METHOD FOR SOUND REPRODUCTION AND PILLAR LOUDSPEAKER

The invention relates to a method for sound reproduction and a loudspeaker, in which a vibrating diaphragm (13) controlled by an operating device (21, 50) produces sound in the air surrounding it on the first side, and in which so-called acoustic feedback is prevented by preventing the passage of the air over the edge of the diaphragm to its other side, and in which the air transports the sound to the surrounding free space. The aforesaid diaphragm is formed as a uniformly vibrating, essentially straight and high element, so that the height \(H \) of diaphragm (13) is at least three times, and preferably at least five times its width \(W \). Preferably, an essentially closed chamber (9) is formed in front of diaphragm (13), except for a port arrangement (5), in which one or more ports (27, 45) essentially corresponding to the height of the diaphragm permit the passage of air and thus of sound from enclosure (9) to the free space.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho
AM	Armenia	FI	Finland	LT	Lithuania
AT	Austria	FR	France	LU	Luxembourg
AU	Australia	GA	Gabon	LY	Latvia
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova
BB	Barbados	GH	Ghana	MG	Madagascar
BE	Belgium	GN	Guinea	MK	The former Yugoslavia
BF	Burkina Faso	GR	Greece	ML	Mali
BG	Bulgaria	HU	Hungary	MN	Mongolia
BJ	Benin	IE	Ireland	MR	Mauritania
BR	Brazil	IL	Israel	MW	Malawi
BY	Belarus	IS	Iceland	MX	Mexico
CA	Canada	IT	Italy	NE	Niger
CF	Central African Republic	JP	Japan	NL	Netherlands
CG	Congo	KE	Kenya	NO	Norway
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand
CI	Côte d’Ivoire	KP	Democratic People’s Republic of Korea	PL	Poland
CM	Cameroon	KR	Republic of Korea	PT	Portugal
CN	China	KZ	Kazakhstan	RO	Romania
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation
DE	Germany	LI	Liechtenstein	SD	Sudan
DK	Denmark	LK	Sri Lanka	SE	Sweden
EE	Estonia	LR	Liberia	SG	Singapore
SI	Slovenia	SK	Slovakия	SN	Senegal
SZ	Swaziland	TD	Chad	TG	Togo
TJ	Tajikistan	TM	Turkmenistan	TR	Turkey
TT	Trinidad and Tobago	UA	Ukraine	US	United States of America
VN	Viet Nam	YU	Yugoslavia	ZW	Zimbabwe
METHOD FOR SOUND REPRODUCTION AND PILLAR LOUDSPEAKER

The present invention relates to a method for sound reproduction and a dynamic pillar loudspeaker according to the preamble of Claim 1.

A traditional dynamic loudspeaker produces acoustic sound in such a way that an electric signal corresponding to the sound it is wished to reproduce is brought from the amplifier to the mechanisms of the loudspeaker, when, for example, a cone or diaphragm, which is connected to a magnetic voice coil acting as an operating device, moves backwards and forwards in synchronization with the signal. The movement of the diaphragm then produces an acoustic soundwave, which proceeds into the surroundings as an audible sound. The diaphragm effectively can transmit the mechanical vibratory movement of the voice coil as a movement, i.e. as a soundwave, to the surrounding air, because its surface area is large in relation to the voice coil.

Traditionally and generally, if the loudspeaker is to be capable of good sound reproduction, the loudspeaker cone or diaphragm and the components connected directly to it should be light and easily moved. This is particularly the case in the treble range, in which the sound frequencies are large and loud sounds require great acceleration of the diaphragm. On the other hand, a diaphragm creating sounds with bass frequencies should generally be large and its operating device correspondingly powerful, which in turn requires that the voice coil forming the traditional operating device is strong and has a high resistance to heat. This problem is generally solved by using a band-division filter in the construction of the loudspeaker and two or more loudspeaker elements of different sizes, each producing only sounds within its own reproduction
frequency band. These are referred to as bass (woofer), mid-range (squawker), and treble (tweeter) elements.

A traditional loudspeaker element includes a paper cone, which is thin and soft and suspended softly in the element body by means of rubber seals and spiders. Therefore, the velocities and accelerations of the cone are limited according to the forces of mass, buckling, and stiffness, which are also affected by the air pressure in, and the volume of the loudspeaker cabinet. In addition, detrimental deflection, compression, and surface waves attempt to proceed in the cone, these being discernable as distortion components in the sound produced by the loudspeaker.

The cone of a conventional loudspeaker element is a funnel, producing a horn-shaped sound lobe, so that its sound pressure depends greatly on location. As a result, the sound field is even only over a small area. If the listeners are all on the same level, but spread over a large area, the sound field must cover this entire area. The sound field can be extended by either increasing the number of loudspeakers or by directing the sound from the loudspeakers in a horizontal plane. These factors have resulted in the creation of the traditional pillar loudspeaker. In it, two or more loudspeaker elements are set sequentially vertically in the same cabinet, as disclosed, for example, in US publication 5,802,190. When they operate in phase with each other, the reinforce each other in the horizontal plane, but weaken each other in the vertical plane, so that a pillar loudspeaker produces a broad, but low sound lobe.

In public buildings, in which there are usually simultaneously both a live speaker and sound reproduction, problems arise, for example, in relation to feedback sensitivity and suitable acoustics. This is particularly the case, if music is also played in the same premises, as this demands a longer post-echo time than speech or speech reproduction. In this case, the
reproduced speech becomes more difficult to understand. In high rooms, such as churches, ceiling reflections can also cause detrimental resonances. Even in high rooms, all the listeners are usually at the same level, but spread over an extensive area, so that the energy of the loudspeakers must be directed over the same area.

The invention is intended to eliminate the defects in sound reproduction, particularly in public buildings. The intention is to create a loudspeaker, which will produce a extensive and even sound lobe, i.e. local sound field, with a sound pressure that varies only slightly as a function of location. The method according to the invention is disclosed in the accompanying Claim 1, a pillar loudspeaker according to the invention being disclosed in Claim 6. As such, a high diaphragm directed to an unrestricted space will not offer many advantages, but, if a port arrangement according to the invention is added to this, an entirely new type of loudspeaker will be created. In principle, each point on a unified loudspeaker diaphragm is an independent and dynamic source of sound. If these diaphragm points move in phase with one another, each one of them will also, in principle, send a soundwave in phase to the surrounding space. The chamber forms a pressure chamber and the port in it forms a acoustic load on the diaphragm and an effective source of sound. The sound coil of the loudspeaker compensates for the increase in the intensity of sound determined by the sum factors of the distance laws, if the listener moves closer to the loudspeaker. Correspondingly, if the listener moves farther from the loudspeaker, the sound lobe will compensate for the drop in the volume of sound, because the relative differences in distance between the different points on the loudspeaker diaphragm will diminish. The sound field of an entire auditorium can be controlled by means of the new pillar loudspeaker system. In it, each loudspeaker dominates its own vicinity, without interference from neighbouring loudspeakers, for instance. This also means that there is no need to use
delays in a system constructed with the new pillar loudspeakers, no matter whether the sound reproduction system is used indoors or outdoors.

5 There are several differences in principle between a pillar loudspeaker according to the invention and a traditional pillar loudspeaker, such as:

- the sound-producing diaphragm is a single and unified component, each point on which is, in principle, its own source of sound,
- the diaphragm is narrow and high, because the desired sound lobe of the loudspeaker is broad in the horizontal plane and narrow in the vertical,
- the diaphragm is controlled by a traditional or a new operating device, in which there may be one or more operating device units, such as magnetic voice coils or other units,
- the loudspeaker cabinet can be of any desired design and the loudspeakers can be made to suit the room,
- the active components of the loudspeaker are assembled in a separate module,
- there can be different loudspeaker modules for different purposes,
- the modules can be used either facing the wall or facing the listeners,
- the loudspeaker or module is preferably equipped with an acoustic load, either with or without the port arrangement referred to later,
- the acoustic load also acts as a protection, lobe director, design factor, etc.,
- the module can be installed in a recess in a wall, in which case the wall can act as an auxiliary space,
- the pillar loudspeaker can be located acoustically correctly at listener level and without disturbing the listeners,
- a reproduction system built around the pillar loudspeaker can easily be adapted,
- pillar loudspeakers will withstand being handled by an audience without being damaged,
- the acoustic energy of a pillar loudspeaker is mainly concentrated only at listener level,
- a sound reproduction system implemented using pillar loudspeakers does not require delay lines.

The most important different between a traditional pillar loudspeaker and one according to the invention is that the latter has only a single sound-producing port, which is high vertically and narrow horizontally. The height of the diaphragm is generally many times its width. Practicality will set the upper limit. It is possible to imagine a diaphragm as much as 5 m high and 50 mm wide. The diaphragm is controlled by an operating device, which usually comprises one or more magnetic voice coils or other operating device units. The operating device always controls the entire active surface of the diaphragm in phase, so that it does not create lobe folds in the sound field in the same way as a multi-element traditional loudspeaker. In the same way, there are no great discontinuities in the acoustic impedance as a function of frequency.

The second significant difference to a traditional pillar loudspeaker is that the dynamic components of the loudspeaker are assembled in a module, which can be installed in a cabinet of a desired design, which can be suspended, e.g., from a wall, or set directly into, e.g., an opening in a wall, or behind it. This method gives freedom of design, implementation, and location in sound reproduction solutions and accelerates them.

An advantage in the loudspeaker module being manufactured as a separate module is that it can be quickly attached to another ready-made construction. In certain embodiments, the chamber and the port are only formed when the loudspeaker is installed in a wall. Thus, there can then be various standard products, into which the module will fit. The production process is simplified and the need to transport components is reduced.
The third significant difference to a traditional pillar loudspeaker is that a loudspeaker according to the invention is usually installed on a wall with the loudspeaker diaphragm facing the wall, in other words, the diaphragm is between the cabinet and the wall. In this case, the port between the wall and the cabinet creates an acoustic load on the loudspeaker. Usually, this port is so small, that fingers cannot penetrate it. When installed in this way, the loudspeaker will withstand being handled from the listener side, because the more fragile diaphragm is protected. The loudspeaker can be located acoustically correctly, sufficiently low down and close to the listeners, who are preferably situated in the direct sound lobe and field. When only a module is used, it can be installed directly in a recess in a wall, either with or without the aid of an acoustic load. The loudspeaker diaphragm of the new loudspeaker is a rather thin, stiff plate or moulded shape, which produces a broad-lobed sound in the horizontal plane and a narrow-lobed sound in the vertical plane. The loudspeaker is intended for the entire range of sound, but its reproduction range depends on the embodiment. The loudspeaker diaphragm will withstand normal handling, installation, and use. Modifications to the loudspeaker diaphragm will achieve desired objectives, such as evenness of the reproduction curve, variations in sensitivity, damping, protection, design requirements, etc. The loudspeaker diaphragm is suspended in a separate body unit or module, which is, in turn, installed either in a cabinet or directly in a wall. A loudspeaker with a cabinet is usually installed as a surface installation on a wall, so that the module and diaphragm face the wall. In such cases, the opposite side of the loudspeaker cabinet forms a facade facing the audience, and can be designed to suit the room in which it is wished to install it.

In the following, the construction and operation of a loudspeaker according to the invention are explained in greater detail verbally and also with reference to diagram drawings of
the loudspeaker. The following diagram and construction
drawings relate to a closer examination of pillar loudspeakers
equipped with different types of modules, from which it will be
seen that

5 Figure 1a) shows a diagram of the pillar loudspeaker from in
front (facade),
 b) shows a diagram of the pillar loudspeaker from the
rear, i.e. diaphragm side,
 c) shows a cross-section of the pillar loudspeaker
along its centre-line A-A,
 d) shows a cross-section B-B of the loudspeaker at the
operating device unit,

Figure 2a) shows an example of a loudspeaker module installed
in a wall cavity with its facade plate removed,
 b) shows a cross-section A-A on the centre-line of the
previous installation,
 c) shows one third example, in which there is an open
acoustic load (port) in the centre of the loud-
speaker module,

20 Figures 2d and 2e show cross-sections of Figures 2b and 2c,
Figure 3a) shows a cross-section A-A of the new operating
device in Figure 3b
 b) shows a diagram of a new loudspeaker operating
device from the front,
 c) shows an enlarged cross-section B-B of the new
operating device in Figure 3b, and
 d) shows a cross-section of a different type of magnet
arrangement.

Figures 4a and 4b shows a loudspeaker installed on a post,
corresponding to the examples in Figures 1a - 1d.
Figures 4c and 4d shows a loudspeaker installed on a post,
corresponding to the examples in Figures 2a - 2b.

Figure 1a shows the facade of a wall-installed pillar loud-
speaker, the cabinet 1 of which, designed as desired, is made
of MDF-board, or some other suitable material. The material of
the cabinet should be stiff enough to ensure that its natural resonances do not interfere with the sound reproduction of the loudspeaker. Machining or moulding technology can be used to construct the cabinet. The facade 2 of the cabinet can have aesthetic details and constructions 4, while its shapes can be designed as desired. The width and depth of the cabinet will affect the shape of the sound lobe, while the volume of the cabinet will mainly affect low-frequency reproduction sensitivity.

Figure 1b shows the same loudspeaker from the rear. Compacted module 10 is installed in the cabinet opening 8, the module being standard and in the desired cabinet, designed for the aesthetic requirements of the reproduction room. There can also be various types of standard module, to meet, for example, different output, sound reproduction, and spatial requirements. Installed inside the body 11 of the module are the active and other components relating to sound reproduction, such as loudspeaker diaphragm 13 installed with the aid of diaphragm seals 14 and end pieces 15, wall attachments 16 for suspending the loudspeaker, socket 12 for connecting the amplifier, and an operating device, which is installed in body 11 inside cabinet 1, and which converts the electrical energy of the amplifier to mechanical vibratory movement in the diaphragm 13. The height 13a of module 10 and the moving part of its diaphragm 13 determine the directivity of the vertical place of the sound lobe. As the location of module 10 can be altered mainly vertically in relation to cabinet 1, the location of the source of sound can vary, even though the loudspeaker, which for example is attached to a wall, is not moved.

The flexible suspension of loudspeaker diaphragm 13 permits sufficient movement in the diaphragm for the desired sound pressure. Instead of end piece 15 of diaphragm 13, it is also possible to use some other sealing piece that acts linearly. This will keep diaphragm 13 oriented in relation to the
operating device while permitting movement in the diaphragm. Various types of joint, hinge, or bending component can also be used to help to suspend and direct the diaphragm. The end of diaphragm 13 may also incorporate a structurally flexible zone, which replaces the separate piece 15. This can be made by, for example, reducing the thickness of the diaphragm in the vicinity of its end. Connector piece 15 also permits a slight longitudinal movement in diaphragm 13, assisting the movement of the diaphragm and thus sound production.

The loudspeaker diaphragm 13 may be curved, flat, concave, or shaped and sufficiently stiff so that it will withstand even powerful bass sounds. The external appearance of the diaphragm is almost a rectangle, the height of which is at least three times that of its width. In special embodiments, the diaphragm can even be several metres high. In principle, diaphragm 13 comprises one or two narrow channel strips, which is glued or moulded to material between to form a stiff layered structure. The surface material can be aluminium, carbon fibre, kevlar, or other suitable material, the material between being balsa, foam plastic, felt, etc. Diaphragm 13 is finished as desired, for example, by painting, surfacing with rubber, etc.

Loudspeaker diaphragm 13 should move sufficiently over a surface area corresponding to the desired frequencies, producing the desired sound pressures in a certain lobe and state of reproduction. The machining, component gluing, laminations, and mouldings, as well as surfacings, required by sound reproduction can be carried out on diaphragm 13, either during the construction of the diaphragm, or later. These can include grooving, perforations, infilling, thinning, recessing, or stiffenings that limit and damp deflection, such as structural components and shapes that are left raised. In addition, the flexibility and constructional technique of diaphragm 13 can be altered as required by the sound reproduction properties, according to the voice coil distance or the active principle of
motion of the diaphragm. In some embodiments, it may be necessary to use certain additional constructions, such as separate dampening materials or structures in the cabinet, to improve the efficiency, sensitivity, output resistance, or other properties of the loudspeaker. In addition, diaphragm 13 is constructed in such a way that it moves in its entirety at low reproduction frequencies, but when the reproduction frequency increases, the vibrating area of the diaphragm diminishes correspondingly, until at the upper treble frequencies the only areas that vibrate are those to which the motion of the voice coil is directly connected.

Figure 1c shows a cross-section on centre-line A - A of pillar loudspeaker 1, in which the loudspeaker is suspended from wall 28 by means of wall attachments 16. The special feature in this case is that loudspeaker diaphragm 13 is set in the cabinet to face the wall, and not to face the listeners, as is usually the case. This arrangement particularly intended for the sound reproduction requirements of public rooms, where a sufficiently broad and even sound field can be created in an auditorium by means of several similar pillar loudspeakers. Loudspeaker cabinet 1 is set at a suitable distance from the wall, so that loudspeaker diaphragm 13 cannot be touched while installation wall 28 forms a suitable acoustic load for loudspeaker diaphragm 13. This affects the tuning of the loudspeaker, the reproduction area, and the lobe properties. Loudspeaker diaphragm 13 is relatively close to the wall, but, even at the greatest diaphragm amplitude, diaphragm 13 does not touch wall 28. The loudspeaker lead from the amplifier enters the loudspeaker through socket 12, which is either surface-mounted or sunk. The figure shows the internal volume 26 of the loudspeaker, which has a central effect on the lower boundary frequency of the loudspeaker.

The cabinet filling is usually mineral wool and also absorbs the acoustic reflections of the cabinet. The vertical height
13a of the moving loudspeaker diaphragm 13 determines the range of the sound lobe in the horizontal plane, which must be taken into account as the sound field requirement of the loudspeaker. In practice, this vertical height is slightly greater than the length of operating device 20, due to structural and inertia factors in the diaphragm. The same factors increase the active surface area of diaphragm 13 when reducing the frequency, even though the diaphragm of the pillar loudspeaker is narrow. It must be noted, that in embodiments in public rooms intended for the reproduction of speech, when the person speaking and the loudspeakers are in the same room, a pillar loudspeaker need not produce frequencies of less than 100 Hz, as this might otherwise reduce the comprehensibility of the reproduced speech.

The properties of operating device 20 are determined by the type, output, directivity, or carrying power of the loudspeaker. It will be seen from Figure 1c that operating device 20 comprises, for example, three conventional voice coils 21 or other operating device units. The mutual electrical connections of the voice coils can also be switched between series and parallel connections, according to the frequency range, impedance, sensitivity, and lobe requirements. If there are several conventional voice coils 24 in the operating device, each of them is connected mechanically from a small area to the centre-line of diaphragm 13. In this case, if the frequency and intensity increase sufficiently, push-pull areas may be created in the diaphragm, both permitting detrimental drops in the sound pressure of the loudspeaker at the frequencies in question and there are the appearance of phase errors or lobe folds in the sound lobe, in the treble range.

Figure 1d shows an enlarged cross-section B - B of pillar loudspeaker 1 at magnetic voice coil 24, when the loudspeaker is suspended from wall 28 by means of suspension piece 16. Though in this case the surface of cabinet 1 is set parallel to
the surface of the wall, the adaptation of the suspension
devices will permit its be installation at an angle to the
wall, leaving a port only at one edge, with the other edge
closed.

Magnetic voice coil 24 is one part of operating device 21,
which moves diaphragm 13. Voice coil 24 is connected to the
diaphragm either directly or else by means of an intermediate
component, i.e. a diaphragm seat. Magnet 23 is suspended in
module body 11 by means of a magnet bridge 25, which also
centres the port of magnet 23 of voice coil 24. Diaphragm 13 is
suspended in module body 11 from its edges by means of flexible
seals 14. An enclosure 9 is formed between the wall surface 28
and cabinet 1 at diaphragm 13, from which the sound lobe
discharges to the environment from the ports 27 between the
loudspeaker and the wall surface. These ports 27 form an
important port system 5 from the point of view of the operation
of the loudspeaker. If an asymmetrical sound lobe is desired,
the sound lobe can be oriented by blocking one of the ports 27
in a controlled manner, in which case the sound will only be
discharged through the other port, as in an angled installa-
tion. Thus, the sound lobe can be directed, even after the
installation of the loudspeakers. The direction is also
influenced by factors such as the bevelling (radius 5 - 30 mm)
of the rear edges 6 of the sides of the cabinet, which also
affect the local lobe diffractions in the upper treble range.
Because a loudspeaker diaphragm 13 installed in this way is in
a small space between the side ports 27, diaphragm 13 is
connected to the surroundings by means of a short transfer
line. The air velocity in it increases, especially at low
frequencies, due to the effect of the diaphragm movement.
Chamber 9 and port 27 create a slight horn effect. The width d
of port 27 is 12 - 30 %, preferably about 20 %, of the width W
of diaphragm 13. The greatest depth of the chamber is of the
same order.
Generally, spiders are not needed to centre the magnet of the voice coil, because the diaphragm is stiff. Normally, the voice coil is glued to the diaphragm's 13 recess or seat 37, in which there are also leads from the amplifier socket 12 of body 11.

There may also be a movement limiter in diaphragm 13, which prevents excessive amplitudes of movement in the diaphragm. On the other hand, even the seal and suspension construction may act as a sufficient limiter. If, for example, a spider construction is used in a large output loudspeaker, it can be assembled from lever-like or joint components, which not only perform the aforementioned centring and connections, but also prevent the lateral vibration of the voice coil.

In principle, diaphragm 13 is a linear source of sound. For example, it is stiffened in such a way that a filler material between two curved and hard surfaces separates the surfaces from each other. The filler material can be, e.g., paper, balsa, urethane, styrofoam, or a composite material. The support construction of diaphragm 13 can be of a desired shape. The thickness, mass, and other details of the construction of diaphragm 13 are determined by the desired reproduction characteristics. Between module body 11 and diaphragm 13, there may also be a damper, e.g., cloth, wool, cotton-wool sheet, cellular rubber, foam plastic, which acts as a tuning element against the diaphragm to damp its vibrations.

Diaphragm 13 is preferably a composite, moulded, or laminated construction, made of aluminium, kevlar, carbon-fibre, urethane, or wood fibre.

Figure 2a shows an embodiment of a loudspeaker according to the invention, in which the 'design' cabinet is replaced by, e.g., a wall as the place of installation of the loudspeaker module 10. Module 10 is sealed into, e.g., wall opening 40 or behind it, with diaphragm 13 outwards, so that the loudspeaker construction is closed. The volume of the loudspeaker then
becomes part of the wall, because the diaphragm port in module body 11 permits a flow of air behind diaphragm 13 into the wall structure, in which case, e.g., the low-frequency sensitivity increases. In such a case, the acoustic load to be set in front of diaphragm 13, i.e. the protector and facade board 42, also acts as a lobe director and, along with the diaphragm dimensions and the amplitude of movement, affects the sound reproduction characteristics of the loudspeaker.

Figure 2b shows a cross-section along the centre-line of a module installed in the above wall opening 40. In the backing space, i.e. in wall construction 47, there are generally damping materials, which affect the sound reproduction characteristics of the loudspeaker. In the figure, the module is installed in front, on top of the opening in the wall board. Figure 2d shows a cross-section of the installation. The figure does not show the bevelling of the edges of port 27, which are only of significance at high frequencies.

Module 10 can also be sunk into the opening. If the installation has been carried out behind the board, for example, when the boarding has been installed, the acoustic load can be at the level of the wall board, so that the loudspeaker can hardly be distinguished from the wall. This is particularly the case, if the acoustic load is a board with a port, as shown in Figure 2c, for instance, sturdy anodized aluminium strip. Figure 2c shows a preferred embodiment of loudspeaker 1. In Figure 2c, there is a desired acoustic design load, which is in the wall opening on top of the loudspeaker module. In front of loudspeaker diaphragm 13 is a narrow port 45, i.e. a board piece equipped with an acoustic load opening 45, a facade board 42, which can also be its installation board, panel, etc. Together with diaphragm 13 and the module seal, this forms a nearly closed space (except for port 45). Body 11 is closed, so that the operation of the loudspeaker is the same as in the previous case. As a result of load 42, the acoustic impedance of
diaphragm 13 increases, when diaphragm 13 is dynamically pressurized. Thus, when the loudspeaker operates, air flows from its port 45, particularly at low frequencies depending on the volume, when the velocity of the air increases and the efficiency of the loudspeaker also increases. This creates an advantage, in that a small loudspeaker construction can produce powerful low reproduction frequencies. In addition, the loudspeaker directs the sound, according on its dimensions. The construction of the pillar loudspeaker may include other acoustic elements and guides, which affect the frequency reproduction and tuning.

Figure 2e shows a cross-section of example 2c. The entire construction can also easily be imagined as being in an independent cabinet, either standing on the floor or hanging from the ceiling.

In Figures 4a and 4b, the pillar loudspeaker is installed on a pole. The independent cabinet 10 forms a port 27 with the side of the pole. Correspondingly, in Figures 4c and 4d, the pillar loudspeaker is installed inside the pole. Facade board 42 forms a port 27 with the side of the pole 16.

Figure 3a shows a cross-section A - A of the new operating device of pillar loudspeaker 1, i.e. of linear operating device 50, which is long and thus suitable for controlling the diaphragm 13 of a loudspeaker according to the invention. It does not create push-pull phase areas in diaphragm 13 even at treble frequencies, because it operates in phase over its entire length. The linear operating device 50 is entirely connected to diaphragm 13, so that it is evenly loaded. The construction of operating device 50 is due to the long and narrow magnet connecting strap 54, and the corresponding magnet arrangement 52, which preferably comprises several neodym magnets 53. Because these magnets are small in relation to their energy content, slim and even small loudspeakers can be
constructed with the aid of an operating device according to the invention.

Figure 3b shows linear operating device 50 seen from in front. It shows magnet body 52, magnet connecting strap 54, on either side of which are glued suitable neodym magnets 53. The voice coil 55 is set around magnet connecting strap 54 in port 57 and is centred so that it does not make contact with the magnet arrangement.

Figure 3c shows cross-section B - B of the linear operating device. The voice coil comprises an aluminium body 55 and a copper coil 56 glued to it. The aluminium body is made from extruded section or by edging sheet aluminium. Thus it has a large thermal capacity, so that the construction is also well suited to high-power loudspeakers. Figure 3d shows an example of a linear operating device with a voice coil 64 that is even smaller than the previous one. It has two neodym magnets 63, so that the construction does not have a separate connecting strap.

The following points can be made in connection with the linear operating device:
- Vortices arise in the port of a moving conducting metal magnet, and tend to resist the movement of the voice coil when it is producing sound (especially when it is connected to the diaphragm).
- There are several good and appropriate materials for making the body of the voice coil, such as capton, aluminium, traditional pressboard, cardboard or paper, and suitable plastics.
- Vortices can be prevented by the following means:
 - the body of the voice coil can be made from non-conducting materials, such as capton, ceramics, plastics, composite materials, carbon-fibre (with the fibre arranged to be non-conducting), kevlar, etc.
- if the body is made from a conducting material, e.g., aluminium, it can be made thin, in which case the effect of the vortex diminishes, or by making saw or file cuts in the body, which prevent the current circuits of the electromotor forces arising at the air port in the body from closing outside the air port.

- if the body is made from a conducting material, such as aluminium (a good thermal conductor), in addition to the above, the body can be constructed using a laminating technique, so that long flow loops do not arise.

- the body of the voice coil can be ended before the air port, so that the voice coil that is actually in the air port is glued (e.g., with ceramic material) to the body, so that the potentials referred to do not arise.

The invention is not limited to the embodiments disclosed above, as these can be varied within the scope defined by the Claims. Thus, for example, diaphragm 13 need not be flat, but can include other shapes or be part of the rest of the construction. The flexible edge permits even the large amplitudes of movement in the diaphragm, which are required when producing low and powerful bass sounds. Nonetheless, even the flexible edge can be of the same material or component as diaphragm 13. Thus, the flexible edge can be constructed either in the diaphragm material or can be a separate component of a different material. The diaphragm material can be preferably selected from many appropriate and durable materials, such as fibreboard, woven materials, plastics, composite materials, and even metals.
Claims

1. A method for sound reproduction, in which a vibrating diaphragm (13) controlled by an operating device (21, 50) produces sound in the air surrounding it on the first side, and in which so-called acoustic feedback is prevented by preventing the passage of the air over the edge of the diaphragm to its other side, and in which the air transports the sound to the surrounding free space, characterized in that the aforesaid diaphragm is formed as a uniformly vibrating, essentially straight and high element, so that the height H of diaphragm (13) is at least three times, and preferably at least five times its width W, and that an essentially closed chamber (9) is formed in front of diaphragm (13), except for a port arrangement (5), in which one or more ports (27, 45) essentially corresponding to the height of the diaphragm permit the passage of air and thus of sound from chamber (9) to the free space.

2. A method according to Claim 1, characterized in that the width d of the port (27, 45) is 12 - 30 % of the width W of diaphragm (13).

3. A method according to Claim 1 or 2, characterized in that the edge (6) of port (27, 45) opening onto the free space is rounded to a radius of 5 - 30 mm.

4. A method according to one of Claims 1 - 3, characterized in that port (27, 45) is formed by placing diaphragm (13) on one, essentially flat, side of cabinet (1) and placing this side close to a wall surface (28), so that at least one port (27) is formed between the edge (6) of the side of the cabinet (1) and the wall surface (28).

5. A method according to one of Claims 1 - 3, characterized in that diaphragm (13) is permanently placed in a construc-
tion forming chamber (9), in the centre of which is the aforesaid port (45) on the side opposite to diaphragm (13).

6. A pillar loudspeaker intended for sound reproduction indoors and outdoors, which pillar loudspeaker includes a cabinet construction supporting a relatively stiff diaphragm (13), at least one operating device (21, 50) for driving the diaphragm, and in which diaphragm (13) is arranged to vibrate mechanically by means of the force of operating device (21, 50) to produce a sound in the free space, the cabinet construction being arranged to prevent acoustic feedback in such a way that the cabinet construction encloses one side of diaphragm (13) within it, the other side having an air connection to the free space, characterized in that diaphragm (13) is operationally a straight, unified, and single component, which is tall vertically and narrow horizontally in such a way that the height H of diaphragm (13) is at least three times, preferably five times greater than its width W.

7. A pillar loudspeaker according to Claim 6, characterized in that the loudspeaker includes a port arrangement (5), comprising at least one port (27, 45) in front of diaphragm (13) in the construction forming chamber (9) and leading away from chamber (9), to allow air to pass from chamber (9) to the free space.

8. A pillar loudspeaker according to Claim 7, characterized in that diaphragm (13) is placed at the side of cabinet (1), which is arranged to be installed with attachment devices (16) at a distance from and facing wall surface (28), at least one port (27) being formed between edge (6) of the side of cabinet (1) and wall surface (28).

9. A pillar loudspeaker according to Claim 7, characterized in that the cabinet construction includes an enclosure
construction enclosing diaphragm (13), in which enclosure there is a port (45) on the side opposite diaphragm (13).

10. A pillar loudspeaker according to one of Claims 6 - 9, characterized in that the width d of port (27, 45) is 12 - 30 % on the width W of diaphragm (13).

11. A pillar loudspeaker according to one of Claims 6 - 10, characterized in that the loudspeaker includes several point-like operating devices (21) and that diaphragm (13) has a curved cross-section, to stiffen it.

12. A loudspeaker according to one of Claims 6 - 10, characterized in that the loudspeaker includes one or more high linear operating devices (50).

13. A loudspeaker according to one of Claims 6 - 10, characterized in that diaphragm (13) has a composite material, moulded, or laminated construction, its material being aluminium, kevlar, carbon-fibre, urethane, or wood fibre.

14. A loudspeaker according to Claim 12, characterized in that the voice coil element (55), which moves in the air port (57) of the body of linear operating device (50) and is elongated in its circumferential plane, is attached either directly or indirectly to the base of diaphragm (13).

15. A loudspeaker according to Claim 14, characterized in that the body of linear operating device (50) is a unified component, which forms two high ports between the magnetic poles, with high voice coil (55) being fitted into these ports.

16. A loudspeaker according to Claim 15, characterized the body (56) of high voice coil (55) is made from aluminium.
AMENDED CLAIMS

[received by the International Bureau on 09 February 2000 (09.02.00); original claim 6 cancelled; claims 1-16 renumbered as claims 1-15 (3 pages)]

1. A method for sound reproduction, in which a vibrating diaphragm (13) controlled by an operating device (21, 50) produces sound in the air surrounding it on the first side, and in which so-called acoustic feedback is prevented by preventing the passage of the air over the edge of the diaphragm to its other side, and in which the air transports the sound to the surrounding free space, characterized in that the aforesaid diaphragm is formed as a uniformly vibrating, essentially straight and high element, so that the height H of diaphragm (13) is at least three times, and preferably at least five times its width W, and that an essentially closed chamber (9) is formed in front of diaphragm (13), except for a port arrangement (5), in which one or more ports (27, 45) essentially corresponding to the height of the diaphragm permit the passage of air and thus of sound from chamber (9) to the free space.

2. A method according to Claim 1, characterized in that the width d of the port (27, 45) is 12 - 30 % of the width W of diaphragm (13).

3. A method according to Claim 1 or 2, characterized in that the edge (6) of port (27, 45) opening onto the free space is rounded to a radius of 5 - 30 mm.

4. A method according to one of Claims 1 - 3, characterized in that port (27, 45) is formed by placing diaphragm (13) on one, essentially flat, side of cabinet (1) and placing this side close to a wall surface (28), so that at least one port (27) is formed between the edge (6) of the side of the cabinet (1) and the wall surface (28).

5. A method according to one of Claims 1 - 3, characterized in that diaphragm (13) is permanently placed in a construc-
tion forming chamber (9), in the centre of which is the aforesaid port (45) on the side opposite to diaphragm (13).

6. A pillar loudspeaker intended for sound reproduction indoors and outdoors, which pillar loudspeaker includes—
a cabinet construction supporting a diaphragm (13), at least one operating device (21, 50) for driving the diaphragm, which is operationally a straight, unified, and relatively stiff single component, which is tall vertically and narrow horizontally in such a way that the height \(H \) of diaphragm (13) is at least three times, preferably five times greater than its width \(W \), and in which the diaphragm arranged to vibrate mechanically by means of the force of operating device (21, 50) to produce a sound in the free space, the cabinet construction being arranged to prevent acoustic feedback in such a way that the cabinet construction encloses one side of diaphragm (13) within it, the other side having an air connection to the free space, characterized in that the loudspeaker includes a port arrangement (5), comprising at least one port (27, 45) in front of diaphragm (13) in the construction forming chamber (9) and leading away from chamber (9), to allow air to pass from chamber (9) to the free space.

7. A pillar loudspeaker according to Claim 6, characterized in that diaphragm (13) is placed at the side of cabinet (1), which is arranged to be installed with attachment devices (16) at a distance from and facing wall surface (28), at least one port (27) being formed between edge (6) of the side of cabinet (1) and wall surface (28).

8. A pillar loudspeaker according to Claim 6, characterized in that the cabinet construction includes an enclosure construction enclosing diaphragm (13), in which enclosure there is a port (45) on the side opposite diaphragm (13).
9. A pillar loudspeaker according to one of Claims 6 - 8, characterized in that the width d of port (27, 45) is 12 - 30 % on the width W of diaphragm (13).

10. A pillar loudspeaker according to one of Claims 6 - 10, characterized in that the loudspeaker includes several point-like operating devices (21) and that diaphragm (13) has a curved cross-section, to stiffen it.

11. A loudspeaker according to one of Claims 6 - 9, characterized in that the loudspeaker includes one or more high linear operating devices (50).

12. A loudspeaker according to one of Claims 6 - 9, characterized in that diaphragm (13) has a composite material, moulded, or laminated construction, its material being aluminium, kevlar, carbon-fibre, urethane, or wood fibre.

13. A loudspeaker according to Claim 11, characterized in that the voice coil element (55), which moves in the air port (57) of the body of linear operating device (50) and is elongated in its circumferential plane, is attached either directly or indirectly to the base of diaphragm (13).

14. A loudspeaker according to Claim 13, characterized in that the body of linear operating device (50) is a unified component, which forms two high ports between the magnetic poles, with high voice coil (55) being fitted into these ports.

15. A loudspeaker according to Claim 14, characterized the body (56) of high voice coil (55) is made from aluminium.

AMENDED SHEET (ARTICLE 19)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H04R 1/02, H04R 7/04, H04R 9/06
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H04R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0048434 A1 (ELECTRO-MAGNETIC CORPORATION), 31 March 1982 (31.03.82), figures 1,3,5,8,10, abstract</td>
<td>6</td>
</tr>
<tr>
<td>P,X</td>
<td>WO 9905888 A1 (TECHNOFIRST ET AL), 4 February 1999 (04.02.99), figures 1-3,7, abstract</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>US 4792978 A (MARQUISS), 20 December 1988 (20.12.88), figures 1,3,6,8, abstract</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 4856071 A (MARQUISS), 8 August 1989 (08.08.89), figures 1,3,6,8, abstract</td>
<td>1-16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" either document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 22 December 1999
Date of mailing of the international search report: 05-01-2000

Name and mailing address of the ISA/Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Tomas Lund / JA A
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5802190 A (FERREN), 1 Sept 1998 (01.09.98)</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 0048434 A1</td>
<td>31/03/82</td>
<td>CA 1180437 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4385210 A</td>
</tr>
<tr>
<td>WO 9905888 A1</td>
<td>04/02/99</td>
<td>AU 8867598 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2766650 A</td>
</tr>
<tr>
<td>US 4792978 A</td>
<td>20/12/88</td>
<td>US 4856071 A</td>
</tr>
<tr>
<td>US 4856071 A</td>
<td>08/08/89</td>
<td>US 4792978 A</td>
</tr>
<tr>
<td>US 5802190 A</td>
<td>01/09/98</td>
<td>US 5946401 A</td>
</tr>
</tbody>
</table>