PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/33241
Al

GOGF 17/30 (43) International Publication Date: 12 September 1997 (12.09.97)

(21) International Application Number: PCT/US97/03615 | (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,

(22) International Filing Date: 5 March 1997 (05.03.97)

(30) Priority Data:

08/610,945 Us

5 March 1996 (05.03.96)

(71) Applicant: INFORMATION PROJECTS GROUP, INC.
[US/US]; Suite 110, 1800 Robert Fulton Drive, Reston, VA
22091 (US).

(72) Inventors: BALLURIO, Keith, B.; 8230 Foneswood Lane,
Manassas, VA 22111 (US). EDLESTEIN, Matthew, R.;
Apartment 919, 1530 N. Key Boulevard, Arlington, VA
22209 (US). PUCKETT, Brian, B.; Apartment 7124, 10227
Valentino Drive, Oakton, VA 22124 (US).

(74) Agents: KOCH, Robert, J. et al.; Fulbright & Jaworski L.L.P.,
801 Pennsylvania Avenue, N.W., Washington, DC 20004-
2604 (US).

CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL,
IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN,
ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, , NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM AND APPARATUS FOR LOADING AND RETRIEVING INFORMATION

(87) Abstract

The system and

apparatus for loading and
retrieving information relates
to a computer-implemented

database management system

for multiple source databases.
The system also has a variety

of database management
tools. The system uses
hierarchical, network, and

relational structures to establish
and maintain relationships
between disparate categories of
information in multiple records

or databases within the system.
Data entered into the system
are stored in a common data

repository in disk memory,
which categorizes each source
field independent form the
source record definition.
Separating the source record
definition from the fields
within each source record)
definition allows data to remain — ~

A\ J

independent from the original "
structure of the information.

Yet, source record definitions are maintained to show the relationships between data from different fields. The system allows all data to
be referenced by any number of methods without regard to how the data was entered into the system. The system also allows any data
modeling record (DMR) in the system to act as a menu, filter, or gateway to other DMRs or applications and to provide a data security
system which gives a database manager sophisticated control of access to all DMRs and applications within the system. The system also
provides for continuous modification of the database without any system down-time.

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
I
CcM
CN
Cs
Ccz
DE
DK
EE
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational

Amenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cdte d'Tvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madeagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 97/33241 PCT/US97/03615

SYSTEM AND APPARATUS FOR
LOADING AND RETRIEVING INFORMATION

BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates to an information management system,
particularly a system suitable for developing and administering large and
complex centralized or distributed databases. Unlike conventional database
systems, the system and apparatus for loading and retrieving information
does not store data records in static, structured tables or files. Instead, the
system stores all data in a common data repository. The data stored in this
repository are "independent” of the source records and the source fields used
for data entry and display. The system allows hierarchical, network, and
relational dynamic record alignment, which provides multiple database

managers with the flexibility to structure data according to each manager’s

needs.

2. Discussion of the Related Technology

Conventional database systems store records containing data in static
tables. Each table has a number of predetermined fields that are often
represented as columns, and each record, often represented as a row,
contains information corresponding to each predetermined field. A manager
using conventional database technology must initially determine how to
structure information into fields and records. The manager must decide the
types of fields that will be used to store different categories of data and the
collection of fields that will be used to construct tables of information. A
drawback to this traditional approach to database technology is that a single
table is unable to store multiple records that have some type of relationship
yet do not contain identical fields. In order to cross-reference related
information from one table to another, a manager must conduct multiple
searches across a number of tables or even databases. As the relationships
between desired information becomes more and more complex, a manager
must conduct many searches to obtain a complete set of cites or references.
To avoid conducting multiple searches, a manager may simply store data in
a raw text block and employ a full text query to search for relevant
information. This solution, while avoiding the problem of multiple searches,

prevents a manager from itemizing or categorizing data found using the query

10

15

20

25

30

WO 97/33241 PCT/US97/03615

and also prevents a manager from using fields to further describe the
information found.

Conventional database systems link tables either as a.hierarchical, a
network, or a relational system. A hierarchical database structure uses one-
way pointers to relate tables together in a fixed parent-to-child relationship.
A hierarchical database constructs a one-to-many relationship between tables
that looks like a tree. This hierarchical structure aids in understanding the
relationship of a particular table with respect to other tables in the hierarchy,
yet this rigid relationship limits the types of information that can be available
on any particular table in the hierarchy.

A network database structure is similar to a hierarchical structure in
that tables are related in a fixed manner using pointers. A network structure,
however, uses two-way pointers to create a many-to-many relationship
between tables that looks more like a web than a tree. A network structure
has duplexed relationships between tables, rather than the one-way parent-
child relationships of a hierarchical structure. A network database system,
however, can support a pure hierarchical structure as required.

Both the hierarchical and network database structures are based on a
knowledge of the fixed location of tables. These structures are called
navigational structures, which imply that a browsing user can understand the
relationships between tables simply by traversing the structure. These
navigational structures, however, sometimes suffer from the requirement of
rigid pre-established relationships and the possibility of contamination of the
one-way and two-way pointer chains. For the most part, hierarchical and
network databases have been supplanted by relational databases, because
relational databases do not require pre-planned relationships.

A relational database structure is not a navigational structure and does
not have fixed pointers from one table to another. A relational structure
consists of indices that are not limited to a hierarchical structure, but
nevertheless relate records to each other. Relational databases operate using
the principle of commonality between record formats to relate records to each
other. For example, a "Name and Address" table might contain a "Customer
Number." Associated tables, such as "Customer Orders," "Customers

Handled," "Credit Profiles," and "Customer Complaints" might also include a

10

15

20

25

30

WO 97/33241 PCT/US97/03615

"Customer Number” field, which would be used to associate records in the
various tables.

Processing in a relational database structure occurs at different times
depending on the action that is taken by a user. For example, when a user
performs a query against a table, the internal structures of a relational
database are actioned to do things such as hold the table name, look into the
system tables for any necessary contained or associated information (by key
values or columns, etc.), point to the physical file location of the data, and
place some of it (dependent on system global settings) into memory. All of
these differing types of system relational database actions then are stored or
held as the last actions, so that the next action will be "short cut" if it is in
the same vein or for the same kind of information. Generally speaking, the
type, number, and content of the actions that the relational database takes
to "process" any user request is based on the request type.

Relational database indices can be either single-key or multiple-key.
A single-key index is one column, usually with entries in an ascending or
descending order, that point to individual records. In the example above, a
single-key index could be a list of customer numbers in ascending order. A
multiple-key index uses more than one column and allows several columns to
point to the same record. In the example above, a second index could be a list
of customer surnames in alphabetical order.

Relational linkage structure enables records to be accessed and viewed
from different perspectives, however, relational indices do not convey the
relationship between individual records as well as hierarchical and network
tables do. Also, hierarchical and network databases retrieve queries faster
and use less computer processing power than relational databases, because
the relationships in hierarchical and network databases are pre-established.

SUMMARY OF THE INVENTION
The system and apparatus for loading and retrieving information is &
computer-implemented superstructure over an existing relational database
management system. The system uses hierarchical, network, and relational
structures to establish and maintain relationships between data, fields, and
records in the system. Initially, the system uses hierarchical structures to

order massive amounts of information possibly obtained from various

10

15

20

25

30

WO 97/33241 PCT/US97/03615

disparate, distributed sources. Next, the system uses a network structure to
cross-reference related data residing in different hierarchical structures.
Finally, the system uses a relational structure to access the various
hierarchical and network structures and report results of user queries.

The system establishes in memory a common data repository for
disparate data with disparate record structures originating from different
sources within an organization or many different organizations. The common
data repository is held on disk located in the server. The system holds some
(the most recent) information in the physical memory of the server, but all
data is held in permanent storage on disk. Depending on the hardware
platform chosen, and the operating system used by that platform, the physical
storage of the repository is limited only by the number of servers and drives
of the linked system. Almost all current hardware and operating system
platforms allow for the connection and sharing of distributed information
across multiple machines of the same type, therefore, the repository for all
intents and purposes, can be unlimited.

When source data enters the system, the common data repository
stores each source field independently from its source record definition. In
order to define the storage parameters at the field level of the system, the
basic storage unit, a "block," needs to be introduced. The system exploits a
variable length character field structure to store the field definitions and
other information in a computer’s storage devices in a single, variable length,
appendable flat file. These variable length character fields are formed into a
base data storage unit called a block. Each block contains a Record Type ID,
chain reference information, a unique Record ID, an Aspect string for
referential integrity, several internal system IDs, and a data array that is a
matrix of one hundred positions that can grow to 175 characters each. Then
for each data modeling record (DMR) in the database, there is at least a root
block and any number of additional blocks that identify that DMR as having
multiple relationships to other DMRs and fields.

In this manner, the system can store each DMR and field
independently and in relation to any number of other fields and DMRs. Thus,
the source record definition does not determine the structure of the data
storage, instead it merely provides a means for referencing data using

relevant fields. In effect, the record definition resides "above" the common

10

15

20

25

30

WO 97/33241 PCT/US97/03615

data repository and allows data to remain independent of the source record
structure. The system unifies different DMR structures for purposes of
uniform query reporting, and it allows individual application managers to
manipulate and present data uniquely. One information manager may even
point or link to another manager’s data to create a virtual information
management environment.

An advantage of this invention is that it facilitates multiple
management of and multiple access to disparate data in computer memory
without concern for the source field and source record structure of the data.
Another advantage of this invention is that it provides a system that supports
hierarchical, network, and relational record alignment. Other advantages of
this invention are that it allows any record in the system to act as a menu,
filter, or gateway to other records or applications and to provide a data
security system that gives multiple information managers sophisticated
control over access to data and applications within the system. Another
advantage of the system is that it allows continuous modification of the data
without computer system down-time.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a preferred embodiment using hierarchical, network,
and relational structures.

Figure 2 shows a data modeling record (DMR) with three blocks
incorporating data from Tables A and B.

Figure 3 shows a source field and source record structure for Table A.

Figure 4 shows a source field and source record structure for Table B.

Figure 5 shows a schematic for a Joader.

Figure 6 shows a schematic for a query engine.

Figure 7 shows query results.

Figure 8 shows a rights matrix.

Figure 9 shows a schematic for an intelligent DMR command executor.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The preferred embodiment is designed as a computer-implemented
superstructure for use with existing relational database management systems

(RDBMSs) such as Progress RDBMS, designed by PROGRESS Software

5.

10

15

20

25

30

35

WO 97/33241

PCT/US97/03615
Corp., Bedford, Massachusetts. RDBMS structure is processor intensive,

because the retrieval of related records forces heavy processing by the
database management system to establish current relationships.

In the preferred embodiment, however, heavy processing by the
RDBMS is avoided because the RDBMS is used primarily to handle only
single format blocks, several indices, and various user interaction interfaces,
usually through a display screen. Using a computer, the system directs the
creation of the common data repository, the hierarchical linking of data
modeling records (DMRs), the network linking of blocks within a DMR, the
query engine, the intelligent DMR, and the rights matrix.

The system supports hierarchical, network, and the relational
structures. Figure 1 shows related DMRs linked using hierarchical, network,
and relational structures according to the preferred embodiment. Each
hierarchy 11, 12 includes a single root DMR 111, 121 and multiple children
DMRs linked using one-way pointers. Pointers, both one-way and two-way,
are stored as references to the linked item within DMR blocks, specifically
within each DMR’s data array. For example, hierarchy 11 may represent a
mail-order database for a mail-order company with one general division and
two specialty divisions. Such a database may contain customer "Name and
Address” DMR 111, customer "Credit Profiles" DMR 112, "Customer Orders -
- General" DMR 113, "Customer Complaints" DMR 114, "Customer Orders --
Furniture" DMR 115, and "Customer Orders -- Automotive" DMR 116.
Hierarchy 12 may be a human resources database for the employees of the
mail order company with employee "Name and Address" DMR 121,
"Customers Handled -- General" DMR 122, employee "Timekeeping and
Salary" DMR 123, employee "Division Roster -- General" DMR 124,
"Customers Handled -- Automotive" DMR 125, "Customers Handled --
Furniture” DMR 126, "Division Roster -- Furniture" DMR 127, and employee
"Division Roster -- Automotive" DMR 128. Note that in these hierarchical
structures a user may browse from one DMR to the next only in the direction
of the one-way arrows.

Several two-way pointers 141, 142, 143, 144, 145 establish network
links between the two hierarchies 11, 12. Like one-way pointers, two-way
pointers are stored references with the blocks at each end of the linked

reference - A points to B, and B to A. These two-way pointers provide

10

15

20

25

30

35

WO 97/33241

PCT/US97/03615
further perspective to the various DMRs. For example, the "Customer Orders”
-- Automotive” DMR 116 of hierarchy 11 may be linked to the "Customers
Handled -- General” DMR 122 and to the "Customers Handled -- Automotive”
DMR 125 using, two-way pointers 143, 144 so that when a user views
hierarchy 11, the user can also see whether a automotive division customer
order was handled by an employee of the mail order company’s automotive
division, despite the fact that the "Customers Handled" DMRs are not
children of hierarchy 11. Conversely, if a user is traversing hierarchy 12, the
user can see related DMRs from hierarchy 11 through the network links even
though those DMRs are not children of hierarchy 12. If desired, two-way
pointers may also be established within a single hierarchy as well as between
two hierarchies.

Figure 1 also shows relational structure 13 with a single-key
alphabetical index. The preferred embodiment uses a unified single-key
alphabetical index into which every common repository DMR is placed. This
index is held in the traditional RDBMS that is incorporated "under" the
system and stored on a server’s storage devices. Each key in the relational
structure 13 has a one-to-one relationship with every DMR in each hierarchy
11, 12. This relational structure can be used to access quickly the various
hierarchical and network structures. Note that the various hierarchical
structures may be products of not only different divisions within a single
company, but they may also be products of completely different companies.

The preferred embodiment is based upon the use of DMRs, rather than
tables, as basic building units for hierarchical structures. Instead of a table
structure dictating exactly what fields may be used in a particular database
or data structure, data structure rules developed by individual managers
control the development of a hierarchy. Data structure rules may allow only
certain types of Record Types to be hierarchical children of a certain DMR.
Information may be entered in a number of different ways depending on the
number of Record Types a manager has created. Part of the root block
content is the Record Type ID. All associated DMR blocks must contain the
same Record Type ID. All DMR block information is held within the flat file
on the services storage devices.

Record Types define the basic fields used in a particular type of DMR.
For example, an "article” Record Type may contain "author," "title," "date of

10

15

20

25

30

35

WO 97/33241 PCT/US97/03615

publication,” and "journal” fields, whereas a "chemical compounds" Record
Type may contain "name,” "date of discovery," "description,” "use,” and
"chemical symbol" fields. According to a preferred embodiment, up to 1000
Record Types, such as persons, locations, bibliographic, books, conference,
notes, topics, or projects, may be defined by multiple managers of the system.

Despite the fact that Record Types may be diverse and contain no
common flelds, a manager’s data structure rules may allow these different
Record Types to reside in a single hierarchy. This allows for great flexibility
in entering and listing data. Thus, more than one data structure can contain
a particular Record Type, and a Record Type may have any number of fields
in common with another Record Type.

Figure 2 shows a DMR with three blocks incorporating data from Table
A of Figure 3 and Table B of Figure 4. In a preferred embodiment, a DMR
contains at least one and at most 999 blocks. If more blocks are needed in a
single DMR, however, blocks from two or more DMRs can be bound together
to make a larger DMR. Blocks are bound together as required by storing the
next block sequence number in one of the Internal System ID areas of the
"owning" block, be this the root block or one of the subsequent blocks. In this
manner, blocks can be bound together in unlimited fashion.

A block may be created and maintained by a RDBMS such as Progress
under the direction of the system. The block contents are stored as part of
the contiguous single flat file on a server's storage devices. Each DMR
contains at least a root block 50 as shown in Figure 2. A DMR may also have
one or more non-root blocks 51, 52. Both the root block and non-root blocks
contain system fields. All blocks include the following system fields: Term
(an alphanumeric general description of the DMR), Record Identifier (a real
number unique for each DMR), Record Type, and Block Identifier (a real
number unique for each block). Block types, either a root or a child, are
differentiated in an internal system ID area of the block. The system has a
global definitions methodology that defines the values to be stored for the
different types. The system uses the underlying RDBMS to store the system
global definitions. These are kept in separate flat files on the server machine.

In this example of DMR 116 from Figure 1, the Term of the DMR is
"Customer Orders -- Automotive.” The Record Type is "133," which a

manager may define as the numeric identifier for an "automobiles" Record

10

15

20

25

30

35

WO 97/33241 PCT/US97/03615

Type. Record Type 153 may contain the fields "owner,” "make," "model,”
"year,” "dealer," “color," "license plate number," "date of purchase,” and
"warranty information” as defined by a manager.

In addition to the system fields listed above, a root block contains two
unique additional system fields that relate each DMR to a hierarchy: Root
Record Identifier and Aspect. According to a preferred embodiment, each
DMR has a place in one hierarchical database structure having a root DMR.
The Root Record Identifier contains the Record Identifier of the root DMR
in a DMR’s hierarchical structure. The Aspect contains a string of Record
Identifiers tracing the hierarchy of the DMR. The Root Record Identifier in
this example is "111," which is the Record Identifier for the DMR with the
Term "Name and Address" in the customer hierarchy 11 shown in Figure 1.
The Aspect, "111:113," represents that the DMR with the Record Identifier
"113" is the parent of the instant DMR, and that the DMR with the Record
Identifier "111" is the grandparent of the instant DMR. Every Aspect lists all
of the parents of the instant DMR, from the direct parent to the root DMR
of the hierarchy. Thus, the system fields indicate that the DMR shown is in
a hierarchical structure of data for mail-order customers related to each other
through customer order classification. The Root Record Identifier and the
Aspect are used mainly to maintain the hierarchical referential integrity of
the system.

Each block also contains a first data array called Chain-1. As
mentioned previously, all of the block content is stored contiguously in a flat
file on the system server. The title of the Chain-1 data array maintains the
order of the blocks within a DMR. In the example shown in Figure 2, the
title of the Chain-1 array of the root block contains the Record Identifier plus
the suffix ".0" while the title of the Chain-1 array of non-root blocks contain
non-zero suffixes. The convention of the system is to indicate root blocks
with the suffix ".0" in the Chain-1. Non-root blocks are usually assigned
suffixes in ascending order.

A Chain-1 data array contains a single-column with the look-up
references to data entries. In a preferred embodiment, a data array may have
up to 100 alphanumeric look-up references and 50 real number look-up
references. A look-up reference can refer to almost any type of data, such as

alphanumeric characters, integers, decimals, date/time, program applications,

.9.

10

15

20

25

30

35

WO 97/33241

PCT/US97/03615
graphic pictures, digitized voice, spread sheet data, or word processing data.
A block may have an unlimited number of data entries, because two or more
150-field blocks may be bound together to compose a larger unitary block.

For example, Figure 2 shows the contents of the root block data array
50 including look-up references to owners, automobile make and model,
automobile color, and automobile year. A Mapper catalogues the source fields
for each datum and notes that a "name" is in data array elements 0-25, an
"automobile make” is in data array elements 26-45, an "automobile model" is
in data array elements 46-70 and so forth.

As is shown in Figure 5, there are several processes or procedures such
as the Mapper, preferably written in the RDBMS 4GL programming language,
that control the necessary actions at the DMR level. These systems are all
stored by the RDBMS under its file system structure for procedures, and
stored in a system's server storage devices.

In the root block situation, all of the fields in the Chain-1 data array
are pre-defined by the Record Type "automobiles." Block 51, however,
contains information pertaining to purchase orders. In block one 51, the
Chain-1 data array contains look-up references to shipping addresses, date of
order, date order filled, item number, quantity, and color. In block two 52,
the data array contains look-up references that describe payment methods,
type of payment and subtotal, tax, shipping, and total. When used by another
program, whether in a create record sequence or look-up record query
sequence, the Mapper will use the block ID information held in the internal
system area to negotiate to succeeding blocks.

Each DMR also contains a unique Chain-2 data array that contains
Record Identifiers and specifies network linkages of certain fields across
hierarchies. Chain-2 data arrays are contained per DMR, they are specific to
each DMR, not just to any block, and they contain internal system fields to
identify and associate the array to the DMR. For example, the "owners"
elements in Chain-1 of the root block in the DMR in Figure 2 have a Chain-2
network linkage to Record Identifier 550 to a DMR with the Term "U.S.
Telephone Directory." The Chain-2 also lists the Record Identifiers to the
parents of the directly-linked DMR, such as Record Identifier 547 to a DMR
with the Term "North American Telephone Directory” and Record Identifier
593 to a DMR with the Term "Global Telephone Directory." The Chain-2

-10-

10

15

20

25

30

WO 97/33241 PCT/US97/03615

data array also contains a direct network linkage from "item number" look-up”
references in the Chain-1 of block one 51 to a DMR with the Term "Catalog”
and other direct network linkages from "color” look-up references in the
Chain-1 data array of the root block 50 and block one 51 to a DMR with the
Record Identifier 647 and the Term "Color Chart."

Again, the list of direct linkages in the Chain-2 data array are
augmented by the Record Identifiers of the parents of the directly-linked
DMRs. Chain-2 data arrays may be used to link not only related DMRs, but
Chain-2 linkages may also be used as a gateway to processes such as ordering
a document, downloading a file, or starting an electronic mail subsystem. The
contents of the data array would be made up of the particular commands
required to perform the specific action. For example, to download a file, the
data array would contain the specific commands to connect, open the file, and
close the file. The Chain-2 data array, which is per DMR, is contained in the
file structure of the preferred embodimeht. For instance the "total" look-up
references in block two 52 could be network linked to a "print receipt"
process.

Figures 3 and 4 show examples of disparate source structures. Source
table A represents manufacturer orders of automobile parts. The fields
available in source Table A are: dealer number, date of order, customer
name, year of car, model of car, item number, quantity, and warranty
information. Source table B represents automobile replacement parts orders.
The available fields in Source table B are: name, address, make, model,
catalog number, description, color, quantity, price per item, subtotal, tax,
shipping, total, payment type, and account number.

Figure 5 shows a schematic for a loader that can be implemented on
a computer. A loader as shown in Figure 5 can load data from disparate data
sources with disparate record structures into a single data repository. The
loader can take the source tables shown in Figures 3 and 4 and integrate
them into a single DMR as shown in Figure 2.

Note that the "customer name" field in source Table A contains the
same type of information as the "name" field does in source Table B. Also,
the "model of car" field in source Table A contains the same type of
information as the "model” field of source Table B. Using this information,

the loader can blend source Tables A and B into a cohesive whole for use in,

-11-

10

15

20

25

30

WO 97/33241

PCT/US97/03615
for example, a "Customer Orders -- Automotive" DMR, while allowing
managers and users of the individual systems to operate on the individual
systems as if the original systems were unchanged.

Source data 20 can be either derived from a pre-existing table
transferred using magnetic tape or other machine structure or keyed into the
loader using a computer keyboard. A typer 21, preferably implemented by a
4GL program on file, inspects the source data and segregates the source data
according to source fields and source records using field delimiters (for
example, a TAB character) and record delimiters (for example, a hard
RETURN character). The segregated data is sent to a Block Creator 28,
preferably implemented by a 4GL program on file. The typer also determines
an applicable Record Type, such as persons, locations, documents, or projects,
from the types available for this database. According to a preferred
embodiment, there are 1,000 available Record Types, each having a unique
programmable format.

The Record Type is sent to the DMR Creator 22, preferably
implemented using a 4GL program on file, which initiates a call to a DMR
Sequencer 23, which is preferable a 4GL program on file that maintains and
generates a unique sequence for Record IDs. The DMR Sequencer 23 returns
a unique identifier for each DMR to be created by the DMR Creator 22. The
DMR Creator 22 establishes the system fields for a DMR, such as Term,
Record Identifier, Record Type, Root Record Identifier, and Aspect. These
system fields are also sent to Block Creator 28.

The names of the source fields used in the source data 20 are sent from
the typer 21 to the mapper 24. The mapper 24 places look-up references to
data in the Chain-1 data array based on Mapper rules and the source field
names. Field names are stored inside the Root block of that field's DMR. A
Chain-1 data array element may be forcibly linked to a DMR using the Chain-
2 data array based on the name of the source field. For example, data from
a source field "item number" in the Chain-1 data array of block one may be
forcibly linked to a DMR with the Term "Catalog." Also, data from a source
field named "colors" in the Chain-1 data array of block one may be forcibly
linked to a DMR with the Term "Color Chart." As a final example, data from

source fields named "make” and "model" in the Chain-1 data array of block

10

15

20

25

30

35

WO 97/33241

two may both be forcibly linked to a DMR containing a taxonomy of
automobile classifications.

In addition to forced linkages between hierarchies, links between
hierarchies may be made based on a set of linking rules 27 preferably stored
as a 4GL program on file. The linker 25 may survey the hierarchies already
residing in the common data repository 29. The linker looks at the Chain-2
data arrays of all the associated hierarchy DMRs in the repository using the
single key alphabetical index. It scans the array for the current Record ID to
see if any mention a link that applies to the current rules. If they do, then
these associated DMRs are entered into the current DMR's Chain-2 data
array as having additional links to these other DMRs. Depending on the
results of this survey, the linking rules may direct the linker 25 to enter into
a Chain-2 data array appropriate network pointers similar to pointers 141-45
shown in Figure 1.

Once the Block Creator 28 receives data from typer 21, system fields
from DMR Creator 22, Chain-1 data array from mapper 24, and Chain-2 data
array from linker 25, the Block Creator 28 can construct blocks to form a
DMR. The Block Creator 28 is preferably a 4GL program on file. When
completely constructed in memory, blocks are stored in the RDBMS. The
Block Sequencer 27 returns a unique block identifier for each block to be
created by the Block Creator 28. Preferably, the Block Sequencer 27 is a 4GL
program on file that maintains and generates a unique sequence for Record
IDs. The DMRs are hierarchically linked according to instructions found in
each root block. The data is then stored in a common data repository 29.

The preferred embodiment may support large-scale multi-user
information services that require real-time operational management and
limited downtime. Prior database systems may require that the data be taken
off-line before changes to field and record definitions can be made. This
period of down-time is not only inconvenient for users, but it can also result
in significant loss of revenues to the information provider.

Because the source field and source record definitions do not define the
storage of data in the common data repository, a manager may add data, add
Block Types, add Record Types, and assign new fields while the system is still
on-line. Essentially, 8 manager may make any modification that does not

affect currently an open DMR. Interaction to the system can occur in three

-13-

PCT/US97/03615

10

15

20

25

30

35

WO 97/33241 PCT/US97/03615

different manners: (1) through a new script processing language developed for
the system; (2) through embedded ANSI standard SQL scripts executed from
within the new script processing language; and (3) through the included
RDBMS commands and features, which can only be performed against the
RDBMS database, not the system as a whole. All three of these methods use
script files written with any standard editor.

For example, if an information manager would like to add a field to a
DMR, the system simply modifies the mapping rules to specify the new field.
This does not affect any users of the DMR at the time. However, if a
manager seeks to make modifications such as adding data that would affect
an open DMR, the preferred embodiment would prevent the modification
from occurring at that time. The preferred embodiment would delay the
implementation of the modification until the DMR was not being accessed.
Alternatively, the system could simply bar the manager from trying to make
the modification at that time.

Although an RDBMS relates, searches, and finds data as it is in the
database flat file, the return of the data is ordered by the contents of the
index used to search it (or with an "order by" clause). The preferred
embodiment uses both a horizontal and vertical "connecting” of the data
through the horizontal and vertical structures, and it is this extra horizontal
index based on the vertical index key that adds order to the resultant return
set.

The system uses a "unified index structure." The preferred
embodiment uses a "unified single key alphabetical index" into which every
common repository DMR is placed. This index is held in the traditional
RDBMS that is incorporated "under" the system and stored on a server's
storage devices. The unified index structure operates in at least two
dimensions. Preferably, the first dimension, horizontal, allows single-key
indexing all of the DMRs as one numeric index according to Record Identifier.
The relational structure 3 (shown in Figure 1) is the structure used to
establish and maintain the single-key index. Because the unified index
structure is pre-established, associations between DMRs can be determined
by working with only the single-key index. The actual data do not need to be
retrieved from the common data repository 29 until the relational operations

are completed. This unified index structure provides quick retrieval for even

14

10

15

20

25

30

WO 97/33241 PCT/US97/03615

the most complex queries, minimum processing overhead for the database
server, and the ability to segment the processing overhead on multiple
processors in a multi-processor or client-server environment. -

In a second dimension of the unified index structure, vertical, the
preferred embodiment uses matrix operations and filtering to refer to any
block within a DMR as a subset of the first dimension of the unified index
structure. The linker 25 (shown in Figure 5) associates field names with
other DMR hierarchies to augment second-dimensional links between DMRs.
This single-key index can be manipulated to establish sorts within sorts,
relational structures, query results, and other operations.

Figure 6 shows a schematic for a database management system query
engine that can be implemented using a computer. A user begins a query by
constructing a request using boolean query language (AND, OR, NOT, <, >,
=, etc.) and variables such as character strings, Record Types, and field
names. This incoming request is sent to the Macro Constructor 61, preferably
a 4GL program on file, which parses the incoming request into its constituent
boolean operations and variables. This data output is sent to a Language
Generator 62, preferably implemented using a 4GL program on file, which
translates the boolean operations into an executable address. The translated
query is sent to the Query Optimizer 63 preferably implemented using a 4GL
program on file, which creates an optimized executable search and
simultaneously checks the query for validity. The Query Optimizer returns
an executable pointer address relating to the query, which is then sent to the
Macro Constructor 61. The Macro Constructor 61 enables the Query
Extractor 64 to survey the common data repository 29 for the requested
variables.

The Query Extractor 64, preferably a 4GL program on file, matches
found query variables against the single-key horizontal index, which means
when a user queries the common data repository, the Query Extractor will
find the results in reference to the Record Identifier. The Query Extractor
64 then performs any nested query operations resulting from Boolean
operations. If the Record Identifier references a DMR that satisfies the
query, the Record Identifier is passed to the Display Manager 65. If the
Record Identifier does not satisfy the query, the Record Identifier is not

10

15

20

25

30

WO 97/33241 PCT/US97/03615

passed to the Display Manager 65. The Query Extractor continues to survey
the common data repository 29 until no more Record Identifiers are returned.

The Display Manager 65, preferably implemented usinga 4GL program
on file, formats the query results according to the display selection preferred
by the user (or the default display selection). The default display selection
format preferably shows query results according to Record Identifier, Term,
and Record Type. Other display selection formats could be either a listing by
Record Type only, or a listing by Term only, or even a listing by source table.
The output of the Display Manager goes to a display such as a monitor. The
display selection may also control the display border, the margins, the font,
and the colors used in the display.

In a sample query, a user may inquire who assisted Mark Daniels in
purchasing automobile tires. The Incoming Request may be: "Mark Daniels"
AND "tire" AND "hierarchy (12)". Depending on the sophistication of the
Language Generator 62, a query variable that is a name (e.g., "Mark Daniels")
may result in a search for the surname alone (e.g., "Daniels"), or matching
first and last names with or without a middle name or middle initial (e.g,,
"Mark" within 2 of "Daniels").

After translating the Incoming Request into an optimal executable
pointer using Macro Constructor 61, Language Generator 62, and Query
Optimizer 63, the query engine will traverse DMRs in hierarchy 12 for
references to "Mark Daniels" and "tires" in the Chain-1 and Chain-2 data
arrays.

Next, the query engine will search the common data repository 29 for
every entry of "Mark Daniels" to find every data array (Chain-1 or Chain-2)
that contains a look-up reference to "Mark Daniels." Once a first DMR is
found that corresponds to the variable "Mark Daniels," the Record Identifier
of that DMR is returned to the Query Extractor 64. The Query Extractor 64
will inspect the Chain-1 and Chain-2 arrays of that DMR for a reference to
"tire." If the DMR contains a reference to "tire," the Query Extractor 64
inspects the DMR for a Chain-1 or Chain-2 reference to "hierarchy (12)." If
the DMR contains references to all three variables, the Record Identifier is
sent to the Display Manager 65 for appropriate display. If at any time the
Query Extractor 64 finds that the DMR does not contain a query variable, the

-16-

10

15

20

30

WO 97/33241 PCT/US97/03615

Query Extractor 64 does not pass the Record ldentifier to the Display
Manager 65.

If the common data repository 29 responds that "Mark Daniels" is in
a Chain-1 data array of a DMR, the query engine has found a look-up
reference to "Mark Daniels," because look-up references are stored in Chain-1
data arrays. Possibly, the Chain-1 data array is associated with the customer
"Names and Addresses” DMR 111 shown in Figure 1. Next, the Query
Extractor 64 looks for query request variable "tire" in either the Chain-1 or
Chain-2 data array of the found DMR. If "tire" is found in a Chain-1 data
array, the query engine has found a single DMR with look-up references to
both "Mark Daniels" and "tire." Finally, the Query Extractor 64 looks for a
reference to "hierarchy (12)" in the Chain-1 and Chain-2 data arrays of the
found DMR. If the Query Extractor 64 finds such a reference, the Record
Identifier of that DMR is passed to the Display Manager 65.

Finding a query variable in a Chain-2 data array signifies that the
found DMR contains a network reference pointer to the variable, because only
network references are stored in a Chain-2 data array. Perhaps a network
reference pointer to "hierarchy (12)" is stored in the Chain-2 data array of the
"Customer Orders -- Automotive” DMR 116. At this point, DMR 116
containing two variables, "Mark Daniels" and "tires," in a Chain-1 data array
and the final variable, "hierarchy (12)," in a Chain-2 data array is also passed
to the Display Manager 65.

In this example, the query engine may return many Record Identifiers,
each containing a reference to "Mark Daniels" AND "tire"” AND "hierarchy
(12)." There may be multiple "Mark Daniels" entries in the common data
repository 29. Also, the query engine may return DMR references to
automobile tires, bicycle tires, or other types of tires, because the query does
not specify a certain type of tire.

Figure 7 shows query results. The display will usually show the Term
of the DMR containing the Chain-1 result as shown in screen 72. The user,
however, can instruct the system to display different information as the query
result, such as the Record Type as shown in screen 73. A found DMR’s Term
in this case could be "Customer Orders -- Automotive." The user could check
that DMR to find the entry that the user was specifically looking for.
However, there could be other DMRs which contain "Mark Daniels" and "tire"

-17-

10

15

20

25

30

35

WO 97/33241 PCT/US97/03615

and "hierarchy (12)," and & user could enter those DMRs later. Note that in
the preferred embodiment the query results are displayed in alphanumeric
order.

At this point, the user of the system could enter the "Customer Orders
-- Automotive" DMR 116 (from Figure 1) and look for Mark Daniels, which
could be highlighted or otherwise indicated. The user can also immediately
link from "Customer Orders -- Automotive” DMR 116 (from Figure 1) in
another hierarchy and go to "tires", which may be highlighted. The user of
the system may or may not know that the entry "tires" is not in the same
hierarchy or DMR from which the user is presently operating.

After the query engine completes its report, a user can browse through
a selected hierarchy with only minor processing. The user may see additional
two-way pointer references to other DMRs containing a look-up reference for
"Mark Daniels" in the Chain-1 data array. The user can immediately look at
all the references and know that Mark Daniels is linked to DMRs with Terms
such as "Universities" and "Companies." A user can also maintain the
reference to "tire." By maintaining this reference, a user keeps a filter on
while perusing down the "Customers" hierarchy 11 (from Figure 1) and
network linkages. So, "tire" will always appear, and the user can look for
types of tires such as radial tires, snow tires, or bicycle tires.

The Display Manager 65 (from Figure 6) may display an updated
summary of query responses as the user travels through different hierarchies.
As a user traverses hierarchies and perhaps enters a hierarchy that contains
fewer and fewer query variables, the updated summary will show that fewer
and fewer DMRs contain resuits of the query.

Figure 8 shows a rights matrix. The preferred embodiment rights
matrix is a Progress RDBMS table used at the system level for subsystem
control. Another aspect of the preferred embodiment is multiple control
domains within the common data repository. Most databases offer two levels
of basic security (user vs. nonuser & user vs. superuser). The preferred
embodiment provides an additional level of security through individual
subsystem operational control. A rights matrix controls access and use of the
subsystems and the discrete functions encompassed in those subsystems.
Figure 8 shows eight levels of security, with level 8 being analogous to a

superuser. The preferred embodiment can support any number of security

-18-

10

15

20

25

30

WO 97/33241

levels with preferably the highest security level having access to all
subsystems. Within a subsystem, a manager at level 6 may use the functions
for creating, deleting, and modifying DMRs as well as creating,-deleting, and
modifying fields. In the rights matrix, each subsystem as well as its
underlying functions appears as a discrete element. This enables a manager
to decide exactly which rights are assigned to certain user groups on a
function-by-function basis. Every request to access a function is matched
against the rights matrix before the function can be performed. User level
and subsystem requested are looked up in the rights matrix table for
permission.

The preferred embodiment also provides a second level of security
which is DMR-specific -- controlling the security of data, the format of data,
and the usage of data on the DMR level. This resident intelligence, located
in a Chain-4 data array (shown in Figure 2) section of a DMR, is programmed
by the application owner and the data owner and interacts with the rights
matrix. A manager may determine which DMRs have read/write privileges
for certain user groups. A manager may determine whether to allow others
to modify a DMR or even reply to notes in a conference. This level of control
enables a manager to have complete control in a shared system. For example,
in Figure 2, case 1 shown in Chain-4 does not allow a user access to block two
52, having BLOCK_ID = 4314, which may contain sensitive financial
information. Case 2 shown in Chain-4 of Figure 2 is applicable to a user
having a color monitor.

By utilizing control properties of a DMR to trigger "events,” the system
can establish formats for a particular DMR, create associations (or pointers)
to other data, implement security controls, and trigger applications for use
with a particular DMR. For example, the control property could load an
appropriate word processor and display a file in the word processor format
when a manager retrieves a "word processing text file" from one of the
variable length fields in a block. In the same manner, a document image
contained in a DMR field could be automatically displayed by the appropriate
graphic image display application. In another type of control property usage,
accessing a DMR imported from an Oracle™ database could trigger a control

event to check the remote database for the last time the DMR was updated.

-19-

PCT/US97/03615

10

15

20

25

30

35

WO 97/33241 PCT/US97/03615

Figure 9 shows a schematic for an intelligent DMR command executor.
Intelligent commands (triggers) are held in the system DMR Chain-4 data
arrays. If a user processes a DMR with Chain-4 array content that performs
an action, then that action will "trigger." If a user trips a DMR trigger, the
Record Identifier of the DMR is sent to the script language processor 81,
preferably a 4GL program on file, which starts the operation of the resident
intelligence in the DMR Chain-4 arrays. The various triggers include:
requesting to read data in a DMR, traversing through a DMR to see
hierarchical children DMRs, traversing back through a DMR to see
hierarchical parent DMRs, using a DMR as a menu, requesting to trigger the
DMR directly, and editing the DMR.

These triggers are in the context of an event-driven model. When a
trigger is tripped, the user starts an event that completes a particular action.
On the other hand, there are data-driven models, where data can reprogram
the user interface. For example, if the data value of the field matches a
criteria held in the Chain-4 array, then the instructions to download and
execute a new version of the user interface "xx.exe" file could be performed,
which would result in a "reprogrammed" user interface. The system merges
the event-driven model with the data-driven mode! by allowing an event to
gather or rearrange information, and then allowing that information to
dictate the user interface. The information returned by the event could allow
a DMR to act as a menu, a filter, or a gateway to other DMRs. In this
situation, the user interface responds to the data returned by the event.

Once a trigger is tripped, the Record Identifier is sent to the script
language processor 81. The script language processor inspects the Chain-4
of the DMR for instructions corresponding to the trigger that was tripped.
These instructions, if present, are sent to the logic unit 82 for translation into
executable code. The output of the logic unit 82 is sent to a rights matrix
unit 83 that checks whether the instruction can be performed based on the
user ID. If the instruction cannot be performed by the user, a disabled signal
is sent through the object processor 85, and control returns to the script
language processor 81. If, however, the rights matrix unit 83 sees that the
user is allowed to perform the requested event, an enable signal is sent to
memory unit 84, and the memory unit controls the read/write capabilities to

the object processor 85. The object processor 85 may include controls to

-20-

10

15

20

25

30

WO 97/33241 PCT/US97/03615

print, alter data, or change the views display. The Chain-4 instructions can
also direct the DMR to act as a menu, a folder, or a branch point to another
gateway. .

For example, a search for "Mark Daniels” AND "tire” AND "hierarchy
(12)" finds 23 DMRs. In that context, a trigger of requesting to read a
particular DMR could direct the front end view system to present detailed
order information (including addresses and account numbers) for a user who
is employed to take those orders. If, however, the user is not employed to
take orders, the view system may only present a summary of all the orders
in the DMR and omit sensitive information such as addresses and account
numbers.

In another instance, two types of users, User A and User B, may be
looking at the same initial DMR. From that DMR, both users may trip the
same trigger, but User A might take one path and see a submenu with certain
options listed while User B might see a submenu with completely different
options listed. This branching depends on the instructions programmed in
the Chain-4.

The view and reporting preferences of each user can also be fused with
the Chain-4 instructions programmed by the application owner and the data
owner. Each user may have a personalized set of views and preferences
including screen color preferences and border styles. Therefore, identical
events triggered by User A and User B create very different results partly
determined by the data owner and partly determined by the preferences of
the user.

Thus, the system may develop, integrate, and administer large and
complex databases using hierarchical, network, and relational structures.
This system may, of course, be carried out in specific ways other than those
set forth here without departing from the spirit and essential characteristics
of the invention. Therefore, the presented embodiments should be considered
in all respects as illustrative and not restrictive and all modifications falling
within the meaning and equivalency range of the appended claims are

intended to be embraced therein.

© 00 -3 D O bW N

DN = e et e ped pd el ped
S W 00 ~3 O O b W N = O

> W NN -

S VR R g

WO 97/33241

PCT/US97/03615
CLAIMS
We claim:

1. A computer-implemented loader for loading source data into a database
system comprising:

a source data distinguisher software component for segregating the
source data into at least one source field and for determining a record type;

a data management record system field creator software component
connected to the source data distinguisher software component for
establishing a system field relating to the record type;

a data mapper software component connected to the source data
distinguisher software component for storing a source field name relating to
the source field;

a data management record linker software component connected to the
source data distinguisher software component for establishing a pointer
relating to the source field;

a block creator software component connected to an output of the
source data distinguisher software component, an output of the data
management record system field creator software component, an output of the
data mapper software component, and an output of the data management
record linker software component for constructing a block; and

a common data repository connected to an output of the block creator

for storing data in a computer memory.

2. A computer-implemented loader for loading source data according to
claim 1 further comprising:
a counter connected to an input of the data management record system

field creator for establishing a unique record identifier.

3. A computer-implemented loader for loading source data according to
claim 1 further comprising:

a counter connected to an input of the block creator for establishing a

unique block identifier.

[\

o> W N

© 00 ~3 A O b W N

o el ol el
=W NN = O

WO 97/33241

PCT/US97/03615
4. A computer-implemented loader for loading source data according to-
claim 1 wherein:
the linker is connected to the common data repository.
5. A data modeling record in a computer storage device comprising:

a root block, wherein the root block has a Chain-1 data array for
containing data look-up references; and

a Chain-2 data array for containing two-way network linkages.

6. A data modeling record according to claim 5 further comprising:
a non-root block, wherein the non-root block has a Chain-1 data array

for containing data look-up references.

7. A data modeling record according to claim 5 further comprising:

a Chain-4 data array for containing instructions regarding data access.

8. A computer-implemented data modeling record intelligent command
executor comprising:

a script language extraction software component for extracting an
instruction from a data array;

a translation software component connected to an output of the script
language extraction software component for translating the instruction into
computer-executable code;

a rights matrix data unit connected to an output of the translator for
determining if the code should be executed;

a memory unit connected to an output of the rights matrix unit; and

an object processor connected to an output of the rights matrix unit,
connected to an input of the memory unit, connected to an output of the
memory unit, and connected to an input of the script language extraction

software component for executing the code.

9. A method for retrieval of information from a database system

comprising:

—
W W ~3 O O s W N O W 0o 3 Y s W

—_ =
N o~ O

(V. I - U

OV

WO 97/33241 PCT/US97/03615

traversing through an index of a relational structure containing data
modeling records to find a hierarchical structure containing data modeling
records; then

traversing through the hierarchical structure containing data modeling
records to find a network structure containing data modeling records; and
then

traversing through the network structure containing data modeling

records.

10. A computer-implemented query engine comprising:

a macro constructor for translating a request into a boolean operation
or variable;

a language generator connected to an output and an input of the macro
constructor for translating the boolean operation or variable into an
executable address;

a query optimizer connected to an output and an input of the language
generator for optimizing the executable address;

a query extractor connected to an output of the macro constructor for
obtaining a query result from a common data repository; and

a display manager connected to an output of the query extractor for

displaying the query result.

11. A rights matrix in a computer memory comprising:

a plurality of security levels; and

a plurality of functions;

wherein each security level corresponds to the enabling of a unique
subset of the plurality of functions.

12. A rights matrix according to claim 11 wherein:

the plurality of security levels is more than three.

13. A memory for storing data for access by an application program
comprising:
a database management record data structure stored in the memory

including:

© W -3 ;M O

10

[B ~ N VO I WV

B> W N

WO 97/33241 PCT/US97/03615

a root block stored in the memory, the root block containing a first
data array with look-up references to data stored in a common data
repository, and

a second data array stored in the memory, the second data array
containing two-way pointers to other database management record data

structures.

14. A memory for storing data for access by an application program
according to claim 13 comprising:

a third data array stored in the memory, the third data array
containing additional look-up references to data stored in a common data

repository.

15. A memory for storing data for access by an application program
according to claim 13 comprising:
a fourth data array stored in the memory, the fourth data array

containing instructions regarding data access.

PCT/US97/03615

WO 97/33241

1/9

1 "Ol4

Z I
e > ~ . h ~
Il 1
WHa WHa
ST 53400V
% VN B JWYN
I _
241 y (U ({2 Ui
WHa WHa
WHa WMa WM
LLLELES JAVIVS B RLLELES) SINIVIdWOD LELED §1H0¥d
Y1150 ONIGIINIIL QI1ANVH YIHOLSM) S41040 11034)
NOISIAIG SHHOLSM % 7y, ¥IHOLSM)
< o - » <N -
i
Bl w || s Uy N B
¥HG Wa WHa WHa SN T ¥Ha
IALOKOLNV JANLINYN TUNLINNS nsonoinv |, | |) mtonoLny THLINYAS
- 31504 - Y3150Y - QT1ONVH - anianH [[5T] - se3ao - 43040
NOISIAIG NOISIAL] SYIHOLS) SYINOLSM) ¥INOLSN) YIWOLSM)
i - .l.’.'k. J ||||L '..I.|...|..|.\.h <
_T
—),
—~

¢l

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

WO 97/33241

2/9

¢ 94 (

ANVWKO)
INTOITIAINE S

N/

YN <

N

¥3ddVH <

~

LUVELY
014

Y01V3Y)
a40J34

8 (INIW MOHS 9
¥ (NIW MOHS S

S430Y0 YIWOLSND NI 34AL O YOLVYIAO MOTIV

41040 NMO NI 3dAL 01 YIHOLSA) MOTIV i€

(YOLINOK ¥0102) 40100 0 IWYN HLIM ONOTY NIZHDS NO 400D MOHS :T
PI€p = QI¥D019 OL STV ON :|

AV¥YY V1va

= b NIVH)

_ ‘(1d13)3¥ INI¥4) 00 Q1 D34 OL . IVLOL, ¥NI : T'€0S

"(907V1¥D) 017.01D3Y 0L ,.SYIAWAN WILL, NI < 8L Q1 I3¥ 0L, 40100, NI : 1°€0§

_ (AWONOXVL 11190KOLAY) 8bL 01734 0L (0L-9%) .S1IA0W THEOROLAY,, NI * (AWONOXYL T1190KOLNAY)

8vL 017934 0L (S~ 97) ,SINVK TTSOHOLNV.. NI ¢ (¥YHD ¥010D) Lb9 I 34 OL 4010, NI * (40173¥ia INOHAT13L ¥4019)
¢65 - (140123410 INOHAT1IL NVIIYIWY HINON) LS : (A401D3YIG INOHITIL 'S'n) 0SS A1 34 0L (ST - 0) .. SHINMO., NNIT - 0°€0S

AVHYY V1V
= T NIVH)
y ¥ 6
a_,_ 4 __"NOILVWYO4NI ALNVH¥VM ﬂ
ANV ‘35VHDHNd 10 3190 ‘S¥IT¥30
oy # §010) ONY ALLwvnD - SHINNN 311d IKDN Y0100 M
ANV ‘ONIddIHS ‘YL ‘V1018nS "SYIGNNN WALl ‘03711 ¥3040 Y31 (0L-9%) STIAOW T1190KHOLNY
"YIHNN INNOJDY “LNIWAY 31¥0 Y3040 40 31v0 ‘S3SSIWAQY "(51-97) S30VK 31180KOLAY (ST-0)
10 3dAL 0L STINI¥313¥ dN-N0O1 ONIddIHS 01 STINIY313¥ dN-H001 SYINMO 0L STINTHIAY dN-N0O1
o % o
AdYY VIV IV¥YY vLva VTR
U911 =1 NIVH) 1911 = I NIVHD 0911 =1 NIVH)
PlEy = 61078 S0LS = QI ¥)018 104y = 01 N018
£115 111 = 1DIdsy
| _ _ 11l =0)3
34AL D3 3dAL)3 €51 = 24AL DN
nYL00L) oy Tt 911 = QI)N
WY3L WY3L| | JALOWOLNY - SYIQHO YIHOLSM) = WY3L

15 OMLYD018 1§ INOXDOTE 0S %019 1004

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

WO 97/33241

3/9

€ Old

NOILVWYOANI ALNVYYYM

ALIINYND

Wil

4D 10 13Q0W| YYD J0¥VIA [IWVN YIWOLSAD

Y3040 10 31¥a

"ON ¥31v30

Y3040 ¥UNIIVINNVM - v 378V1 3)4N0S

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

WO 97/33241

4/9

MOTId —
(3NNINOD

v "9Id

INN0JDV

3dAL INIHAVd 101

INIddIHS

vl

vioLans

W31l ¥3d 1iYd

ALIINVAD

4010)

NOILdI¥)$3d

90IV)

1100

NVW

ssayaay

JHWN

SY30Y0 S1¥vd INIWIIVIdY - § 319VL DUNOS

SUBSTITUTE SHEET (RULE 26)

WO 97/33241 PCT/US97/03615
5/9 '
- -
SOURCE SOURCE
DATA DATA J 20
FILE OR
KEYED
DATA TIPER
2
REC_TYPE R
DATA SOURCE\ " appiNG
STRUCTURE FIELDS
RULES RULES
INITIATE |
DMR DMR
MAPPER LINKER
CREATOR SEQUENCER
b 2 FORCED 551N
LINKING)

i 23
EC_ID

CHAIN_1

SYSTEM FIELDS
ROOT TERM, REC_ID,
REC_TYPE, CHAIN_2

P_REC_ID, ASPECT

BLOCK _L BLOCK

> (REATOR SEQUENCER
28 \ 2]
BLOCK_ID

COMMON 29

DATA
REPOSITORY

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

6/9

WO 97/33241

67 A401150434 WYIYLS
viva viva
NOWW0)

£9 ¥37IWILAO A¥3ND
SY01INYLSNOD Q1314 IndNI SHOLINYISNOD A13H4 318VLAIINT

i '

SY0DNYLSNOD IOVNONVT Y3INIOd 118VLNDIXI AFTVNI
4 L 104100 Y1V¥Q

YOLVYINID 30VNONVT L—— indNI viva

4]

0/l

[~

@ mu _ H_ AY1dSid
¥0OVHIX3 59 1no
and 1n0 YIOUNVW
b9 NI N AVIdSIO
NOID313S
Vidsia
¥3INI0d A319YN3
¥3INI0d 318V103X3 LNdNI YODNYLSNGD OWIVH
1nd1no viva
19 1ndNI VIVG
1530034 ONIWOONI

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

WO 97/33241

719

| INITINIG 40 LYV IHL ANV N3T

I AODIYIA TN SN

| SYIINIONI

4 §43040 3SvHUNd { Ava01 INIMA)
[4 SYINOILIDIVY QISNDDIT b JMIOWOLAY - SY3AYO0 ¥IWOLSND
4 STINIYIINOD 8 S4v)
| $1004 4 $IDI8

£ SIDILYY _ STONVAQY 3ALLOWOLNY

£l 3dAL GY023Y A9 AYYWKWNS u WYIL A9 NVWWNS

I
W(T1) AHDYVYIIH,,
aNv . 1L,
ANV . STIINVQ YYVH,,
04 N3N0

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

8/9

WO 97/33241

L9 s v €U I
TIAIT ALIYMIS

8 "OId

UEL

YN0 100y-uou
SYNa 100Y
SININNJ0Q
SUNIT YYOMLIN
M|

MIGOW/IA0N3Y/QAY
MIGOW/IA0N3Y/QQY
AMIAQOW/3IA0W3Y/QQY
MIGON/3A0WTY/aaY
MIGOW/3A0W34/0QV
MIQOW/IAON3Y/QQV

W315A58NS

SUBSTITUTE SHEET (RULE 26)

PCT/US97/03615

WO 97/33241

9/9

aryasn

ar

a319vN3 > LNdNI
LN XINIVWY 374VSI0 LiND AYOWIN
1NdNI VIVa (CET I T
*
1nd1n0 viva -
1IN 1901 T04INO) |
§S34QQY 405530044 1D3[90
1nd100 VIva 104IN0)
405530044 I9VNONYI LdI¥DS
LNdNI VIva

]

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inte nat Application No

. PCT/US 97/03615

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F17/30

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum docurmnentation searched (classification system followed by classificanon symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the ficids searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A WO 90 08360 A (TELEBASE SYSTEMS INC) 26 1,5,
July 1990 8-11,13
see abstract
see page 1, line 1 - page 9, line 6
P,A US 5 566 333 A (OLSON MICHAEL J ET AL) 15 1,5,
October 1996 8-11,13
see abstract; figure 1
D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Speaal categories of cited docurnents :

“T* later document published after the international filing date

25 June 1997

eae . . iority date and not in conflict with the application but
A° document defining the general state of the art which is not or prionity Iy
considered to be of particular relevance ;t::n;ponmdcnund the principie or theory underiying the
“E" carlier document but published on or after the internationat *X" document of particular relevance; the clairned invention
filing date cannot be considered novel or cannot be considered to
‘L* dzchIUéhne_nl wi:ch may bt:)rzwmdoub; on pno;l’aty clfain'(st)h:r involve an inventive step when the document is taken atone
is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention
atation or other special reason (as fpecified) - cannot be considered to involve an inventive step when the
"0" document refernng to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P" document published prior to the intemnational filing date but in the art.
later than the priority date claimed “&° document member of the same patent family
Date of the actual completion of the internatonal search Date of mailing of the international search report

01.07 97

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijwijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Name and mailing address of the ISA Authonized officer

Fax (+ 31-70) 340-3016 Katerbau, R

Farm PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Int ional Application No

PCT/US 97/03615

Information on patent family members

Patent document Publication Patent family Publication
cited in search report date member(s) . date
WO 9008360 A 26-07-90 AU 5024990 A 13-08-90
US 5566333 A 15-10-96 NONE

Form PCT/ISA/210 {patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

