O 03/087974 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

23 October 2003 (23.10.2003) PCT WO 03/087974 A2
(51) International Patent Classification’: GO6F CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(21) International Application Number: PCT/IL03/00296 LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(22) International Filing Date: 8 April 2003 (08.04.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/371,454 9 April 2002 (09.04.2002) US

(71) Applicants and

(72) Inventors: ARAZI, Matan [IL/US]; 12646 Montana Av-
enuee, #8, Los Angeles, CA 90049 (US). SETTON, Guy
[TL/GB]; 54A Tudor Close, London, NW3 4AG (GB).

(74) Agents: SANFORD, T. Colb & Co. et al.; PO Box 2273,
76122 Rehovot (IL).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee COMPUTERIZED TRADING SYSTEM AND METHOD USEFUL THEREFOR

(57) Abstract: A computerized trading system including a price information cache including a multiplicity of price information
items originating from more than one transaction queries posed by more than one trader from among a population of traders, each
of the price information items having a cached life cycle, and a trading query processor operative to receive trading queries from the
population of traders and to employ the price information cache in responding thereto.

10

15

20

25

WO 03/087974 PCT/IL03/00296

COMPUTERIZED TRADING SYSTEM AND
METHODS USEFUL THEREFOR

FIELD OF THE INVENTION
The present invention relates to apparatus and methods for computerized

trading.

REFERENCE TO CO-PENDING APPLICATION
This application claims priority from U.S. Provisional Patent Application
Serial No. 60/371,454, filed April 9, 2002 and entitled MERCALINK SOFTWARE
REQUIREMENTS SPECIFICATION.

BACKGROUND OF THE INVENTION
Computerized trading systems and related technologies are described at
the following World Wide Web addresses:
Research.ibm.com/absolute/ and omg.org/docs/formal/00-05-02.pdf.
The disclosures of all publications mentioned in the specification and of

the publications cited therein are hereby incorporated by reference.

SUMMARY OF THE INVENTION
The present invention seeks to provide improved apparatus and
methods for computerized trading.
The present specification and claims use the following terminology:

Term Definition

Trader One who is in business of buying and selling commodities
(goods) for profit, or the exchange of one commodity for

another.

WO 03/087974

PCT/IL03/00296

General Trading

Companies

A business enterprise of traders. There are two main types of
general trading companies: those who sell goods on their
own account and those who arrange sales and purchases for
others for a commission or fee. They trade in all markets
whether it is for raw materials and manufactured goods,

durable or non-durable, consumer or non-consumer items.

Counterparty

A general trading company engages with other business
enterprises in the regular course of its business, including its
suppliers, customers and other service providers such as
finance institutions, insurance companies and shipping

operations.

Request

When a trader or counterparty expresses a desire and / or an

interest to engage in business.

Offer

When a trader or counterparty puts forward a proposal for a

deal and waits for its rejection or acceptance.

Transaction / Contract

An agreement between two or more parties, especially one

that is written and enforceable by law.

Long Position When a trader purchases goods for storage to sell at a later
date for a greater profit.
Short Position When a trader sells goods that he/she does not own yet but

expects to obtain them at a later date for a lower price than
what is achievable in the present. He / she has sold a contract
to establish a market position and has not yet closed out this
position through an offsetting purchase; the opposite of a

long position.

Pricing Chain

A computation sheet which the trader uses to estimate his /

her cost of sales, pricing and profit / loss.

Call-off (inbound /

outbound)

Exercising a contract by ordering goods which have been

bought or sold and allocated to the contract awaiting delivery

WO 03/087974

PCT/IL03/00296

Claims

When a trader or counterparty declares that there is a
noncompliance issue with a contract due to some fault with
the goods that have been delivered or any other problem with
the fulfillment of the deal, which is in conflict with the

agreement’s terms and conditions.

Market Price

The last reported / known price at which a commodity was

traded.

Validity Term (Subject
to final confirmation or
Valid Until dd/mm/yy
hh:mm)

The conditions and timeframe under which an offer is
effective and, if valid until a specific date and time, then

legally enforceable as well.

INCO Terms

To provide a common terminology for international shipping
and trading, to minimize misunderstandings, the

International Chamber of Commerce developed a set of
terms, known as INCO terms. The purpose of INCO terms is
to provide a set of international rules for the interpretation of
the most commonly used trade terms in foreign trade. Thus,
the uncertainties of different interpretations of such terms in
different countries can be avoided or at least reduced to a
considerable degree. The scope of INCO terms is limited to
matters relating to the rights and obligations of the parties to
the contract of sale with respect to the delivery of goods.
INCO terms deal with a number of identified obligations
imposed on the parties and the distribution of risk between
the parties. In total 13 INCO terms have been defined which
are grouped into four basically different categories,
applicable for sea and inland waterway transport or for all

modes of transport.

Product Grade

A widely accepted quality classification of a product by the
market to minimize misunderstandings between parties and

match expectations.

10

15

20

WO 03/087974 PCT/IL03/00296

ETA/ETD Estimated Time of Arrival — when goods purchased or sold
are expected to arrive at a target destination; Estimated Time
of Departure — when goods purchase or sold are expected to

be shipped to a target destination.

Forex Foreign exchange currencies.

Stop Status When a general trading company has restricted trading with
a counterparty for any number of reasons such as a failure to
pay outstanding debts, a fear that it is on the verge of

bankruptcy, or an unresolved legal dispute.

There is thus provided in accordance with a preferred embodiment of the
present invention a computerized trading system including a price information cache
including a multiplicity of price information items originating from more than one
transaction queries posed by more than one trader from among a population of traders,
each of the price information items having a cached life cycle, and a trading query
processor operative to receive trading queries from the population of traders and to
employ the price information cache in responding thereto.

In accordance with another preferred embodiment of the present
invention, the trading query processor is operative to send subqueries which relate to
price information items not available in the price information cache.

Preferably, the cached life cycle includes an indication of time-points
defining at least one time periods. Additionally, the cached life cycle includes an
indication of time-points defining a plurality of time periods.

In accordance with yet another preferred embodiment of the present
invention the at least one cached life cycle includes a cached time period in which an
associated price information item is valid, a cached time period in which an associated
price information is invalid and a cached time period in which an associated price
information may be valid and may not be valid.

There is further provided in accordance with yet another preferred
embodiment of the present invention a computerized trading system including a price
information cache including a multiplicity of price information items originating from

more than one transaction queries posed by more than one trader from among a

4

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

population of traders and a trading query processor operative to receive trading queries
from the population of traders and to process the trading queries not necessarily in FIFO
order in order to enhance the efficiency of responding thereto.

Preferably, similar trading queries are grouped together. Alternatively or
additionally, the trading queries include at least one query to a human-operated
workstation. Additionally or alternatively, the trading queries include at least one query
to an automatic computer-based information provider.

There is yet further provided in accordance with still another preferred
embodiment of the present invention a computerized trading system including a shared
price information cache subsystem including a multiplicity of price information items
originating from more than one transaction queries posed by more than one trader from
among a population of competing traders and a shared price information updating
subsystem operative to update the shared price information cache subsystem based on
information received in the context of a query and similarities between that query and
other queries.

There is even further provided in accordance with another preferred
embodiment of the present invention a computerized trading system including a price
information cache including a multiplicity of price information items originating from
more than one transaction queries posed by moré than one trader from among a
population of traders and a trading query processor operative to receive trading queries
from the population of traders and to employ the price information cache in responding
thereto, the trading query processor employing inquiry templates built on earlier
inquiries and information received in response thereto.

Preferably, the templates are selected based on similarities between
inquiry templates built on earlier inquiries and a current inquiry. Additionally, templates
are displayed in an order depending on extent of similarity to a current inquiry.

In accordance with another preferred embodiment of the present
invention the trading query processor is operative to identify in the inquiry templates
built on earlier inquiries, information irrelevant to the current inquiry, to generate a
reproduction of the inquiry template and to delete therefrom the information.

There 1s also provided in accordance with yet another preferred

embodiment of the present invention a computerized transaction analysis method

10

15

20

25

WO 03/087974 PCT/IL03/00296

including accessing at least one relevant previous transaction, wherein relevance is a
function of at least one user-defined parameter defining a proposed transaction,
analyzing at least one parameter of the at least one relevant previous transaction, the at
least one parameter being selected to match the at least one user-defined parameter and
generating at least one recommendations for the proposed transaction including an
evaluation of the suitability of each of the at least one recommendations in view of at
least one user-defined parameter.

Preferably, the step of generating includes generating at least one
recommendation by combining a plurality of relevant previous transactions.
Alternatively or additionally, the step of generating includes adjusting for a’t least one
parameter external to all relevant previous transactions under consideration.

There is further provided in accordance with still another preferred
embodiment of the present invention a computerized trading system including a price
information cache including a multiplicity of price information items originating from
more than one transaction queries posed by more than one trader from among a
population of traders, each of the price information items having a cached life cycle and
a trading query processor operative to receive trading queries from the population of
traders including accessing the price information cache to respond as fully as possible to
each trading query and sending out subqueries which relate to price information items
not present in the price information cache.

There is even further provided in accordance with another preferred
embodiment of the present invention a computerized trading system including a price
information cache including a multiplicity of price information items originating from
more than one transaction queries posed by more than one trader from among a
population of traders and a trading query processor operative to receive a sequence of
trading queries from the population of traders and to amalgamate at least one pair of
queries from among the sequence of trading queries in order to enhance the efficiency
of responding thereto.

There is still further provided in accordance with yet another preferred
embodiment of the present invention a computerized trading method including
providing a price information cache including a multiplicity of price information items

originating from more than one transaction queries posed by more than one trader from

6

10

15

20

30

WO 03/087974 PCT/IL03/00296

among a population of traders, each of the price information items having a cached life
cycle, receiving trading queries from the population of traders and employing the price
information cache in responding to the trading queries received.

There is also provided in accordance with another preferred embodiment
of the present invention a computerized trading method including providing a price
information cache including a multiplicity of price information items originating from
more than one transaction queries posed by more than one trader from among a
population of traders, receiving trading queries from the population of traders and
processing the trading queries received not necessarily in FIFO order in order to
enhance the efficiency of responding thereto.

There is further provided in accordance with yet another preferred
embodiment of the present invention a computerized trading method including
providing a shared price information cache subsystem including a multiplicity of price
information items originating from more than one transaction queries posed by more
than one trader from among a population of competing traders and updating the shared
price information cache subsystem based on information received in the context of a
query and similarities between that query and other queries.

There is even further provided in accordance with still another preferred
embodiment of the present invention a computerized trading method including
providing a price information cache including a multiplicity of price information items
originating from more than one transaction queries posed by more than one trader from
among a population of traders, receiving trading queries from the population of traders,
employing the price information cache in responding to the trading queries received and
employing inquiry templates built on earlier inquiries and information received in
response to the trading queries recetved.

There is yet further provided in accordance with another preferred
embodiment of the present invention a computerized transaction analysis system
including a processor operative to access at least one relevant previous transaction,
wherein relevance is a function of at least one user-defined parameter defining a
proposed transaction and a transaction analyzer operative to analyze at least one
parameter of the at least one relevant previous transaction, the at least one parameter

being selected to match the at least one user-defined parameter and to generate at least

7

10

15

20

30

WO 03/087974 PCT/IL03/00296

one recommendations for the proposed transaction including an evaluation of the
suitability of each of the at least one recommendations in view of at least one user-
defined parameter.

There is still further provided in accordance with yet another preferred
embodiment of the present invention a computerized trading method including
providing a price information cache including a multiplicity of price information items
originating from more than one transaction queries posed by more than one trader from
among a population of traders, each of the price information items having a cached life
cycle, receiving trading queries from the population of traders, accessing the price
information cache to respond as fully as possible to each trading query and sending out
subqueries which relate to price information items not present in the price information
cache.

There is also provided in accordance with still another preferred
embodiment of the present invention a computerized trading method including
providing a price information cache including a multiplicity of price information items
originating from more than one transaction queries posed by more than one trader from
among a population of traders, receiving a sequence of trading queries from the
population of traders and amalgamating at least one pair of queries from among the
sequence of trading queries in order to enhance the efficiency of responding thereto.

The price information cache may for example include Tables I, VIII and
XIV. The price information items having cached life cycles may comprise ProductID,
BasePrice and ComputedPrice in Table I, ProdID, ProdMarketPrice and
ProdAveragePrice in Table VIII and ProdID, Quantity and CurrentStockPrice in Table
XIV. All of the above may be referenced by the price information cache by means of a
pointer to the actual location of the data item, which is queried by “Computation
Handlers” of type “TABLE LOOKUP”. The pointer is stored in the data record for each
type of item cached, e.g. the Parameter field of Table XX.

The trading query processor may for example comprise the PRICING
CHAIN BUILDER 3000, which may for example be queried by the TRANSACTION
BUILDER as well, particularly in the process of generating recommendations, when the

recommendations are accepted as transactions by the user.

10

15

20

25

WO 03/087974 PCT/IL03/00296

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated from the
following detailed description, taken in conjunction with the drawings in which:

Fig. 1 is a simplified functional block diagram of a commodity trading
system constructed and operative in accordance with a preferred embodiment of the
present invention;

Fig. 2 is a simplified flowchart illustration of a preferred method of
operation for the queue manager 1000 of Fig. 1;

Fig. 3 is a simplified flowchart illustration of a preferred method for
implementing step 1004 of Fig. 2;

Fig. 4 is a simplified flowchart illustration of a preferred method for
implementing step 1010 of Fig. 3;

Fig. 5 is a simplified flowchart illustration of a preferred method for
implementing step 1024 of Fig. 4;

Fig. 6 is a simplified flowchart illustration of a preferred method for
implementing step 1011 of Fig. 3;

Fig. 7 is a simplified flowchart illustration of a preferred method for
implementing step 1041 of Fig. 6;

Fig. 8 is a simplified flowchart illustration of a preferred method for
implementing step 1044 of Fig. 6;

Fig. 9 is a simplified flowchart illustration of a preferred method for
implementing step 1012 of Fig. 3;

Fig. 10 is a simplified flowchart illustration of a preferred method for
implementing step 1071 of Fig. 9;

Fig. 11 is a simplified flowchart illustration of a preferred method for
implementing step 1013 of Fig. 3;

Fig. 12 is a simplified flowchart illustration of a preferred process for
user-triggered or periodic resorting and amalgamation of a selected queue in the queue
manager 1000 of Fig. 1;

Fig. 13 is a simplified flowchart illustration of a preferred method for

implementing step 1003 of Fig. 2;

10

15

20

25

30

WO 03/087974

PCT/IL03/00296

Fig. 14 is a simplified flowchart illustration of a preferred method for

implementing step 1136 of Fig. 13;

Fig. 15 is a diagram of a full cycle of operations by which the queue

manager 1000 determines the various dependencies of items within a queue;

Fig. 16 is a simplified flowchart illustration of a preferred method of

operation for the physical commodity transaction builder 2000 of Fig. 1;

Fig. 17 is a simplified flowchart illustration of a preferred method for

implementing step 2001 of Fig. 16;

Fig. 18 is a simplified flowchart
implementing step 2010 of Fig. 17;

Fig. 19 is a simplified flowchart
implementing step 2020 of Fig. 18;

Fig. 20 1s a simplified flowchart
implementing step 2021 of Fig. 18;

Fig. 21 is a simplified flowchart
implementing step 2023 of Fig. 18;

Fig. 22 is a simplified flowchart
implementing step 2061 of Fig. 21;

Fig. 23 is a simplified flowchart
implementing step 2062 of Fig. 21;

Fig. 24 is a simplified flowchart
implementing step 2093 of Fig. 23;

Fig. 25 is a simplified flowchart
implementing step 2092 of Fig. 23;

Fig. 26 is a simplified flowchart
implementing step 2116 of Fig. 25;

Fig. 27 is a simplified flowchart
implementing step 2063 of Fig. 21;

Fig. 28 is a simplified flowchart
implementing step 2065 of Fig. 21;

illustration

illustration

illustration

illustration

illustration

illustration

illustration

illustration

illustration

illustration

illustration

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

of a preferred method for

Fig. 29 is a simplified flowchart illustration of a preferred method of

operation for the price chain builder 3000 of Fig. 1;

10

10

15

20

25

WO 03/087974 PCT/IL03/00296

Fig. 30 is a simplified flowchart illustration of a preferred method for
implementing step 3003 of Fig. 29;

Fig. 31 is a simplified flowchart illustration of a preferred method for
implementing step 3012 of Fig. 30;

Fig. 32 is a simplified flowchart illustration of a preferred method for
implementing step 3013 of Fig. 30;

Fig. 33 is a simplified flowchart illustration of a preferred method for
implementing step 3014 of Fig. 30;

" Fig. 34 is a simplified flowchart illustration of a preferred method for

implementing step 3044 of Fig. 33;

Fig. 35 is a simplified flowchart illustration of a preferred method for
implementing step 3045 of Fig. 33;

Fig. 36 is a simplified flowchart illustration of a preferred method for
implementing step 3041 of Fig. 33;

Fig. 37 is a simplified flowchart illustration of a preferred method for
implementing step 3055 of Fig. 34;

Fig. 38 is a simplified flowchart illustration of a preferred method for
implementing step 3058 of Fig. 34;

Fig. 39 is a simplified flowchart illustration of a preferred method of
operation for the notification handler 4000 of Fig. 1;

Fig. 40 is a simplified flowchart illustration of a preferred method for
implementing step 4001 of Fig. 39;

Fig. 41 is a simplified flowchart illustration of a preferred method for
implementing step 4011 of Fig. 40;

Fig. 42 is a simplified flowchart illustration of a preferred method for
implementing step 4015 of Fig. 40; ‘

Fig. 43 is a simplified flowchart illustration of a preferred method for
implementing step 4016 of Fig. 40;

Fig. 44 is a simplified flowchart illustration of a preferred method of
operation of the data expiration handler 5000 of Fig. 1, depicting the operations
executed when the expiration criteria for a data element is queried or updated;

Fig. 45 is a simplified flowchart illustration of a preferred method for

11

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

implementing step 5001 of Fig. 44 in which a potentially expired data element is
queried,;

Fig. 46 is a simplified flowchart illustration of a preferred method for
implementing step 5011 of Fig. 45;

Fig. 47 is a simplified flowchart illustration of a preferred method for
implementing step 5016 of Fig. 45;

Fig. 48 is a simplified flowchart illustration of a preferred method for
implementing step 5003 of Fig. 44;

' Fig. 49 is a simplified screenshot depicting a possible display presented
to a user in step 3026 of Fig. 31, showing a sorted list of pricing chains that are similar
to selected parameters;

Fig. 50 is a simplified screenshot depicting a possible display presented
to a user in step 3036 of Fig. 31, showing all processors currently attached to a first
example of a pricing chain, with the values of each processor;

Fig. 51 is a simplified screenshot depicting a possible display presented
to a user in step 3036 of Fig. 31, showing all processors currently attached to a second
example of a pricing chain, with the values of each processor;

Fig. 52 is a simplified screenshot depicting a possible display presented
to a user in step 3036 of Fig. 31, showing all processors currently attached to a third
example of a pricing chain, with the values of each processor;

Fig. 53 is a simplified screenshot depicting a possible disﬁlay of
information regarding a transaction as handled by an external application such as
Microsoft Great Plains or SAP, wherein the information may be used to seed the
transaction table;

Fig. 54 is a simplified screenshot depicting a possible display presented
to a user in step 1001 of Fig. 2, showing all queue items currently existing in a selected
queue and allowing a user, or other process, to select a desired queue item in order to
perform a selected action;

Fig. 55 is a simplified screenshot depicting a possible display presented
to a user in step 1003 of Fig. 2, showing a queue item with a user prompt for action on
the queue item;

Fig. 56 is a simplified screenshot depicting a possible display presented

12

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

to a user in step 2020 of Fig. 18, showing possible parameters pertaining to a
recommendation request for which the user may set a desired weighting;

Fig. 57 is a simplified screenshot depicting a possible display presented
to a user in step 2024 of Fig. 18, showing possible outcomes of a recommendation
process and allowing a user to accept, recompute, or reject the system's
recommendations;

Fig. 58 is a simplified screenshot depicting a possible display presented
to a user in step 1001 of Fig. 2, showing all queue items currently existing in a selected
queue before the amalgamation process of Fig. 9 has been executed,

Fig. 59 is a simplified screenshot depicting a possible display presented
to a user during the amalgamation process of Fig. 9;

Fig. 60 is a simplified screenshot depicting a possible display presented
to a user during the amalgamation process of Fig. 9,

Fig. 61 is a simplified screenshot depicting a possible display presented
to a user after the amalgamation process of Fig. 9 has been executed;

Fig. 62 is a simplified screenshot depicting a possible display of database
fields pertaining to the definitions of users in the Users Table, Table II of the database
200;

Fig. 63 is a simplified screenshot depicting a possible display presented
to a user by an external application such as Microsoft SQL Server Enterprise Manager
allowing the user to edit values of a selected record within a selected table of a selected
database;

Figs. 64A - 64E, taken together, are a pictorial illustration of a trader
using a computerized trading system constructed and operative in accordance with a
preferred embodiment of the present invention in which price information items
including expiry information therewithin are automatically converted into a system
format for storage in the system;

Fig. 65A is a pictorial illustration of four transactions stored in a
computerized trading system constructed and operative in accordance with a preferred
embodiment of the present invention, the transactions being in various states of
implementation;

Fig. 65B is a pictorial illustration of an event, affecting three of the four

13

10

15

20

25

WO 03/087974 PCT/IL03/00296

transactions in Fig. 65A;

Fig. 65C is a pictorial illustration showing the effect of the event of Fig.
65B on the transactions of Fig. 65A, as automatically implemented by the computerized
trading system storing the transactions of Fig. 65A;

Fig. 66 is a pictorial illustration of traders and facilitative information
providing departments, which may interact via a computerized trading system
constructed and operative in accordance with a preferred embodiment of the present
invention;

Fig. 67A is a pictorial illustration of email messages being generated by a
first trader, Ann, in Fig. 66;

Fig. 67B is a pictorial illustration of email messages being generated by a
second trader, Bill, in Fig. 66;

Fig. 67C is a pictorial illustration of email messages being generated by a
third trader, Carrie, in Fig. 66;

Fig. 67D is a pictorial illustration of email messages being generated by a
fourth trader, Dave, in Fig. 66;

Fig. 68A is a pictorial illustration of a computerized email queue
generated from those email messages in Figs. 67A - 67D which are addressed to the
logistics department in Fig. 66;

Fig. 68B is a pictorial illustration of a computerized email queue
generated from those email messages in Figs. 67A - 67D which are addressed to the
shipping and handling department in Fig. 66;

Fig. 69A is a pictorial illustration of the computerized email queue of
Fig. 68A, resorted and amalgamated; and

Fig. 69B is a pictorial illustration of the computerized email queue of

Fig. 68B, resorted and amalgamated.

14

10

15

20

25

WO 03/087974 PCT/IL03/00296

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference is now made to Fig. 1, which is a simplified functional block
diagram of a commodity trading system constructed and operative in accordance with a
preferred embodiment of the present invention.

As seen i Fig. 1, the commodity trading system is embodied in a
commodity trading software tool. The commodity trading system includes a plurality of
computer systems 101 connected via a computer networking protocol (such as TCP/IP).
Computer systems 101 may be a remote computer system.

A user typically accesses the commodity trading system through a local
computer system, which includes a user display 102. The user’s local computer system
is connected to the commodity trading system via a network layer 103 including a
computerized data transportation mechanism, such as TCP/IP or a local data bus. The
commodity trading system also preferably includes a presentation layer 104, such as
HTML, typically executed within a program contained within an operating system, such
as Web Server, that interfaces with the network layer, trading system’s components, and
database.

The commodity trading system preferably includes a currency handler
105, which preferably handles foreign currency exchanges and bookings. A preferred
embodiment of currency handler 105 is that implemented by the LV Purchase Ledger,
produced by Lakeview Computers plc, Banks House, Banks Lane, Bexleyheath, Kent
DA6 7BH, United Kingdom.

The commodity trading system preferably includes a credit and debit
note handler 106, which preferably handles the issuance and fulfillment of credit and
debit notes. A preferred embodiment of credit and debit note handler 106 is that
implemented by the LV Sales Ledger, produced by Lakeview Computers plc, Banks
House, Banks Lane, Bexleyheath, Kent DA6 7BH, United Kingdom.

In accordance with a preferred embodiment of the present invention, the
commodity trading system also includes a transaction handler 107, which preferably
handles communications of offers and requests, such as that implemented by the
Contract Administration module produced by Kit Software Ltd, Tay House, Riverview

Business Park, Friarton Road, Perth PH2 8DG, United Kingdom.

15

10

15

20

25

WO 03/087974 PCT/IL03/00296

The commodity trading system also preferably includes a stock
management module 108, for tracking stock levels, such as that implemented by the LV
Stock Control module, produced by Lakeview Computers plc, Banks House, Banks
Lane, Bexleyheath, Kent DA6 7BH, United Kingdom.

The commodity trading system further includes a contract handler 109,
for handling and tracking contracts. A preferred embodiment of contract handler 109 is
that implemented by the Contract Execution module, produced by Kit Software Ltd,
Tay House, Riverview Business Park, Friarton Road, Perth PH2 8DG, United Kingdom.

In accordance with a preferred embodiment of the present invention, the
commodity trading system also includes a product catalog 110, for tracking the various
products available for buy or sell orders, such as that implemented by the LV Stock
Control module, produced by Lakeview Computers plc, Banks House, Banks Lane,
Bexleyheath, Kent DA6 7BH, United Kingdom.

The commodity trading system also preferably includes a shipment
handler 111 for tracking incoming and outgoing shipments. A preferred embodiment of
shipment handler 111 is that implemented by the LV Stock Control module, produced
by Lakeview Computers plc, Banks House, Banks Lane, Bexleyheath, Kent DA6 7BH,
United Kingdom.

The commodity trading system also preferably includes an accounting
handler 112 comprising a general ledger for financial accounting, such as that
implemented by the LV Nominal Ledger module, produced by Lakeview Computers
plc, Banks House, Banks Lane, Bexleyheath, Kent DA6 7BH, United Kingdom.

In accordance with a preferred embodiment of the present invention the
commodity trading system also preferably includes a database management system 200,
preferably Oracle 8i produced by Oracle Corporation, SO0 Oracle Parkway, Redwood
Shores CA 94065, United States of America.

The commodity trading system also includes a storage device 201,
typically a magnetic hard disk drive. Storage device 201 holds tables suitable for
implementing the methods and apparatus described herein. Storage device 201 may hold
the following Tables I-XXXIV:

Table I holds information about the transactions in the system.

16

WO 03/087974

PCT/IL03/00296

Table I
Transaction Table
Field Name Field Type Field Description
TranlD Number Unique transaction ID
TranType Number Transaction Type, 1=Buy, 2=Sell
TranOwner Number | User or Role ID owning transaction
ProductGroupID Number Reference to Product Group ID
ProductID Number Reference to Product ID
Quantity Number Product Quantity
UoM 1D Number Reference to UnitID
IncoTerm Text INCO Term of Transaction
IncoTerml ocation Text INCO Location of Transaction
BasePrice Number | Base Price of Transaction
CurrencylD Number Reference to CurrencylD
ComputedPrice Number Result of Pricing Chain computation
ChainStatus Status of Pricing Chain; O=none,
Number
I=incomplete, 2=complete
CounterPartyID Number Reference to CounterPartylD
ShipmentID Number | Reference to ShipmentID
StoragelD Number Reference to StoragelD
TransactionStatus Status of Transaction, 0=Started, 1=in
Number
progress, 2=complete, 3=withdrawn
CreateDate Date/Time | Transaction creation date
UpdateDate Date/Time | Transaction update date
Table IT holds information about the users that access the system.
Table II
Users
Field Name Field Type Field Description
UserID Number Unique User ID
LUserName Text Name of User

17

WO 03/087974 PCT/IL03/00296

Table IIT holds information about the link (mapping) of Users to

Notification Types.
Table I
User Notifications Map
5 Field Name Field Type Field Description

UserID Number Reference to UserID
NotificationTypelD Number Reference to Delivery TypelD
NotificationTypeValue Toxt Value of notification type, e.g. email

address, cell phone number, etc.
NotificationPriority Priority or preference number of

Number
Notification type for this user

Table IV contains information about the various kinds of notifications

that are supported by the system.

Table IV
10 Notification Types
Field Name Field Type Field Description
NotificationTypelD Number Unique ID of notification type
Notification Title Text Text of title of notification
AssignedRole Reference to user or role ID that is to
Number ,) o
receive this type of notification

Table V contains the actual data for the notifications that exist in the

system.
15

13

WO 03/087974

PCT/IL03/00296

Table V
Notifications
Field Name Field Type Field Description
NotificationID Number | Unique Notification ID
NotificationTypelD Number Reference to NotificationType
CreateDate . Time and date when notification was
Date/Time
created
AssignedRole Role ID that is assigned to handle
Number o .
notifications of this type
UpdateDate) Time and date when notification was
Date/Time
last updates
QueuelD Reference to QueuelD where
Number
notification shall be inserted
5 Table VI holds information about the various roles of users that exist in
the system.
Table VI
Roles
Field Name Field Type Field Description
RoleID Number Unique Role ID
RoleName Text Name of Role
10
Table VII contains the link (mapping) of which users belong to which
role.
Table VII
Role Users Map
15 Field Name Field Type Field Description
RolelD Number Reference to RoleID
UserID Number Reference to UserID

19

10

15

WO 03/087974

PCT/IL03/00296

Table VIII contains information about the various products that exist in

the system.

Table VIII

Products

Field Name Field Type Field Description
ProdID Number | Unique Product ID
ProdName Text Name of Product
ProdDescription Text Description of Product
ProdMarketPrice Number Current Market Price of Product
ProdAveragePrice Average price per UOM of all stocks

Number

of this product

ProdQtyLevel Number Total quantity of all stocks of this

product

Table IX contains information about the product groups that exist in the

system. Similar products are grouped together into product groups and share certain

attributes.
Table IX
Product Group
Field Name Field Type Field Description
ProdGrpID Number Unique Product Group ID
ProdGrpName Text Name of Product Group
ProdGrpUOM Number | Reference to Unit of Measure ID
Table X contains the definition of the various Units of Measure used in
the system.

WO 03/087974 PCT/IL03/00296

Table X
UOMS
Field Name Field Type Field Description
UnitID Number Unique Unit of Measure ID
UnitName Text Unit of measure name
UnitBase Number Reference to Unit of Measure ID
BaseUnitMultiplier Number Multiplier of Base Unit
5 Table XI contains definitions of the various currencies that are used in

the system.

Table XI

Currency
Field Name Field Type Field Description
CurrencyID Number Unique Currency ID
CurrencyName Text Currency Name

-| CurrencyConversionRate Currency Exchange rate to base
Number
currency
10
Table XII contains information about the various counter-parties (trading

partners) that are contained in the system.

Table X1I

Counter Party
15 Field Name Field Type Field Description

CounterPartyID Number Unique CounterParty ID
CPName Text CounterParty Name

Table XIII holds information about shipments of products between the

trading house and the counter-parties.

WO 03/087974 PCT/IL03/00296

Table XTI

Shipment
Field Name Field Type Field Description
ShipmentID Number | Unique Shipment ID
ShippingCompanyID Number Reference to ShippingCompany
TransportationType Number Transportation Type, 1=Surface,

2=Air, 3=Ground

Origin Text Origin of the shipment
Destination Text Destination of the shipment
ShipmentBillNumber Contains the shipment bill number as

Text assigned by the shipping company

Table XIV contains information about the various stocks of multiple

products that exist in the system.

Table X1V
Stocks

Field Name Field Type Field Description
ProdGrpID Number Reference to Product Group ID
ProdID Number | Reference to Product ID
CounterPartyID Number Reference to CounterPartyID
Quantity Number | Product Quantity
UOM_ID Number Reférence to UnitID
ShipmentID Number Reference to ShipmentID
StorageID Number Reference to StoragelD
CreateDate Date/Time | Stock creation date
UpdateDate Date/Time | Stock update date
CurrentStockPrice Current Price of stock, may be

Number modified to reflect incurred storage

costs

10

15

WO 03/087974

PCT/IL03/00296

Table XV contains information about the particular locations that stocks

are stored.

Table XV

Storage ID
Field Name Field Type Field Description
StoragelD Number Unique Storage ID
StorageCompanyID Number Reference to StorageCompany
StorageRotationNumber Text of location reference (Rotation

Text

Number) as assigned by storage

company to the particular stock.

Table XVI contains the definition of various shipment companies that are

defined in the system.

Table XVI
Shipment Company
Field Name Field Type Field Description
ShipmentCompanylD Number Unique ShipmentCompany ID
ShipmentCompanyName Text Name of Shipment Company

Table XVII contains the pricing chains that are available for use by users

of the system.

WO 03/087974 PCT/IL03/00296

Table XVII
Pricing Chains
Field Name Field Type Field Description
PricingChainID Number | Unique Pricing Chain ID
Transaction]D Number Reference to Transaction ID
PricingChainStatus Number Status, 1=incomplete, 2=complete
ProdGrpID Number Reference to Product Group ID
ProdID Number Reference to Product ID
ProdQty Number Quantity of product
UOM_ID Number Reference to UnitID
IncoTerm Text INCO Term of Transaction
IncoTermLocation Text INCO Location of Transaction
Starting Price Number Initial price used to seed top of chain
ProdAvgPrice Average price of existing stocks of this
Number _
item
ChainOwner Reference to UserID that owns this
Number
pricing chain
CurrentComputedPrice The currently computed price as
Number determined by evaluating all
processors of this chain.

Table XVIII contains the link between pricing chains and the processors

within each pricing chain.

24

10

15

WO 03/087974

PCT/IL03/00296

Table XVII
PricingChainProcs
Field Name Field Type Field Description
PricingChainID Number Reference to Pricing Chain ID
ProcessorID Number Reference to Processor ID
ProcessorOrder Number Order of Processor within Chain
ProcessorValue Number Value of Processor
ProcessorStatus Status of Processor, O=empty, 1=valid,
Number '
2=lazy, 3=strict
ProcessorCompStatus Computation status, 0=do not include
Number))))
in chain computation, 1=do include

Table XIX contains the list of processors available to users for linking

into pricing chains.

Table XIX
Processors
Field Name Field Type Field Description
ProcessorID A Processor is a specific instance of a
Number computation handler that is assigned to
a particular chain
ProcessorTitle Text Title of processor
ProcessorType 0=Constant Modifier, 1=Table
Number
Lookup, 2=Expression
CompHandlerID Number Reference to CompHandler ID

Table XX contains information about the various computation handlers

that are available for use as templates for processors within the system.

Table XX
CompHandlers
Field Name Field Type Field Description
CompHandlerID Number | Unique Computation Handler ID
CompHandlerTitle Text Title of Computation Handler

25

WO 03/087974

PCT/IL03/00296

CompHandlerType

Number

0=Constant Modifier (CM), 1=Table
Lookup (TL), 2=Basic Function (BF)

AssignedRole

Number

Role assigned to service updates for

this computation handler

ExpirationType

Number

Expiration type of computation hander;

O=no expiration, 1=lazy, 2=strict

ExpirationStatus

Number

O=valid, 1=ldzy, 2=strict

LazyExpirationDate

Date/Time

Date and time at which lazy expiration
may become effective for this

computation handler.

LazyExpirationDuration

Number

Duration, in seconds, for which an
update to this computation handler
may cause it to be treated as lazy

expiration.

StrictExpirationDate

Date/Time

Date and time at which strict expiration
may become effective for this

computation handler.

StrictExpirationDuration

Number

Duration, in seconds, for which an
update to this computation handler
may cause it to be treated as strict

expiration.

CurrentValue

Number

Current value of computation handler

Parameter

Text

n/a in case of CM; table, field and
column reference in case of TL;

function to be evaluated in case of BF

Modifier

Number

The numerical value used in the
expression to modify the input value of

the computation handler

Operator

Text

The mathematical operator applied to

the modifier value.

26

WO 03/087974

PCT/IL03/00296

Table XXT contains the expiration data for the items in the system that

are monitored by the data expiration handler.

Table XXI
Data Expiration
Field Name Field Type Field Description
ExpirationID Number Unique Expiration ID
ExpirationType Number | Type of expiration; 0=lazy, 1=strict
ExpirationStatus Expiration status; 0=valid, 1=lazy,
Number)
2=strict
ExpirationCreateDate) Date and time when expiration record
Date/Time
was created
ExpirationUpdateDate _ Date and time when expiration record
Date/Time
was last updated
LazyExpirationDate Date and time at which lazy expiration
Date/Time | may become effective for this
computation handler.
LazyExpirationDuration Duration, in seconds, for which an
update to this computation handler
Number .
may cause it to be treated as lazy
expiration.
StrictExpirationDate Date and time at which strict expiration
Date/Time | may become effective for this
computation handler.
StrictExpirationDuration Duration, in seconds, for which an
update to this computation handler
Number . '
may cause it to be treated as strict
expiration.
NotificationTarget Reference to RolelD or UserID for
Number

expiration notification

27

10

WO 03/087974

PCT/IL03/00296

Table XXII contains the definitions of the various queues available in the

system.
Table XXII
Queue
Field Name Field Type Field Description
QueuelD Number Unique QueuelD
Qname Text Name of Queue
QBusinessLogicPriorityProc Reference to external business logic
Text procedure that sets priority for items in
this queue

QbusinessLogicAmalgamationProc

Reference to external business logic

Text procedure that amalgamates items in
this queue
QextProcRef Reference to external procedure
Text operative on this queue
QextCompProcRef Reference to external procedure to be
Text called when a queue item in this queue
is completed.
DefaultPriority Default priority value of items in the
Number

queue

Table XXIII contains the queue items and their links to the queues in the

system.

Field Name

Table XXIIT
Queuneltem

Field Type Field Description

QueueltemID Number Reference to QueueltemID
QueuelD Number Reference to QueuelD
QitemTitle Text Title of Queueltem
QitemBody Text Body of Queueltem
QitemLinkRef Optional link value to external

Text

database/table/row/column

28

WO 03/087974

PCT/IL03/00296

QitemAssignee Reference to User or Role that queue
Number |
item 1s assigned to
QitemPrompt Text Prompt Text for queue item query
QitemPromptVariable Number Structure for queue variables
QitemValue Number Value input by queue item assignee
QitemValueLoc Reference to
Text database/table/row/column where
QueueltemValue is to be written to
QitemStatus Status: O=incomplete; 1=viewed;
Number
2=amalgamated; 255=completed
QitemPriority Number Priority of Queueltem
QltemBaseAmalgamationQiD Reference to QueuelD to be base for
Number o))
this series of amalgamation operations
QitemOrder Number Order of queue item within the queue.
QitemDate i Date and time when Queueltem was
Date/Time

created

Table XXIV contains the dependency information for the queues and

queue items in the system.

Table XXIV
QueueltemDeps
Field Name Field Type Field Description
BaseQueueltemID Reference to QueueltemID for base of
Number
dependency
BaseQueuelD Reference to QueuelD for base of
Number
dependency
DepQueueltemiD Number | Reference to Dependent QueueltemID
DepQueuelD Number Reference to Dependent QueuelD

Table XXV is the reference to QueuelD for base of dependency.

WO 03/087974 PCT/IL03/00296

Table XXV

QueueDeps
Field Name Field Type Field Description
BaseQueuelD Number Unique Base Queue ID
DepQueuelD Number Reference to Dependent QueuelD

QdepBusinessLogicProc

Text

Reference to external business logic
procedure that determines

dependencies for these two queues

Table XXVI contains the archived (inactive) queue items.

Table XXVI
QueueIteniArchive
Field Name Field Type Field Description
QueueltemID Number Reference to QueueltemID
QueuelD Number Reference to QueuelD
QitemTitle Text Title of Queueltem
QitemBody Text Body of Queueltem
QitemLinkRef Text Optional link value to external
database/table/row/column
QitemAssignee Reference to User or Role that queue
Number
item is assigned to
QitemPrompt Text Prompt Text for queue item query
QitemValue Number Value input by queue item assignee
QitemValueLoc Reference to
Text database/table/row/column where
QueueltemValue is to be written to
QitemStatus Status: O=incomplete; 1=viewed,
Number
2=amalgamated; 255=completed
QitemPriority Number | Priority of Queueltem
QltemBaseAmalgamationQID Number Reference to QueuelD to be base for
. this series of amalgamation operations
QitemArchivedDate Date and time of when Queue [tem
Date/Time

was archived

30

10

15

WO 03/087974

PCT/IL03/00296

Table XXVII contains the definitions of the various weights that are

saved for users of the system.

Table XXVII
RecWeights
Field Name Field Type Field Description
WeightID Number Unique Weight ID
WeightTitle Text Name of Weight as displayed
WeightType Type of weight; 1=user,
Number
2=management, 3=both
RecParameterID Reference to RecParameterID used as
Number

the parameter for this weight

Table XXVIII contains the saved values of the various weights for each

user of the system.

Table XX VIIL
RecWeightsMap
Field Name Field Type Field Description
WeightID Number Reference to Weight ID
WeightUserID Number Reference to User ID
WeightValue Number Value of Weight
Table XXIX is a table of Recommendation Types.
Table XXIX
RecTypes

Field Name Field Type Field Description
TypelD Number Unique Recommendation Type ID
TypeName Text Title of Recommendation Type
TypeQualifierExp Expression to Qualify potential

Text candidate Transactions for

recommendation

TypeTargetExp | Text Expression to specify targeted result of

recommendation

10

15

WO 03/087974

PCT/IL03/00296

Table XXX contains the parameters for which weights can be applied to

in order to evaluate data and create transaction recommendations.

Table XXX
RecParameters

Field Name Field Type Field Description
RecParameterID Number Unique parameter ID
RecParameterTitle Text Name of parameter as displayed
RecParameterSource Reference to database, table and

Text column used for recommendation

parameter evaluation

RecParameterType Number | Parameter type; O=regular, 1=trend

Table XXX contains

the threshold minimum and maximum values for

parameters that are controlled by thresholds.

Table XXXT

RecThresholds
Field Name Field Type Field Description
ThresholdID Number | Unique ThresholdID
ThresholdName Text Name of Threshold
ThresholdMin Number | Low value of threshold
ThresholdMax Number High value of threshold
ThresholdParameterID Number Reference to ParameterID

Table XXXII contains the definitions for parameters that are evaluated as

trend parameters by the system.

Field Name

Table XXX1I
RecTrends
Field Type Field Description

TrendID Number Unique Trend ID
TrendTitle Text Name of Trend as displayed
TrendSource Reference to database, table and
Text column used for recommendation
Trend evaluation
SamplingPeriod Number | Number of seconds in sampling period

32

10

15

20

25

WO 03/087974 PCT/IL03/00296

Table XXXIII contains the references to the external programs that
handle the actual delivery of a notification to the user. Examples include programs to

send notifications via SMTP (email), SMS, or Facsimile.

Table XXXIII
UserNotificationDelivery
Field Name Field Type Field Description
DeliveryTypelD Number Unique NotificationType ID
DeliveryHandlerProgram Reference to external program to
Number
deliver notification to user

Table XXXIV contains the mapping between product groups defined in

Table IX and products, defined in Table VIIL.

Table XXXIV
ProductGroupMap
Field Name Field Type Field Description
ProdGrpiD Number Reference to Product Group ID
ProdID Number Reference to Product ID

The commodity trading system also preferably includes a user manager
300, comprising a module for managing users, groups and the relationships between
them, such as that provided by Active Directory, producéd by Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052, United States of America.

The commodity trading system also preferably includes a queue manager
1000, described further hereinbelow with reference to Figs. 2-15, a physical commodity
transaction builder 2000, described further hereinbelow with reference to Figs. 16-28, a
pricing chain builder 3000, described further hereinbelow with reference to Figs. 29-38,
a notification handler 4000, described further hereinbelow with reference to Figs. 39-43
and a data expiration handler 5000, described further hereinbelow with reference to
Figs. 44-48.

The queue manager 1000 manages a plurality of interrelated queues

which typically exist in the system, each including a sequence of items waiting in order

33

10

15

20

25

WO 03/087974 PCT/IL03/00296

for electronic action. The queues are interrelated in the sense that priorities and
requirements in one queue are affected by the management of at least one other queue.
For example, the fact that certain goods are being shipped at one time rather than
another may affect the priorities and requirements for storing those goods at their
shipping source and/or at their shipping destination.

The queue manager 1000 preferably includes flexible business logic
defining, for each queue, how the queue is to behave, including;:
a. rules for resorting, reprioritizing, collating and/or amalgamating items in
the queue, 50 as to optimize business operation; and, optionally
b. rules for providing notification of queue information between queues.
Provision of notification is preferably handled by notification handler 4000.

Optimization may result from any of several factors including:
a. reduced workload due to batch processing;
b. reduced cost due to earning bulk rates by amalgamating several related
small orders (e.g. shipping orders) into a smaller number of larger orders; and
C. reduced costs due to scheduling which optimally exploits timing factors.

The queues managed by the queue manager 1000 may, for example,
include a transaction queue, a storage queue, a shipment queue, a currency exchange
queue, a credit/debit note queue, and an invoice queue.

The transaction queue is a list of transactions, in various states of
completion, which are waiting to be advanced by any of a plurality of human or
computerized operators, such as, but not limited to, traders. Each transaction or
transaction type optionally has a life cycle defined for it, which comprises a definition
of which stages need to be completed or defined in order to complete the transaction
and for each such stage, what needs to be done, when, and by whom. Alternatively, a
transaction may not have a life cycle which defines the stages thereof. In this case, the
system may require the trader, at each stage, to define the next stage, including what
needs to be done to complete the stage, by whom, and when. The queue manager then
routes the partly completed transaction to the various appropriate role-players. If a
particular stage is completed, and the next stage is not defined either by the transaction's
life cycle or previously by the responsible trader, the transaction typically enters the

trader's queue and the trader is prompted to define the next stage.

34

10

15

20

25

WO 03/087974 PCT/IL03/00296

The shipment queue is a list of orders that need to be shipped. An "order"
is a given amount of a given stock of a given commodity that is being traded. The
shipment queue is typically closely interrelated to the storage queue, which is a list of
orders that need to be stored. In both of these queues, preferably, an amalgamation
function is provided which stores bulk rates and proposes amalgamations of multiple
orders in a queue in order to benefit from bulk rates.

The currency exchange queue is a list of currency exchange tasks, each
including a currency amount which, for the purpose of a particular transaction, needs to
be converted into another currency. Optionally, another, typically daily exchange task is
updating the currency exchange rates in accordance with a suitable exchange rate data
source which preferably communicates electronically with the system of the present
invention.

The credit/debit note queue is a list of notes (credit or debit), which are
issued by or for the trading house and are typically processed in FIFO order.
Alternatively, the queues might be optimized to operate in a non-FIFO order, e.g. by
collating and/or amalgamating such that all debit notes to a particular party are either
issued sequentially or are amalgamated into a single debit note including all charges in
the queue.

The physical commodity transaction builder 2000 generates a
recommendation for a suitable transaction, responsive to a trader's query, which the
trader chooses to complete or not to complete.

A query is a trader's request to the physical commodity transaction
builder, to recommend a transaction answering to specific basic requirements.
Preferably, the query also includes weighting of various relevant parameters. Preferably,
different parameters are predefined or dynamically defined for different queries or types
of queries and the trader is prompted to specify weights for the relevant parameters
responsive to his presentation of the initial query specifying only the query's basic
requirements,

Optionally, weightings of additional parameters may be provided by a
role-player other than the trader, such as a management executive. The system may
store overriding rules determining the relative importance attached to the trader's

weightings vis-a-vis the management executive's weightings. The management

35

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

executive's weightings may or may not be included in the trader's view of the system. A
particular feature of a preferred embodiment of the present invention is that the trader
may, if desired, remain entirely unaware of the fact that the application takes into
account weightings other than his own.

The basic requirements of a query always includes direction, buying or
selling, preferably specified in TranType field of Table I, and typically includes a subset

of the following basic transaction parameters:

a. counterparty (specified in CounterPartyID field of Table I by reference to
Table X1II);

b. product (specified in ProductID field of Table I by reference to Table
VII);

c. quantity (specified in Quantity field of Table I); and

d. price at which product can be sold, for a sale transaction, or bought, for a

purchase transaction (specified in BasePrice and ComputedPrice fields of Table I).

The basic requirements sometimes include additional parameters, e.g.
present location of the order, or attributes of the product, such as grade.

Thé recommendation generated by the physical commodity transaction
builder typically includes the complementary subset to the query defining subset of
basic transaction parameters, and sometimes, additional transaction parameters. For
example, if a query comprises a request for a recommendation to liquidate (sell) 100
tons (quantity) of wheat (product) in Colorado (additional parameter: present location of
the order), the recommendation generated by the transaction builder 2000 may comprise
at least a recommended counterparty, and the price at which the counterparty would
likely be willing to close the transaction. It is appreciated that the basic requirement/s of
the query typically include a subset of the above basic parameters.

One possible counterparty parameter is a "past performance” parameter.
This parameter may store markup tolerance. For example, a high-end retailer may
tolerate higher markups because it, and its suppliers, needs to expect a higher return
rate. A retailer with rapid turnover may tolerate higher markups because of its need to
have a constant, fast-flowing supply of goods.

The pricing chain builder 3000 is typically operative to:

a. Interface with a trader who wishes to build a pricing chain from scratch

36

10

15

20

WO 03/087974 PCT/IL03/00296

or based on an existing pricing chain stored in the system.

b. Analyze all pricing chains available in the pricing chain library and rank
the applicability of each to a transaction to be completed. For example, for a transaction
to be completed involving surface freight of 100 tons of wheat from California to

London, the pricing chain library might rank the following existing pricing chains as

relatively applicable:

1. Sale of 200 tons of wheat from Oregon to Dublin, shipped surface;,

i, Purchase of 75 tons of sorghum from Argentina to Barcelona; and

iit. Sale of 100 tons of barley from California to Germany.

C. Update fields, typically cost fields, in all relevant existing pricing chains

when new information, typically new cost information, is provided to the system.
Updating each field typically includes storing an expiry date until which the update
remains valid.

d. Prompt the notification handler to obtain updates for stored price chain
information which is about to expire or has expired.

The data expiration handler 5000 is preferably operative to look at a
system-defined or system-manager-defined or dynamically defined set of parameters
stored in the system which may expire. The parameters are preferably stored iﬁ the
Parameter field of Table XX with the CompHandlerType field set to 1 (Table Lookup).
The value of the Parameter field is a pointer to any location in the database that contains
the actual data value which is to be controlled by data expiration handler 5000.
Examples of such data items may include:

Currency exchange rates stored in CurrencyConversionRate field of
Table XIT,

Product Market prices stored in ProdMarketPrice field of Table VIIL; and

Product stock levels stored in field ProdQtyLevel field of Table VILL.

Preferably, a strict expiration period and an additional grace period are
defined for each expiring parameter. During the strict expiration period, the system
knows absolutely that its data is valid. During the additional grace period, also termed
herein the period of “LAZY EXPIRATION”, the system anticipates, based on previous
computerized or human knowledge, that the data is still likely to be valid. Typically,

during the grace period, notifications are generated prompting relevant system

37

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

components to update the data, however, transactions are allowed to proceed based on
the existing data. After the grace period has elapsed, transactions are typically no longer
allowed to proceed based on the existing data and urgent notifications are generated to
prompt for new data. Typically, the system is operative to automatically hold up
transactions based on data whose grace period has elapsed and to automatically release
the same transactions as soon as the relevant data has been updated.

A particular feature of a preferred embodiment of the present invention is
that the workflow of a trading company is defined in a computerized system in terms of
interacting queues. The computerized system provides computerized management of
multiple interacting or interrelated queues. The types of queues which are managed by
the queue manager 1000 of Fig. 1 and the functional unit from which each queue
originates may include the following:

Currency Bookings (Currency Handler 105);

Currency Exchange Rate Updates (Currency Handler 105);

Creation, processing and updates of Credit/Debit notes (Credit and Debit
note handler 106);

Transaction handling - Offer/request dispatch (Transaction Handler
107);

Stock levels management (Stock Management Module 108),

Creation, processing and updates of contracts notes (Contract Handler
109);

Creation, processing and updates of product information (Product
Catalog 110);

Shipment information tracking and processing (Shipment Handler 111);
and

Financial accounting (Accounting Handler 112).

Queues are preferably flexibly defined and tailored per implementation.

Reference is now made to Fig. 2, which is a simplified flowchart
illustration of a preferred method of operation for the queue manager 1000, which
coordinates information in the commodity trading system of Fig. 1.

Queue manager 1000 is typically operative to perform queue

maintenance, such as amalgamating and sorting queue items. Queue manager 1000 may

38

10

15

20

25

WO 03/087974 PCT/IL03/00296

also be operative to generate new queue items from dependencies or may accept new
queue entries. New queue entries may be provided from an outside application or
another sub-system within the commodity trading system, such as the notification
handler 4000.

As seen in Fig. 2, in step 1001, queue manager 1000 may be invoked
when a new queue item is generated. New queue items may be provided by a source
internal to the trading system or an external application that the trading system is inter-
operating with, such as handlers 105 — 112 of Fig. 1. The queue manager may further be
invoked by user action from presentation layer 104 of Fig. 1 or by a programmatic
process.

In step 1002, the appropriate action is determined, based on a parameter
sent by the calling process. Step 1003 shows a queue update operation being performed,
as described hereinbelow with reference to step 1130 in Fig. 13. Step 1004 shows a
queue add operation being performed, as described hereinbelow with reference to step
1010 in Fig. 3.

In step 1005, if a queue evaluation is selected, and after either step 1003
or step 1004 are executed, the queue is re-evaluated for sorting order and amalgamation
opportunities, as depicted in step 1116 of Fig. 12.

Step 1006 checks to see if the queue item has status set to complete. If
the status is not set to complete, the process continues by executing step 1007, which
returns processing to the process that invoked the queue manager 1000. If the status of
the queue item is set to complete, the process continues in step 1008 by performing
completion processing, as described hereinbelow with reference to step 1140 of Fig. 14.

Upon completion, queue manager 1000 ceases processing until it is
called again.

Reference is now made to Fig. 3, which is a simplified flowchart
illustration of a preferred method for implementing a queue add operation, as shown in
step 1004 of Fig. 2. Fig. 3 shows the processing steps that may be executed when a new
entry is submitted to a queue. If the entry produces dependencies they may be processed
after the original entry is processed in its own queue. The dependencies created may be

treated as new entries by the queues to which they are submitted.

10

15

20

WO 03/087974 PCT/IL03/00296

As seen in step 1010, upon receiving a new queue entry, the new queue
entry is assigned a priority and status, as aescribed hereinbelow with reference to Fig. 4.
The status and priority are used for sorting the queue, as described hereinbelow. They
are subject to change over time as the item resides in the queue.

In step 1011, the queue manager 1000 then determines any dependencies
of the new queue entry, as detailed in Fig. 6, beginning with step 1040. As seen in step
1011, once the item is submitted to a queue it may not be possible to process the item
without dealing with supporting items in other queues first. The item currently being
processed is considered to be dependent on those items, so they are referred to as
dependencies. The dependencies may already exist, in which case a link may be
established, or they may need to be created, in which case the queue manager 1000 may
create them. The dependencies are processed after the current queue has been fully
processed, as seen in step 1015.

In step 1012, the queue manager 1000 preferably attempts to amalgamate
a newly received item with one already resident in the queue. The goal is to identify
opportunities for more efficient use of resources. The queue manager 1000 uses pre-
programmed business logic, as shown hereinbelow in Fig. 9, to determine whether
amalgamation of any pair or set of items may lead to greater efficiency. Amalgamated
items cease to be distinct items in the queue since they are all amalgamated into a root
queue item. The amalgamation process in described hereinbelow with reference to Figs.
9 and 10.

In step 1013, the display order for items in a queue is determined by a
sorting process, preferably utilizing a business logic based process, as described
hereinbelow with reference to Fig. 11. The sort process preferably uses the priority
assigned as described hereinabove, as one important factor in ordering the items in a
queue. The business logic programming preferably specifies what other factors are
taken into consideration and how the sorting process proceeds.

As seen in step 1014, upon completion of the sorting process, the queue
has been updated with the new queue entry. The new queue entry preferably resides in
the queue until it reaches a status of “complete.” The entry may typically be re-ordered,
as described hereinabove, multiple times while in the queue and also may be

amalgamated, as described hereinabove, with an incoming queue item.

40

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Upon completion of the processing of the new queue item, any
dependencies that it may have may then be processed as seen in step 1015. Each newly
created dependency may be treated as a new item in its queue. Thus, the queue manager
1000 is invoked for each newly created dependency and the entire process described
hereinabove may be executed multiple times. An example of such multiple execution of
queue manager 1000 is described hereinbelow with reference to Fig. 15.

Reference is now made to Fig. 4, which is a simplified flowchart
illustration of a preferred method for assigning a priority and status to a new queue
entry, as shown in step 1010 of Fig. 3.

When a new item is submitted to a queue it is assigned a status and a
priority. The status of the item is either “incomplete”, when it first enters the queue, or
“complete”, when it has been satisfied. The priority indicates how urgent the new queue
item is. This value can change as the item remains in the queue. The business logic may
optionally control the priority value, or it may be controlled via other external means.

As seen in step 1020, the process starts with the receipt of a new queue
item. A new item is typically received from an external source or from the queue
manager 1000. Queue items coming from the queue manager typically have been
generated as a dependency to an item that has already been processed.

In step 1021, the new item submitted has its status set to “incomplete.” In
order for its status to change to complete it must be “satisfied” as must its dependencies.

In step 1022, the new item submitted has its priority set. The business
logic applicable to setting the priority of items within the selected type of queue item is
loaded and executed. The business logic may determine a priority for the queue item,
which may be used to place it appropriately in the queue. A preferred method for
determining the priority in described in step 1023, where the business logic repository
contains references to the external business logic processes that determine the priority of
items in a queue. It is queried by lookup on the QbusinessLogicPriorityProc field in
Table XXII, which matches the relevant external business logic process to the selected
queue.

In step 1024, queue manager 1000 executes customized business logic,

which is described hereinbelow with reference to step 1030 in Fig. 5. In step 1025,

41

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

queue manager 1000 continues to the dependency determination step, described
hereinbelow with reference to step 1040 of Fig. 6.

Step 1026 shows a preferred table implementation of step 1021
hereinabove, by setting the value of the QitemStatus field in Table XXIII to 0.

Reference is now made to Fig. 5, which is a simplified flowchart
illustration of a preferred method for implementing custom business logic, as shown in
step 1024 of Fig. 4. The business logic allows the individual queues managed by queue
manager 1000 to be configured in a way that can satisfy the needs of a given process or
organization. As seen in Fig. 5, in step 1030, the queue manager 1000 receives a
pointer, typically QueuelD from Table XXIJ, to the queue that may be used to look up
the appropriate business logic in the business logic repository. The queue manager 1000
also, preferably, receives the pointers to the queue items, typically QueueltemID from
Table XXIII, that may be processed by the business logic.

In step 1031, the process requiring business logic preferably invokes the
lookup procedure to retrieve the appropriate business logic. As seen in step 1032, the
external processes database contains references to external processes, expressions or
functions that may apply business logic to items in the queue. Preferably, the specific
record identifying which business logic to be used is retrieved from the QExtProcRef
field in Table XXII by using the lookup key received in step 1030.

In step 1033, the procedure found in the lookup table is executed,
following which, in step 1034, the resulting values produced by applying the business
logic on the queue item received in step 1030 are returned to the process that invoked
the custom business logic process, typically by continuing to step 1025 of Fig. 4, which
may be a preferred order of execution.

Reference is now made to Fig. 6, which is a simplified flowchart
illustration of a preferred method for implementing step 1011 of Fig. 3.

Depending on the queue, when a new queue item is submitted it may
trigger the need to create new items in other queues. This situation may arise in a
variety of scenarios. To address this issue, the queue manager 1000 preferably checks
the dependencies of a new item when it is submitted. Queue manager 1000 is also
preferably operative to automatically generate any necessary new eniries to the

respective queues of the dependencies.

42

10

15

25

WO 03/087974 PCT/IL03/00296

As seen in Fig. 6, in step 1040, a new entry is received for dependency
processing, typically from step 1025.

In step 1041, queue manager 1000 determines the dependencies of the
item, as described hereinbelow in reference to Fig. 7. In step 1042, the generic inter-
queue dependencies for this queue are identified, i.e. those that apply to all items in the
queue, typically by performing a query of the DepQueuelD field in Table XXV.

Step 1043 then determines if the database query of step 1042 produced
any dependencies. If dependencies exist, the queue manager 1000 then proceeds to step
1044, and submits the dependencies to the necessary queues by invoking step 1060 of
Fig. 8 as applicable for each queue. The process then continues to the dependency
notification process, described hereinbelow with reference to Fig. 8. If no dependencies
exist, the process then returns, in step 1045, to step 1012 of Fig. 3.

Reference is now made to Fig. 7, which is a simplified flowchart
illustration of a preferred method for implementing step 1041 of Fig. 6.

As seen in Fig. 6, in step 1050, queue manager 1000 reads the standard
dependencies for the queue type it is operating on from the dependency table. These are
the dependencies that apply to the current queue item, all things being equal.

In a preferred embodiment of the present invention, the standard
dependencies for all queue types are stored in Table XXV. As seen in step 1051, the
queue manager 1000 reads the DepQueuelD field from Table XXV to determine the
queues that this queue is dependent on.

In step 1052, the business logic preferably determines, on a case-by-case
basis, which of the dependencies are needed. The applicable business logic to be used
for dependency determination is read from the database by step 1053, preferably by
reading the QDepBusinessLogicProc field from Table XXV. Upon execution of the
applicable business logic, queue manager 1000 determines if the dependency currently
under consideration is necessary for the queue item or not, and returns a flag indicating
if' dependencies exist, and if so, the queue items which the current item is dependent
upo.

As seen in step 1054, if the dependency flag is set to 'ves' the queue
manager 1000 then preferably executes step 1055. In step 1055, a reference is

preferably created to link the dependency to the current queue item, by inserting an

43

10

15

20

25

WO 03/087974 PCT/IL03/00296

entry in Table XXIV, typically by updating the DepQueueltemID and DepQueuelD
fields, that links both dependent entries. The dependency may be processed once the
processing of the current queue item is complete.

As seen in step 1056, queue manager 1000 then checks to see if there are
additional dependencies. When there are additional dependencies to be processed, the
queue manager proceeds to repeat steps 1052 through 1055, as necessary. When all
dependencies have been checked, queue manager 1000 proceeds as shown in step 1057,
to the dependency notification process, described hereinbelow with reference to step
1060 of Fig. 8.

Reference is now made to Fig. 8, which is a simplified flowchart
ilustration of a preferred method for implementing step 1044 of Fig. 6.

As seen in Fig. 8, in step 1060 the list of dependencies for which
notifications may be generated are loaded, typically, as seen in step 1061, by a lookup
against the DepQueueltemID field in Table XXIV.

As seen in step 1062, each dependency may produce a queue item that is
typically addressed by a designated role or user. Table XXIII preferably maintains a
map that contains the role or user responsible for each type of dependency that may be
generated by the queue manager. The appropriate role or user is preferably determined,
as seen in step 1063, by executing a query on the QItemAssignee field of Table XXIII
to determine the assignee for the selected queue type and dependency. The assignee
may be an ID or the user or role assigned to handle entries of the selected queue.

As seen in step 1064, a notification queue item is generated. The
notification queue item typically contains information to tell the role or user responsible
for the dependency what input is needed. The notification queue item has a link to its
creator, so that the creator may know once it has been fulfilled. The notification queue
item is described hereinbelow with reference to the processing beginning at step 4010 of
Fig. 40.

In step 1065, after the notification queue item has been created, it is
submitted to the notification queue for processing after the current queue has been fully
updated. As seen in step 1066, the queue manager 1000 then checks to see if there are
more dependencies to be processed. If yes, the dependency notification process

continues by repeating steps 1062-1065. When all the dependencies have been dealt

44

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

with, the queue manager 1000 proceeds, as shown in step 1067, to the amalgamation
process, described hereinbelow with reference to step 1070 of Fig. 9.

Reference is now made to Fig. 9, which is a simplified flowchart
illustration of a preferred method for implementing step 1012 of Fig. 3.

As described hereinabove, the commodity trading system of the present
invention looks for possibilities of amalgamating items in queues. The goal is to
identify opportunities for increased efficiency.

In step 1070, a new queue entry is received from the dependency
processing stage. In step 1071, an amalgamation check for the new queue item, as
described hereinbelow with reference to steps 1080 onward of Fig. 10, is preferably
performed against the next existing queue item. As seen in step 1072, if an
amalgamation opportunity is identified, the entry is marked for amalgamation, as seen
in step 1073, preferably by updating the QItemBaseAmalgamationQID field in Table
XXTII with the QueueltemID of the queue item with which amalgamation may occur.
This amalgamation process thereby allows multiple queue items to be amalgamated into
a single queue item.

As seen in step 1074, the queue manager 1000 then checks to see if there
are more entries to check for amalgamation. If more entries exist, the queue manager
then repeats steps 1071-1073 for the next queue entry to be checked for amalgamation.
When all of the entries have been checked, the queue manager 1000 proceeds, as shown
in step 1075, to the prioritization process, described hereinbelow with reference to step
1090 of Fig. 11.

As part of the process described hereinabove, the items that were marked
for amalgamation are preferably labeled to show this new state. Amalgamated items
may be further amalgamated with other items in the future.

Reference is now made to Fig. 10, which is a simplified flowchart
illustration of a preferred method for implementing step 1071 of Fig. 9.

The amalgamation process evaluates each item in a queue using
references to external processes for evaluation. These processes preferably may be
customized for each individual embodiment, and may be written in any suitable

programming language, such as SQL or Java. Fig. 10 illustrates the logic used to

45

10

15

20

30

WO 03/087974 PCT/IL03/00296

determine whether or not a queue item is a candidate for amalgamation with other
similar queue items.

In step 1080, the item record for the current queue item being considered,
typically one of the existing queue items, is loaded, preferably, as seen in step 1081, by
performing a lookup against QueueltemID field in Table XXIII.

As seen in step 1082, the queue manager then applies the business logic,
typicall, as seen in step 1083, by querying and executing the
QbusinessLogicAmalgamationProc field in table XXII, to determine if the current
queue item should be amalgamated with the new queue item.

As seen in step 1084, if the amalgamation is determined not to be
appropriate the result is set to 'no' in step 1085. If the amalgamation is determined to be
appropriate, then, as seen in step 1086, the database is updated, preferably by setting the
QltemStatus field to ‘amalgamated’ and by setting the QItemAmalgamationQID field to
the QueueltemID of the base queue item ID with which the queue item was
amalgamated. Additionally, as seen in step 1087, the amalgamation result for the two
items is returned to the amalgamation process, described hereinabove with reference to
step 1072 in Fig. 9.

Reference is now made to Fig. 11, which is a simplified flowchart
illustration of a preferred method for implementing a sorting process, as shown in step
1013 of Fig. 3. The sorting process orders the items in a queue, governed by pre-
programmed business logic.

As seen in step 1090, a new queue item is inserted in the queue at an
arbitrary position, typically at the end of the queue. In step 1091, queue manager 1000
creates a temporary storage buffer and in step 1092, all queue items are loaded into the
temporary storage buffer for the purpose of sorting. As seen in step 1093, information
pertaining to the queue items, which is stored in Table XXIII, is preferably retrieved by
a lookup against the QueueltemID field.

In step 1094, the business logic for sorting the particular queue is
preferably retrieved from the QBusinessLogicPriorityProc field of Table XXII. In step
1095, the referenced external business logic process for sorting is executed. In step
1096, following the sorting of the queue, the order of the queue items is stored, typically
in the QItemOrder field of Table XXITI, as seen in step 1097.

46

10

15

20

30

WO 03/087974 PCT/IL03/00296

Reference is now made to Fig. 12, which is a simplified flowchart
illustration of a preferred process for user-triggered or periodic resorting and
amalgamation of a selected queue in the queue manager 1000 of Fig. 1. Queue manager
1000 typically updates the queues on a periodic basis. This preferably allows for
changes of priority of queue items, resorting, and new amalgamations, where
appropriate,

As seen in step 1110, a source external to the commodity trading system,
such as the operating system, typically generates a signal on a periodic basis to triggers
the update process for the queues. In step 1111, the next queue item is read and checked
to see if its status has changed (as is described in step 1005 of Fig. 2), preferably by
retrieving the QueueltemID field from Table XXIII, as seen in step 1112.

In step 1113, branching occurs based on the status change result. In step
1114, the queue item is updated as appropriate. For example, the status may change.

In step 1115, if more items remain to be checked a loop back occurs to
handle the next item. If no items remain to be updated, then the process proceeds to
amalgamation.

Step 1116 executes the amalgamation process, shown in Fig. 9 and
beginning at step 1070 therein, on the current queue.

Step 1117, executes the sorting process, shown in Fig. 11 (beginning at
step 1092), on the current queue. In step 1118, the update is complete and the queue
manager 1000 returns to regular processing.

Step 1119 stores the updated Queue Item’s data in Table XXIII using the
QueueltemID field as the lookup field.

Reference is now made to Fig. 13, which is a simplified flowchart
illustration of a preferred method for implementing step 1003 of Fig. 2. When an update
is received from an external source the queue manager 1000 propagates the information
to storage and if possible completes processing of the queue item.

In step 1130, queue manager 1000 receives updated information. In step
1131, the information is stored in the database, as seen in step 1132. Queue items are
stored in Table XXIII and are updated based on the queue item’s key stored in
QueueltemID of that table. In step 1133, if the item has no dependencies or if the item’s

dependencies have been satisfied then the item may be considered complete.

47

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

In step 1134, branching occurs depending of whether the queue item has
reached completion. In step 1135, if the queue item is not yet considered complete
because its dependencies have not yet been satisfied, then it remains in the queue. In
step 1136, if the queue item has been completely updated then the queue manager 1000
proceeds to the completion process, which is depicted in Fig. 14.

Reference is now made to Fig. 14, which is a simplified flowchart
illustration of a preferred method for implementing step 1136 of Fig. 13.

In step 1140, queue manager 1000 sets the status of the queue item to
complete. In step 1141, a check is done to see if any items in other queues are
dependent on this queue item. This check involves loading the queue record and looking
at its dependent fields to see if any other queue items are dependent on it.

In step 1142, Table XXIV stores the mapping of all dependent queue
items, which are retrieved from the DepQueueltemID field in that table.

In step 1143, branch based on whether there are any dependents to be
informed of the queue item’s change in status. Step 1144 informs the queue items that
are dependent on the current queue item that its status has changed to complete. This
may allow their status to reach complete, also.

Step 1145 moves the queue item from its current queue to long-term
storage. The queue item may remain there indefinitely.

In step 1146, all completed queue items are moved from Table XXIII to
Table XXVI. In step 1147, the update information is propagated to the location
referenced by QltemLinkRef field in the in Table XXIII. This is the location, in the
various system databases or external data sources, where the data for which the queue
item was responsible for resides. In step 1148, the external process which is referenced
by QEXTCOMPPROCREF in Table XXII is invoked, thereby optionally taking
additional action as defined.

Reference is now made to Fig. 15, which is a diagram of a full cycle of
operations by which the queue manager 1000 determines the various dependencies of
items within a queue. This diagram shows the order of dependency processing. Two

queue items are depicted having dependencies and the third does not.

48

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

In step 1160, a new item is received by the queue. After assigning a
priority and status to the new queue item the queue manager 1000 determines if the item
has any dependencies.

In step 1161, if the item has dependencies then they are processed after
the original item. As seen in step 1162, once the item has been processed it resides in its
queue waiting to receive a response.

In step 1163, after some time the queue item may receive a response.
This response may allow the item to be completed if it has no dependencies or if its
dependencies have also been completed.

In step 1164, if the queue item has one or more dependencies then it may
have to wait for them to be completed before it can be completed. When the item
receives an indication that its dependencies have been completed a check is made to see
if the item has now been completed.

As seen in step 1165, once a dependency has been completed an
indication of this occurrence may be propagated back to its creator.

In step 1166, if the item and its dependencies have all received the
appropriate responses then the item can be considered complete. In this case the
procedure continues to completion. Otherwise, the item continues to reside in its queue
until the necessary information is supplied.

In step 1167, the data received from the user is propagated to its
appropriate storage location and the queue item is moved to long-term storage.

Reference is now made to Fig. 16, which is a simplified flowchart
illustration of a preferred method of operation for the physical commodity transaction
builder 2000 of Fig. 1. The physical commodity transaction builder 2000 (PCTB)
allows the user to request the system to generate a plurality of recommended potential
transaction that would fall within certain specifications. The recommended potential
transactions are created by analyzing historical data and user specifications and
computing hypothetical transactions that fall within the requested parameters and would
be most advantageous for the user to pursue.

In step 2001, a recommendation for a potential transaction is requested
by invoking the PCTB 2000, thereby executing step 2010 of Fig. 17. In step 2002, the

result of PCTB 2000 being invoked may either be the creation of a new transaction or

49

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

the rejection of all suggested transactions. In step 2003, if one of the recommendations
generated by the system merits further exploration it can be used as a basis for creating
a new transaction. In that case, a new transaction is opened once the recommendation
process has been completed. In step 2004, if all the recommendations generated by the
PCTB 2000 fail to satisfy the needs of the trading system operator, then they can be
rejected once the process is complete.

Reference is now made to Fig. 17, which is a simplified flowchart
illustration of a preferred method for implementing step 2001 of Fig. 16. This diagram
shows the overall flow of the PCTB 2000. Recomputation can be performed as many
times as is necessary to yield a useful result, with each recomputation optionally
preceded by a modification of the biasing parameters. The eventual outcome may be
either the creation of a new transaction or rejection of all recommendations.

In step 2010, the initial computation is executed using the initial set of
weightings, as outlined in Fig. 18, step 2020 and onwards. The result can be accepted as -
the basis for a transaction. Alternatively, the weightings can be adjusted and a
recomputation performed. Otherwise, the result can be rejected entirely.

In step 2011, the computation process is initiated by an external stimulus.
In step 2012, depending on the appropriateness of the initial computation the next step
is to accept, reject or recompute the result.

In step 2013, the recomputation is the same as the initial computation
process with the weightings adjusted. In step 2014, in the event that all computation
results are inappropriate then they can all be rejected. The Trading system may record
the settings that were used to use as starting values the next time the PCTB 2000 is
invoked.

In step 2015, if one of the recommendations is useful it can be used as
the basis for a transaction invoked by the transaction handler 107 in Fig. 1. In that case,
the settings are stored for use the next time the PCTB 2000 is invoked.

Reference is now made to Fig. 18, which is a simplified flowchart
illustration of a preferred method for implementing step 2010 of Fig. 17. Fig. 18 shows
the basic flow for generating a recommendation. The request is computed using a series
of weightings supplied to it from an external input, such as a user interface or an

external program.

50

10

15

25

30

WO 03/087974 PCT/IL03/00296

In step 2020, PCTB 2000 receives the specified weightings and other
criteria for processing a recommendation. In step 2021, using the information received,
the PCTB 2000 creates a list of candidates for the recommendation, as outlined in step
2040 of Fig. 20. In step 2022, Table I contains the information from all transactions the
trading system has executed, and is referenced by a lookup on the TranID field. In step
2023, the candidates are processed to generate scores for each of them. These scores are
determined by applying the weightings as well as by applying computations to specific
parameters, based on the process depicted in Fig. 21, commencing at step 2061. The
scores are sorted for presentation.

In step 2024, the recommendations are displayed by the trading system.
In step 2025, there are three possibilities. The recommendations can all be rejected or
one can be accepted or a recomputation can be performed.

Reference is now made to Fig. 19, which is a simplified flowchart
illustration of a preferred method for implementing step 2020 of Fig. 18. Many types of
recommendations can be generated depending on the criteria supplied. The type of
recommendation chosen determines the set of weightings that may be used. The
weightings allow the Trading system to produce the recommendation that may be the
most appropriate for the purposes of the system user.

In step 2030, multiple types of recommendation can be generated, as
selected by the user, or external process, from amongst the set of options returned by a
query against TypeID in Table XXIX. Each such recommendation type has a different
set of parameters that are taken into consideration. In step 2031, specific criteria are
specified to ensure that the recommendation meets produces the desired result. The
recommendation type selected in step 2030 is used as a lookup key against
TypeTargetExp in Table XXIX to determine which type of recommendation to produce.

In step 2032, the last set of weightings used for recommendation
computation is loaded from the table and the values for the specific user are loaded from
Table XXVII by enumerating WeightID and WeightValue. In step 2033, the user’s
previous weighting values for stored in the RecWeightsMap database. Every time a
recommendation is generated the set of weightings is stored as a reference for the next
time the process is invoked. In step 2034, the weightings that were loaded are displayed

so that the trading system operator knows the current values. In step 2035, in order to

51

10

15

20

25

WO 03/087974 PCT/IL03/00296

produce the optimal recommendation, the weighting values are adjusted to reflect the
most important factors for this iteration of the procedure.

Reference is now made to Fig. 20, which is a simplified flowchart
illustration of a preferred method for implementing step 2021 of Fig. 18. In the course
of generating a recommendation all the items in the historical data are checked. If an
historical transaction meets the criteria it is added to a list of candidates. Only these
candidates may be considered for the recommendation computation.

In step 2040, transactions are loaded from Table I and considered one at
a time for relevance to the current recommendation being generated. Step 2041 is the
store of all the transactions that have been completed using the trading system.

In step 2042, the transaction currently under consideration is matched
against the recommendation criteria by comparing each transaction to the expression
contained in the TypeQualifierExp field of Table XXVII for the selected
recommendation type to determine if the transaction may be used in this iteration of the
recommendation generation process.

In step 2043, branching occurs based on the result of the criteria
matching operation. In step 2044, if the transaction does not match the recommendation
criteria then it is ignored. In step 2045, if the transaction matches the recommendation
criteria it is stored in a list of candidates. In step 2046, candidates are stored in a
temporary buffer, typically RAM (Random Access Memory) during the
recommendation generation process. In step 2047, a check is performed to determine if
all stored transactions have been considered for inclusion in the candidate list. If so,
then the process continues to the next step. Otherwise the next transaction stored in the
historical transaction database in step 2041 is read and considered.

In step 2048, the candidate list has been complete and the process
continues to the next step, which is shown in Fig. 21.

Reference is now made to Fig. 21, which is a simplified flowchart
illustration of a preferred method for implementing step 2023 of Fig. 18. Fig. 21 shows
the flow for computing a recommendation. It is executed each time a new
recommendation is generated.

In step 2060, the process starts once the candidate list has been

determined. Step 2061 finds the minimum and maximum values for each parameter

52

10

15

20

25

WO 03/087974 PCT/IL03/00296

amongst all candidates. These values may be used in process of computing the raw
candidate scores.

Step 2062 computes the raw, non-normalized, scores by applying the
“user” and “management” weightings to the candidates’ parameters using the values
referenced in Table XXX, as selected by a lookup to Table XXVII. Step 2063,
normalizes the raw scores so that an easier comparison of the candidates is possible.
Step 2064 applies additional specific parameters. These are considered in order to
reflect important factors such as the current position of a particular product. In step
2065, the results are sorted in order from highest to lowest.

Reference is now made to Fig. 22, which is a simplified flowchart
illustration of a preferred method for implementing step 2061 of Fig. 21. In order to
normalize the candidates being considered, the Trading system determines the
maximum and minimum value for each parameter under consideration. The
determination of the maximum and minimum parameter values is done by searching
through the list item by item and checking if its parameter values are beyond the
maximum values determined to that point. The maximum and minimum values once
determined are stored for use in the recommendation computation process.

Step 2070 loads the candidate from temporary storage to check its
parameters. Load the thresholds from the thresholds database. In step 2071, the
candidates were stored in a temporary buffer in step 2046 in Fig. 20. Thresholds are
stored in the RecThresholds database. Step 2072 compares each parameter against the
upper and lower threshold values. In step 2073, branching occurs depending on whether
the parameter is within or outside threshold values. In step 2074, if the parameter is
outside the thresholds it is ignored so as not to distort the computation results. In step
2075, if the parameter is within the thresholds then check if it is a new minimum or
maximum. If the parameter value is below the minimum then a new minimum has been
found. The parameter value is then stored as the new minimum. Likewise, if the
parameter value is above the maximum it becomes the new maximum. In step 2074,
minimum and maximum values are held in a temporary storage buffer. Step 2076
checks if the current candidate has any more parameters that have not yet been
processed. If éo, loop back and process the next parameter. Otherwise, continue to the

next step of the process.

53

10

15

20

WO 03/087974 PCT/IL03/00296

Step 2077 checks if there are any more candidates in the candidate list
which have not yet been processed. If so loop back and process the next candidate.
Otherwise, continue to the next step of the process.

In step 2078, the determination of the minimum and maximum values for
each parameter has been completed. The process continues to the computation of the
Taw SCOres.

Reference is now made to Fig. 23, which is a simplified flowchart
illustration of a preferred method for implementing step 2062 of Fig. 21.

In step 2090, the candidate’s data and applicable thresholds are loaded
from temporary storage. In step 2091, the candidate list and thresholds were previously
loaded into temporary storage, typically RAM (Random Access Memory), to be
accessible for this processing stage. In step 2092, the parameter is read from storage.
This process differs for regular parameters or trend parameters. Fig. 25 shows the
details of this step. In step 2093, the parameter value is processed with the user and
management values. The process is shown in Fig. 24.

In step 2094, branching occurs depending on whether parameters remain
to be computed. If any parameters remain, the process loops back to step 2092.
Otherwise, the process proceeds to step 2095. In step 2095, branching occurs depending
on whether any candidates remain to be computed. If any candidates remain, the process
loops back to step 2090. Otherwise, the PCTB 2000 proceeds to the normalization
process shown in Fig. 27, as shown in step 2096.

Reference is now made to Fig. 24, which is a simplified flowchart
illustration of a preferred method for implementing step 2093 of Fig. 23. In order to
determine which transaction or transactions to recommend the weightings are applied to
the set of candidates. This computation preferably results in higher scores for
transactions that most closely match the desired outcome.

In step 2100, the parameter under consideration and its applicable
thresholds are loaded. In step 2101, the parameters are queried from a temporary storage
location, having been loaded during the previous check for minimum and maximum
values, shown in Fig. 22. The same is true for the thresholds.

In step 2102, branching occurs based on the result of a comparison

between the parameter and the thresholds. If the parameter is within the thresholds it

54

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

may be used. If not, it may be ignored. In step 2103, a formula is used to compute the
result. The first stage of the formula uses the values of the parameter, the previously
determined minimum and maximum and the user weighting. This initial result is
subsequently used in a formula along with the management weightings to produce the
weighted parameter value. As seen in step 2104, if a parameter value is beyond the
thresholds it may be ignored. In this case, its contribution to the result is zero. In step
2105, the minimum and maximum check is performed on the weighted parameter value.
This check produces a new list of minimums and maximums to be used in the
normalization process, which is shown in Fig. 27.

In step 2106, once the parameter currently under consideration has been
processed, the PCTB 2000 continues with the next parameter.

Reference is now made to Fig. 25, which is a simplified flowchart
illustration of a preferred method for implementing step 2092 of Fig. 23. The PCTB
2000 evaluates an embodiment-specific set of parameters during the recommendation
generation process. Fig. 25 illustrates how both single-valued parameters and trend
parameters, which are series of identical parameters spanning a certain time period, are
handled.

In step 2110, the parameter name and type are read from the parameter
storage. In step 2111, a lookup against RecParameterID in Table XXX is performed. In
step 2112, depending on the parameter type, two different reading processes may be
executed. Branching occurs according to the type of parameter. In step 2113, parameter
values are read from the transaction database, any other database in the system or an
external data-source. The RecParameterSource field contains a reference to the source
of such data. In the case of single-valued parameters, the most recent value is read. In
step 2114, single-vglued parameters are read directly from the data source referenced in
the RecParameterSource field of Table XXX, with the most recent value used. In step
2115, for trend parameters all data values for the specified time period for the parameter
are read into memory. In step 2116, a trend computation is performed on the data for the
parameter. Once the parameter has been read, step 2117 proceeds to the next step of the
process.

Reference is now made to Fig. 26, which is a simplified flowchart

illustration of a preferred method for implementing step 2116 of Fig. 25. Trend

55

10

15

20

25

WO 03/087974 PCT/IL03/00296

parameters allow the use of data sampled over a period of time in the recommendation
process.

In step 2120, the parameter to be sampled and the sampling period are
read. Step 2121 queries against the TrendID field in Table XXXII. Step 2122 reads data
from various database using location references stored in field TrendSource of Table
XXXII and loads all the values that fall within the sampling period. As seen in step
2123, any table in any database accessible to the system may be queried. Step 2124
determines the minimum and maximum of the parameters and computes the average
and change using standard formulas. Step 2125 returns the result of the trend
computation for use as a parameter in the recommendation generation process.

Reference is now made to Fig. 27, which is a simplified flowchart
illustration of a preferred method for implementing step 2063 of Fig. 21. Fig. 27
describes the minimum and maximum computations for parameter values.

Step 2130 loads the previously computed minimum and maximum values
for each parameter. These may be used to provide the range within which the
parameters of each candidate may be normalized. As seen in step 2131, the parameter
values were held in temporary storage to be easily accessible and speed up processing.
Step 2132 reads the next parameter for the candidate currently being normalized. The
process preferably loops through all of this candidate’s parameters before proceeding to
the next candidate. As seen in step 2133, the weighted parameter values are held in a
temporary storage location after being computed in the process depicted in Fig. 24. Step
2134 normalizes the parameter within the range of minimum and maximum using a
standard normalization formula. In step 2135, if the candidate has parameters that have
yet to be normalized then the process loops back and normalizes the next parameter.
This continues until all the parameters of the current candidate have been normalized.
As seen in step 2136, once the current candidate’s parameters have all been normalized
a check is made to see if any candidates remain with parameters needing to be
normalized. If so, the next candidate is processed. As seen in step 2137, once all
candidates’ parameters have been normalized the PCTB 2000 proceeds to the next step
in the process.

Reference is now made to Fig. 28, which is a simplified flowchart

illustration of a preferred method for implementing step 2065 of Fig. 21. The candidate

56

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

specific parameters are applied to reflect existing conditions that may be very influential
in deciding which recommendation is the most appropriate. Such conditions include the
current position for a given product and its current market price.

Step 2140 reads the stock levels for the selected. Step 2141 reads the
future need for products that must be satisfied. As seen in step 2142, the stock Table
XTIV contains information for the current quantity on hand of various products. A query
against the matching Product ID returns all pertinent stock levels. Step 2143 enumerates
all transactions in Table I that match the selected Product ID and whose
TransactionStatus field is set to 0 or 1.

Step 2144 reads the current prices to see if any transactions would be
particularly favorable or unfavorable at the present time. As seen in step 2145, the
market price database stores information on current prices for various products. Table
VIII nominally stores this information, which is queried by a lookup against the
ProdMarketPrice field, although this information may come from an external source or
be updated by a Trading system operator.

Step 2146 determines the past quantities of a product that were involved
in transactions. This gives useful information regarding what quantities could be
reasonable in the future. As seen in step 2147, the transaction Table I stores information
from past transactions. Information stored there includes quantity and price, and is
queried by a lookup against the TranID field.

Step 2148 determines the past prices that have been paid for a given
product. This can be a helpful guideline to determine reasonable prices for future
transactions.

Reference is now made to Fig. 29, which is a simplified flowchart
illustration of a preferred method of operation for the price chain builder 3000 of Fig. 1.
The price chain builder 3000 is invoked from a transaction process. It facilitates the
computation of a price for the transaction.

Once the chain has been fully updated it may be valid, “temporarily”
valid, or invalid. This depends on the computation handlers that are being used in the
chain. If any computation handlers have passed strict expiry then the overall chain may

be invalid. If the chain contains no strict expiries, but one or more lazy expiry, then the

57

10

15

20

25

WO 03/087974 PCT/IL03/00296

result may be “temporarily” valid. If all of the computation handlers are currently valid,
then the result may be that the computed result is valid.

In step 3001, the price chain builder 3000 optionally facilitates the
creation of price chains for transactions, should the user or other calling process elect to
do so. In step 3002, the user, or other calling process, indicates if the pricing chain logic
should be applied to the selected transaction. If yes, step 3003 is executed and the result
is returned by step 3005,

As seen in step 3003, creation of a price chain for a transaction is the
principle function of the price chain builder 3000. Figs. 31 to 35, 37 and 38 show the
details of the new price chain creation process.

As seen in step 3004, should the pricing chain not be selected, then no
result is returned and a manual computation must be made.

As seen in step 3005, the result of the pricing chain, as determined by
step 3098 of Fig. 37, is returned.

Reference is now made to Fig. 30, which is a simplified flowchart
illustration of a preferred method for implementing step 3003 of Fig. 29. The processes
of adding a price chain to a transaction or editing the one that is already present differ
slightly. In the former case it is necessary to lookup all relevant price chains. A price
chain is either selected from this list, to be associated to the transaction, or a completely
new price chain is created for the transaction. In the case where a transaction already
has a price chain associated with it, then this chain may be accessed automatically, so
that it can be modified as needed.

As seen in step 3010, once the process has been invoked from a
transaction a check is done to see if there is a price chain already associated with this
transaction. In step 3011, depending on the result of the check for a price chain,
branching occurs either to create a new price chain if the result is negative, or to modify
the existing one if the result is positive.

As seen in step 3012, when creating a new price chain the easiest method

is to duplicate a pre-existing price chain. In order to see if this course of action is

possible a check is done to see if there are any relevant price chains. that have already
been created. If so, these are sorted in order of relevance and displayed for the trading

system operator. More details of this process are shown in Fig. 31.

58

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

As seen in step 3013, to create a new chain either a pre-existing chain
may be duplicated or a new empty chain may be created. This process is shown in
greater detail in Fig. 32. As seen in step 3014, a price chain can be modified by either
adding or removing processors. More details of this process are shown in Figs. 33, 34
and 35.

As seen in step 3015, each time a modification is made to the price chain
it is recomputed. This process occurs automatically once a modification has been made.
The process is shown in more detail in Fig. 38.

As seen in step 3016, once the price chain has been modified as desired
and recomputed it may be stored for future reference.

As seen in step 3017, the price chain is stored in Table XVII for future
use and updating.

Reference is now made to Fig. 31, which is a simplified flowchart
illustration of a preferred method for implementing step 3012 of Fig. 30. All existing
price chains are considered during the lookup process, however only the chains that
closely match the characteristics of the transaction are displayed. Once the price chains
that may be displayed have been chosen, they are sorted according to their likelihood of
being relevant.

In step 3020, all stored price chains are retrieved from the price chain
table by step 3021 and checked for relevance to the current transaction. If any are
relevant they may be sorted and displayed. As seen in step 3021, the price chains that
match the selected Product ID and Product Group ID are retrieved from Table X VII.

Step 3022 branches based on whether any suitable price chains were
found. In step 3023, the price chains may be sorted based on a set of prioritized criteria.
The result may be an ordered list of price chains that can be duplicated for use by the
current transaction. In step 3024, if no relevant price chains were found then an empty
list results. This case results more often when the trading system is first used, and over
time preferably may happen less and less often as more price chains are created. As seen
in step 3025, if no relevant price chain was found then a new price chain must be
created. The trading system preferably advises the operator that this is the case.

In step 3026, the results of the price chain lookup may be displayed. This

preferably shows that either a number of relevant price chains have been found or that

59

10

15

20

30

WO 03/087974 PCT/IL03/00296

none were found. In the case where relevant price chains were found, the price chains
may be displayed in the order determined during the sorting procedure.

As seen in step 3027, once the sorting and display processes are complete
the trading system proceeds to the creation of a new price chain for the current
transaction. Fig. 32 shows more details of this process.

Reference is now made to Fig. 32, which is a simplified flowchart
illustration of a preferred method for implementing step 3013 of Fig. 30. The pricing
chain builder can duplicate an existing chain and use that as a template for a new chain,
thus saving time when similar transactions are attempted by pre-populating the chain
with processors that are likely to be useful for the new transaction since the two
transactions are similar, and thus so would be their pricing chains.

Step 3030 receives a selection from an operator of the trading system.
This selection may be either to create a new empty price chain or to create a new chain
by duplicating a pre-existing price chain. Step 3031 branches based on the selection
specified. As seen in step 3032, if the creation of a new price chain is selected this new
price chain may be associated with the current transaction. The new price chain may be
empty except for a terminator, which is a placeholder that marks the end of the price
chain. As seen in step 3033, if a pre-existing price chain is chosen then it may be
duplicated as a new price chain and associated with the current transaction. The price
chain processors are loaded from the price chain Table XVII by step 3034, and new data
is written to that table as well as Table XVIIL

As seen in step 3034, the information for all existing price chains is
stored in Table XVII, with the attached processors for each chain stored in Table XVIIL.
The duplicate pricing chain may be stored in Table XVIII with a new unique ID, and
associated with the current transaction ID, and duplicate processors may be created and
stored in Table XVIIIL.

As seen in step 3035, updates to the chain are received from an external
source, such as a user interface. This data is then written to the TransactionID,
PricingChainStatus, ~ ProdGrpID, ProdID, ProdQty, UOM_ID, IncoTerm,
IncoTermLocation, Starting Price, ProdAvgPrice, ChainOwner fields of the newly
created chain record in Table XVIIL.

60

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

As seen in step 3036, optionally, the updated information may be read
from an external input, such as a user interface. In step 3037, all processors linked to the
new chain are loaded with values and evaluated as per the process depicted in Fig. 38.

As seen in step 3038, once the new chain has been created it can be
modified by adding or removing processors. More details of these operations are shown
in Figs. 33, 34 and 35. An empty chain cannot have any of its processors removed.

Reference is now made to Fig. 33, which is a simplified flowchart
illustration of a preferred method for implementing step 3014 of Fig. 30. If new
computation handlers are necessary, the process depicted in Fig. 33 is executed. A
processor is a specific instance of a computation handler with a specific value,
expiration date, and other attributes. Multiple processors that are linked to multiple
chains all share the same value, such that a single update is then reflected in multiple
chains. The same does NOT hold true for computation handlers, which are the templates
from which processors are created.

As seen in step 3040, if the pricing chain being modified desires a
processor with a computation handler that does not exist at the time of modification,
then a new computation handler may preferably be created to satisfy this need. In this
case, a processing branch may be taken that enables the creation of new computation
handlers. More details are shown in Fig. 36. If the price chain does not require any new
computation handlers then the process proceeds to adding and removing processors.

As seen in step 3041, new computation handlers can be created to
perform functions that are not performed by any of the existing computation handlers.
Fig. 36 shows more details. Step 3042 checks to see if the price chain has been
completely updated, or if there are more processors to add or remove. Branch to the
appropriate procedure based on the result of this check. Step 3043 chooses either to add
a processor to the price chain or to remove one from the price chain. As seen in step
3044, a new processor can be chosen from the list of pre-existing processors to be added
to the price chain. The details of this process are shown in Fig. 34. As seen in step 3045,
one of the processors can be removed from the price chain, if it is not needed. The
details of this process are shown in Fig. 35. As seen in step 3046, when a change is
made to the price chain, either adding or deleting a processor, the price chain builder

3000 recomputes the result. The details of this operation are shown in Fig. 38.

61

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

As seen in step 3047, when the price chain has been completely updated
and recomputed then the price chain builder 3000 may cease operation until it is needed
to manipulate another price chain.

Reference is now made to Fig. 34, which is a simplified flowchart
illustration of a preferred method for implementing step 3044 of Fig. 33. Fig. 34 shows
the process for adding a Pricing Chain Processor to a pricing chain.

Step 3050 loads all the processors that are presently available for adding
to the price chain from the processor database, as seen in step 3051. As seen in step
3051, the processors database contains all the processors currently available in the
system. Step 3052 displays the processors that were loaded by step 3050, then awaits
external input to make a selection. In step 3053, an external input is received by the
trading system to select one of the processors to be added to the price chain. As seen in
step 3054, a processor is selected from the list according to the external selection. Step
3055 uses the processor information as a lookup table key to determine if a processor is
still valid. If the processor has expired then adding it to the price chain may affect the
status of the computation result. This process is shown in greater detail in Fig. 37. As
seen in step 3056, once the processor expiry has been checked the processor may
preferably be added to the price chain. It preferably remains part of the price chain
unless it is removed. As seen in step 3057, the pricing chain Table XVTII is updated
with the new data to reflect the addition of the processor to the selected chain by writing
the PricingChainID and ProcessorID fields. As seen in step 3058, after a processor has
been added to the price chain the result of the price chain is recomputed. Further details
of this computation are shown in Fig. 38.

Reference is now made to Fig. 35, which is a simplified flowchart
illustration of a preferred method for implementing step 3045 of Fig. 33. Fig. 35 shows
the process for removing a Pricing Chain Processor from a pricing chain.

As seen in step 3060, all the processors in the chain are displayed. The
external trading system operator can choose whichever processor may be removed. In
step 3061, a selection is received to determine which processor may be removed from
the chain. In step 3062, the particular processor to be removed from the chain is
selected. As seen in step 3063, the links to the selected processor are broken and the

processors on either side of it are connected together. As seen in step 3064, the newly

62

10

15

20

25

WO 03/087974 PCT/IL03/00296

updated chain is saved by step 3065. In step 3065, the link between a pricing chain and
its processors is stored in Table XVIII, along with the order of processors within that
chain by updating the PricingChainID, ProcessorID and ProcessorOrder fields. In step
3066, the price chain builder 3000 proceeds to the next step of the process.

Reference is now made to Fig. 36, which is a simplified flowchart
illustration of a preferred method for implementing step 3041 of Fig. 33. Fig. 36 depicts
the functionality that is executed when a new computation handler is created.

In step 3070, a new computation handler may be created with the name
and details provided by an external source. As seen in step 3071, the process branches
depending on the type of computation handler being created. In step 3072, a “constant
modifier” type of computation handler may be created. The modifier may be read from
an external input. This type of handler performs a constant modification to its value,
such as adding five, dividing by 3, etc. In step 3073, a “lookup table” type of
computation handler may be created. This type of handler assumes the value of the
database value that it references. In step 3074, an “expression” type of computation
handler may be created. This type of handler assumes the value of a mathematical
expression that is contained in the handler. In step 3075, the newly created computation
handler is stored in Table XX. As seen in step 3076, the computation handler is stored
along with the existing computation handlers and may be available for all present or
future price chains that may be created.

As seen in step 3077, if more computation handlers need to be created
the process begins again from the start. Otherwise the process continues to the next step,
modification of the price chain.

As seen in step 3078, once all the computation handlers have been
created then the process continues to the next step, where processors are added or
removed from the price chain.

Reference is now made to Fig. 37, which is a simplified flowchart
illustration of a preferred method for implementing step 3055 of Fig. 34. For a
computation to be valid its processors must all be valid. If one of the processors has past
its strict expiry then the price chain’s result may be invalid. If one of the processors has
past its lazy expiry then the price chain’s result may be conditionally valid. In order to

determine the status of a processor the price chain builder 3000 communicates with the

63

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

data expiry handler 5000. If a processor has expired, the price chain builder 3000 sends
information to the notification handler 4000 to produce a notification of this occurrence.

In step 3090, price chain builder 3000 sends a request to the data
expiration handler 5000 to find out the expiry status of the data in question. As seen in
step 3091, price chain builder 3000 waits until the response to the expiry status request
arrives. In step 3092, a response is received from the data expiration handler 5000
providing the expiry status requested.

In step 3093, branching occurs based on the result of the expiry check. If
the result is valid, then the process continues with step 3094. If the result is lazy expiry,
then the process continues to step 3095. Otherwise, if the result is strict expiry, then the
process continues to step 3096.

As seen in step 3094, if the price chain builder 3000 had computed a
valid price then the result remains valid.

As seen in step 3095, if the computed price was valid it becomes
conditionally valid. If it was conditionally valid, it remains as such. If the price was
already invalid it also remains as such.

As seen in step 3096, the result becomes invalid whether it was valid,
conditionally valid or invalid.

In step 3097, a notification is generated by sending a notification request
to the notification handler 4000. The notification request preferably notifies a role or
user that it is time to update this processor’s data. Step 3098 returns the result of the
updated price chain.

Reference is now made to Fig. 38, which is a simplified flowchart
illustration of a preferred method for implementing step 3058 of Fig. 34. Fig. 38 depicts
the evaluation of a given chain’s processors to come up with a value for the entire chain
by enumerating all of its processors in order and applying the output value of a given
processor as the input value for the next.

Step 3110 loads the next processor’s information from the processor
database, as seen in step 3111, by querying Table XVIII using PricingChainID as the
lookup key. In step 3112, depending of the type of computation handler that is assigned

to processor, branching occurs to three steps.

64

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Step 3113 reads the relevant modifier from the Modifier field that may be
applied to the current price.

Step 3114 does a lookup, from a table referenced in the Parameter field
of Table XX, of the value of that may be applied to the current price.

Step 3115 loads the programmatic expression contained in the Parameter
field of Table XX that may be applied to the current price.

Step 3116 applies the function determined in the previous step to the
current price.

As seen in step 3117, if processors remain to be applied then the process
loops back to step 3110. Otherwise, the computation is complete and the process
continues to step 3118. As seen in step 3118, once the value has been determined it may
be displayed. Depending on the status of the result, valid, conditionally valid, or invalid,
it may be displayed in a different color.

Reference is now made to Fig. 39, which is a simplified flowchart
illustration of a preferred method of operation for the notification handler 4000 of Fig.
1. The notification handler 4000 works closely with the price chain builder 3000, queue
manager 1000 and the data expiration handler 5000. It is an internal process to the
trading system and cannot, in the present implementation, be accessed through any
external interface.

As seen in step 4000, notification handler 4000 is an internal functional
block that facilitates the process of generating notifications. It executes processes shown
in steps 4001, 4002, and 4003.

In step 4001, notification handler 4000 generates a notification queue
entry that is sent to the queue manager 1000. The details of the process are shown in
Figs. 40 and 41.

In step 4002, notification handler 4000 propagates the updated
information to the data expiration handler 5000. The details of this process are shown in
Fig. 42.

In step 4003, notification handler 4000 preferably creates notification
queue items for items that were affected by a particular update. The price chains that
contain the updated item may be updated and the owners of these price chains may be

informed. Figs. 40 and 43 show the details.

65

10

15

20

25

WO 03/087974 PCT/IL03/00296

Reference is now made to Fig. 40, which is a simplified flowchart
illustration of a preferred method for implementing step 4001 of Fig. 39. Fig. 40 shows
how notification handler 4000 forms a notification that may subsequently be sent to the
queue manager 1000. The completed notification informs the system user or operator of
exactly what data needs to be updated.

In step 4010, notification handler 4000 receives a request from either
data expiration handler 5000 or price chain builder 3000 for a notification to be
generated. In step 4011, notification handler 4000 bundles the information together to
form a notification queue item. Fig. 43 shows a preferred embodiment of this process in
detail. As seen in step 4012, once completed, the notification request is sent to the queue
manager 1000. The queue manager 1000 maintains the notification until a response is
received. As seen in step 4013, while the notification resides in the notification queue '
notification handler 4000 is either idle or processing other notification requests or
updates.

As seen in step 4014, once the queue manager 1000 sends a response to
the notification handler 4000, the notification handler 4000 replaces the value in the
appropriate data table with the value it has just received. As seen in step 4015, a
message is sent to data expiration handler 5000 to alert it to the update. The data
expiration handler 5000 may then update its expiry information. More details are shown
in Fig. 42.

As seen in step 4016, when an item is updated it may affect multiple
roles or users. They may be informed of the update and can thus take any appropriate
actions that may be necessary.

Reference is now made to Fig. 41, which is a simplified flowchart
illustration of a preferred method for implementing step 4011 of Fig. 40. When an
outstanding request is serviced by a system user the data expiration information may be
reset to reflect the update. The notification handler 4000 forwards the necessary
information to the data expiration handler 5000 for updating its expiration tables.

Step 4020 receives a reference informing the notification handler 4000
where the newly expired data is located. Along with this information comes a
description of the expired data that may be presented to the external trading system

operator. In step 4021, a lookup is done to see who is responsible for the expired data.

66

10

15

20

25

WO 03/087974 PCT/IL03/00296

This person may be the addressee of the notification queue item. As seen in step 4022,
the AssignedRole field of the Table IV is queried for the reference to the role or user ID
that is responsible for the selected data item. In step 4023, the role or user information is
added to the notification queue item. As seen in step 4024, the fully specified item is
then submitted to the notification queue.

Reference is now made to Fig. 42, which is a simplified flowchart
illustration of a preferred method for implementing step 4015 of Fig. 40. Fig. 42 depicts
a high-level flow of how expiration information is processed.

As seen in step 4030, once the queue item has received a response, the
queue manager 1000 propagates this information to the notification handler 4000. In
step 4031, notification handler 4000 extracts the data lookup key and the updated value
from the queue item response, respectively, from the QltemValueLoc and QitemValue
fields of Table XXIII. In step 4032, notification handler 4000 forwards the information
to the data expiration handler 5000 for it to update its data expiry tables.

Reference is now made to Fig. 43, which is a simplified flowchart
illustration of a preferred method for implementing step 4016 of Fig. 40. When a
computation handler of a price chain is updated it is necessary to check the other price
chains to determine if they link to a processor that is based on this computation handler.
If they have it then a notification is sent to the price chain’s owner to inform them of the
update.

When a processor is updated many chains may be affected as they may
contain this processor. In this case, it is necessary to inform the Roles/Users responsible
for the affected chains. Notifications are sent to all users/roles responsible for the chains
that are affected by the expiry information update.

The notification handler 4000 searches through all the chains and checks
to see if any of them contain the processor that was updated. If they do the User/Role
responsible for the particular chain is notified of the change.

Step 4040 reads the next price chain to see if it is affected. As seen in
step 4041, the chains are stored in the PricingChains database. As seen in step 4042,
branching occurs based on if the current chain contains the computation handler that

was updated. If it does, then branch to step 4044. If not, then branch to step 4043.

67

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

As seen in step 4043, the current price chain is ignored, as it is not
affected by the update. In step 4044, since the price chain is affected, the owner is
looked up in the table to determine who the owner of the price chain is. In step 4045, the
chain owner is stored in the ChainOwner field of the PricingChains database, along with
the rest of the chain information. In step 4046, a notification is sent to the owner of the
chain to inform that role or user of the change to the computation handler and thus to
the price chain.

As seen in step 4047, if there are more chains to check, then branch back
to step 4040. Otherwise, continue to step 4048. As seen in step 4048, the notification
process has completed and the notification handler 4000 returns to a ready state.

Reference is now made to Fig. 44, which is a simplified flowchart
illustration of a preferred method of operation of the data expiration handler 5000 of
Fig. 1. The data expiration handler 5000 is not visible at the trading system’s interface
to the outside world.

Data expiration handler 5000 tracks the expiry information for all data
items in the trading system. Data expiration handler 5000 is operative to execute
processes in steps 5001, 5002 and 5003.

As seen in step 5001, the information in the data expiration handler 5000
tables must be updated periodically. At those times the process shown in Fig. 45 is
executed.

As seen in step 5002, when a particular data item is updated then its
expiry entry must be updated, also. Fig. 47 shows the details of the process.

As seen in step 5003, when a new data item is added to the system, a new
expiry entry for it is preferably created. Fig. 48 shows the details of the process of
adding a new expiry entry.

Reference is now made to Fig. 45, which is a simplified flowchart
illustration of a preferred method for implementing step 5001 of Fig. 44 in which a
potentially expired data element is queried. Based on an external reference, for example |
from the operating system, on a periodic basis each data expiry element is check to see
if its status is still correct. If the element’s status is no longer correct the necessary steps
are taken to update it, including sending a notification and changing the element’s status

field value.

68

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

As seen in step 5010, the process is activated at periodic intervals by an
external source such as the operating system. As seen in step 5011, for the next expiry
record the lazy and strict expiry times are read from the table along with the current
status. As seen in step 5011, the expiry records are stored in a series of tables. In step
5012, a check is made to see if the current expiry status of the record remains correct at
this new moment in time. In step 5013, branching occurs according to the result of the
expiry status check.

In step 5014, a notification request is generated for the item if its expiry
status has changed. The request is sent to the notification handler 4000 to obtain an
updated value for the record. The request contains a reference that identifies it.

As seen in step 5015, if there tare more data elements to check, the
method branches back to step 5011. Otherwise, the method continues to step 5017,

As seen in step 5016, if a change to the expiry status of a record is
necessary, then this change may be made and the new expiry status recorded in the
table, and processing preferably resumes at step 5015.

Step 5017 denotes the termination of the current invocation of the
process and the return of execution control to the calling process.

Reference is now made to Fig. 46, which is a simplified flowchart
illustration of a preferred method for implementing step 5011 of Fig. 45. When a price
chain is being built, the expiry status of the processors that may be used in the price
chain must be checked. The price chain builder 3000 sends an identifier for the
processor to the data expiration handler 5000. This identifier is then used by the data
expiration handler 5000 as a lookup table key.

As seen in step 5030, data expiration handler 5000 receives an expiry
status request from another part of the system, such as price chain builder 3000. The
request contains the database reference to identify the particular field that is to be
checked.

As seen in step 5031, data expiration handler 5000 reads the expiry status
requested, using the information in the request as a lookup key. As seen in step 5032,
the data expiry storage holds the expiry status of all data in the trading system. In step
5033, data expiration handler 5000 returns the expiry status to the requestor.

Reference is now made to Fig. 47, which is a simplified flowchart

69

10

15

20

30

WO 03/087974 PCT/IL03/00296

illustration of a preferred method for implementing step 5016 of Fig. 45. When an item
that had expired is updated the notification handler 4000 sends a message to the data
expiration handler 5000 to update its expiry status.

Step 5040 receives a reference; that identifies the newly updated item.
Step 5041 uses the reference to write the updated expiry status information to the expiry
storage. As seen in step 5042, the expiry storage holds the expiry information so that it
can be read and updated whenever necessary.

In step 5043, data expiration handler 5000 sends a notification request to
the notification handler 4000 to inform the users or roles affected by this change in
expiry status of a particular data item.

Reference is now made to Fig. 48, which is a simplified flowchart
illustration of a preferred method for implementing step 5003 of Fig. 44. Two sources
may create new expiry table entries, either the price chain builder 3000 or an external
source.

As seen in step 5050, price chain builder 3000 creates a new expiration
entry when a new computation handler is created, as depicted in Fig. 36.

As seen in step 5051, an external source, such as a system operator, may
create a new expiry entry.

In step 5052, data expiration handler 5000 receives the new expiry entry
from whichever source. In step 5053, the new entry may preferably be assigned to a
particular user or role, as determined by a query to the NotificationTarget field of Table
XXI. The user or role is preferably responsible for updating the data when it expires. As
seen in step 5054, the user or role to be assigned responsibility is preferably determined
using a lookup table.

In step 5055, the new entry is written to Table XXI. As seen in step 5055,
the expiry storage adds a new entry.

In step 5056, the role or user assigned responsibility, as determined by a
query to the NotificationTarget field of Table XXI, for the new entry may be sent a
notification.

Fig. 49 is a simplified screenshot depicting a possible display of
candidate pricing chains produced by the process outlined in Fig. 31 and displayed by
step 3026 therein. '

70

10

15

20

25

WO 03/087974 PCT/IL03/00296

Fig. 50 is a simplified screenshot depicting a possible display (by step
3052 of Fig. 34) of a pricing chain related to a transaction of 60 tons of Chinese Beans
and incorporating a plurality of processors.

Fig. 51 is a simplified screenshot depicting a possible display (by step
3052 of Fig. 34) of a pricing chain related to a transaction of 40 tons of glycerin and
incorporating a plurality of processors.

Fig. 52 is a simplified screenshot depicting a possible display (by step
3052 of Fig. 34) of a pricing chain related to a transaction of 40 tons of glycerin and
incorporating a plurality of processors. In contrast to Fig. 51, the list of processors is
different because the INCO term and location are different, thus requiring different
operations by entities in the trading house, even though the transaction is for the same
product.

Fig. 53 is a simplified screenshot depicting a possible display of a
transaction, as managed by the transaction handler 107 of Fig. 1 and whose data is
stored in Table I. The user is provided with an option to attach a pricing chain, in which
case step 3001 of Fig. 29 is executed, and to request a recommendation based on the
current data displayed, in which case step 2001 of Fig. 16 is executed.

Fig. 54 is a simplified screenshot depicting a possible display of a
notification queue pertaining to the prices of various shipping charge queries awaiting
input by the user. Upon selection of an item, Fig. 55 may be displayed.

Fig. 55 is a simplified screenshot depicting a possible display of an
interaction between the user and the notification queue. In this case, the user is
prompted for information, with the prompt text stored in QitemPrompt of Table XXIII.
Upon input by the user, the entered data value is preferably stored in the QitemValue
field of Table XXIII.

Fig. 56 is a simplified screenshot depicting a possible display (depicted
in step 2034 of Fig. 19) of an interaction between the user and the PCTB 2000, wherein
the user enters the recommendation weights for a set of parameters.

Fig. 57 is a simplified screenshot depicting a possible display (depicted
in step 2024 of Fig. 18) in which the recommendations generated by the PCTB 2000 are

displayed to the user for possible acceptance, modification, or dismissal.

71

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Fig. 58 is a simplified screenshot depicting a possible display of a queue
pertaining to shipments of products as may be handled by the shipment handler 111 of
Fig. 1, and before any amalgamation operations were run on this queue.

Fig. 59 is a simplified screenshot depicting a possible display of a queue
pertaining to shipments of products as may be handled by the shipment handler 111 of
Fig. 1, after example A hereinbelow was executed, causing a reduction in the number of
queue items and the amalgamation of the three queue items pertaining to the shipment
of multiple amounts of Mexican Honey from Mexico to London.

Fig. 60 is a simplified screenshot depicting a possible display of a queue
pertaining to shipments of products as may be handled by the shipment handler 111 of
Fig. 1, after execution of Example B hereinbelow on the queue shown in Fig. 59.

Fig. 61 is a simplified screenshot depicting a possible display of a queue
pertaining to shipments of products as may be handled by the shipment handler 111 of
Fig. 1, after execution of Example C hereinbelow on the queue shown in Fig. 60.

Further reference is now made to Figs. 58, 59, 60 and 61 which are
simplified screenshots depicting possible displays presented to a user during the
amalgamation process of Fig. 9.

In Fig. 2, step 1005, described hereinabove, the queue manager 1000
enumerates all queue items and applies the process of Fig. 9 to each. For example, a
“Shipping” queue might have 5 entries (referenced as Queueltem[1] through
Queueltem[5]) at the time step 1070 of Fig. 9 is invoked. In such case, the queue
manager may preferably enumerate each item as follows:

Pass 1:

Execute step 1071 of Fig. 9 on Queueltem[1] and Queueltem[2]

Execute step 1071 of Fig. 9 on Queueltem[1] and Queueltem{3]

Execute step 1071 of Fig. 9 on Queueltem[1] and Queueltem[4]

Execute step 1071 of Fig. 9 on Queueltem[1] and Queueltem[5]

Pass 2:

Execute step 1071 of Fig. 9 on Queueltem[2] and Queueltem[3]

Execute step 1071 of Fig. 9 on Queueltem[2] and Queueltem{4]

Execute step 1071 of Fig. 9 on Queueltem[2] and Queueltem[5]

Pass 3:

72

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Execute step 1071 of Fig. 9 on Queueltem([3] and Queueltem[4]

Execute step 1071 of Fig. 9 on Queueltem([3] and Queueltem[5]

Pass 4:

Execute step 1071 of Fig. 9 on Queueltem([4] and Queueltem[5]

It is appreciated that the queue manager 1000 may not enumerate items
that have been removed from the queue due to successful amalgamation processes, e.g.
if Queueltem[2] is amalgamated with Queueltem[1].

As seen in the example of Fig. 58, Queueltem[1], Queueltem|[2] and
Queueltem[3] are queue items related to a shipment of Mexican honey from Mexico to
London.

The following description assumes the business' logic procedure of
Example A below.

When step 1071 of Fig. 9 is invoked, the above-mentioned queue items
may be amalgamated into a single queue item comprised of the sum of the product
quantities of the three items, producing the output of Fig. 59.

As seen in the resulting Fig. 59, Queueltem[2] and Queueltem[4] are
queue items related to shipments of beans from Brazil to London and to Liverpool,
respectively. Since both are located in England, the queue items would be amalgamated
by the business logic procedure depicted in Example B hereinbelow, and the output of
Fig. 60 would be produced.

Further referring to Fig. 60, assuming Queueltem[2] and Queueltem[4]
are queue items related to a shipments of beans from Brazil to Liverpool and to London
in England, the queue items would be amalgamated by the business logic procedure
depicted in Example C hereinbelow, which is an example of amalgamating by product
group for shipment. Fig. 61 depicts the result of the above-mentioned operation.

Example A: Business Logic Performing Amalgamation

1. if (Queueltem[1]. QItemPromptVariable. Product==

Queueltem[2]. QItemPrompt Variable. Product) and

(Queueltem[1]. QItemPromptVariable. From==

Queueltem([2]. QItemPrompt Variable From) and

(Queueltem[1]. QItemPrompt Variable. To ==

73

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Queueltem[2]. QltemPromptVariable.To) and
then
2. Queueltem[1]. QltemPromptVariable. QTY=
Queueltem[1].QltemPromptVariable . QTY +
Queueltem[2]. QltemPromptVariable .QTY
3. Queueltem[1].QItemPrompt = "Queueltem[1].QItemPrompt” +
"Queueltem[2]. QltemPrompt"
4. Queueltem[2].QItemStatus=2
Queueltem[2]. QltemBaseAmalgamationQID=
Queueltem[1]. QueueltemID
6. return

In this example, it is assumed that a shipment queue is being evaluated
for amalgamation opportunities, wherein the value of each queue item is compared such
that multiple shipments of similar items are amalgamated into a single shipment.

Line 1 contains an evaluative expression to determine if an amalgamation
opportunity exists between the reference Queueltem, ih this example Queueltem[1], and
the enumerated item, in this case Queueltem[2]. The “TO,” “FROM” and “PRODUCT”
fields of the queue items are evaluated. If they match, the amalgamation takes place by
summing the “QTY” fields of the amalgamated queue items.

Line 2 is executed if the result of the above expression is true. The
variables (in this case, the quantity of product to ship) of the first and second queue
items are summed.

Line 3 shows how the textual prompts, referenced in Fig. 55, can be
amalgamated together as well for ease of reference of the user.

Line 4 sets the queue item’s status to “Amalgamated” (ref. the
QltemStatus field in Table XXIIT).

Line 5 sets a reference pointer in Queueltem[2] to reference the base
queue item, Queueltem[1], such that a link is created between the two queue items.

Line 6 returns processing to the calling procedure, which may be 1013 as
shown in Fig. 3.

Example B: Business Logic Performing Amalgamation

74

10

15

20

25

WO 03/087974 PCT/IL03/00296

1. if (Queueltem[2].QltemPromptVariable Product==
Queueltem[4].QItemPrompt Variable Product) and
(Queueltem[2].QltemPromptVariable. From==
Queueltem[4].QltemPromptVariable From) and
(Queueltem[2]. QItemPromptVariable. To == “LONDON") and
((Queueltem[4].QItemPromptVariable. To == “LIVERPOQL”) or
(Queueltem[4]. QItemPromptVariable. To == “CAMBRIDGE”) or
(Queueltem[4].QItemPromptVariable. To == “FELIXSTOWE”))

then

2. Queueltem[4].QItemPromptVariable.To == “LONDON”)

3. Queueltem[2].QItemPromptVariable. QTY =
Queueltem[2] QltemPromptVariable. QTY +
Queueltem[4]. QItemPromptVariable. QTY

4. Queueltem[2].QItemPrompt = "Queueltem[2]. QltemPrompt" +
"Queueltem[4]. QltemPrompt"

5. Queueltem{4].QItemStatus=2

6. Queueltem[4].QItemBaseAmalgamationQID=

Queueltem[2].QueueltemID

7. return

In this example, it is assumed that a shipment queue is being evaluated
for amalgamation opportunities, wherein the value of each queue item is compared such
that multiple shipments of identical products shipped from the same location to
geographically close destinations are amalgamated into a single shipment.

Line 1 contains an evaluative expression to determine if an amalgamation
opportunity exists between the reference Queueltem, Queueltem[2], and the enumerated
item, in this case Queueltem[4]. The “FROM” and “TO” fields of the queue items are
evaluated, and if the FROM fields are identical and the TO fields are pre-specified to be
geographically equivalent, as determined by the business logic, either by manual entry
(i.e. “convert city X to city Y as in the example) or by any other external process then
amalgamation takes place by summing the “QTY” fields of the amalgamated queue
items and setting the TO field of the amalgamated item to the same as the base queue

item.

75

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Line 2 is executed if the result of the above expression is true. The
Variables (in this case, the destination of the shipment) of the first and second queue
itemns are set to identical values.
Line 3 sums the quantities of the shipments.
Line 4 shows how the textual prompts, referenced in Fig. 55, can be
amalgamated together as well for ease of reference of the user.
Line 5 sets the queue item’s status to “Amalgamated” (ref the
QlItemStatus field in Table XXIII).
Line 6 sets a reference pointer in Queueltem[4] to reference the base
queue item, Queueltem([2], such that a link is created between the two queue items.
Line 7 returns processing to the calling procedure.
Example C: Business Logic Performing Amalgamation
1. if (Queueltem[2].QltemPrompt Variable. ProductGroup==
Queueltem[4].QItemPromptVariable. ProductGroup) and
(Queueltem|2].QItemPrompt Variable. From==
Queueltem[4]. QItemPrompt Variable. From) and
(Queueltem[2].QItemPromptVariable. To==
Queueltem[4].QItemPromptVariable. To ~ Then
2. Queueltem[2]. QItemPromptVariable. Product=
Queueltem[2]. QltemPromptVariable. Product +
Queueltem[4]. QItemPromptVariable. Product
3. Queueltem[2].QltemPromptVariable. QTY
Queueltem[2]. QltemPromptVariable. QTY +
Queueltem{4]. QltemPromptVariable. QTY
4. Queueltem[2] QltemPrompt = "Queueltem[2]. QltemPrompt" +
"Queueltem[4].QItemPrompt"
5. Queueltem[4].QItemStatus=2
6. Queueltem[4]. QltemBaseAmalgamationQID=
Queueltem[2].QueueltemID

i

7. return
In this example, it is assumed that a shipment queue is being evaluated

for amalgamation opportunities, wherein the value of each queue item is compared such

76

10

15

20

25

WO 03/087974 PCT/IL03/00296

that multiple shipments of products belonging to the same product group and traveling
from identical destinations to identical destinations are amalgamated into a single
shipment.

Line 1 contains an evaluative expression to determine if an amalgamation
opportunity exists between the reference Queueltem, Queueltem[2], and the enumerated
item, in this case Queueltem[4]. The “FROM” and “TO” fields of the queue items are
evaluated, and if the FROM fields are identical and the TO fields are deemed to be
geographically close then the amalgamation takes place by summing the “QTY” fields
of the amalgamated queue items and setting the TO field of the amalgamated item to the
same as the base queue item.

Line 2 is executed if the result of the above expression is true. The
shipment contents (in this case, the products to be shipped) of the first (base) queue item
Queueltem[2] is set to both the original product of Queueltem[4]. Line 3 sums the
quantities of the shipments.

Line 4 shows how the textual prompts, referenced in Fig. 55, can be
amalgamated together as well for ease of reference of the user.

Line 5 sets the queue item’s status to “Amalgamated” (ref. QItemStatus
field in Table XXTII).

Line 6 sets a reference pointer in Queueltem[4] to reference the base
queue item, Queueltem[2], such that a link is created between the two queue items,

Line 7 returns processing to the calling procedure.

Example D: Business Logic Performing Amalgamation

1. if (Queueltem[1].QItemPromptVariable. ProductGroup==

Queueltem[2]. QItemPromptVariable. ProductGroup) and

(Queueltem[1].QItemPromptVariable From==

Queueltem[2]. QItemPromptVariable.From) and

(Queueltem[1].QItemPromptVariable. To ==

Queueltem[2]. QItemPromptVariable.To) then

2. if ABS(Days(Queueltem[1]. QItemPromptVariable. ShipDate) —

Days(Queueltem[2]. QItemPromptVariable.ShipDate)) < 14 then

77

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

[F8)

. Queueltem[1].QItemPromptVariable.QTY=

Queueltem[1].QItemPromptVariable. QTY +
Queueltem(2]. QltemPromptVariable QTY

4. Queueltem[1]. QItemPrompt = “Queueltem[1].QItemPrompt” +

“Queueltem[2]. QIltemPrompt”
5. Queueltem[2].QItemStatus=2
6. QueueItem[Z].QItemBasgAmalgamationQID =
Queueltem[1]. QueueltemID

7. NewQueueltem(STORAGE,

Queueltem[1].QltemPromptVariable. ShipDate,

Queueltem[2]. QItemPromptVariable. ShipDate,

Queueltem[1].QueueltemID)

8. return

In this example, it is assumed that a shipment queue is being evaluated
for amalgamation opportunities, wherein the products of the same product group that
are designed to be shipped from identical source locations to identical destinations
within a specified time frame are compared. This business logic example seeks
amalgamation opportunities where multiple shipments may be amalgamated into a
single shipment, especially if one of the shipment dates is already determined to be
particularly applicable due to the sailing of a vessel on a specified date. When
amalgamation is possible, storage of the shipped items may be required for the duration
of time than between the originally scheduled shipment and the new shipment date, and
is addressed by adding a new queue item in the storage queue. A person skilled in the
art will appreciate that similar processes can happen between any number of queues.

Line 1 contains an evaluative expression to determine if an amalgamation
opportunity exists between the reference Queueltem, Queueltem[1] in this example, and
the enumerated item, Queueltem[2] in this example. The “TO,” “FROM” and
“PRODUCT” fields of the queue items are evaluated. If they match, then line 2 is
evaluated.

Line 2 evaluates the time frame between shipments, such that shipments

within a specific time frame, 14 days in this example, are amalgamated. The expression

78

10

15

20

WO 03/087974 PCT/IL03/00296

evaluates the absolute value of the difference of the number of days between the
shipments.

Line 3 is executed if the results of the above two expressions are true.
The variables, the quantity of product to ship in this example, of the first and second
queue items as summed, such that amalgamation takes place by summing the “QTY”
fields of the amalgamated queue items.

Line 4 shows how the textual prompts, referenced in Fig. 55, can be
amalgamated together as well for ease of reference of the user.

Line 5 sets the queue item’s status to “Amalgamated” (ref. the
QitemStatus field in Table XXIII).

Line 6 sets a reference pointer in Queueltem[2] to reference the base
queue item, Queueltem(1], such that a link is created between the two queue items.

Line 7 creates a new queue item in a different queue (the storage queue
in this example) to address the new requirement to store a quantity of product until the
date the amalgamated shipment can be shipped. This procedure calls step 1010 of Fig. 3
for the destination queue, the storage queue in this example, supplying it with the
required queue-specific parameters, in this case the start and end storage dates and a
reference to the parent queue item.

Line 8 returns processing to the calling procedure, which may be step
1013 of Fig. 3.

Example E: Business Logic Performing Prioritization

This example checks the age of items in a queue and raises the priority of
older items in order to ensure that they are promptly handled.

1. if (Days(CurrentDate()) —(Days(Queueltem{1].QItemDate)) >= 20
then

2. Queueltem[1].Priority = (Queueltem{ 1] Priority)+1

3. return

Line 1 is an evaluative expression that determines if more than 20 days
have elapsed since the queue item was created.

Line 2 is executed if line 1 is true, and increments the priority of the
queue item by one. Care must be taken to ensure that the incrementation does not

happen each time the queue is evaluated.

79

5

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

Line 3 returns processing to the calling function.

Example F: Business Logic Performing Prioritization

This example depicts an evaluation of the number of items in two distinct
queues (as returned by the Count() function) and a decrement of the priority of the items
in the first queue if certain conditions are met.

Assuming that the SHIPMENTS queue is being enumerated:

1. if (Count(QueuelD[CURRENCY_BOOKINGS]) > 5 and

Count(QueueID[SHIPMENTS]) > 10 then

2. Queueltem[1] Priority = (Queueltem[1] Priority)-1
3. return

Line 1 is an evaluative expression, operative on the SHIPMENTS queue,
that determines if more than 10 items exist in the SHIPMENTS queue and more than 5
items exist in a different queue, in this case the CURRENCY_BOOKINGS queue.

If line 1 is true, line 2 is executed and decrements the priority of the
queue item by one. Care must be taken to ensure that the decrementation does not
happen each time the queue is evaluated.

Line 3 returns processing to the calling function.

Business logic may also be customized to generate priorities based on
world events or other business situations. For example:

Example G: Business Logic Performing Prioritization

This example assumes that banks give a certain discount for currency
bookings that are placed early in the morning:

1.If ((Hours(TimeNow()) > 7) and (Hours(TimeNow()) < 12) then
2. Queueltem[1].Priority = (Queueltem[1] Priority)+1
3. return

In this example, it is assumed that the currency bookings queue is being
prioritized.

Line 1 is an evaluative expression that determines if the current time 1s
after 7am and before 12 pm. Line 2 is executed if line 1 is true, and increments the
priority of the queue item, in this case items in the Currency Booking queue, by one. In
this case, it may be preferable to increase the priority once a day even for items that

already exist in the queue. Line 3 returns processing to the calling function.

80

10

15

20

25

WO 03/087974 PCT/IL03/00296

Example H: Business Logic Performing Prioritization

This example illustrates the modification of queue item priorities in
multiple queues as a result of world events, for example political instability in a certain
country, which may make it desirable for a trading house, using a computerized system
constructed and operative in accordance with a preferred embodiment of the present
invention, to accelerate closure of all business relating to that country.

This example of business logic may be referenced by any queue.

1. if (Queueltem[1].QItemPromptVariable.Location == "ARGENTINA"") then
2 Queueltem[1].Priority = Queueltem[1] Priority + 10;
3. return

Line 1 is an evaluative expression that determines if the location
associated with the queue item's variables is "Argentina”, in which it has been learned
that there is political unrest. Line 2 is executed if line 1 is true, and increases the priority
of the queue item by a larger amount, in this case, 10. Line 3 returns processing to the
calling function.

It is appreciated that the business logic of Examples A - H is merely
exemplary of possible business logics, and that business logics may be combined in any
suitable manner. For example, an item's priority may be increased by both of the
processes detailed in Examples G and H above.

Fig. 62 is a simplified screenshot depicting a possible display of a data
edit screen for maintaining notification preferences for each user, as are stored in Table
L.

Fig. 63 is a simplified screenshot depicting a possible display of a data
edit screen for maintaining information about database records and fields, as stored by
the database management system 200 of Fig. 1.

Figs. 64A - 64E, taken together, are a pictorial illustration of a trader
using a computerized trading system constructed and operative in accordance with a
preferred embodiment of the present invention in which price information items
including expiry information therewithin are automatically converted into a system
format for storage in the system. As shown, the trader preferably is able to input
information in a foreign currency, and in natural language (e.g.: expiry can be indicated

to be "within one week"), and the system automatically converts information into a

81

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

desired uniform currency, such as dollars, and converts "within one week", using its
knowledge of the current date, into a date one week hence.

Fig. 65A is a pictorial illustration of four transactions stored in a
computerized trading system constructed and operative in accordance with a preferred
embodiment of the present invention, the transactions being in various states of
implementation. Three of the four transactions involve trade incoming to the United
Kingdom. As shown, transactions 00/1108 and 00/1109 are in the implementation stage,
i.e. they are already agreed upon and are in the process of being fulfilled. Transaction
00/1110 is still in the offer-construction stage. For transaction 00/1111, an offer has
been constructed and presented to client, but has not yet been accepted. More generally,
transactions normally proceed through system-defined stages, e.g. the following;

a. transaction initiation (by trader or potential client) as in 00/1110;

b. offer construction;

c. offer presentation, culminating in client approval (or unsuccessful
termination); and

d. implementation (transaction in process), culminating in successful
termination.

Fig. 65B is a pictorial illustration of an event, affecting three of the four
transactions in Fig. 65A. In the illustrated embodiment, the event is an increase in VAT
in the United Kingdom. This can be expected to affect all transactions that involve entry
into the United Kingdom. Preferably, a trading house executive inputs the information
defining the increase in the UK VAT parameter into the system and the system
automatically identifies and processes all affected transactions, using predefined
business logic.

Fig. 65C is a pictorial illustration showing the effect of the event of Fig.
65B on the transactions of Fig. 65A, as automatically implemented by the computerized
trading system storing the transactions of Fig. 65A. As shown, the information affects
three of the four transactions, however each transaction is typically affected differently
because the statuses of each of the three transactions are different.

Fig. 66 is a pictorial illustration of traders and facilitative information
providing departments, which may interact via a computerized trading system

constructed and operative in accordance with a preferred embodiment of the present

82

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

invention. In the illustrated embodiment, for simplicity, only four traders interact with
only three information providing departments. Preferably, each information providing
department has a queue of incoming queries which it processes. The queue may be
resorted and/or amalgamated periodically, such as twice a day, or upon request by a
management level operator.

Fig. 67A is a pictorial illustration of email messages being generated by a
first trader, Ann, in Fig. 66. Fig. 67B is a pictorial illustration of email messages being
generated by a second trader, Bill, in Fig. 66. Fig. 67C is a pictorial illustration of email
messages being generated by a third trader, Carrie, in Fig. 66. Fig. 67D is a pictorial
illustration of email messages being generated by a fourth trader, Dave, in Fig. 66. The
traders have sent emails (queries) requesting information to the logistics department and
to the shipping and handling department. It is appreciated that some of the queries have
common features and therefore are preferably grouped. For example, two queries (IS
and 16) pertain to irradiation of honey. Also, two queries (14 and I2) pertain to shipping
from Peru to UK.

Fig. 68A is a pictorial illustration of a computerized email queue
generated from those email messages in Figs. 67A - 67D which are addressed to the
logistics department in Fig. 66. Fig. 69A is a pictorial illustration of the computerized
email queue of Fig. 68A, resorted and amalgamated. It is appreciated that the two
queries pertaining to irradiation of honey have been grouped together.

Fig. 68B is a pictorial illustration of a computerized email queue
generated from those email messages in Figs. 67A - 67D which are addressed to the
shipping and handling department in Fig. 66. Fig. 69B is a pictorial illustration of the
computerized email queue of Fig. 68B, resorted and amalgamated. It is appreciated that
the two queries pertaining to shipping from Peru to UK have been amalgamated.

The following are examples of email exchanges that may be facilitated
by the system of the present invention.

In email exchange No. 1,John uses the Pricing Chain to compute an offer
of Chinese Beans for Sarah. Once he finishes the computations he puts together an
Offer and sends it out by email. The Pricing Chain computation ensures that John is
quoting a price which promises a good profit.

Email exchange No. 1:

83

10

15

20

WO 03/087974 PCT/IL03/00296

email I from JLewis@traderco.co.uk on 30/04/2002 09:52:56:

"To: <Sarah@thefoods.com>

Subject: Chinese Beans

Dear Sarah, Further to our brief conversation last week, we are still able to offer 3 FCLs
(about 60MT) of Chinese Beans at USD 685.00/MT for May / June shipment. The price
is subject to our final confirmation and is to be understood per metric ton net, CIF
Felixstow. Prices are in a general upward trend, so we will not be able to hold this offer
for much longer. Please return to us as soon as possible with your position on this
matter. We thank you in advance for your time and reply. Best Regards, John"

email IT from Sarah 30/04/02 10:04:26

"John, Thank you for the offer but I am not in a position to confirm at such high levels.
Thanks, Sarah"

email III from John:

"Sarah, Many thanks for your prompt reply. I understand your position, however, please
note that prices are continuing to go up and deals are being concluded at these levels. In
any case, the offer will remain valid for a few more hours until the Chinese go home, so
should you change your mind please contact me as soon as possible this afternoon. If
you want, you can give me a firm bid and I will try my best to get the goods, but I
cannot guarantee too much improvement on the current price with the market the way it
is today. Best Regards, John"

In email exchange No. 2, Tom looks in his message queue and sees that
he has an offer, which came from India, for refined glycerin. At first, he does not recall
the conversation he had with Lisbeth the previous week and that she was looking for
glycerin, so he goes into the PCTB and asks for a system recommendation. From there
he gets the idea of offering the goods to Lisbeth, and he also recalls his last talk with
Lisbeth. He opens up the Pricing Chain and computes an offer, which he sends her by
email.

Email Exchange No. 2:

email I from TDaniel@tradeco.com:

"Dear Lisbeth, We currently have some Indian Refined Glycerin 99% purity — vegetable
and Kosher grade on offer, please tell me if you are interested in any quantities for

February shipments? Best Regards, Tom"

34

10

15

20

25

WO 03/087974 PCT/IL03/00296

email II from Lisbeth@manindustries.com:

"Hello Tom, What is your price idea DDP Felixstowe? Lisbeth”

email ITI from Tom:

"Hi Lisbeth, The price as it now stands is 2 FCL at USD 895.00/MT DDP Felixstowe
for February shipment and payment is cash against documents. All prices subject to our
final confirmation. I await your feedback, as we are interested in pursuing this
opportunity further. Thanks, Tom"

email IV from Lisbeth:

"Well, Tom - at that price I prefer to buy Malaysian material, even though prices are
also high there now - but still more competitive than the European - and though Indian
glycerin is a fine quality, we have not used it in our production, so we are not going to
switch to a new source at this stage, especially at these price levels. Lisbeth”

email V from Tom:

"Lisbeth, I very much understand your position and I appreciate your feedback. Many
thanks, Tom"

In email exchange No. 3, Elise has 70.00/MT of glycerin in her
warehouse which she wants to sell. The PCTB recommends that she offer it to David.
Using the Pricing Chain she computes the best offer, taking into account all her costs
and ensuring a good profit.

Email Exchange No. 3:

email I from Elise@soapworld.com 26/01/01 16:41:14

"David, Further to our chat on the phone earlier today, I can offer about 70MT of
Turkish origin glycerin (98% purity — non Kosher material) at US $1,075.00 / mt FOB
Mersin, Turkey. Firm until Monday end of your day. Good luck with your customer and
have a good weekend. Elise"

In email exchange No. 4, Michael checks his Stock Management module
and realizes that he soon needs to replenish his glycerin stock levels. Since over the past
few weeks he has been seeing the offers and requests coming in through the system
indicating rising prices, Michael is determined to buy some goods before prices go up
further. Therefore, he puts together a Request for Ken to supply the required glycerin
based on a firm bid, so if accepted a transaction will follow.

Email Exchange No. 4:

85

10

15

20

30

WO 03/087974 PCT/IL03/00296

email I from Michael@universetrade.com:
"Dear Ken, Many thanks for your call this morning. I had a word with Nick and we are
interested in a serious Turkish glycerin offer. Therefore, we can give you the following
firm bid:
Product: Turkish Refined Glycerin (min. 99.5%)
Grade: Vegetable and Kosher Certified
Quantity: About 70MT
Price: USD 790.00/MT FOB Turkish Port
Shipment: Prompt
Packaging: 290kg Drums
Payment: Cash Against Documents
We look forward to receiving your position on the above — Michael.

In email exchange No. 5, Claire wants to send an Offer to a customer in
Belgium, based on a recommendation she received from the PCTB. In fact, she barely
does business with this company and had it not been for the PCTB recommendation, she
would have not remembered that customer. Since she has not done any significant
business with them, she has no shipping rates from Mexico to Belgium. Jack receives a
notification of the request in his queue, but the priority is not a high one because the
system correctly rates the other business more important. In any case, Claire is pressing
Jack to get her the shipping rate so she can send the Offer out as soon as possible.
Email Exchange No. 5:
email I from Claire@yourhoney.com:
"Jack, Further to our conversation this morning, I really need an updated shipping
charge for the Mexican honey coming from Yucatan Farms (USD 950.00/MT) to
Antwerp. I know it is a rather low priority compared to the other items in the queue, but
my customer needs an offer this afternoon. I would appreciate your prompt attention
and I will owe you a drink if you have it jump the queue! See you in the pub, Claire"
email II from Jack@yourhoney.com:
"Hi Claire, the shipping charge on International Shipping Lines is USD 45.00/MT to
Antwerp. They are the most competitive I have found. I hope you get the business and
you owe me a drink! Jack."

In email exchange No. 6,Donald, a shipping clerk in the trading

86

10

15

20

25

WO 03/087974 PCT/IL03/00296

company, receives a request for a shipping rate in his queue. He contacts Jan, who isa
shipping broker, to get the relevant rate. Upon receiving the relevant rate, Donald
replies to the message in his queue by incorporating the rate, which is then available to
the trader to use in the Pricing Chain. Ultimately, the trader will be able to make an
Offer to the customer.

Email Exchange No. 6:

email I from Donald@intercommerce.com:

"Dear Jan, We have to ship 100MT of Mexican honey, in 300kg drums, from Veracruz
to UK Mainport and then deliver it to our warehouse in Duckshire. We need to ship all 5
FCLS (about 20MT each — and 66 drums) next month. Your prompt reply is very much
appreciated. Best Regards, Don.

email II from Jan@shipbrokers.com:

"Dear Don, We can ship all 5 FCLs as per your request next month at USD 55.00/MT.
The goods would arrive in Thamesport in first-half of May. I will come back to you
with the haulage charge to Duckshire. Take care, Jan.

Particular advantages of preferred embodiments of the trading system
shown and described herein may be appreciated by comparing the following example
trading scenarios:

Example 1A -- Trading scenario using only conventional software to
facilitate trading:

Rogue trader hides a losing position comprising a transaction that
resulted in stock that is now, at current market prices, worth less than what the stock
was bought for. For example, the rogue trader may have bought a large quantity of
honey at a high price and the prices have since fallen. The trader has no customers for
the honey at present that will pay the price he wants, but he needs to avoid a loss. The
trader would like the price to come up again so he can sell without a loss. Prices keep
falling and the trader faces more losses. Management finds out about the above situation
only after the trader has left the company for another job. Management assesses the
situation and decides to sell the position in order to avoid more losses.

Example IB -- Trading scenario using a preferred embodiment of the
present invention:

A trader has honey in stock bought at prices higher than market price. In

87

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

accordance with a preferred embodiment of the present invention, management views,
such as a position sheet view, are provided such that management is aware of the
position from the system. Therefore, Management instructs trader to sell the position
and to cut losses before market prices may fall further. Management may also put a
constraint on the trader, via the system, not to buy more honey until the old stock has
been sold. The trader can only sell old stock. Management holds a meeting with the
trader. Together, they query the system, asking the system to evaluate sell options for
the old stock. The system (PCTB) generates 20 recommendations. The trader succeeds
in selling the old stock to 5 customers. Management is satisfied that losses have been
arrested. The trader is relieved and is not under pressure to hide the position.
Management can now remove the constraint on the trader so he can buy new stock once
again.

Example 2A -- Trading scenario using only conventional software to
facilitate trading:

A trader gets a message from Buyer Y requesting 20 Metric Tons (MT)
of honey from Mexico. The trader wonders: from whom can Y buy and at what price?
The trader rummages inefficiently through papers, emails, faxes, and Microsoft Excel
spreadsheets, trying to find suitable suppliers for honey. The trader calls, emails, and
faxes around to supplier companies to try to find honey. Prices, responses, etc. are
widely varied and trader has a hard time identifying the best offer. The trader selects 5
suppliers, sends out requests, receives 3 replies and closes a deal with one. The trader
approximates the cost price to Y of 20MT honey just bought. The trader wants to
maximize profit. He asks the shipping and handling department for a shipping price.
The shipping clerk gets a request, talks to 3 shipping companies and comes back with a
price 5% cheaper.

Example 2B -- Trading scenario using a preferred embodiment of the
present invention:

A trader gets a message from Buyer Y requesting 20 MT of honey from
Mexico. The trader asks himself: from whom can Y buy and at what price? The system
shows the trader a computation based on history and parameters such as past price, and
number of transactions. The trader receives 10 recommendations from the system,

selects 5, and sends out requests. The trader receives 3 replies and closes a deal with

38

10

15

20

25

WO 03/087974 PCT/IL03/00296

one. The trader computes cost price to Y of 20MT honey just bought. The trader wants
to maximize profit. He asks the system for a shipping price. The system displays the
currently stored price, but also (because the pricing chain has a Shipment&Handling
processor with a data expiration setting attached) sends an inquiry to the shipping and
handling (S&H) department for an updated price. The shipping clerk gets the request,
talks to 3 shipping providers and comes back with a price 5% cheaper. The system
automatically updates the pricing chain to reflect this, and automatically stores the new
cheaper price in the price information cache. The trader is able to make more profit and
the buyer is relieved to receive the goods on time.

Example 3A -- Trading scenario using only conventional software to
facilitate trading;

A clerk gets an inquiry from a trader about a shipping rate. The clerk
calls around, finds rates and informs the trader, taking 2 days to respond. Two days
later, the clerk gets an inquiry from a different trader about a shipping rate. The clerk
calls around, finds rates, and informs the trader, taking 3 days to respond. One day later,
the clerk gets an inquiry from a different trader about a shipping rate. The clerk starts
calling around but gets distracted and doesn't respond to the trader in time for the trader
to make a deal. The three requested rates were in fact for similar routes, but the clerk
did not notice or did not succeed in organizing the information s’/he had already
assembled for computation of the first rate, in order to compute the second or third
rates. Therefore, the clerk is burdened with many telephone calls. The traders are not
happy because they do not obtain a quick reply, and sometimes fail to close the deal on
time. Management is not happy because a deal was dropped.

Example 3B -- Trading scenario using a preferred embodiment of the
present invention:

A clerk gets 3 inquiries, within a few days, from 3 different traders for
shipping rates (because each of these traders created or used existing pricing chains that
contained processors related to shipping rates, and further because these processors
were controlled by the data expiration handler). The three requested rates are for similar
routes. A shipping and handling clerk determines the rate for the first inquiry and inputs
the rate into the system. For the second and third inquiries, the system provides stored

rates directly to the trader without bothering the shipping clerk. The shipping clerk has

39

10

15

WO 03/087974 PCT/IL03/00296

an easier time. The trader is happy because he obtains quick replies and can close deals
on time. The buyer is happy to obtain a favorable and quick response from the trader.

The trading company benefits from a new deal.

It is appreciated that the software components of the present invention
may, if desired, be implemented in ROM (read-only memory) form. The software
components may, generally, be implemented in hardware, if desired, using conventional
techniques.

It is appreciated that various features of the invention, which are, for
clarity, described in the contexts of separate embodiments, may also be provided in
combination in a single embodiment. Conversely, various features of the invention,
which are, for brevity, described in the context of a single embodiment, may also be
provided separately or in any suitable subcombination.

It will be appreciated by persons skilled in the art that the present
invention is not limited to what has been particularly shown and described hereinabove.

Rather, the scope of the present invention is defined only by the claims that follow:

90

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

CLAIMS

1. A computerized trading system comprising:

a price information cache including a multiplicity of price information
items originating from more than one transaction queries posed by more than one trader
from among a population of traders, each of said price information items having a
cached life cycle; and

a trading query processor operative to receive trading queries from said

population of traders and to employ said price information cache in responding thereto.

2. A computerized trading system according to claim 1 and wherein said
trading query processor is operative to send subqueries which relate to price information

items not available in the price information cache.

3. A computerized trading system according to claim 1 wherein said cached

life cycle includes an indication of time-points defining at least one time periods.

4, A computerized trading system according to claim 3 wherein said cached

life cycle includes an indication of time-points defining a plurality of time periods.

S. A computerized trading system comprising:

a price information cache including a multiplicity of price information
items originating from more than one transaction queries posed by more than one trader
from among a population of traders; and

a trading query processor operative to receive trading queries from said
population of traders and to process said trading queries not necessarily in FIFO order in

order to enhance the efficiency of responding thereto.

6. A computerized trading system according to claim 5 wherein similar

trading queries are grouped together.

7. A computerized trading system according to claim 5 wherein said trading

91

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

queries include at least one query to a human-operated workstation.

8. A computerized trading system according to claim 5 wherein said trading

queries include at least one query to an automatic computer-based information provider.

9. A computerized trading system comprising:

a shared price information cache subsystem including a multiplicity of
price information items originating from more than one transaction queries posed by
more than one trader from among a population of competing traders; and

a shared price information updating subsystem operative to update said
shared price information cache subsystem based on information received in the context

of a query and similarities between that query and other queries.

10. A computerized trading system comprising:

a price information cache including a multiplicity of price information
items originating from more than one transaction queries posed by more than one trader
from among a population of traders; and

a trading query processor operative to receive trading queries from said
population of traders and to employ said price information cache in responding thereto,
said trading query processor employing inquiry templates built on earlier inquiries and

information received in response thereto.

11. A computerized trading system according to claim 10 and wherein the
templates are selected based on similarities between inquiry templates built on earlier

inquiries and a current inquiry.

12. A computerized trading system according to claim 11 wherein templates

are displayed in an order depending on extent of similarity to a current inquiry.

13. A computerized trading system according to claim 10 wherein said
trading query processor is operative to identify in said inquiry templates built on earlier

inquiries, information irrelevant to the current inquiry, to generate a reproduction of the

92

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

inquiry template and to delete therefrom said information.

14. A computerized transaction analysis method comprising:

accessing at least one relevant previous transaction, wherein relevance is
a function of at least one user-defined parameter defining a proposed transaction;

analyzing at least one parameter of the at least one relevant previous
transaction, said at least one parameter being selected to match the at least one user-
defined parameter; and

generating at least one recommendations for the proposed transaction
including an evaluation of the suitability of each of the at least one recommendations in

view of at least one user-defined parameter.

15. A computerized transaction analysis method according to claim 14
wherein said step of generating comprises generating at least one recommendation by

combining a plurality of relevant previous transactions.

16. A computerized transaction analysis method according to claim 14
wherein said step of generating comprises adjusting for at least one parameter external

to all relevant previous transactions under consideration.

17. A computerized trading system according to claim 1 wherein at least one
cached life cycle includes:

a cached tirﬁe period in which an associated price information item is
valid;

a cached time period in which an associated price information is invalid;
and

a cached time period in which an associated price information may be

valid and may not be valid.

18. A computerized trading system comprising:
a price information cache including a multiplicity of price information

items originating from more than one transaction queries posed by more than one trader

93

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

from among a population of traders, each of said price information items having a
cached life cycle; and

a trading query processor operative to receive trading queries from the
population of traders including accessing the price information cache to respond as fully
as possible to each trading query and sending out subqueries which relate to price

information items not present in the price information cache.

19. A computerized trading system comprising:

a price information cache including a multiplicity of price information
items originating from more than one transaction queries posed by more than one trader
from among a population of traders; and

a trading query processor operative to receive a sequence of tradir g
queries from said population of traders and to amalgamate at least one pair of queries
from among said sequence of trading queries in order to enhance the efficiency of

responding thereto.

20, A computerized trading method comprising;

providing a price information cache including a multiplicity of price
information items originating from more than one transaction queries posed by more
than one trader from among a population of traders, each of said price information items
having a cached life cycle;

receiving trading queries from said population of traders; and

employing said price information cache in responding to said trading

queries received.

21. A computerized trading method comprising:

providing a price information cache including a multiplicity of price
information items originating from more than one transaction queries posed by more
than one trader from among a population of traders;

receiving trading queries from said population of traders; and

processing said trading queries received not necessarily in FIFO order in

order to enhance the efficiency of responding thereto.

%4

10

15

20

25

30

WO 03/087974 PCT/IL03/00296

22. A computerized trading method comprising:

providing a shared price information cache subsystem including a
multiplicity of price information items originating from more than one transaction
queries posed by more than one trader from among a population of competing traders;
and

updating said shared price information cache subsystem based on
information received in the context of a query and similarities between that query and

other queries.

23. A computerized trading method comprising:

providing a price information cache including a multiplicity of price
information items originating from more than one transaction queries posed by more
than one trader from among a population of traders;

receiving trading queries from said population of traders;

employing said price information cache in responding to said trading
queries received; and

employing inquiry templates built on earlier inquiries and information

received in response to said trading queries received.

24, A computerized transaction analysis system comprising:

a processor operative to access at least one relevant previous transaction,
wherein relevance is a function of at least one user-defined parameter defining a
proposed transaction; and

a transaction analyzer operative to analyze at least one parameter of the
at' least one relevant previous transaction, said at least one parameter being selected to
match the at least one user-defined parameter and to generate at least one
recommendations for the proposed transaction including an evaluation of the suitability
of each of the at least one recommendations in view of at least one user-defined

parameter.

25. A computerized trading method comprising:

95

10

15

20

WO 03/087974 PCT/IL03/00296

providing a price information cache including a multiplicity of price
information items originating from more than one transaction queries posed by more
than one trader from among a population of traders, each of said price information items
having a cached life cycle;

receiving trading queries from the population of traders;

accessing the price information cache to respond as fully as possible to
each trading query; and

sending out subqueries which relate to price information items not

present in the price information cache.

26. A computerized trading method comprising:

providing a price information cache including a multiplicity of price
information items originating from more than one transaction queries posed by more
than one trader from among a population of traders;

receiving a sequence of trading queries from said population of traders;
and

amalgamating at least one pair of queries from among said sequence of

trading queries in order to enhance the efficiency of responding thereto.

96

WO 03/087974

1/72

PCT/IL03/00296

| 1024
101 = NETWORK LAYER
REMOTE COMPUTER SYSTEMS 4 t 103° USER DISPLAY
PRESENTATION LAYER
A A
106) 1043
NOTIFICATION
CURRENGY | [CREDIT/DEBIT TFICATIC
HANDLER NOTE
(‘ HANDLER (.. (FIGS. 39-43)
105 | | 4000 4
Y Y ¥ \ \/
1 07)

STOCK TRANSACTION QUEUE ngA‘mG
MANAGEMENT| | HANDLER » MANAGER |w» o0 Occ
q08 (FIGS. 2-15) (FIGS. 29-38)

- i,
109 1000} 3000
PRODUCT CONTRACT SITVSICAL
CATALOG HANDLER COMMODITY DATA
™ TRANSACTION EXPIRATION
110 SUILDER HANDLER
SHIPMENT | | ACCOUNTING T
HANDLER HANDLER | 2000 5000
7 '
111 112
DATABASE
» MANAGEMENT USER
SYSTEM MANAGER
i
STORAGE 200 300

(
201

WO 03/087974 PCT/IL03/00296

FIGURE 2 2/72
/’ QUEUE

MANAGEMENT
1001 | TASK INVOKED

DETERMINE

ACTION AD D"]

l

1002
| eone (| e
1003 | QUEUEITEM evaLuaTE 1004
(STEP 1010 IN
(FIG. 13) FIG. 3)
\ 4
ENUMERATE QUEUE
ITEMS AND
————»| EVALUATE QITEMSTATUS f¢———

FOR EACH ITEM IN QUEUE
> (STEP1116INFIG. 12)

1005

1007~
Y
RETURNTO COMPLETION
CALLING 'S STATUS SET PROCESSING
FUNCTION, [«NO TO COMPLETE? YES -
TYP. INSTEP ' (STEP 1140 IN
104 OF FIG. 1 FIG. 14)

1006

WO 03/087974

FIGURE 3 3/72
RECEIVE NEW
7™ QUEUE ENTRY AND
1010 | SETPRIORITY AND
STATUS
(FIG. 4)
s DETERMINE
1011 DEPENDENCIES
(FIG. 6)
v
1 AMALGAMATE
1012 PROCESS
(FIG. 9)
v
K—h
1013 SORT PROCESS

(FIG. 11)

PCT/IL03/00296

1014
\\

NEW ENTRY

' (1015

A

RESIDES IN QUEUE |«
UNTIL COMPLETE

PROCESS
DEPENDENCIES

WO 03/087974

FIGURE 4

4172

/-b
1020

RECEIVE NEW
QUEUE ITEM

il

-
O
N

SET STATUS OF ITEM
TO “INCOMPLETE”

PCT/IL03/00296

1026\;

o / SET QITEMSTATUS IN

TABLE XXHI TOO

l

/—5
1022

SET PRIORITY USING
BUSINESS LOGIC

1023“}

QUERY
QBUSINESSLOGIC
PRIORITYPROC
FROM TABLE XXli

A 4

/—L
1024

EXECUTE CUSTOM
BUSINESS LOGIC

(STEP 1030 IN FIG. 5)

1025
\}

CONTINUE TO
DEPENDENCY
DETERMINATION

(STEP 1040 IN
FIGURE 6)

WO 03/087974

PCT/IL03/00296

1032
(

QUERY FIELD
QEXTPROCREF
IN TABLE XXl

F‘b
1030 RECEIVE QUEUE
ITEM
\ 4
1 03’(*
L OOK UP RELEVANT
BUSINESS LOGIC
EXECUTE BUSINESS
1033 | LoaGic ON QUEUE
ITEM
1034 RETURN TO

PROCESSING FLOW,
STEP 1025 IN FIG. 4

WO 03/087974 PCT/IL03/00296

FIGURE 6 6/72

1040 | RecelvE QUEUE
ENTRY

l 1 042\v

> CHECKFOR
1041 |DEPENDENCIES FOR QUERY
ENTRY DEPQUEUEID
IN TABLE XXV
(FIG. 7) \ \

1043)

ANY
DEPENDENCIES

YESl

SUBMIT NEW
1044 | ENTRIES TO OTHER
NO QUEUES

(FIG. 8)

RETURN TO FIG. 3,
STEP 1012

1045

WO 03/087974

FIGURE 7

/—ﬁ
1050

1052

PCT/IL03/00296

77z 1051
READ
READ DEPENDENCY DEPQUEUEID
FROM TABLE FROM TABLE
XXV
v ,~1053
EXECUTE BUSINESS READ
LOGIC TO QDEPBUSINESS
DETERMINE IF LOGICPROC
DEPENDENCY IS FROM TABLE
NECESSARY XXV
1054
1S
DEPENDENGY YES
NEEDED? v
UPDATE
NO DEPQUEUEITEMID ‘\10 55
AND DEPQUEUEID IN
TABLE XXIV

MORE
DEPENDENCIES?

1056
NO
A4
/ CONTINUE TO
1057 DEPENDENCY
NOTIFICATION

(STEP 1060 IN FIG. 8)

WO 03/087974

PCT/IL03/00296

8/72
FIGURE 8 /1061
e LOAD QUERY
1060 DEPENDENCIES DEPQUEUEITEMID
LIST FROM TABLE XXIV
-~ READ
1062 DEPENDENCY QUERY
—»{ AND LOOKUP THE QITEMASSIGNEE FROM
ROLE/USER TABLE XXl
RESPONSIBLE
! 11063
BUILD NOTIFICATION o
QUEUE ITEM
1064
(STEP 4010 IN FIG. 40)
NO 4
SUBMIT ITEM TO
NOTIFICATION QUEUE |~
1065
(STEP 4012 IN FIG. 40)
1066
DEPENDENCY YES
LIST _l
CONTINUE TO -~
AMALGA ION
ALGAMAT 1067

PROCESS STEP
1070 INFIG. 9

WO 03/087974 PCT/IL03/00296

o/72

FIGURE 9

RECEIVE QUEUE
ENTRY 1070

Y

CHECK IF ENTRY CAN BE
AMALGAMATED WITH 1071
———> NEXT ENTRY

(STEP 1080 IN FIG. 10)

1072
AMALGAMATE YES
1073
YES (
UPDATE
NO QITEMBASEMAMALG
AMATIONQID IN
TABLE XXIII

ORE ENTRIE
TO CHECK

1074

CONTINUETOSTEP | 1075
1090 IN FIG. 11

WO 03/087974

PCT/IL03/00296

FIGURE 10 10/72
READ QUEUE
(| LOADDATA RECORD FROM
1080 RECORDS FOR TABLE XXl BY
CURRENT QUEUE LOOKUP TO
ITEM QUEUEITEMID
| 1081
— EXECUTE QUERY
1082 AMALGAMATION QBUSINESSLOGICAM
BUSINESS LOGIC ON ALGAMATOINPROC
QUEUE ITEMS FROM TABLE XXII
\ \
1083
1084
AMALGAMATE? YES
NO
A 4 \ 4
SET QITEMAMALGAMATIONQID TO
NO CHANGE TO QUEUEITEMID THAT WILL BE

QUEUE ITEM DATA

AMALGAMATED AND SET
QITEMSTATUS TO ‘AVMAGALAMTED’

¥ 7
1085~ 1086
RETURN RESULT
YES OR NO
.| TOSTEP 1072 |
INFIG. 9

1087

WO 03/087974

FIGURE 11 11/72
K_b
1090 |[ADDITEM TO END OF
QUEUE
1091\) l
TEMPORARY LOAD ALL QUEUE
STORE ITEMS INTO
BUFFER \‘ TEMPORARY STORE

/—b
1096

1092//A

PCT/IL03/00296

1093\\

LOOKUP
QUEUEITEMID IN
TABLE XXIII

\ \

1095 1094
' { 3
EXECUTE PRIORITY
QUERY
BUSINESS LOGIC QBUSINESSLOGICP
» PROCEDURE TO
RIORITYPROC
DETERMINE PRIORITY FROM TABLE XX|
OF QUEUE ITEM
SORT QUEUE AND STORE
STORE NEW QUEUE QITEMORDER IN
ORDER TABLE XXl

1097_*

WO 03/087974

FIGURE 12 12/72

SCHEDULED
INVOCATION OF 1111
QUEUE ITEM STATUS 1 e
UPDATE \
‘K EXECUTE STEP 1005
11 10 —»{ IN FIG. 2 ON QUEUE
ITEM

CHANGE?

PCT/IL03/00296

1112
(

LOOKUP
QUEUEITEMID IN
TABLE XXIlI

-
-
w

YES_l (1 114

YES

UPDATE QUEUE

NG ITEM

1119

1115 y
UPDATE

111 6\' NO QUEUEITEMID IN

l TABLE XXIIl

f' 117
AMALGAMATE {
QUEUE f'l 1 18
(FIG. 9, STEP 1070) ' SORT QUEUE A|

(FIG. 11, STEP 1092) I

QUEUE UPDATE
COMPLETE

WO 03/087974 PCT/IL03/00296

13/72
RECEIVE QUEUE
1130 ITEM UPDATE
T 11 32\'
- gt
11311 S\roruation LOOKUP TO
QUEUEITEMID IN
TABLE XXl
I
v
CHECK IF QUEUE
1133 | irem sTaTUs 1s Now
COMPLETE
COMPLETE? YES
NO
4
RESUME REGULAR [“7 > COMPLETION
QUEUE 1135 1136 PROCESSING

PROCESSING .

WO 03/087974

14/72

FIGURE 14
r—b
1140 | SET QITEMSTATUS
FIELD TO COMPLETE
K—L
1141 | CHECK QUEUE ITEM
RECORD FOR LIST
OF DEPENDENTS

PCT/IL03/00296

1142
\'

QUERY

<

1143
ANY
DEPENDENTS

DEPQUEUEITEMID
FROM TABLE XXIV

NOTIFY
DEPENDENTS OF
QUEUE ITEM STATUS
CHANGE

NO j
”46\' 1144
v
STORE QUEUE MOVE QUEUE ITEM
ITEM IN TOLONG TERM |«
TABLE XXVI STORAGE -
1145
l 1 148w
| PROPAGATE DATA
/ TO DESTINATION CALL OTHER
1147 LOCATION, AS PROCESS AS
DETERMINED BY |—»| REFERENCED IN
LOOKUP TO QEXTCOMPPROCREF
QITEMLINKREF IN IN TABLE XXII
TABLE XXl

WO 03/087974

PCT/IL03/00296

FIGURE 15 15/72
NEW ITEM: J1 60 | New mEM: $J1 1 60\d' NEW ITEM:
DETERMINE DETERMINE DETERMINE
DEPS: > DEPS: > DEPS:
QUEUE A QUEUE B QUEUE C
PROCESS PROCESS PROCESS
ENTRY: | | ENTRY: K_, ENTRY: NO
CONTINUE TOfa— | CONTINUE 1161 DEPS
DEPS 1161 TO DEPS l
AT EOR J‘I 62 l 1162 | waTFOR
I FOR RESPONSE
reseonee ™ e
e,]
v l 1163 RECEIVE
RECEIVE RECEIVE) 1 163’ RESPONSE:
RE%ZCégSE: NO | RESPONSE: 4 USER
USER RECEIVE
NO RESPONSE:
1163} 1164 DEPS
RECEIVE
RESPONSE: ¢ 16 !
DEPS 6
INFORM
X YES DEPENDENT
A 4 QUEUES
COMPLETE INFORM |
1166 | DEPENDENT ‘\/1165 J,
QUEUES
PROPAGATE
YES i 11 67/’ DATA AND
1167 CLOSE ITEM
PROPAGATE |/ PROPAGATE 4/
DATA AND DATA AND
CLOSE ITEM CLOSE ITEM

WO 03/087974

FIGURE 16

2001

PCT/IL03/00296

16/72

RECOMMENDATION
REQUESTED

(STEP 2010 IN FIG. 17)

2002

ACCEPT

20031

REJECT

2004
(

TRANSACTION
INITIATED

RECOMMENDATIONS
REJECTED

WO 03/087974

PCT/IL03/00296

FIGURE 17 17/72
INITIAL
2010 | COMPUTATION | REQUEST 201
(FIG. 18) RECOMMENDATION

USER PROMPT

RECOMPUTE
I

2013
RECOMPUTE
ACCEPT REJECT
[201 4
\ A |
STORE VALUES
AND EXIT
A 4
2015
CALL107INFIG.1TO [/

CREATE NEW
TRANSACTION USING

RECOMMENDED VALUES

WO 03/087974

FIGURE 18

18/72

RECEIVE REQUEST
CRITERIA AND

PCT/IL03/00296

2022
1

LOOKUP
AGAINST
TRANID IN

TABLE |

2020 WEIGHTINGS
(FIG. 19)
CREATE LIST OF
20 21F‘ CANDIDATES
(FIG. 20)
> COMPUTE AND SORT
2023 | RECOMMENDATIONS
(FIG. 21)
DISPLAY
2024 RECOMMENDATIONS

2025 |REJECT, RECOMPUTE
(STEP 2012 IN FIG. 17)

RECEIVE ACCEPT,

WO 03/087974

FIGURE 19

2030

19/72

RECEIVE RECOMMENDATION
TYPE SELECTION BY
CHOOSING FROM TABLE
XXIX

2031

LOAD STORED
2032 WEIGHTINGS

2034

2035

RECEIVE
RECOMMENDATION
CRITERIA

!

DISPLAY
WEIGHTINGS

RECEIVE WEIGHTING
ADJUSTMENTS

PCT/IL03/00296

LOOKUP AGAINST
WEIGHTID AND
WEIGHTVALUE IN
TABLE XXVII

‘k2033

WO 03/087974

PCT/IL03/00296

FIGURE 20 20/72
2040
LOAD TRANSACTION ENUMERATE
> DATA FIELDS TRANID FROM
TABLE |
l 12041
COMPARE TRANSACTION DATA
2042 | FIELDS TO RECOMMENDATION
CRITERIA EXPRESSION LOADED IN
STEP 2030, FIG. 19 BY COMPUTING
EXPRESSION IN
TYPEQUALIFIEREXP
NO 2043
2044 NO MATCH? YES 2045
N l— l :
| 4 A
ADD
TRA%’;XS% oN TRANSACTION TO
CANDIDATE LIST
LAST J
TRANSACTION .~
2047 TEMPORARY
VES CANDIDATE
v LIST
. [RAM]
/
2048 | CANDIDATE LIST

COMPLETE

.
2046

WO 03/087974

FIGURE 21

2172

INVOKE PROCESS

ZOGOJ

FIND PARAMETER
MINIMUM AND
MAXIMUM VALUES
(FIG. 22)

|

COMPUTE RAW
CANDIDATE
SCORES

(FIG. 23)

]

NORMALIZE
CANDIDATE
SCORES

(FIG. 27)

l

APPLY CANDIDATE
SPECIFIC
PARAMETERS

l

SORT AND
RETURN RESULTS

(FIG. 28)

PCT/IL03/00296

“
2061

4—\
2062

N
2063

“
2064

)
2065

WO 03/087974

22/72

PCT/IL03/00296

P
| LOAD CANDIDATE E’i\“ﬁ]%?l?:g
DATA AND ST
~ THRESHOLDS
2070 [RAM]
: X
al CHECK 2071
2072 PARAMETER
AGAINST
THRESHOLDS
YES —2073
WITHIN
2074~ [WITHN THRESHOLD OUTSIDE, 9075
YES \v
IGNORE
MIN/MAX CHECK PARAMETER
PARAMETERS
2076
NO
CANDIDATES NO
//2078
2077\/ Y
PROCEED TO

COMPUTATION

WO 03/087974

FIGURE 23

2090

K—b

23/72

LOAD CANDIDATE
DATA AND
THRESHOLDS

I

Y

READ
PARAMETER

(FIG. 25)

;

INDIVIDUAL
PARAMETER
COMPUTATION

(FIG. 24)

N
2093

/—b
2096

PARAMETERS

NO

CANDIDATES

PROCEED TO
NORMALIZATION

PCT/IL03/00296

TEMPORARY
CANDIDATE
LIST
[RAM]

‘k2091

WO 03/087974

PCT/IL03/00296

TEMPORARY
CANDIDATE LIST
[RAM]

FIGURE 24 2472
- PA;XaE%ER
2100 VALUE AND
THRESHOLDS
2102

PARAMETER
WITHIN
THRESHOLDS

YES

v

A\‘2101

NO

7| APPLY USER AND

2103

/—b
2105

/-L
2106

MANAGEMENT
WEIGHTINGS

l

MIN/MAX CHECK

CONTINUE TO

NEXT PARAMETER|[®

IGNORE
PARAMETER

1‘2104

WO 03/087974

FIGURE 25

25/72

/—5
2110

READ
PARAMETER
NAME AND TYPE

REGULAR

!

READ
PARAMETER
VALUE

2113J

PARAMETER
TYPE

PCT/IL03/00296

LOOKUP
RECPARAMETERID
IN TABLE XXX

12111

VARIOUS READ DATA FOR
DATABASES PARAMETER
t21 14 l
COMPUTE TREND

2116

'

2117

NEXT PARAMETER [¢———

WO 03/087974

FIGURE 26

K—b
2120

/—b
2122

fh
2124

(
2125

26/72

READ PARAMETER
AND SAMPLING
PERIOD

PCT/IL03/00296

2121
\,

LOOKUP
AGAINST
TRENDID IN
TABLE XXXII

l

SELECT ALL
SAMPLED VALUES
FOR SELECTED
PARAMETER

ACCESS
DATABASE FIELDS AS
SPECIFIED IN REC
PARAMETERSOURCE
OF TABLE XXX

v

COMPUTE MINIMUM,
MAXIMUM, AVERAGE
AND CHANGE FOR
SAMPLED VALUES
DURING SAMPLING
PERIOD AS
INDICATED BY
PARAMETER

I

APPLY OPTIONAL
POST-PROCESSING
FUNCTIONS

t2123

WO 03/087974

FIGURE 27

27/72

P

2130

YES

P

LOAD PARAMETER
MAXIMUMS AND
MINIMUMS

PCT/IL03/00296

TEMPORARY
STORAGE

v

2132
-

——P>

READ
PARAMETER

2131

TEMPORARY
STORAGE

v

NORMALIZE
PARAMETER
BETWEEN
MAXIMUM AND
MINIMUM

PARAMETERS

NO

CANDIDATES

2136

NO
v
/—i
2137 PROCEED TO

NEXT STEP

t2133

WO 03/087974

PCT/IL03/00296

FIGURE 28 28/72
2140 2141
__, |EVALUATE sTOCK EVALUATE |
INCOMING
%! LEVELS FOR <
TRANSACTIONS
PRODUCT FOR PRODUCT
21 42\' f21 43
A
ENUMERATE ENUMERATE
PRODID FROM TRANID FROM
TABLE XIV TABLE |
) 4 \ 4
. READ
2144 | READ CURRENT PRODMARKET
PRICES PRICE FROM
TABLE VI

l 2145

1 DETERMINE ENUMERATE

2146 PREVIOUS TRANID FROM

QUANTITIES TABLE |
2147
A 4
2148 DETERMINE |

PREVIOUS PRICES

WO 03/087974

FIGURE 29

3001

YES

20/72

REQUEST
INDICATION IF TO
USE PRICE CHAIN

BUILDER

PRICE CHAIN
BUILDER
PROCESS

(FIG. 30)

RECEIVE
INDICATION

3002

J,

3003

RETURN PRICE
CHAIN RESULT

3005

PCT/IL03/00296

=
l

MANUAL PRICE
COMPUTATION

N sog

WO 03/087974 PCT/IL03/00296

FIGURE 30 30/72

f—» INVOKE PROCESS
3010 AND CHECK FOR

EXISTING CHAIN

3012
\'

PRICE CHAIN
LOOKUP AND
EXISTING
YES CHAIN NO—» SORT
(FIG. 31)
301 4\' l
MODIFY CHAIN CRE@JEINNEW
¢
(FIG. 33) 16,92
l 301 3)
COMPUTE PRICE \
USING PRICE 3015
CHAIN
STORE CHAIN AND UPDATE
PRICE TABLE XVII

4

\.3016 X 3017

WO 03/087974

FIGURE 31

31/72

K—L
3020

RETRIEVE
EXISTING CHAINS
OF PRODUCT AND
PRODUCT GROUP

PRIORITIZED
CRITERIA

SORT CHAINS BY

3023“)A

3026

DISPLAY
RESULT

3027

CONTINUE TO NEW
CHAIN CREATION

PCT/IL03/00296

LOOKUP
AGAINST
PRODID AND
PRODGRP ID
IN TABLE XVII

\“3021

RETURN EMPTY 3024
LIST
{
RECOMMEND 4\
CREATING NEW 3025
CHAIN

WO 03/087974

FIGURE 32

3030

32/72

SELECT NEW OR
EXISTING CHAIN

NEW CHAIN

SELECTION

EXISTING CHAIN
NEW CHAIN
CREATED
v
3032J‘ /" DUPLICATE
3033 | EXISTING CHAIN
4
| UPDATE CHAIN
3| DATAFEELDS
3035
Y
3037 | EVALUATE AND

UPDATE CHAIN [—»

PROCESSORS

PCT/IL03/00296

3034
\

QUERY FROM
TABLE XVII
AND TABLE

XVIII

CHAIN UPDATES

3038,

ADD/REMOVE
PROCESSORS

WO 03/087974 PCT/IL03/00296

33/72
FIGURE 33

CREATE NEW
COMPUTATION
YES—» HANDLERS

NEW
COMPUTATION

HANDLERS
REQUIRED

3040 (FIG. 36)
NG L304']
CHAIN
COMPLETE
NO
3042
ADD OR
REMOVE
PROCESSOR REMOVE VES
3043
ADD 3044\' (3045
Y
ADD PROCESSOR PR%ECME%\Q%R
TO CHAIN
S FROM CHAIN
(FIG. 34) (FIG. 35)
3047
] vy
COMPUTE
e < RETURN
3046

WO 03/087974

34/72

PCT/IL03/00296

LOOKUP
™ LOAD
PRICINGCHAINID
3050 | PROCESSORS FROM TABLE XVIII
t3051
DISPLAY LIST
AND PROMPT
FOR SELECTION | 3092
3053
RECEIVE SELECT)
EXTERNAL PROCESSOR 3054
SELECTION
\ 4
— CHECK
PROCESSOR
30355 EXPIRY
(FIG. 37)
\ 4
/rk UPDATE
3056 |APDPROCESSOR PRICINGCHAINID,
TO CHAIN PROCESSORID IN
TABLE XVIII
L
- 3057
7™ RECOMPUTE
3058 CHAIN

(FIG. 38)

WO 03/087974

FIGURE 35

(
3060

/—b
3062

3063

KL
3064

K—s
3066

35/72

DISPLAY
CURRENT CHAIN
AND PROMPT
FOR SELECTION

SELECT
PROCESSOR

PCT/IL03/00296

READ SELECTION

l

REMOVE
SELECTED
PROCESSOR
FROM CHAIN

l

UPDATE
DATABASE

RETURN UPDATED
CHAIN

3065\'

UPDATE
PRICINGCHAINID,
PROCESSORID,
PROCESSORORDER
IN TABLE XVIlI

WO 03/087974 PCT/IL03/00296

36/72

FIGURE 36

SPECIFY
COMPUTATION
HANDLER DETAILS

3070

COMPUTATION
HANDLER TYPE

CONSTANT MODIFIER

EXPRESSION

READ SELECTED
| MODIFIER

3072)

READ TABLE
LOOKUP KEY

READ SPECIFIED
EXPRESSION

307\5\, STORE NEW

» COMPUTATION |«
HANDLER

CREATE COMPUTATION
ADDITIONAL HANDLER
COMPUTATION STORED IN
HANDLERS TABLE XX
3077\/ j
\O 3076

“™
RETURN 3078

WO 03/087974

37/72

PCT/IL03/00296

> QUERY DATA
EXPIRATION
3090 HANDLER |
l AWAIT RESPONSE
] Receve ‘k
3092 RESPONSE 3091
3093
VALID STRICT EXPIRY
LAZY EXPIRY 3096
A 4 l A 4 (
INDICATE RESULT ig%gﬁg‘fﬂgiﬁg INDICATE RESULT
IS VALID IS INVALID
VALID
3094j 3()95JA L
GENERATE
NOTIFICATION [¢
“™
3097
COMPUTE CHAIN |_
RESULT
3098

WO 03/087974 PCT/IL03/00296

38/72
3119 LOOKUP
LOAD
> PRICINGCHAINID
PROCESSOR FROM TABLE XVIll
t\3111
CONSTANT EVALUATE
MODIFIER PROCESSORTYPE |
l EXPRESSION
TABLE LOOKUP
READ MODIFIER v
AND OPERATOR 3114
READ VALUE |)
YES FROM TABLE AS v
/7 REFERENCED IN
PARAMETER
3113 READ
l EXPRESSION
APPLY
PROCESSOR t\
»| VALUE TO RESULT [« 3115
OF PREVIOUS
PROCESSOR
3116

ROCESSORS?

NO

DISPLAY
COMPUTED
VALUE

3118

WO 03/087974 PCT/IL03/00296

FIGURE 39 39/72
GENERATE
NOTIFICATION
(FIG. 40)
|
4001 l
CREATE
NOTIFICATION QUEUE

ITEMS

C
4002 l

PROPAGATE UPDATE

(V
4003

WO 03/087974 PCT/IL03/00296

40/72
FIGURE 40
RECEIVE
4010 | "Request
v
GENERATE
4011 NOTIFICATION
(FIG. 41)
v
T SEND
4012 | sorresnonto] 4013
AWAIT RESPONSE
RECEIVE

/‘ RESPONSE AND]
REPLACE TABLE
4014 VALUE

v

SEND MESSAGE
™ TO DATA

4015 EXPIRATION
HANDLER
(FIG. 42)
.| NOTIFYALL

(RELEVANT
4016 ROLES/USERS

(FIG. 43)

WO 03/087974

PCT/IL03/00296

4022
\'

QUERY
ASSIGNEDROLE
FROM TABLE IV

FIGURE 41 41/72
/| RECEIVE EXPIRED
4020 | DATALOCATION
REFERENCE
LOOKUP
' ROLE/USER
4021 RESPONSIBLE
FOR EXPIRED
DATA
/™ ADD ROLE/USER
4023 | INFORMATION TO
NOTIFICATION
| RETURNFULLY
SPECIFIED
4024

NOTIFICATION

WO 03/087974 PCT/IL03/00296

FIGURE 42 42/72

-~ RECEIVE UPDATE
INFORMATION

4030 FROM QUEUE

MANAGER

h 4

f’ EXTRACT LOOKUP
KEY AND VALUE
4031 FOR UPDATE
DATA

A 4

K‘ SEND

INFORMATION TO
4032 THE DATA
EXPIRATION
HANDLER

WO 03/087974 PCT/IL03/00296

FIGURE 43 43/72
ENUMERATE
4040 | PRICING CHAINS LOOKUP
AND EVALUATE PRICINGCHAINID,
STATUS OF ALL PROCESSORSTATUS
CHAIN FROM TABLE XVIII
PROCESSORS

‘\ 4041

I?
AFFECTED? s
|
4045
NO
YES 40 4f QUERY
4043 LOOKUP CHAIN CHAINOWNER
w OWNER FROM TABLE
Y XVII
IGNORE CHAIN v
SEND
NOTIFICATION OF
UPDATE TO CHAIN| 4046
OWNER
4047~
MORE
CHAINS

NOTIFICATION
4048 COMPLETE

WO 03/087974 PCT/IL03/00296

FIGURE 44 A4/72

5001

DETERMINE
REQUIRED
FUNCTION

QUERY UPDATE

EXPESJE%iYSATA UPDATE EXPIRATION
DATA FOR ENTRY

FOR ENTRY

t‘5001 5002/}

WO 03/087974

FIGURE 45

45/72

ACTIVATE

K—h
5010 PROCESS

v

READ EXPIRYTYPE
AND EXPIRYSTATUS
» FROM TABLE XXi

5011

FOR ELEMENT
(FIG. 46)

y

CHECK CURRENT
DATE/TIME VS.
EXPIRY DATE

5012 |

5013~
EXPIRY
NEEDS
UPDATE

NO
5015

MORE

ELEMENTS TO
CHECK

e
4
501 7 UPDATE

COMPLETE

PCT/IL03/00296

5014
£

SEND UPDATE
REQUEST TO
NOTIFICATION

HANDLER

l

UPDATE
EXPIRATION
TABLE

(FIG. 47)

)

5016~

WO 03/087974

PCT/IL03/00296

5032

\

LOOKUP
EXPIRATIONID
IN TABLE XXI

FIGURE 46 46/72
| RECEIVE EXPIRY
5030 REQUEST
Y
LOOKUP EXPIRY IN
5031 STORAGE
A 4

/—b
5033

RETURN RESULT

WO 03/087974

PCT/IL03/00296

5042

\

UPDATE
EXPIRATIONID
IN TABLE XX

FIGURE 47 47/72

- RECEIVE NEW

2040 EXPIRY DATA

STORE NEW

9041 EXPIRY DATA

Y
- SEND

5043 | NOTIFICATION OF

CHANGE

WO 03/087974

PCT/IL03/00296

EXTERNAL INPUT

OF NEW EXPIRY
DATA

- 15051

5054
(

LOOKUP
EXPIRATIONTAR
GET IN TABLE XXI

FIGURE 48 48/72
PRICE CHAIN
BUILDER
CREATES NEW
EXPIRY DATA
5050) ‘ RECEIVE NEW
F: EXPIRY DATA
5052
v
/1 DETERMINE
5053 | ROLE/USERFOR
NEW DATA
505? WRITE NEW DATA

r—b
5056

TO DATA TABLE

7'y

l

SEND
NOTIFICATION OF
NEW DATA TO
ROLE/USER

WO 03/087974

FIGURE 49

PCT/IL03/00296

49/72

| PRODUCT

|| arY]| TERMS] [PRICE]

|O] [MEXICAN HONEY

| | 100MT| | FOBMEXICO| | 800/MT]|

[O] [CHINESE HONEY

|| 25MT| | DDP LONDON]| [1250/MT |

[O] [ARGENTINE HONEY

|| 15MT]| | CIFBOLONGA]| [1400/MT |

[O] [ARGENTINE HONEY

| | 200MT| | DDU LONDON] [1000/MT |

(CREATE NEW CHAIN)

(DUPLICATE SELECTED CHAIN)

WO 03/087974 PCT/IL03/00296

FIGURE 50 50/72
[PRODUCT: CHINESE BEANS | |QUANTITY: 60MT |
[BASE PRICE: USD495/MT | [CIF | |FELIXSTOWE | (UPDATE)
[O] [INSURANCE [0005] [X][495 2475]
[O] [INTEREST | [o.00625] [x| [497475] | 3.11]
[O] [LEVY CHARGE 1 50 [+]| o][50]
[O] [BANK CHARGES][0.00125] | X | | 495| | 0.619]
(O] [cusTOMS DUTY | 15] [+] | 0] | 1.5]
[O] [DELIVERY TO WAREHOUSE _ | | 15 |+ | | 0l | 15|
(@] [R.H.8D. 1 25| [+ of] 25]
[O] [COMMISSION | [0.03] [X][495|[14.85]
(O] [STORAGE o Y Y | G
[O] [DELIVERY TOCUSTOMER | | 30| [+] o[30]
[O] [DOCUMENTATON CHARGES | [0.13] | X | | 495| | 64.35]
[FINAL PRICE |
MOVE (ADD) (DELETE)
(SAVE] (DISCARD]

WO 03/087974

PCT/IL03/00296

FIGURE 51 51/72
PRODUCT: GLYCERINE QUANTITY: 40MT
BASE PRICE: USD 810/MT DDP | [FELIXSTOWE (UPDATE)
[O] [INSURANCE 0.005]| [X 810 4.05
[O] [BANK CHARGES 0.00125] | X 810 1.231
[O] [DELIVERY TO WAREHOUSE 15] [+ | 0 15
[O] [RH.8D. 25| [+ 0 2.5
[O] [COMMISSION 0.03] [X 810 24.30
[O] [STORAGE 6| [+ 0 6
(@] [DELIVERY TO CUSTOMER 30| [+ 0 30
| FINAL PRICE 893.081
(uP)
MOVE (ADD) (DELETE j

(SAVE) (DISCARD)

WO 03/087974 PCT/IL03/00296

FIGURE 52 52/72
|PRODUCT: GLYCERINE | | QUANTITY: 70MT |
[BASE PRICE: USD790/MT | [FOB| [TURKEY | (UPDATE)
[O] [INSURANCE [0.005] [X][790|[395]
[O] [INTEREST | [0.00625] [X][793.95| [4.062]
[O] [LEVY CHARGE | 4] [+]] ol [4]
[O] [BANK CHARGES | [0.00125] [X | | 790| | 0.9875|
[O] [cusTOMS DUTY N 15] [+]| o] | 15|
[O] [SURFACE FREIGHT | 100 [+] | o] [100]
(@] [DOCUMENTATION | | 25| |+ || 0l | 2.5|
[O] [COMMISSION [003][x][79| 237|
[O] [STORAGE R 10] [+ | 0] | 10|
[O] [DELIVERY TO CUSTOMER | | 30| [+]| 0] | 30|
[O] [CERTIFICATION [043] [x]] 790| [102.7|
[FINAL PRICE |
MOVE (ADD) (DELETE)

(SAVE) (DISCARD)

WO 03/087974

FIGURE 53

53/72

PCT/IL03/00296

TRANSACTION ID: 0001

TRANSACTION TYPE: BUY CURRENCY: USD

PRODUCT: GLYCERINE

] [QUANTITY: 70MT

[BASE PRICE: USD 790/MT

FOB

| TURKEY

|COUNTERPARTY: ACME IMPORTS

TRANSACTION STATUS: 1 - IN PROGRESS

PRICING CHAIN: 0 - NONE

SHIPMENT:

STORAGE:

(PRICINGCHAN]

(" RECOMMENDATION)

(sAvVE) (DISCARD]

WO 03/087974

FIGURE 54 54/72

PCT/IL03/00296

IEUEUE: PRICING ITEMS - SHIPPING CHARGES

COUNTER PARTY PRODUCT PRICE| | PRIORITY
Ol [ACME IMPORTS GLYCERINE | | 793.95] | 1
O| |WEI TRADING CHIN. HONEY 510 4
O] [ARNAZ SUPPLY GLYCERINE 8201 | 2
@] | YUCATAN FARMS MEX. HONEY 950 3
O| |CELOG FOODS | | MEX.HONEY] [1200] | 2

WO 03/087974 PCT/IL03/00296

FIGURE 55 95/72

QUEUE ITEM: SHIPPING CHARGES PRIORITY: 3

COUNTER PARTY: YUCATAN FARMS

| PRODUCT: MEXICAN HONEY QUANTITY: 100 MT
TERMS: FOB MEXICO PRICE: USD 1000/ MT
PROMPT: TRADER NEEDS TO KNOW SHIPPING PRICE (PER MT) TO SHIP

THIS QUANTITY FROM INCO SOURCE LOCATION TO
WAREHOUSE IN LONDON

INPUT VALUE: 10

(_sAVE] (DISCARD)

WO 03/087974

FIGURE 56 56/72

PCT/IL03/00296

[RECOMMENDATION WEIGHTS SETTING

| PARAMETER |] WEIGHT |
O] [PricE 7 :
[O] [QUANTITY | . « [0]
[O] [AGE OF TRANSACTION | . .
(@] [CUSTOMS FEE | . b
[O] [COUNTERPARTY TURNOVER . I« [+50 |

(

RECOMMEND)

WO 03/087974

PCT/IL03/00296

FIGURE 57 57172
RECOMMENDATIONS
PREVIOUS
COUNTER PARTY PRODUCT PRICE| | SCORE|
/O] [ACME IMPORTS | | GLYCERINE 810 100
O| |WEI TRADING CHIN. HONEY 550 95
O] [ARNAZ SUPPLY GLYCERINE 870 75
O |YUCATAN FARMS MEX. HONEY 970 30
O] [CE 00DS | MEX. HONEY 1240 10
CURRENT
| COUNTER PARTY | [PRODUCT || PRICE|| SCORE]
|O} | ARNAZ SUPPLY | GLYCERINE | 875 100 |
|@| [WEI TRADING | | GLYCERINE] | 450 | 90
O| | ACME IMPORTS CHIN. HONEY | | 850 | 75
[O] [GONZALEZ TRADING | | MEX.HONEY || 1005] | 50
Q| | Yoo Foobs CHIN. HONEY 800 10

(

MODIFY WEIGHTINGS) (CREATE TRANSACTION

WO 03/087974

FIGURE 58

58/72

PCT/IL03/00296

QUEUE: SHIPPING

QTY /PRODUCT FROM TO PRIORITY
O} |19 MT MEXICAN HONEY MEXICO LONDON 3
Ol |5 MT MEXICAN HONEY MEXICO LONDON 3
Ol |16 MT MEXICAN HONEY MEXICO LONDON 3
@ | 5 MT BLACK BEANS BRAZIL LONDON 1
Ol |12 MT CASHEW NUTS VIETNAM PARIS 4
Ol |22 MT PINTO BEANS BRAZIL | | LIVERPOOL 1
O| |8 MT CASHEW NUTS VIETNAM LONDON 4

WO 03/087974

FIGURE 59

59/72

PCT/IL03/00296

QUEUE: SHIPPING

QTY /PRODUCT FROM TO PRIORITY
(O] |40 MT MEXICAN HONEY MEXICO LONDON 3
@ |5 MT BLACK BEANS BRAZIL LONDON 1
O} |12 MT CASHEW NUTS VIETNAM PARIS 4
O] |22 MT PINTO BEANS BRAZIL | | LIVERPOOL 1
QO] |8 MT CASHEW NUTS VIETNAM LONDON 4

WO 03/087974

FIGURE 60

60/72

PCT/IL03/00296

QUEUE: SHIPPING

QTY /PRODUCT FROM TO PRIORITY
Q| |40 MT MEXICAN HONEY MEXICO LONDON 3
@ | |5 MT BLACK BEANS BRAZIL LONDON 1
Ol |12 MT CASHEW NUTS VIETNAM PARIS 4
Ol |22 MT PINTO BEANS BRAZIL LONDON 1
Ol |8 MT CASHEW NUTS VIETNAM LONDON 4

WO 03/087974

PCT/IL03/00296

FIGURE 61 61/72
QUEUE: SHIPPING

QTY /PRODUCT FROM TO PRIORITY
Ol {40 MT MEXICAN HONEY MEXICO LONDON 3

5 MT BLACK BEANS + 22 MT
[) PINTO BEANS BRAZIL LONDON 1
Ol |12 MT CASHEW NUTS VIETNAM PARIS 4
Ol |8 MT CASHEW NUTS VIETNAM PARIS 4

WO 03/087974

FIGURE 62

62/72

PCT/IL03/00296

USER ID: 0001

USER NAME: JOHN DOE

ROLE: TRADER

NOTIFICATION TYPE: EMAIL

VALUE: JOHN@DOE.COM

NOTIFICATION TYPE: PHONE

VALUE: +1 (212) 555-1212

NOTIFICATION TYPE: FAX

VALUE: +1 (212) 555-2121

NOTIFICATION TYPE: SMS

VALUE: +1 (212) 222-5555

NEW

(UPDATE] (DELETE)

WO 03/087974 PCT/IL03/00296
63/72

FIGURE 63 (PRIOR ART)

TABLE: PRODUCTS

RECORD #: 1/12

FIELD VALUE

PRODID 1

PRODNAME MEXICAN HONEY
PRODDESCRIPTION HONEY FROM MEXICO
PRODMARKETPRICE VALUE: +1 (212) 222-5555

NEW (UPDATE) (DELETE)

PCT/IL03/00296

WO 03/087974

LDIVRYAdNS AN

av9 "old

AN 404 4Lvd

FONVHOXT AHL
9 914 AVTI00 000°9 40 NOISTANOD
24 TIA I/ |-qq7 ‘symaval "1 ‘SHAAVAL 3 zmﬁw%%m m%ou
TROOTT SO TROOTT SN
a1 ‘Ova NOL Hovd —
704 VATT 00007 —
dHIV) qdv 1 X4

"(IT ‘SEHAVAL
ANADAT SN

"IIT ‘SYAQVAL
INNDET SN

A0 HAIT HLIM
NHLSAS INICVEL

av¥9 "9l

ASNOHAIVM AN AN
NI AL NO¥d
SVAdNOIHD 40 SNOL
[4LIN 02 QIAN

LIMIVRHAANS AN

vv9 "OId

PCT/IL03/00296

WO 03/087974

65/72

(TTT1/00 NOLLOVSNVYL)

N0X OL
Jove 14D TLI

0027$ NOA 1S0D TIIM LI
gInr 1 A9 A0 NI QIAIAN 10X

NIFIDAT) d0
SNOL 02 dHL Lnodv

000¢ 4VHN ¢l

(0TTT/00 NOILOVSNVYL)

¢HINOW dHL 40 NI

JHL A4 A0 0L AINOH
0 SNOL 0T IW LdD NOX NV

000¢ 4VK ¢l

(60TT/00 NOILOVSNVYL) ONVTIIVHL Q@4VMOL HNITIVS
ILVAHM 0 SYVTIOQ 000°04) 0002 dVKW 2T

(8071/00 NOLLOVSNVYL)

M0 QIVMOL ONITIVS LVAHM J0 SUVTION 000°0S
000c 4VK <1

VG99 "Ol4

PCT/IL03/00296

WO 03/087974

66,72

"ONIHLON SHOQ ‘SNOILIVSNVYL QdLITdNOD
QIZITYNI 904 "L140dd SASVAAIAA ‘80TT/00
NOILOVSNVYL “D'd SNOLLIVSNVIL INIANEd
(HZITVNIA Y04 °NOISIOAA YHAVYL 404 SLINOdd
ANV TTTT/00 "ON NOLLOVSNVAL D'H SOLVIS
«NOILVZITVNIA DNILIVMV, NI SNOLLIVSNVH.L
SOV "0TTT/00 "ON NOLLDVSNVAL
‘D' ASVHIAYd ¥A440 NI SNOLLIVSNVAL 404
INTOYAd 02 OL INADYAd AT WOdd (TAIA LVA
SHIVAdN "INAD¥Ad 02 OL INHDHdd AT WOJd
HSVAVLVA NIVW NI Q314 IVA SALVAdN WHLSAS

%L1 VA
ASYAVLVa
NIV

%0¢ ‘LVA
ASVAvVLY(

«0¢ 0L LVA dLvddQ,

N S

N~

%02 0L %AT WOMd HNIAWAE ST 1vA) O

LVHL 14043y SHNIL M0

4G9 "Old

" B

LNVINN0JIV JdIHD
"ONI S JAdViL

NV 00 HOUVA €1

PCT/IL03/00296

WO 03/087974

67/72

YAINT SSAYd
“ISVAMONI IVA LOOHLIM
® HIIM STIVIAQ 97440
TS 06 “YALA0 HNIANAD

AIVATIVANI 01 AT FAI0AA

S1d ‘T1T1/00 34 "%02 OL %

LT WOdd dn IVA M0 idIvadn

rﬂm_ - P W BPU0-g

—/

NS

A0 NI ZONVHD
IVA A6 QELOTLAVNA Nd 00 4VA €1
“Tvnsn SV STEAN04d
6017/00 NOILOVSNVAL
2G99 "9l

scm 0L %47 WOud un
NI GSVANONI LVA LOT1ATY
0L QALVadD NANT0D

LVA ‘NIZHOS DNILS0D
MAN JAS OL YAINA SSHdd

0TT17/00 NOLLOVSNVIL

M0 NI LVA

NI ASVIEONI 0L A0d %L°¥7

0L %97 WO¥d Q@ISVIIDAQ
80T7/00 NOILOVSNVYL

404 I1409d 4LON HSVITd
,@ N PR P EBIPUOSas

—/

~_ 7

A\

PCT/IL03/00296

WO 03/087974

68/72

SHIITTVNOLLONA
NOLLVAVDTVAY
(NV“ONLLYO0S
AYAND HIIM
WALSAS ONIAVYL
(RVARKANIGI(N]

"LdAQ INITANVH

000

NV INI4dIHS

"LdAd TVIONYNIA

¢d0 —— d44 0T Ad
dddddd NVIANY¥Hd
0 SNOL 0T @HAN I

\OE-EH

0 TAVQ SEQVIL

¢ A4 SLAdYY)
NVIANI 007
AN 14D N0A NVD

G]

S AgEV) dddqvdl

NVIAOYdd 40
NOL 0¢€ dN Ld

5

SN THH 44avdlL

X4 AINOH NVIIXHN
A0 SNOL 06 (HAN I

oo |

SN NNV d3avdlL

99 "Ol4

ONI S$E=2aVE.L

WO 03/087974 PCT/IL03/00296

69/72

FIG. 67A |{E:B {

EMAIL I5: LOGISTICS: IRRADIATE 50 T@

HONEY BY 1 FEB?
ANN

i0:02

EMAIL I1: SHIPPING & HANDLING: 50 TONS
HONEY FROM MEXICXN 'II\'IO USA BY 1 FEB?

==
~
FIG. 6/B
BILL .
—\ [{3: B
= EMAIL I2: SHIPPING & HANDLING: 30 TON§
- HONEY FROM PERU TO UK BY 1 MAR?
BILL
{020 |

EMAIL 16: LOGISTICS: IRRADIATE 30 TO@

HONEY BY 1 MAR?
BILL

WO 03/087974 PCT/IL03/00296

70/72
FIG. 67C
EMAIL I3: SHIPPING & HANDLING: 100 UNITS
CARPETS FROM INDIA TO USA BY 2 FEB?
CARRIE
==
~
EMAIL I7: LOGISTICS: FUMIGATE 100 UNITS
CARPETS BY 2 FEB?
CARRIE
FIG. 67D

DAVE

=N

EMAIL 14: SHIPPING & HANDLING: 10 TO@

PEPPER FROM PERU TO UK BY 10 FEB?
DAVE

WO 03/087974

PCT/IL03/00296

71/72

FIG. 68A

QUEUE FOR LOGISTICS DEPT.

EMAIL I5: LOGISTICS: IRRADIATE 50 TONS

HONEY BY 1 FEB?
ANN

(ENEN

EMAIL 17: LOGISTICS: FUMIGATE 100 UNITS

CARPETS BY 2 FEB?
CARRIE

{020

EMAIL I6: LOGISTICS: IRRADIATE 30 TONS

HONEY BY 1 MAR?
BILL

FIG. 68B
QUEUE FOR SHIPPING & HANDLING DEPT.
—— EMAIL 14: SHIPPING & HANDLING: 10 TONS
19:4 | PEPPER FROM PERU TO UK BY 10 FEB?
DAVE
, EMAIL I1: SHIPPING & HANDLING: 50 TONS
1002 HONEY FROM MEXICO TO USA BY 1 FEB?
ANN
= EMAIL 13: SHIPPING & HANDLING: 100 UNITS
I0:BR CARPETS FROM INDIA TO USA BY 2 FEB?
CARRIE
EMAIL I2: SHIPPING & HANDLING: 30 TONS
B: {5 HONEY FROM PERU TO UK BY 1 MAR?
BILL

WO 03/087974 PCT/IL03/00296

72/72

FIG. 69A

RESORTED AMALGAMATED QUEUE FOR
LOGISTICS DEPT.

EMAIL I5: LOGISTICS: IRRADIATE 50 TONS

iH:0 { HONEY BY 1 FEB?
ANN
EMAIL 16: LOGISTICS: IRRADIATE 30 TONS
0:20 HONEY BY 1 MAR?

BILL

HEOE‘T EMAIL 17: LOGISTICS: FUMIGATE 100 UNITS
2 CARPETS BY 2 FEB?
CARRIE

FIG. 69B

RESORTED AMALGAMATED QUEUE FOR
SHIPPING & HANDLING DEPT.

o ' AMALGAMATED EMAIL 14, 12 : SHIPPING
Egg H . & HANDLING:40 TONS

PEPPER FROM PERU TO UK BY 10 FEB?
DAVE, BILL

EMAIL I1: SHIPPING & HANDLING: 50 TONS
HE:EE HONEY FROM MEXICXN 'II\'IO USA BY 1 FEB?

EMAIL I3: SHIPPING & HANDLING: 100 UNITS

° CARPETS FROM INDIA TO USA BY 2 FEB?
HE°EE CARRIE

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

