answer is yes, all of the processors
are synchronized in a block 57, whereby all but a selected
processor (e.g., the first processor that is identified during
the pre-boot process) are halted while the SMM Nub in the
Selected processor is executed. The machine State of each
CPU is then saved by both the CPU hardware and the SMM
Nub 24 in a block 58.

0032. Next, in a decision block 59, a determination is
made to whether there are any legacy 16-bit handlers that
have been registered and loaded. If there are, the code

May 12, 2005

corresponding to those legacy handlers is executed in a
block 60. The machine execution mode is then Switched to
a Flat32 protected mode in a block 61. The protected mode
comprises a flat 32-bit mode with non-paged 32-bit, Zero
based addressing.
0033) Once the execution mode Switch has been com
pleted, native 32-bit handlers are dispatched in order until an
appropriate event handler is executed to completion to
service the XMI event, as provided by start loop and end loop
blockS 62 and 63 in FIG. 2 and a block 52 in FIG.1. In one
embodiment, the event handlers are Stored as a linked list
that is traversed in order from top to bottom, wherein a first
event handler is dispatched and additional event handlers are
dispatched as needed. Each event handler contains a first
portion of code that is used to determine if that handler is the
proper handler for servicing the XMI event, as provided by
a decision block 64. A typical determination of this sort
comprises interrogating the hardware component, Sub
System, etc. corresponding to the event handler to see if an
error has occurred for that object. If an error has occurred,
the event handler is executed to completion in a block 65,
whereupon it returns a code to the SMM Nub indicating that
it has serviced the XMI event in a return block 66. If the
event handler determines that its corresponding device did
not cause the error, it returns a code to the SMM Nub
indicating such, and the SMM Nub dispatches the next event
handler in the list. This proceSS is repeated until the appro
priate event handler is executed.
0034. Upon acknowledgment of the XMI event being
handled, SMM Nub restores the machine state and executes
an appropriate instruction (RSM for IA32) for the processor/
all processors to return the processor(s) to its/their previous
processing mode in a block 67.
0035). With reference to FIG. 3, the EFI SMM base
protocol driver (SMM BASE) for IA32 processors is
installed through the following process. First, an SMM
BASE::Initialize service is called in a block 68. This is

implemented with a DXE (Driver Execution Environment)
Boot-Service driver that loads and exports this constructor.
0036). In response to instantiating the driver, the startup
code for SMM Nub 24 is loaded into SMRAM at the CPU
default SMRAM address (0x3000-segment, offset 0x8000)
while operating in protected mode. The processor mode is
then transferred to real-mode at the execution address
0x38000p in a block 69. Next, in a block 70, the permissible
address ranges for the platform's SMRAM implementation
is ascertained and allocated. This information may be
obtained by calling the SMM ACCESS::GetCapabilities
and SMM ACCESS: AcquireSmram Range methods with
the SMM BASE::Initialize driver, as described below. If
this driver doesn't exist, then the default policy will be
0xAO00-seg for IA32 processors and runtime-data for Ita
nium TM processors, with a default size of (128 Kbyte for
IA32 and 256 Kbyte for ItaniumTM).
0037 After the address range has been allocated, the
SMM ACCESS:Open service is invoked in a block 71 and
the initial address for the SMRAM is relocated from the
default CPU address (0x38000p) to the platform address in
a block 72. The relocated code will include a real-mode
component and a protected mode component. The real-mode
component will comprise the SMMEntry into the SMRAM
relocation address. In a block 73, this code is executed to

US 2005/0102459 A1

perform any legacy Services, as necessary, and Switch the
processor to protected mode operation. Control is then
handed off the SMM core in a block 74.

0038. As discussed above, SMM Nub 24 is responsible
for coordinating activities while the processor is operating in
SMM. The various functions and services provided by SMM
Nub 24 are graphically depicted in FIG. 4. These functions
and Services include Synchronizing all of the processors for
multiprocessor configurations, Saving the machine State,
including floating point registers, if required, and flushing
the cache, as provided by function blocks 75, 76, and 78.
The SMM Nub also provides a mode switching function 80
that Switches the processor mode from real mode to pro
tected mode, as discussed above with reference to block 73.
Mode Switching function 80 also enables the processor's
internal cache. Other functions provided by SMM Nub 24
include Setting up a call-Stack in SMRAM 26, maintaining
a list of handlers, and dispatching the handlers in order, as
depicted by function blocks 82,84, and 86.
0039 SMM Nub 24 provides a set of services to the
various event handlers through SMM library 28, including
PCI and I/O services 30, memory allocation services 32, and
configuration table registration Services 34. In addition,
SMM Nub 24 provides several functions that are performed
after the XMI event is serviced. If the computer system
implements a multiprocessor configuration, these processors
are freed by a function 88. A function 90 restores the
machine State of the processor(s), including floating point
registers, if required. Finally, a function 92 is used to execute
RMS instructions on all of the processors in a system.
0040 AS discussed above, the invention provides two
mechanisms for loading event handlers: (1) driver-based
installation; and (2) autonomous load from the firmware
Volumes.

0041) For driver-based installations, the SMM BASE
protocol shall be installed by a driver that is loaded by the
DXE dispatcher. After the SMM BASE protocol is
installed, it publishes an interface that enables event han
dlers to be registered and loaded. The protocol for registra
tion is described by the EFI 1.0 specification, which defines
a mechanism for publishing new callable interfaces in the
EFI environment. The SMM BASE protocol publication
essentially comprises exposing the API described in the
SMM-CIS (the SMM “Component Interface Interface
Specification,” or EFI2.0 document describing the EFI2.0
Protocol or API set that abstracts this registration mecha
nism in the pre-boot space) with the EFI core. The EFI core
maintains a protocol database of GUID/interface pointer
pairs. The GUID comprises a 128-bit globally-unique ID of
the interface.

0042. Through this mechanism, any driver that wishes to
install event handlers, wherein in one embodiment an event
handler is some code that can be PE32+ binary in the IA32
or Itanium TM instruction set, or legacy 16-bit handlers for
IA32, can use the standard mechanism of EFI 1.0 to discover
the SMM BASE protocol instance (via the core service
“LocateProtocol”) or register a notification with the EFI core
to be alerted when the SMM BASE protocol is installed. In
either case, once the SMM BASE protocol is installed,
various drivers can marshall the interface pointer to the
SMM BASE instance (via the EFI 1.0 “HandleProtocolser
vice”) and then invoke the SMM BASE::Register service.

May 12, 2005

The binary code that the driver consuming the SMM BASE
Service uses can be ascertaining from its own driver image,
a file from disk or network. The file can be in the firmware
volume or on the FAT disk partition.
0043 Registration of event handlers is further facilitated
by an SMM BASE::Register service. This service com
prises a DXE Boot-Service driver that permits registration of
an event handler. With reference to FIG. 5, the process for
registering an event handler begins in a block 100, wherein
a request to register an event handler is received by the
SMM BASE protocol driver from another boot service
driver or application (i.e., drivers 1-7). In response, an SMI
is generated in a block 102, using an IPI or SMMCON
TROL protocol. The argument is passed on the memory
Stack using the ESP memory Stack pointer as if calling
another handler. The handlers can be written in C and the
generated image PE32+. Next, in a block 104, memory
relocation is performed and the ST (System Table from
EFI1.0) pointer is replaced with a pointer to the SMST
(System Management System Table).
0044) Next, the SMRAM is opened in a block 106 using
the SMM ACCESS:Open service, which is access through
the SMM ACCESS protocol. Further details of SMM AC
CESS protocol are provided in the APPENDIX that follows.
The SMM ACCESS::Open service abstracts programming
of the memory controller to enable visibility of the SMRAM
from non-SMRAM based code. This enables the SMM
BASE protocol to copy and install code, such as the SMM

Nub, into SMRAM.

0045 Next, in a decision block 108 a determination is
made to whether enough SMRAM is available to hold the
event handler routine. If not enough SMRAM memory
Space is available, the logic proceeds to a block 110 in which
the caller is alerted. AS an option, in response to being
alerted, the caller may use the SMM ACCESS::Get Capa
bilities and SMM ACCESS: AcquireSmram Range method
to acquire additional memory space within the SMRAM, as
provided by a block 113. If there is not enough SMRAM
memory space available, the SMRAM is closed by calling
the SMM ACCESS::Close method and an error code is
returned to the caller in an error return block 114.

0046) If it is determined that there is enough SMRAM
memory space available, a memory buffer for the SMRAM
image of the handler is allocated in a block 116. A deter
mination to whether the allocation Succeeded is made in a
decision block 118. If the allocation wasn't Successful, the
logic proceeds to error return block 114. If the allocation is
Successful, an image of the event handler is loaded into the
SMRAM memory space that had been previously allocated
in a block 120. A determination is then made to whether the
image is good in a decision block 122. If not, the logic
proceeds to error return block 114. If the image is verified to
be good, SMM Nub 24 registers the new event handler by
adding it its list of handlers 46 in a block 124, and the
SMRAM is closed and the process returns to the caller in a
return block 126.

0047 The mechanism for autonomously loading event
handlers from firmware Volumes does not rely on having
another driver consume the SMM BASE interface and
SMM BASE::Register service. Rather than have drivers
initiate the registration process, the various firmware Vol
umes (FV) that are materialized during the pre-boot are

US 2005/0102459 A1

Scanned for Suitable driver files that contain event handlers
that may be loaded by the SMM BASE driver.
0.048. A firmware volume is a collection offirmware files.
Each firmware file in the firmware volume has a TYPE field
among other metadata in a firmware file header. Included
among the enumeration of type fields within a firmware file
header is a new TYPE called “5 mmHandler.” Understand
ing of the firmware volume and firmware file system Read
File services and this new type shall be known by all drivers
that implement and publish the SMM BASE interface.
0049. With reference to FIG. 6, the mechanism begins in
a block 130, wherein the SMM BASE driver searches all
firmware volumes that are materialized in the System during
pre-boot. As defined by start and end loop blocks 132 and
134, the following logic is applied to each of these firmware
volumes. In a decision block 136 a determination is made to
whether the firmware volume contains any firmware files
conformant with the firmware file system. If the answer is
no, the logic loops back to examine the next firmware
Volume. If one or more conformant firmware files are found,
each of these files are examined using the following process,
as defined by start and end loop blocks 138 and 140. In a
decision block 142, the SMM BASE drive examines the file
type of the current file to determine with it is an “SMM
Handler' file. If it is not, the logic loops back to begin
examination of the next file. If the file type is “5 mmHan
dler,” the SMM BASE driver decomposes the Sections of
the firmware file in a block 144, a section is the internal
packing mechanism within a firmware file. AS provided by
a block 146, if a Section contains a PE32+ executable image,
wherein PE32+ is a Portable Executable image type
described by Microsoft in the Portable Image specification
(posted on the Internet at “www.microsoft.com/hwdev/efi')
that is of the same machine type as which the SMM BASE
is implemented (e.g., the computer System is an IA32
machine and the handler is an IA32 PE32+ image) or if the
SMM BASE implementation is on an IA32 system that
supports loading legacy 16-bit handlers, the SMM BASE
driver shall install the executable image or legacy 16-bit
handler contained in the Section. The logic then proceeds to
proceSS Subsequent firmware files and firmware volumes in
a similar manner.

0050. In general, the SMM BASE shall assume that
arguments presented above for the SMM BASE::Register
will have default values, Such as floating-point Save and
MakeFirst==FALSE, when loading the handler autono
mously from a Firmware File.
0051. In general, the handling of an SMI with an IA-32
processor and a PMI with an Itanium-class processor
encompasses similar processes. However, there are Some
differences. A primary difference between is that the Ita
nium TM processors do not have a special CPU mode entered
upon activation of its XMI signal. Rather, Itanium TM pro
ceSSors only provide a mechanism to bind a handler into the
processor to handle a PMI event. This binding is effected via
a registration call into the Processor Abstraction Layer
(PAL), which is firmware provided by Intel for all Itanium
platform builders, and comprises part of the Itanium archi
tecture that is used to provide a consistent firmware interface
to abstract processor implementation-specific features.
0.052 Details of registering a handler and handling a PMI
event with an Itanium TM processor are shown in FIGS. 7

May 12, 2005

and 8. The registration process begins in a block 148, in
which the EFI2.0 SMM BASE driver loads a 64-bit version
of the SMM Nub. Upon loading the SMM Nub, the EFI calls
the PAL PMI ENTRYPOINT service with the loaded
image of the Nub in memory in a block 150, which creates
an entry point into the Nub code.
0053 During initialization, the PAL publishes a set of
services called PAL PROCS. One of these PAL PROCS is
then used to register the entrypoint with an appropriate
processor-specific resource, Such as the processor's model
Specific registers (MSR). Registration of the entrypoint
thereby creates a binding between the processor and the Set
of PMI event handlers that are accessed via the SMM Nub.

0054) With reference to FIG. 8, PMI event handling may
then be performed as follows. In a block 154, a PAL PMI
event handler receives a PMI event. The PAL PMI event
handler then calls SMM Nub 24 in a block 155, which
causes the processing of a processor that is Selected to
perform extensible PMI event handling to be vectored to the
Nub entry point that was registered above. In a decision
block 156, a determination is made to whether the system is
a multiprocessor System. If the answer is yes, all of the
processors are rendezvoused in a block 157, whereby all but
a Selected processor (e.g., the first processor that is identified
during the pre-boot process) are halted while the SMM Nub
in the Selected processor is executed. The machine State of
each CPU is then saved by both the CPU hardware and the
SMM Nub 24 in a block 158.

0055 Once the machine state(s) of the processor(s) has/
have been Saved, native 64-bit handlers are dispatched in
order until an appropriate event handler is executed to
completion to service the PMI event, as provided by start
loop and end loop blocks 162 and 163. As before, in one
embodiment the event handlers are stored as a linked list that
is traversed in order from top to bottom, wherein a first event
handler is dispatched and additional event handlers are
dispatched as needed. Each event handler contains a first
portion of code that is used to determine if that handler is the
proper handler for servicing the XMI event, as provided by
a decision block 164, which may typically include interro
gation of a corresponding hardware component in the man
ner discussed above. If a currently executed event handler is
determined to be the appropriate handler, that event handler
is executed to completion in a block 165, whereupon it
returns a code to the SMM Nub indicating that it has
Serviced the PMI event in a return block 166. If the event
handler determines that it is not the appropriate handler for
the PMI event, it returns a code to the SMM Nub indicating
such, and the SMM Nub dispatches the next event handler
in the list. In a manner Similar to that discussed above for
SMI event handling, this process is repeated until the
appropriate event handler is executed.
0056. Upon acknowledgment of the PMI event being
handled, SMM Nub restores the machine state and executes
an appropriate instruction (RSI) for the processor/all pro
cessors to return the processor(s) to its/their previous pro
cessing mode in a block 167.
0057 Exemplary Machine for Implementing the Inven
tion

0.058 With reference to FIG. 9, a generally conventional
personal computer 200 is illustrated, which is suitable for

US 2005/0102459 A1

use in connection with practicing the present invention. The
distributed platform firmware architecture of the invention
may also be implemented on WorkStations, laptops, and
computer Servers in a Similar manner. Personal computer
200 includes a processor chassis 202 in which are mounted
a floppy disk drive 204, a hard drive 206, a motherboard 208
populated with appropriate integrated circuits including one
or more microprocessors and memory modules (both not
shown), and a power Supply (also not shown), as are
generally well known to those of ordinary skill in the art.
Motherboard 208 also includes a local firmware storage
device 210 (e.g., flash EEPROM) on which the base portion
of the BIOS firmware is stored. To facilitate access to the
portion of the BIOS firmware that is retrieved from a remote
firmware Storage device 212 via a network 214, personal
computer 200 includes a network interface card 216 or
equivalent circuitry built into motherboard 208. Network
214 may comprise a LAN, WAN, and/or the Internet, and
may provide a wired or wireleSS connection between per
Sonal computer 200 and remote firmware storage device
212.

0059 A monitor 218 is included for displaying graphics
and text generated by Software programs that are run by the
personal computer and which may generally be displayed
during the POST test and other aspect of firmware load/
execution. A mouse 220 (or other pointing device) is con
nected to a serial port (or to a bus port) on the rear of
processor chassis 202, and Signals from mouse 220 are
conveyed to motherboard 108 to control a cursor on the
display and to Select text, menu options, and graphic com
ponents displayed on monitor 218 by Software programs
executing on the personal computer. In addition, a keyboard
222 is coupled to the motherboard for user entry of text and
commands that affect the running of Software programs
executing on the personal computer.

0060 Personal computer 200 also optionally includes a
compact disk-read only memory (CD-ROM) drive 224 into
which a CD-ROM disk may be inserted so that executable
files and data on the disk can be read for transfer into the
memory and/or into storage on hard drive 206 of personal
computer 200. If the base BIOS firmware is stored on a
rewriteable device, Such as a flash EEPROM, machine
instructions for updating the base portion of the BIOS
firmware may be stored on a CD-ROM disk or a floppy disk
and read and processed by the computer's processor to
rewrite the BIOS firmware stored on the flash EEPROM.
Updateable BIOS firmware may also be loaded via network
214.

0061 Although the present invention has been described
in connection with a preferred form of practicing it and
modifications thereto, those of ordinary skill in the art will
understand that many other modifications can be made to the
invention within the scope of the claims that follow. Accord
ingly, it is not intended that the Scope of the invention in any
way be limited by the above description, but instead be
determined entirely by reference to the claims that follow.
0062) Appendix

0063 SMM ACCESS Protocol for IA32
0064.) The SMM ACCESS protocol is published by a
chipset driver, namely the MCH driver for the 82815
chipset. This driver abstracts the capabilities of the memory

May 12, 2005

controller for opening, closing, and locking SMRAM. It also
describes the possible regions for the SMRAM, including
the location of the legacy frame buffer at 0xA0000, and
memory near the top of the physical DRAM (T-SEG).
0065. The SMM ACCESS protocol constructor should
register a call-back on ExitBootServices. The SMM AC
CESS protocol provides the following functions:
0.066 SMM ACCESS:Open
0067. This service abstracts programming of the memory
controller to enable visibility of the SMRAM from non
SMRAM based code. This enables the SMM BASE proto
col to copy and install code, such as the SMM Nub, into
SMRAM.

0068 SMM ACCESS:Close
0069. This service abstracts programming of the memory
controller to disable the visibility of the SMRAM from
non-SMRAM based code. This enables the SMM BASE
protocol to inhibit other pre-boot agents from Viewing the
SMRAM-based contents.

0070 SMM ACCESS:Lock
0071. This service abstracts the hardware capability of
securing the SMRAM such that no future attempts can
Succeed in opening the visibility of this region.
0072 SMM ACCESS::GetCapabilities
0073. This call provides the caller, which is most likely
the SMM BASE driver, the available regions of memory for
use as SMRAM. This is a read-only reporting service that
publishes information. The claiming of the region and
programming of the chipset to effect the decode of this Store
in SMRAM is effected by acquiring the region in question
(see next service).
0.074 SMM ACCESS: AcquireSmram Range
0075. This service provides two types of functionality.
The first is that it is the resource management database
visible to the EFI2.0 boot-service caller. The possible ranges
of available SMRAM in the platform are published by the
GetCapabilities service SMRAM Map, and a region is the
map can be requested for enable by this Service. This request
minimally includes an update to the driver of ownership, but
the call will also entail chipset programming that actually
enables the request regime.
0.076 SMM ACCESS::ReleaseSmram Range
0077. This service provides two types of functionality.
This request minimally includes an update to the driver of
releasing ownership of a range, but the call will also entail
chipset programming that actually disables the request
regime.

What is claimed is:
1. A method for handling a Platform Management Inter

rupt (PMI) event in a processor, comprising:
loading a PMI event-handling management Service into
memory accessible to the processor,

registering an entry point for the PMI event-handling
management Service;

US 2005/0102459 A1

enabling one or more PMI event handlers to be made
accessible to the processor via the PMI event-handling
management Service; and

in response to the PMI event, vectoring the processor to
begin executing the PMI event-handling management
service at its entry point, wherein execution of the PMI
event-handling management Service performs the func
tion of:

dispatching at least one of said one or more PMI event
handlers to service the PMI event.

2. The method of claim 1, wherein the said one or more
PMI event handlers are made accessible to the PMI event
handling management Service by publishing a registration
interface that enables registration of PMI event handlers
with the PMI event-handling management service.

3. The method of claim 2, wherein a plurality of PMI
event handlers are registered with the PMI event handling
management Service, further comprising:

creating an ordered list of Said plurality of event handlers,
dispatching a first event handler;
determining if the first event handler is an appropriate

event handler for servicing the PMI event and, if it is,
executing the first event handler to completion to
Service the event; otherwise

dispatching a next event handler in the list and determin
ing whether that event handler is an appropriate event
handler for servicing the PMI event and repeating this
function until the appropriate event handler has been
dispatched, whereupon that event handler is executed
to completion to service the PMI event.

4. The method of claim 2, wherein the registration inter
face enables a set of machine code corresponding to an event
handler that is stored outside of any component(s) in which
an original set of firmware is stored to be registered as a PMI
event handler.

5. The method of claim 4, wherein the registration inter
face is published during a pre-boot process for a computer
System employing the processor to enable a driver to load
the Set of machine code corresponding to the event handler
prior to loading an operating System for the computer
System.

6. The method of claim 5, further comprising:
Scanning for any firmware volumes that are materialized

during a pre-boot process for the computer System to
identify an existence of any firmware file containing a
PMI event handler; and

loading the PMI event handler in system memory.
7. The method of claim 1, wherein the computer system

includes a plurality of processors, further comprising:
loading the PMI event handler management Service into a

Selected processor among Said plurality of processors,
causing the Selected processor to begin execution of the
PMI event handler management Service in response to
the event;

Synchronizing all of Said plurality of processors other than
the Selected processor and halting execution of a
respective current operation for each of these other
processors during execution of the Service handler
management Service;

May 12, 2005

returning all of Said plurality of processors to a previous
processing mode to resume execution of their respec
tive operations after the PMI event has been serviced
by an appropriate event handler.

8. The method of claim 1, wherein each of said one or
more PMI event handlers comprise a set a machine code that
is executed by the processor to Service an error condition
generated by a hardware component in a computer System
employing the processor that causes the event, the method
further comprising:

executing a first portion of the Set of machine code
corresponding to the PMI event handler that was most
recently dispatched that queries the hardware compo
nent corresponding to that event handler to determine if
the error condition was caused by that hardware com
ponent; and

completing execution of the Set of machine code for the
PMI event handler if it is determined that the error
condition was caused by its corresponding hardware
component, otherwise returning a value to the PMI
event handler management Service indicating that the
event handler is not the appropriate event handler to
Service the error condition.

9. The method of claim 1, further comprising authenti
cating said one or more PMI event handlers before they are
loaded into memory for a computer System employing the
processor.

10. The method of claim 1, wherein an original set of
firmware for a computer System in which the processor is
employed includes one or more legacy event handlers, the
method further comprising:

registering Said one or more legacy event handlers with
the PMI event handling management Service; and

dispatching at least one of Said one or more legacy event
handlers via the PMI event handler management ser
vice to service the PMI event.

11. The method of claim 1, further comprising enabling
any legacy event handlers that are Stored as machine code in
an original Set of firmware for a computer System employing
the processor to be executed to service the PMI event, as
appropriate, in response to the PMI event.

12. A machine-readable medium to provide instructions,
which if executed by a processor in a computer System
performs operations comprising:

loading a Plafform Management Interrupt (PMI) event
handling management Service into memory accessible
to the processor;

registering an entry point for the PMI event-handling
management Service;

enabling one or more PMI event handlers to be made
accessible to the processor via the PMI event-handling
management Service; and

in response to a PMI event, vectoring the processor to
begin executing the PMI event-handling management
service at its entry point, wherein execution of the PMI
event-handling management Service dispatches at least
one of said one or more PMI event handlers to service
the PMI event.

US 2005/0102459 A1

13. The machine-readable medium of claim 12, wherein
execution of the instructions performs the further operation
of:

publishing a registration interface that enables registration
of PMI event handlers with the PMI event-handling
Service.

14. The machine-readable medium of claim 13, wherein
a plurality of PMI event handlers are registered with the PMI
event handling management Service, and wherein execution
of the instructions performs further operations comprising:

creating an ordered list of Said plurality of event handlers,
dispatching a first event handler;
determining if the first event handler is an appropriate

event handler for servicing the PMI event and, if it is,
executing the first event handler to completion to
Service the event; otherwise

dispatching a next event handler in the list and determin
ing whether that event handler is an appropriate event
handler for servicing the PMI event and repeating this
function until the appropriate event handler has been
dispatched, whereupon that event handler is executed
to completion to service the PMI event.

15. The machine-readable medium of claim 12, wherein
execution of the instructions performs further operations
comprising:

Scanning for any firmware volumes that are materialized
during a pre-boot process for the computer System to
identify an existence of any firmware file containing a
PMI event handler; and

loading the PMI event handler in system memory.
16. The machine-readable medium of claim 12, wherein

the computer System includes a plurality of processors, and
execution of the instructions performs further operations
comprising:

loading the PMI event handler management Service into a
Selected processor among Said plurality of processors,

causing the Selected processor to begin execution of the
PMI event handler management Service in response to
the event;

Synchronizing all of Said plurality of processors other than
the Selected processor and halting execution of a
respective current operation for each of these other
processors during execution of the Service handler
management Service;

returning all of Said plurality of processors to a previous
processing mode to resume execution of their respec
tive operations after the PMI event has been serviced
by an appropriate event handler.

17. The machine-readable medium of claim 12, wherein
an original Set of firmware for the computer System includes
one or more legacy event handlers, and execution of the
instructions performs further operations comprising:

registering Said one or more legacy event handlers with
the PMI event handling management Service; and

dispatching at least one of Said one or more legacy event
handlers via the PMI event handler management ser
vice to service the PMI event.

May 12, 2005

18. The machine-readable medium of claim 12, wherein
each of said one or more PMI event handlers comprise a set
a machine code that is executed by the processor to Service
an error condition generated by a hardware component in a
computer System employing the processor that causes the
event, and execution of the instructions performs further
operations comprising:

executing a first portion of the Set of machine code
corresponding to the PMI event handler that was most
recently dispatched that queries the hardware compo
nent corresponding to that event handler to determine if
the error condition was caused by that hardware com
ponent; and

completing execution of the Set of machine code for the
PMI event handler if it is determined that the error
condition was caused by its corresponding hardware
component, otherwise returning a value to the PMI
event handler management Service indicating that the
event handler is not the appropriate event handler to
Service the error condition.

19. The machine-readable medium of claim 12, wherein
a portion of the instructions are embodied as the PMI event
handler management Service.

20. A computer System comprising:
a motherboard;
a memory operatively coupled to the motherboard in
which a plurality of machine instructions are Stored;

a processor linked in communication with the memory;
and

a firmware Storage device having firmware instructions
Stored therein, which if executed by the processor
perform operations comprising:
loading a Plafform Management Interrupt (PMI) event

handling management Service into the memory;
registering an entry point for the PMI event-handling
management Service;

enabling one or more PMI event handlers to be made
accessible to the processor via the PMI event-han
dling management Service; and

in response to a PMI event, vectoring the processor to
begin executing the PMI event-handling manage
ment Service at its entry point, wherein execution of
the PMI event-handling management Service dis
patches at least one of said one or more PMI event
handlers to service the PMI event.

21. The computer System of claim 20, wherein execution
of the firmware instructions performs the further operation
of:

publishing a registration interface that enables registration
of PMI event handlers with the PMI event-handling
Service.

22. The computer System of claim 21, wherein a plurality
of PMI event handlers are registered with the PMI event
handling management Service, and wherein execution of the
firmware instructions performs further operations compris
Ing:

creating an ordered list of Said plurality of event handlers,
dispatching a first event handler;

US 2005/0102459 A1

determining if the first event handler is an appropriate
event handler for servicing the PMI event and, if it is,
executing the first event handler to completion to
Service the event; otherwise

dispatching a next event handler in the list and determin
ing whether that event handler is an appropriate event
handler for servicing the PMI event and repeating this
function until the appropriate event handler has been
dispatched, whereupon that event handler is executed
to completion to service the PMI event.

23. The computer system of claim 20, wherein execution
of the firmware instructions performs further operation
comprising:

Scanning for any firmware volumes that are materialized
during a pre-boot process for the computer System to

May 12, 2005

identify an existence of any firmware file containing a
PMI event handler; and

loading the PMI event handler in the memory.
24. The computer system of claim 20, wherein the firm

ware Storage device includes firmware instructions compris
ing one or more legacy event handlers, and execution of the
firmware instructions performs further operations compris
Ing:

registering Said one or more legacy event handlers with
the PMI event handling management Service; and

dispatching at least one of Said one or more legacy event
handlers via the PMI event handler management ser
vice to service the PMI event.

k k k k k

