
(No Model.)

L. P. PEREW
ROUNDABOUT.

4 Sheets—Sheet 1.

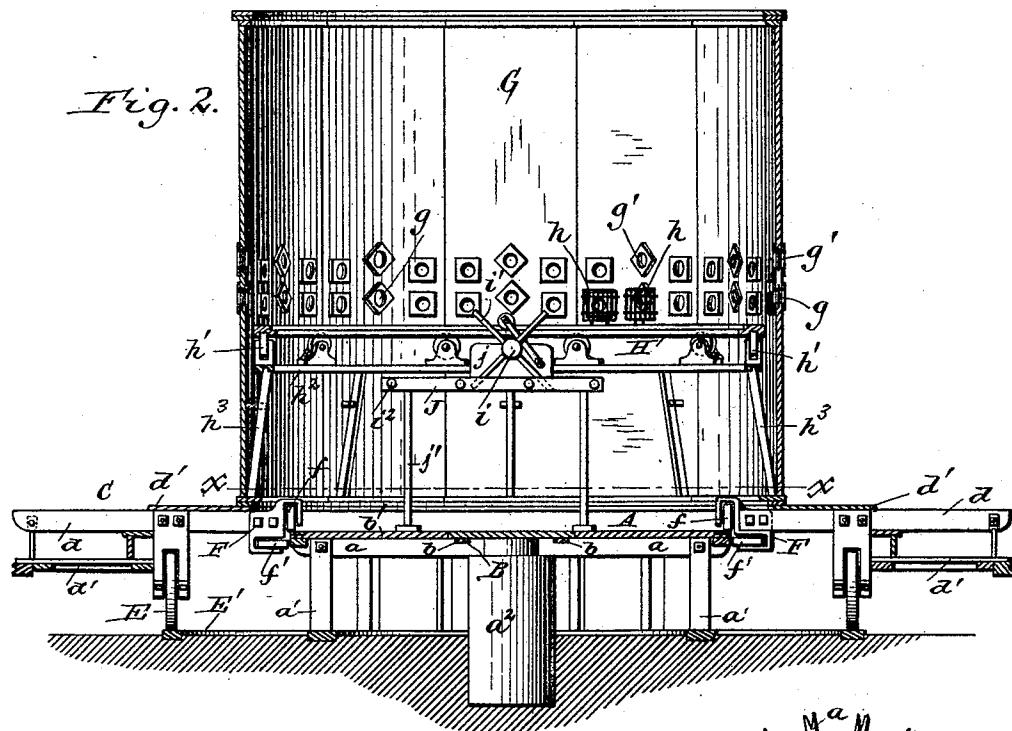
No. 499,800.

Patented June 20, 1893.

Witnesses:

Emil Neukart.
Theo. L. Popp

L. P. Perew Inventor.
By Wilhelm Sommer
Attorneys.

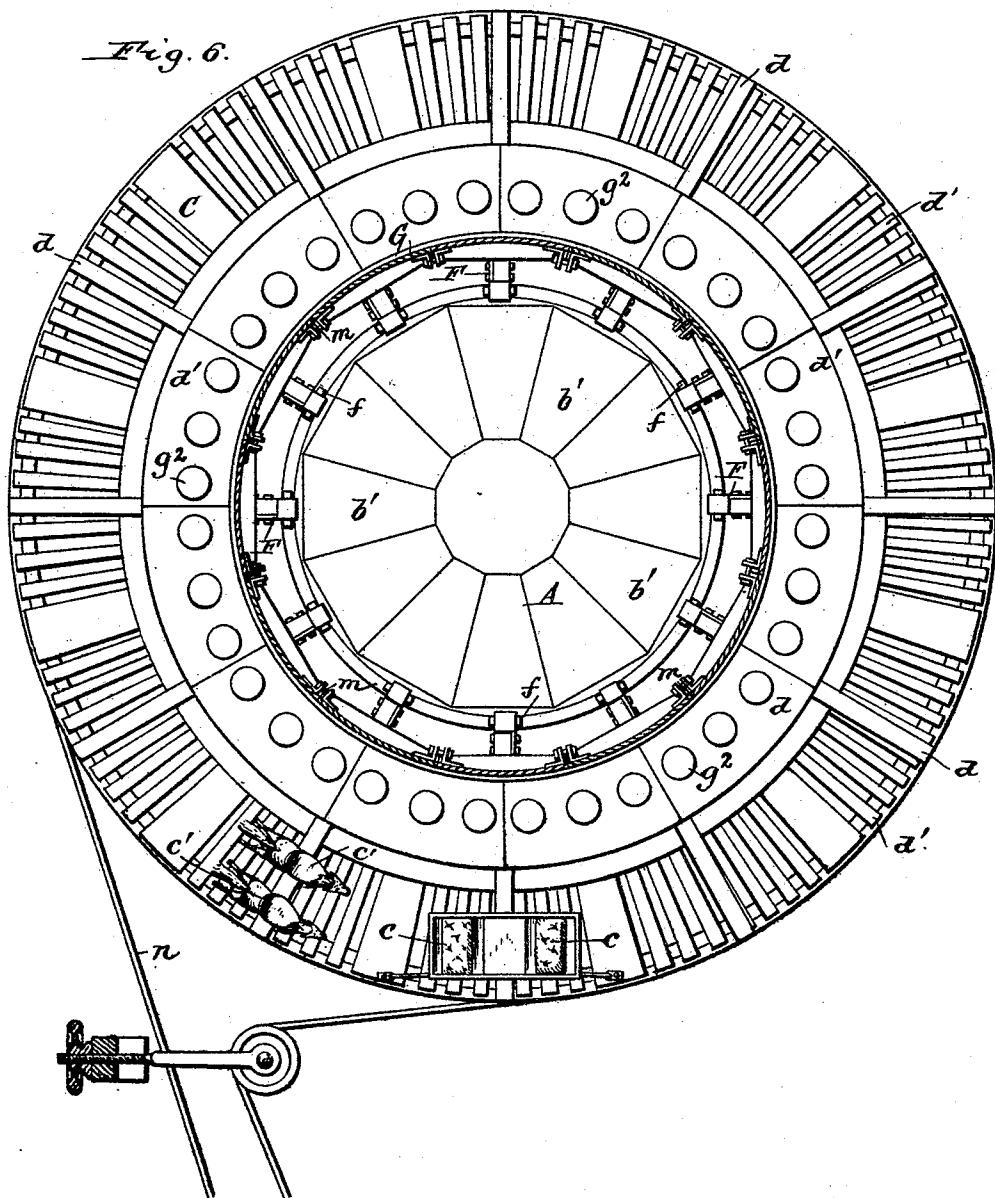

(No. Model.)

4 Sheets—Sheet 2.

L. P. PEREW.
ROUNABOUT.

No. 499,800.

Patented June 20, 1893.


(No Model.)

4 Sheets—Sheet 3.

L. P. PEREW.
ROUNABOUT.

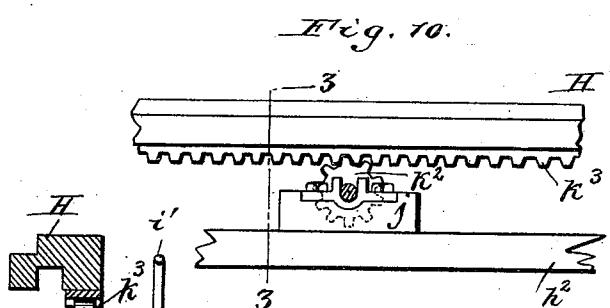
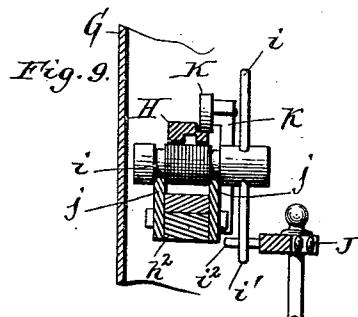
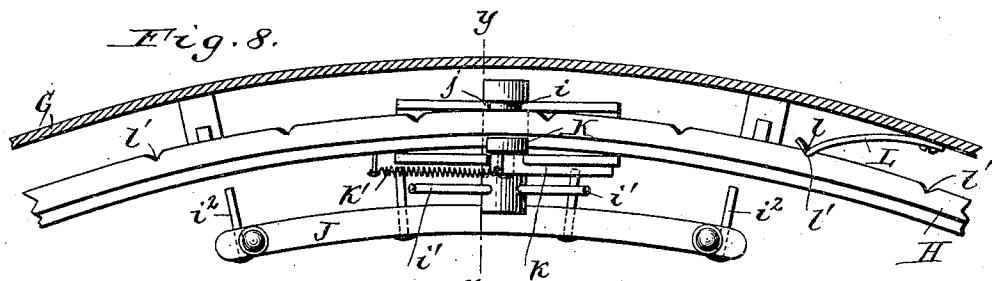
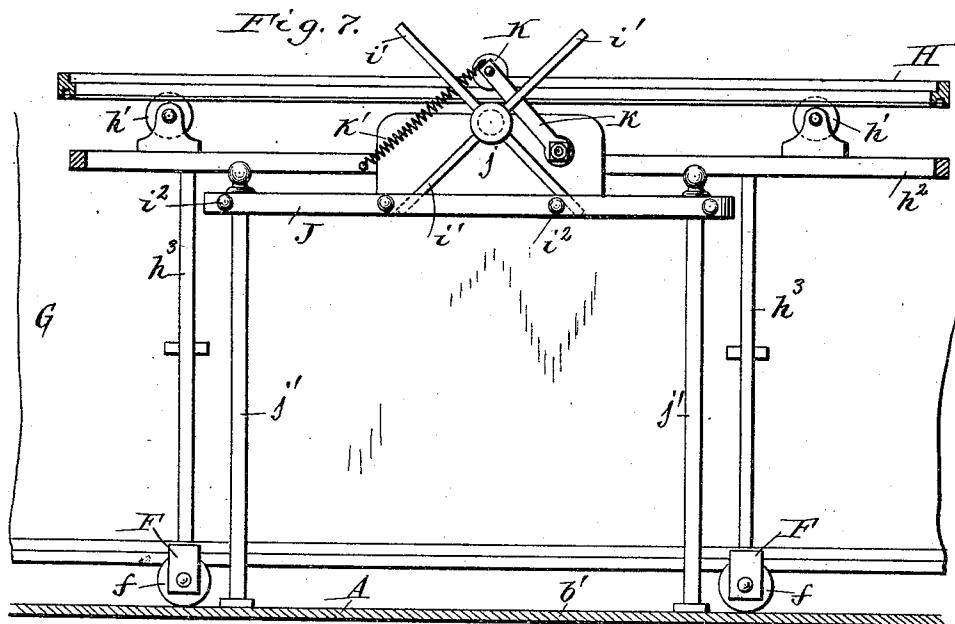
No. 499,800.

Patented June 20, 1893.

Witnesses:

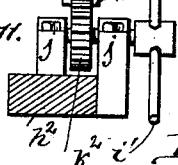
Emil Neuhart.
Theo. L. Popp.

L. P. Prew Inventor.
By William Bonner
Attorneys.





(No Model.)

4 Sheets—Sheet 4.

L. P. PEREW.
ROUNDABOUT.


No. 499,800.

Patented June 20, 1893.

Witnesses:

Emil Neuhart
Theo. L. Popp

L. P. Prew Inventor
By Wilhelm Horner
Attorneys.

UNITED STATES PATENT OFFICE.

LOUIS P. PEREW, OF TONAWANDA, NEW YORK.

ROUNDABOUT.

SPECIFICATION forming part of Letters Patent No. 499,800, dated June 20, 1893.

Application filed September 7, 1892. Serial No. 445,225. (No model.)

To all whom it may concern:

Be it known that I, LOUIS P. PEREW, a citizen of the United States, residing at Tonawanda, in the county of Niagara and State of New York, have invented new and useful Improvements in Roundabouts, of which the following is a specification.

This invention relates to improvements in machines commonly known as "round-abouts" or "merry-go-rounds" and which consist essentially of a rotary horizontal platform carrying seats and figures of horses or other animals on which persons are whirled around as an amusement.

One object of my invention is to combine with the machine a rotunda or inclosure in which may be placed a picture gallery, and a stage for theatrical performances for adding interest to the device and rendering its operation more profitable.

My invention has the further object to simplify the construction of the machine and facilitate the transportation and assemblage of its parts.

In the accompanying drawings consisting of four sheets:—Figure 1 is a side elevation of the machine. Fig. 2 is a sectional elevation thereof on an enlarged scale, with the canopy removed. Fig. 3 is a fragmentary

plan view showing the means for connecting the radial joints of the stage. Fig. 4 is a fragmentary section of the stage and one of the inner roller supports of the rotary platform. Fig. 5 is a top plan view of the same. Fig. 6

is a horizontal section in line $x-x$, Fig. 2. Fig. 7 is a sectional inside elevation of the tripping mechanism for operating the picture rack. Fig. 8 is a sectional top plan view of the same. Fig. 9 is a vertical section in line

40 $y-y$, Fig. 8. Fig. 10 is a fragmentary sectional elevation showing a modification of the means for shifting the picture rack. Fig. 11 is a vertical section in line $z-z$, Fig. 10.

Like letters of reference refer to like parts in the several figures.

A represents a circular elevated stage arranged centrally in the machine and provided with a series of radial beams or joists a resting with their outer portions upon upright posts a' , while their inner ends rest upon a central block or post a^2 . The inner ends of the radial joints are fitted snugly against each

other by chamfering or tapering the same, and the inner portions of the joists are firmly secured together by a tie-ring B which is 55 driven into transverse grooves or depressions b in the several joists and forming together a circular groove. The joists are covered by a floor b' which is secured thereto in sections so that the stage can be dismembered and 60 compactly stored or conveniently transported.

C is the rotating platform arranged around the stage and upon the outer portion of which the seats c and the wooden horses or other figures c' are supported. The platform consists essentially of a number of radial arms d connected by sections of flooring d' . The central portions of the platform arms are supported upon wheels or trucks E which run upon a circular track E' .

F represents brackets secured to the inner end of each platform arm. Each of these brackets is provided with a vertical roller f which rests upon the stage adjacent to its outer edge and a horizontal roller f' which 75 bears against the peripheral edge of the stage. The vertical rollers assist in supporting the rotating platform while the horizontal rollers serve to steady the platform and prevent any lateral movement of the same.

G is a rotunda or circular inclosure located upon the platform within the annular series of seats and figures.

G' is a canopy arranged over the stage, rotunda and rotating platform and supported 85 in any suitable manner.

In the rotunda may be placed a panorama or picture gallery, or if desired, a theatrical performance may be conducted upon the stage, the rotunda being provided with windows or sight apertures $g g'$ through which the pictures or other attractions within the rotunda may be seen.

g^2 are stools or seats for the spectators. The rotunda has preferably two rows of 95 windows, the lower row g consisting of lenses or magnifying glasses, and the upper row g' of colored glass, forming an ornament which improves the appearance of the rotunda.

In the construction represented in the 100 drawings, a picture rack H is arranged in the rotunda adjacent to the magnifying glasses, which rack carries a series of holders h for the pictures. The rack H is circular in form

and supported on anti-friction rollers h' which are journaled in bearings mounted upon a frame or ring h^2 which latter is supported from the rotunda by legs h^3 as represented in Fig. 2 or by other means. The picture rack is shifted once during every revolution of the rotunda by a trip device so as to change the pictures in front of the magnifying glasses. This trip device consists essentially of a rotating shifting roller i bearing against the under side of the picture rack and provided with radial trip arms i' which are adapted to engage against a row of stationary pins i^2 . The shifting roller i is arranged transversely underneath the picture rack and is journaled in bearings j secured to the supporting ring h^2 . The stationary pins i^2 , which are preferably four in number, are arranged equidistant, and secured to a stationary bar J and extend across the path of the trip arms i' of the shifting roller. As the rotunda rotates, the trip arms i' strike the pins i^2 which latter cause the shifting roller to rotate and move the picture rack. The supporting bar J is secured to the upper ends of standards j' or other stationary part of the machine. The pins i^2 are so disposed on the supporting bar J that they will move the shifting roller and picture rack sufficiently to shift the pictures from one window in the rotunda to the next. After the trip arms i' have passed the stationary pins i^2 , the picture rack remains immovable with reference to the rotunda during a complete revolution of the latter and is shifted a distance equal to the space between the pictures once during every revolution of the rotunda, thereby presenting the pictures successively to the spectators.

K represents a pressure roller which presses against the upper side of the picture rack above the shifting roller, so as to increase the friction between said rack and the shifting roller. This pressure roller is pivoted to the upper end of a carrying arm k which latter is pivoted with its lower end to one of the bearings of the shifting roller. The pressure roller is drawn down upon the picture rack by a spring k' secured with its ends to the supporting ring k^2 and the upper end of the carrying arm k . If desired, the contact surfaces between the shifting roller and picture rack may be provided with a rubber facing for the purpose of increasing the frictional connection between these parts. As represented in Figs. 10 and 11 the shifting roller is replaced by a gear wheel k^2 , which engages with an annular gear rack k^3 secured to the under side of the picture rack. This construction insures a positive movement of the picture rack so that the pictures will always be in line with the windows.

L represents a steadyng spring whereby the picture rack is held in position after it has been shifted by the shifting device, thereby preventing the picture rack from being displaced by the jarring of the machine. This spring is secured at one end to the rotunda

and provided at its opposite end with a catch shoulder l which engages with one of a series of notches l' formed in the outer peripheral side of the picture rack. The notches in the picture rack are arranged so that the steadyng spring L will engage with one of the notches when the pictures are in line with the windows. When the picture rack is moved by the shifting device, the steadyng spring L is deflected out of the notch and engages with the next notch when the picture rack reaches the end of its movement.

The rotunda is preferably divided vertically into sections to facilitate its transportation, and the several sections are firmly bound together by clamping bolts m passing through ears secured to the inner sides of the sections.

The machine is driven from a steam engine or other motor by a belt n running around the circular platform.

I claim as my invention—

1. The combination with the rotary platform and the rotunda or inclosure mounted thereon and provided with windows or apertures, of a movable picture rack arranged within the rotunda opposite said windows, and adapted to move with the rotunda, while capable of moving independently thereof, and a fixed obstruction arranged adjacent to said picture rack, whereby the rack is shifted by striking said obstruction, substantially as set forth.

2. The combination with the rotary platform and the rotunda or inclosure mounted thereon and provided with windows or apertures, of a movable picture rack arranged within the rotunda adjacent to the windows or apertures, a shifting roller bearing against the picture rack and provided with arms, and a stationary pin against which said arms are adapted to engage, substantially as set forth.

3. The combination with the rotary platform and the rotunda or inclosure mounted thereon and provided with windows or apertures, of a movable picture rack arranged within the rotunda adjacent to the windows or apertures, a shifting roller bearing against one side of the picture rack and provided with arms, a pressure roller bearing against the other side of the picture rack, and a stationary bar provided with pins against which said arms are adapted to engage, substantially as set forth.

4. The combination with the rotary platform and the rotunda or inclosure mounted thereon and provided with windows or apertures, of a supporting frame secured to the inner side of the rotunda and provided with rollers, a circular picture rack resting upon said rollers, a shifting roller bearing against the under side of the picture rack and provided with radial arms, a carrying arm pivoted upon the supporting frame and provided with a pressure roller bearing against the upper side of the picture rack, a spring connecting the carrying arm with the supporting

frame, and a stationary bar provided with pins against which the arms of the shifting roller are adapted to engage, substantially as set forth.

5. The combination with the rotary platform and the rotunda or inclosure mounted thereon and provided with windows or apertures, of a movable picture rack arranged opposite said windows, provided with notches, and adapted to move with the rotunda, while capable of moving independently thereof, an obstruction arranged adjacent to said picture rack whereby the rack is shifted, and a spring secured with one end to the rotunda and adapted to engage with its other end in said notches, substantially as set forth.

6. In a round-about, the combination with the center block, of radial beams or joists resting with their inner ends upon said block and provided with transverse grooves or depressions forming together a circular groove and a tie ring fitted snugly in said grooves whereby the beams or joists are held against longitudinal movement, substantially as set forth. 20

Witness my hand this 1st day of September, 1892. 25

LOUIS P. PEREW.

Witnesses:

THEO. L. POPP,
FRED. C. GEYER.