特許協力条約に基づいて公開された国際出願

国際公開日：2015年5月7日（07.05.2015）
国際公開番号：WO2015/063561 A1

(12) 特許協力条約に基づいて公開された国際出願
(10) 国際公開番号
国際公開日：2015年5月7日（07.05.2015）
国際公開番号：WO2015/063561 A1

(51) 国際特許分類:
C07D 277/20 (2006.01)
A61P 19/06 (2006.01)
C07D 31/426 (2006.01)
C07D 277/56 (2006.01)

(21) 国際出願番号:
PCT/JP2014/2014002

(22) 国際出願日:
2014年10月22日（22.10.2014）

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特願2013-219602 2013年10月22日（22.10.2013）JP

(31) 出願人:
日本ケミファ株式会社（NIPPON CHEMIPHAR CO., LTD.）

(74) 代理人:
佐藤俊彦（SATO, Toshihiko）

(72) 発明者:
天童温（TENDO, Atsunori）

(81) 指定国:
日本

(54) Title: COMPACT CRYSTALS COMPRISING 2-[3-CYANO-4-(2-METHYLPROPIONYL)PHENYL]-4-METHYLTHIAZOLE-5-CARBOXYLIC ACID, MICRONISATE THEREOF, AND SOLID PREPARATION CONTAINING SAME

(56) 著者名: 2-[3-シアンアミノ-4-メチルプロポキシフェニル]イソチアジド

(57) Abstract: To provide compact C crystals of febxostat, a micronisate of the febxostat C crystals, and a solid preparation that contains the micronisate, easily disintegrates and is highly stable. [Solution] A solid preparation is produced by crystallizing febxostat f'om acetonitrile to obtain compact C crystals of febxostat, pulverizing the compact C crystals by airflow milling or wet milling, and including the compact C crystals of febxostat or the micronisate thereof as an active ingredient.

要約: 【製法】フェブキサスタットの小型化C晶、フェブキサスタットのC晶の微粉化物、これらを有する、高い溶出性と高い安定性を有する固形製剤を提供する。【解決手段】フェブキサスタットをアセトニトリルから晶出してフェブキサスタットの小型化C晶を得、これを気流式粉砕又は湿式粉砕により微粉化し、フェブキサスタットの小型化C晶またはその微粉化物を有効成分として含む固形製剤を製造する。
添付公開書類:

- 国際調査報告（条約第21条(3))
- 請求の範囲の補正の期限前の公開であり、補正を受理した際には再公開される。（規則48.2(h))
明細書
発明の名称:
2—[3—シアノ—4—(2—メチルプロポキシ)フニル]—4—メチルチアゾール—5—カルボン酸の小型化結晶、その微粉化物及びこれらを含有的固形製剤
技術分野
[0001] 本発明は、高い安定性、溶出性、高密度、タップ密度及びハンドリング性を有する2—[3—シアノ—4—(2—メチルプロポキシ)フニル]—4—メチルチアゾール—5—カルボン酸の微粉化結晶、並びに、これを有効成分として含む、痛風、高尿酸血症及び慢性腎臓病の予防及び又は治療のために用いる安定性及び溶出性に優れた固形製剤に関する。
背景技術
[化1]

[0003] フエブキソスタツトに関しては結晶多形の存在が知られており、特許第3547707号公報にはA晶、B晶およびC晶、メタノール和物であるD晶、水和物であ
るG晶（BH晶ともいう）として特定される5種類の結晶物質、並びに非晶質体（後述の特許第4084309号公報においてはE晶ともいう）が開示されている。それらのうち、長期保存による晶形維持の観点からA晶、C晶、及びG晶（BH晶）が有用であることが上記の如くに具体的に示されており（同公報の実施例10）、工業的優位性からではA晶が好ましいとされている（同公報の第9頁41〜43行）。この理由から、A晶についてはいくつかの選択的製造方法が報告されている（特開2003-261548号公報、特開2011-20950号公報、及び国際公開2007/14878号公報）。

【0004】エフブキソスタットの製剤化に関しては、特許第4084309号公報の参考例1に、これらの結晶形の中で、A晶、C晶及びG晶が最も物理的安定性に優れることが記載されており、また、同公報の実施例1及び実施例3において、エフブキソスタットのA晶を湿式造粒して得られる錠剤は、ばらつきが少なく均一な溶出プロファイルを示すことを確認して、平均粒子径が12.9μm以上26.2μm以下のA晶、乳糖及び部分アーバー化デンプンから選ばれる賦形剤、結合剤であるヒドロキシプロピルセルロース、及び崩壊剤を含有する錠剤を提案している（特許第4084309号公報の請求項1）。一方で、同公報の比較例1及び比較例6において、エフブキソスタットのC晶を同様に湿式造粒して得られる錠剤は、溶出が遅いうえにばらつきが大きく不均一な溶出プロファイルを示すことが記載されている（特許第4084309号公報の第3頁1〜4行を参照）。

なお、同公報において錠剤の製造に用いているA晶は、衝撃式粉碎機であるサンプルミル又はインパクトミルを用いた粉碎物である（同特許公報の表２の粒子2及び3、並びに表3）。

【0005】一方、C晶については、長期保存による晶形維持の観点から有用であることが具体的に示されており（特許第3547707号公報の実施例10）、さらに同公報の図1の1領域での通常の操作範囲では安定な結晶であり、通常の保管条件（75%相対湿度、25℃など）では長期に保持され、かつ化学的にも安定であると説明されている（同公報第8頁41〜43行）。このC晶は特許第3547707号公報に示された図4の粉末X線回折図及び同公報に開示された2θのピーク位置（6.62°10°）
このC晶は、特許第3547707号公報の一般的説明によれば、溶媒媒介転移を用いて、通常はメタノール/水の混合溶液に溶解度以上の任意の結晶を懸濁させ、これに少量のC晶を添加して加熱攪拌することにより製造できるとしている（特許第3547707号公報第7頁39行～第8頁1行）。そして、同公報の8頁37行～39行に記載されているとおり「このC晶への溶媒媒介転移は、条件にもよるが通常数日を要し、このままではC晶を工業的に再現性よく製造することは難しい」ため、同公報の実施例2には種晶としてC晶を添加する方法が示されている。しかしながら、種晶として用いるC晶をどのような手段で入手したのかは同公報には全く教示しないで示唆がある。従って、C晶は上記公報に物質としては明確に特定されているものの、種晶として用いるC晶が入手できない状態にあっては当業者といえども同明細書に開示された方法のみからはC晶を製造することは不可能である。

一方、非特許文献1～8には、A晶、B晶、C晶、D晶およびBH晶（特許3547707号のC晶と同じ）の中でC晶が最も安定であることが繰り返し述べられており（例えば非特許文献4の1156頁右欄最下行）、A晶、D晶、BH晶のいずれからもC晶に転移しうることが記載されている。また、非特許文献1～8においては、溶媒媒介転移によって、C晶の種晶を加えずにC晶を作製する方法の詳細な条件が記載されており、メタノールと水の体積比が7:3の溶媒中で絶対温度323度（99.85℃）に設定することによって、2～3日以内にA晶からC晶が得られることが記載されている（例えば、非特許文献1の段落1.3及び2.3、ならびに、非特許文献2の段落2.3および682頁左欄7行～25行）。したがって、非特許文献1～8に記載の方法に基づけば、2～3日以内に、溶媒媒介転移によって
、C晶の種晶を用いずにC晶を作製することが可能である。

さらに、国際公開WO2012/13590（特許文献7）においては、メタノール又はエタノールなどの低級アルコール存在下に、2-(3-ホルミル-4-イソプチシフエニル)-4-メチルテアゾール-5-カルボン酸エチルエステルに炭酸カリウム、炭酸セシウム、炭酸ナトリウムなどの炭酸アルカリ金属を作用させることによりエステル結合を加水分解して2-(3-ホルミル-4-イソプチシフエニル)-4-メチルテアゾール-5-カルボン酸を製造し、続いてギ酸の中で、ギ酸ナトリウム及びヒドロキシルアミン塩酸塩を作用させた得た反応生成物を60℃以上の水を加えた後に室温まで冷却することにより、工業的に再現性良くフエブキソスタットのC晶を得ることのできる方法を開示しているので、国際公開WO2012/13590 の記載に基づけば、C晶の種晶を用いずにC晶を作製することが可能である（国際公開WO2012/13590のClaim4及びExample4を参照）。

また、C晶の種晶は、北京連本医薬化学技術有限公司（Beijing Lianben Pharmacy Chemical Tech. Co., Ltd.）から購入可能であり、非特許文献1-8の著者である北村光孝氏、特許文献1の出願人である帝人株式会社、特許文献7の出願人であるサンド社および本願の出願人である日本ケミファ株式会社において保有していることからも明らかであり、本願の出願時点においては容易に入手可能となっている。

また、各結晶形の日本薬局方の崩壊試験用の第2液への溶解速度を比較するとE晶（つまり非晶質）＞A晶＞B晶＞0晶＞G晶＞C晶の順であり、溶解速度の点でC晶が最も劣ること、及びC晶の溶解速度（D.0694 mg/cmVm in）はA晶（D.1434 mg/cm²/min）の1/2以下であることが報告されている（特許第4084309号公報の参考例2）。

ところで、特許第4084309号公報には、WO1999/065885号公報（特許3547707号）の方法によってC晶を作製した旨が記載されており、WO1999/065885号公報（特許3547707号）の方法は、メタノールと水の混合溶液中から晶出しC晶を作製する方法のみが開示されていることから、特許第4084309号ではメタノールと水の混合溶液中から晶出しC晶を用いていると考えられる。また、
特許第4084309号の出願日以前には、メタノールと水の混合溶媒中から晶出する方法以外のC晶の製造方法は知られていない。

[0012] 特許第4084309号公報の比較例1によれば、同公報で用いているメタノールと水の混合溶媒中から晶出して作製したC晶を用いて湿式造粒法によって製造した錠剤を固体C-刚Rで測定すると20ppmの位置に鈍いピークを示したことから非晶質体（E晶）を含ましているとの考察がなされている。この製剤を40°C/75%RHで保管すると非晶質体（E晶）の一部がG晶に転移すると述べられるとともに（同公報の比較例5）、pH5.5のMcl lva ine緩衝液に対する溶出率が低下し、溶出率のばらつきが若干上昇したことも報告されている（同公報の表4）。

このように、特許第4084309号公報で用いているメタノールと水の混合溶媒中から晶出させて作製したC晶を用いて錠剤を製造した場合には、非晶質体化及び非晶質体化を介した結晶形の転移が懸念される。

[0013] なお、wo1 992/009279号公報（特許2725886号）の実施例76にも、フエブキソスタツをエタノール中で再結晶させる方法が記載されているが、得られた結晶の結晶形は記載されていない。

* Crystallizationジャの項やJournal of Crystal Growth, Vol.236, pp.676-6
66, 2002（非特許文献2）に結晶化の具体的方法が開示されており、C晶が安定形であり、A晶が準安定形であるとの教示もある。

[0015] ただし、これらの文献に記載されたフエブキソスタツトのC晶は、非特許文献8の第9章に記載されているもの以外は、すべて、メタノールと水の混合溶媒から晶出させたか、他の結晶形から転移させて得られたものである。これらの方法で得られたフエブキソスタツトのC晶の満密度、タップ密度、安息角、ハンドリング性については報告されていない。

[0016] なお、一般に、非晶質体は結晶に比べて不安定であり、他の結晶形への転移も生じやすいから、非晶質体の生成は避けるべきであるので、非晶質体の標品として用いることのできる実質的に非晶質体のみからなるフエブキソスタツトが求められている。この点、特許3547707号の実施例9には、「5晶を80℃、2mm Hgにて4時間加熱減圧乾燥」することによるフエブキソスタツトの非晶質体の製造方法が記載されているが、「非晶質体の標品として用いることのできる実質的に非晶質体のみからなるフエブキソスタツト」であることは記載されていない。したがって、実質的に非晶質体のみからなるフエブキソスタツトの具体的な製造方法が求められている。さらに、一般に非晶質体の含有割合を定量することは困難であり、フエブキソスタツト原薬中の非晶質体の割合の定量方法は知れていない。

[0017] また、特許第3547707号公報においてG晶と呼ばれる結晶形は、上記の非特許文献においてはBH晶と呼ばれており、BH晶からメタノールと水の混合溶媒中での結晶転移により調製したC晶は長軸の長さが200μmを超え、数μmの横幅を有する柱状晶であることが明らかにされている（非特許文献2のFig.6(c)）。また、特許第4084309号公報には、C晶は安定形であるものの（同公報の表1）、原薬の溶解速度および錠剤からの溶出速度が遅いことが記載されている（同公報の表2および表4）。

[0018] 上記の他、フエブキソスタツトのC晶をアセトニトリルから晶出させる方法は、非特許文献8の第9章及び非特許文献10に記載されているものの、同文献には、得られたC晶の大きさ、形状、満密度、安息角、他の結晶形や非晶質
の混入の有無、並びに、原薬の溶解特性もしくは製剤からの溶出特性は記載されていない。さらに、非特許文献8の第9章の図9-5には、アセトニトリル溶液中から25°Cでc晶を析出させたことが記載されている。同文献には、同文献に記載されたc晶の示差熱分析スペクトルは、融解と考えられる大きな吸熱ピークの前に、吸熱ピークと小さな発熱ピークが観察される」ものであり、吸熱ピークと小さな発熱ピークは「まずc型が融解し、その融液中からa型が析出し、さらに温度が上昇することによりa型が融解する」ことによる「融液介質転移」と考えられると考察されているように、非特許文献8に記載されたc晶は依然として結晶転移しやすい不安定なものであると考えられる。

さらに、フエプキソスタットのc晶の粉碎方法、粉碎条件及び粉碎物の性質を検討した先行技術は知られていない。

先行技術文献

特許文献

特許文献1: 国際公開WO92/9279
特許文献2: 特許第3547707 号公報
特許文献3: 特開2003-26 1548 号公報
特許文献4: 特開2011-20950 号公報
特許文献5: 国際公開WO2007/148787
特許文献6: 特許第4084309 号公報
特許文献7: 国際公開WO2012/131590

非特許文献

非特許文献1: Journal of Chemical Engineering of Japan, Vol.35, No.11, pp.1116-1122, 2002
非特許文献4: Crystal Growth & Design, Vol.4, No.6, pp.1153-1159, 2004
発明の概要

発明が解決しようとする課題

[0022] 本発明の課題は、高い安定性と高い溶出性を兼ね備えるフェブキソスタツトの結晶を提供することである。具体的には、溶出試験液もしくは崩壊試験液（例えば、日本薬局方の溶出試験第2液もしくは崩壊試験第2液）に対して、より溶解速度の速いフェブキソスタツトの結晶の製造方法を提供することが本発明の課題である。

[0023] また、本発明の課題は、非晶質体を含有しないフェブキソスタツトの結晶を提供することである。本発明の課題は、小さい粒子サイズで狭い範囲に分布する良好な粒度分布を有するフェブキソスタツトの結晶を提供することである。

[0024] さらに、本発明の課題は、溶媒残存量が医薬品製造上の問題にならない程度に十分低いフェブキソスタツトの結晶を提供することである。

[0025] さらにまた、本発明の課題は、高い密度と高いタップ密度を有するフェブキソスタツトの結晶を提供することである。

[0026] 加えて、本発明の課題は、綿状とならず、低い安息角を有し、ハンドリングに優れるフェブキソスタツトの結晶を提供することである。

[0027] そして、本発明の課題は、これらの性質の一又は二以上を有するフェブキソスタツトの結晶を有効成分として含む、痛風、高尿酸血症及び慢性腎臓病の予防及び又は治療のための安定性及び溶出性に優れた固形製剤を提供することである。
さらに、本発明の課題は、フエブキソスタツトの結晶を有効成分として含む痛風及び高尿酸血症の予防及び又は治療のために用いる固形製剤であって、安定性に優れ、溶出速度が十分に速く、かつ溶出特性のばらつきが少ない固形製剤を提供することにある。

したがって、本発明の最終的な課題は、高い安定性と高い溶出性を兼ね備えるのみならず、非晶質体を含有せず、小さな粒子サイズで狭い範囲に分布する良好な粒度分布を有し、溶媒残量が薬品製造上の問題にならない程度に十分低く、高い高密度と高いタップ密度を有し、錠状とならず、低い安息角を有し、ハンドリングに優れるという性質の一方はニ以上を備えた、フエブキソスタツトの小型化結晶及びノ又はこれらの微粉化物、並びに、これを有効成分として含む、痛風、高尿酸血症及び慢性腎臓病の予防及び又は治療のための固形製剤であって、安定性に優れ、溶出速度が十分に速く、かつ溶出特性のばらつきが少ない固形製剤を提供することができる。

本発明の発明者は、上記課題解決のために、最も安定な結晶形であると考えられているものの、原薬としての溶解性及び錠剤からの溶出性が悪く、製造に時間がかかるために再現性良く工業的に生産することには適さないと考えしてきたフエブキソスタツトのC晶に着目して、これを克服するために種々検討する過程で、メタノールと水の混合溶媒中から晶出する従来の方法で製造した粉砕していないフエブキソスタツトのC晶（以下、「メタノール水C晶」ともいう。）は、錠状の粉体であり、医薬品の原薬として用いるには、安息角が測定不能なほど流動性が悪く、高密度も測定不能なほど低く、タップ密度も低すぎるという課題を見出した。

また、本発明の発明者は、メタノールと水の混合溶媒中から晶出して得たフエブキソスタツトのC晶の欠点を克服するために、アセトニトリルから晶出させて製造したフェブキソスタツトのC晶の性質を検討する過程で、アセトニトリルから晶出させて製造したフェブキソスタツトのC晶（以下、「アセトニトリルC晶」ともいう。）は、そのままでは、依然として溶解性が不十分であり、高密度が低い水準であり、ハンドリングも不十分であり、アセトニトリル
ルの残留溶媒が高めであるという解決すべき課題を見出した。

さらに、アセトニトリルから晶出させて製造したフエブキソスタツトのc晶の粉末方法及び粉末条件を種々検討する過程で、アセトニトリルから晶出させたc晶を、乳鉱粉末、ボールミル粉末、サンプルミル粉末すると、非晶質化または結晶転移が生じるとともに、粒子径が大きくなら、粒度分布も広くならという問題点を見出した。

なお、1998年に厚生省から通知された医薬品の残留溶媒ガイドラインについて、医薬品中の残留量を規制すべき溶媒であるクラス2の溶媒に分類されており、その濃度限度値は410ppmとされていることから、アセトニトリルの残留濃度が410PPMより十分に低いフエブキソスタツトのc晶の製造方法を確立することが課題とされている。

したがって、本発明の課題は、高い溶出性と高い安定性を有するのみならず、非晶質体を含有せず、小さい粒子サイズで狭い範囲に分布する良好な粒度分布を有し、溶媒残量が医薬品製造上の問題にならない程度に十分低く、高い高密度と高いタップ密度を有し、綿状とならず、低い安息角を有し、ハンドリングに優れるという性質の一又は二以上を備えた、フエブキソスタツトの結晶、可能であれば、並びに、これを有効成分として含む、痛風、高尿酸血症及び慢性腎臓病の予防及び又は治療のための、安定性に優れ、溶出速度が十分に速く、かつ溶出特性のばらつきが少ない固形製剤を提供することである。

また、本発明の課題は、実質的に非晶質体のみからなるフエブキソスタツト及びその製造方法、並びに、フエブキソスタツトの非晶質体の定量方法を提供することである。実質的に非晶質体のみからなるフエブキソスタツトは、溶出性に優れていることが知られており、製剤上の工夫によって、安定な固形製剤の製造に用いることができる可能性がある。また、一般的には非晶質体の生成は望ましくないとされていることから、フエブキソスタツトの非晶質体の定量方法を提供することが望まれている。

課題を解決するための手段
本発明者らは、試行錯誤を重ねて鋭意検討した結果、フェブキソスタツトをアセトニトリルから晶出させてc晶を製造すること、及び、アセトニトリルから晶出させたc晶をジェットミル粉砕することによって、上記の課題を解決できることを見出した。

すなわち、本発明者らは、上記の課題を解決するため、まず、北村らの方法(7ournal of Chemical Engineering of Japan, Vol. 35, No. 11, pp. 1116-1122, 2002 の 5.3. Crystallization の項に記載された結晶化方法)および非特許文献 8 の第 9 章に記載された方法に従って工業的に安定にc晶を製造できるか否かを検討したところ、意外にも、フェブキソスタツトをアセトニトリルから晶出させることにより、加熱攪拌などの操作を行うことなく、極めて再現性よく効率的に純粋なc晶を製造できることを見出した（以下、アセトニトリルから晶出させて得た未粉砕のc晶を「未粉砕のアセトニトリルc晶」という。）。この方法においては、c晶の種晶を添加しなくてもc晶を製造できるが、c晶の種晶を添加すれば、より再現性よくc晶を製造することができる。

上記のc晶の製造方法はc晶を安定に大量生産するための工業的製法として利用可能であり、さらにc晶は安定性に優れる結晶形である（特許第3547707号公報第4頁41-43行）。また、本発明者らは、アセトニトリルから晶出させたc晶は、他の結晶形や非晶質体への転移が極めて生じにくい安定な産物であることを見出した。また、メタノールと水の混合溶媒から晶出させたc晶よりも柱状晶の長軸の長さが少なくとも5分の1以下である、より小さな結晶であることを見出した。すなわち、従来知られていたメタノールと水の混合溶媒中から晶出したc晶は、長軸の長さが1000μmを超える柱状結晶であるのに対して（図11、図17～図19）、驚くべきことに、アセトニトリルから晶出させたc晶は、平均粒径20.483μm、200μm以下の粒度分布に収まる柱状結晶からなることがわたった（図12、図20～図22）。一般に、同じ体積の立体を縮尺N分の1の小さい立体に分けた場合の表面積がN倍になることを考えれば、アセトニトリルから晶出させ
せたC晶の長さは、メタノールと水の混合溶媒中から晶出したC晶の長さの少
なくとも5分の1以下であることから、その比表面積は5倍以上であると考え
られるので、単純に考えれば少なくとも6倍以上の溶出速度を有することが期
待できる。

さらに、アセトニトリルから晶出したC晶は、メタノールと水の混合溶媒
から晶出させたC晶の3倍以上のタップ密度を有する充填性の改善された結晶
であることを見出した。

しかしながら、本発明者らは、アセトニトリルから晶出したC晶をもって
しても、依然として高密度は不十分な水準の充填性であり、また、アセト
尼トリル残量が医薬品としての許容量の約2分の1の水準であるので余裕が少
く、さらに錬剤化した場合の溶出速度及び平衡化後の溶出率が不十分である
という問題を有していることをも併せて見出した。

そこで、本発明者らは、アセトニトリルC晶を微粉化する方法を種々検討し
、上記の問題を解決できないか試行錯誤を行った。その結果、乳鉱による粉
砕、ハンマーミルによる粉砕、サンプルミルによる粉砕などの機械的衝撃
による粉砕方法では、微粉化の程度に限界があり、大きい粒子サイズで広い
範囲に分布する望ましくない粒度分布を示すとともに、非晶質化及びノボは
結晶転移が生じることを見出した一方で、アセトニトリルC晶をジェットミル
粉砕することにより、約3.365μmの平均粒子径、及びノボは、長径が約20μm
以下の粒度分布に収まる粒状物からなるC晶が得られることを見出した（図1
3、図23～図25；以下、ジェットミル粉砕したアセトニトリルC晶を「アセト
ニトリルC晶のジェットミル粉砕物」という。）。

これは、従来技術のメタノール水C晶（非特許文献2のFig.6(c)；本願の図1
7～図19）が、長軸の長さが1000μmを超える柱状晶であることに比べると、
著しく微粉化されたC晶である。また、未粉砕のアセトニトリルC晶が平均粒
径20.483μm、200μm以下の粒度分布に収まる柱状結晶であることに比べても
、やはり優れて微粉化されたC晶である。一般に、同じ体積の立体を縮尺N分
の1の小さい立体に分けた場合の表面積がN倍になることを考えれば、アセト
二トリルC晶のジェットミル粉砕物は、その長径が、未粉砕のアセトニトリルC晶の平均6.1分の1以下の長さであるから、その比表面積は6.1倍であると考えられるので、単純に考えれば6.1倍の溶出速度を有することが期待できる。

実際、pH5.5のMeClを3％緩衝液、pH6.8の溶出試験第2液、水のいずれに対しても、アセトニトリルC晶のジェットミル粉砕物は、未粉砕のアセトニトリルC晶よりも高い溶出率を示した（図26）。これに溶液に対する、未粉砕のアセトニトリルC晶、及び、アセトニトリルC晶のジェットミル粉砕物の溶出率は、市販のA晶と同等以上に、ばらつきが少なかった。

また、アセトニトリルC晶のジェットミル粉砕物は実質的に非晶質体を含有せず、他の結晶形や非晶質体への転移が極めて生じにくい安定な物質であることが、粉末x線回折スペクトル、赤外吸収スペクトル及び示差操作熱量スペクトルによって確認された。

さらに、アセトニトリルC晶のジェットミル粉砕物を有効成分として用いた錠剤は、未粉砕のアセトニトリルC晶に比べて、pH5.5のMeClを3％緩衝液への溶出速度が顕著に改善し、かつ、溶出特性にばらつきを生じない固形製剤を提供できることを見出した（図27）。エプロキソスタツトのアセトニトリルC晶のジェットミル粉砕物を有効成分として用いた錠剤のpH5.5のMeClを3％緩衝液への溶出速度は、臨床使用されているエプロプリック錠（登録商標）よりも早く、かつ、60分後には約95％が溶出する優れた固形製剤である。

また、本発明の課題は、実質的に非晶質体のみならずエプロキソスタツト、及びその製造方法、並びに、エプロキソスタツトの非晶質体の定量方法を提供することである。実質的に非晶質体のみならずエプロキソスタツトは、溶出性に優れていることが知られており、製剤上の工夫によって、安定な固形製剤の製造に用いることができる可能性がある。また、一般的には非晶質体の生成は望ましくないとされていることから、エプロキソスタツトの非晶質体の定量方法を提供することが望まれている。

発明の効果

本発明により、高い安定性と高い溶出性を兼ね備えたエプロキソスタツト
の小型化結晶及びその微粉化物が提供される。本発明により提供されるフエブキソスタツトの小型化結晶及びその微粉化物は、非晶質体を含有せず、したがって、非晶質体を経由した他の結晶形態への転移も生じないので長期にわたって安定に保たれる。また、本発明により、溶媒残量が医薬品製造上の問題にならない程度に十分低く、フエブキソスタツトの小型化結晶及びその微粉化物が提供される。また、本発明により、高い高密度及び／またはタップ密度を有するフエブキソスタツトの小型化結晶及びその微粉化物が提供される。さらに、本発明により、小さな粒子サイズで狭い範囲に分布する良好な粒度分布を有するフエブキソスタツトの小型化結晶及びその微粉化物が提供される。さらにまた、本発明により、小さな安息角及び／又は優れたハンドリング性を有するフエブキソスタツトの小型化結晶及びその微粉化物が提供される。さらに、驚くべきことに、アセトニトリルから晶出された小型化C晶を用いれば、原薬の粉碎工程を経ずに、直接製剤化することもできる。そして、本発明により、前記の優れた性質の一又は二以上を備えたフエブキソスタツトの小型化結晶及びその微粉化物を有効成分として含有する、痛風、高尿酸血症、慢性腎臓病の予防及び又は治療のための、安定性及び溶出性に優れ、かつ溶出特性のばらつきが少ない固形製剤を提供することができる。

加えて、本発明により、実質的に非晶質体のみからなるフエブキソスタツト、及びその製造方法、並びに、フエブキソスタツトの非晶質体の定量方法を提供することができる。

図面の簡単な説明

[図1]例2で得たG晶の粉末X線回折スペクトルである。6.86°、8.36°、9.60°、11.76°、15.94°の回折角に強いピークを有する、G晶に特徴的な粉末X線回折スペクトルが得られた（例6）。
[図2]例4で得た未粉碎のメタノール水C晶の粉末X線回折スペクトルである。6.62°、10.82°、13.36°、15.52°、25.18°の回折角に強いピークを有する、C晶に特徴的な粉末X線回折スペクトルが得られた（例6）。
[図3]例3で得た未粉碎のアセトニトリルC晶の粉末X線回折スペクトルである
6.62°、10.82°、13.36°、15.52°、25.18°の回折角に強いピークを有する、C晶に特徴的な粉末X線回折スペクトルが得られた（例6）。

図4]例5で得たアセトニトリルC晶のジェットミル粉砕物の粉末X線回折スペクトルである。6.62°、10.82°、13.36°、15.52°、25.18°の回折角に強いピークを有する、C晶に特徴的な粉末X線回折スペクトルが得られた（例6）。

図5]例4で得た未粉砕のメタノール水C晶の赤外吸収スペクトルである。1703 cm⁻¹付近及び2240 cm⁻¹付近にピークを有する、C晶に特徴的な赤外吸収スペクトルが得られた（例7）。

図6]例3で得た未粉砕のアセトニトリルC晶の赤外吸収スペクトルである。1703 cm⁻¹付近及び2240 cm⁻¹付近にピークを有する、C晶に特徴的な赤外吸収スペクトルが得られた（例7）。

図7]例5で得たアセトニトリルC晶のジェットミル粉砕物の赤外吸収スペクトルである。1703 cm⁻¹付近及び2240 cm⁻¹付近にピークを有する、C晶に特徴的な赤外吸収スペクトルが得られた（例7）。

[0051] 図8]例4で得た未粉砕のメタノール水C晶の示差走査熱量測定スペクトルである。約201℃〜約202℃付近にのみ単一のピークを有する、純粋なC晶に特徴的な赤外吸収スペクトルが得られた（例8）。

図9]例3で得た未粉砕のアセトニトリルC晶の示差走査熱量測定スペクトルである。約201℃〜約202℃付近にのみ単一のピークを有する、純粋なC晶に特徴的な赤外吸収スペクトルが得られた（例8）。

図10]例5で得たアセトニトリルC晶のジェットミル粉砕物の示差走査熱量測定スペクトルである。約201℃〜約202℃付近にのみ単一のピークを有する、純粋なC晶に特徴的な赤外吸収スペクトルが得られた（例8）。

図11]例4で得た未粉砕のメタノール水C晶の粒度分布を示す図50およびデータである。未粉砕のメタノール水C晶のD50は36.819 μm、D90は133.348 μmであった（例9）。

図12]例3で得た未粉砕のアセトニトリルC晶の粒度分布を示す図およびデータ
タである。未粉砕のアセトニトリリク晶のD50は20.483μm、D90は73.755μmであった（例9）。

[図13] 例5で得たアセトニトリリク晶のジエットミル粉砕物（粉砕圧力3kgf、供給圧力4kgf）の粒度分布を示す図Xおよびデータである。アセトニトリリク晶のジェットミル粉砕物のD50は3.637μm、D90は7.346μmであり、0.4μm以下の粒子径範囲にほぼすべての粒子が収まるシャープな粒度分布を示した（例9）。

[図14] 例11で得たアセトニトリリク晶のボールミル粉砕物（60分間粉砕物）の粉末X線回折スペクトルである。非晶質体に特徴的な平坦化した粉末X線回折スペクトルが得られた。

[0052] [図15] 例11で得たアセトニトリリク晶のボールミル粉砕物（60分間粉砕物）の赤外吸収スペクトルである。1688cm⁻¹付近及び2230cm⁻¹付近にピークを有する非晶質体に特徴的な赤外吸収スペクトルが得られた。

[図16] 例11で得たアセトニトリリク晶のボールミル粉砕物（60分間粉砕物）の示差走査熱量測定スペクトルである。ボールミル粉砕によって約201℃に約202℃の吸熱ピークが消失するとともに、約210℃の強い吸熱ピークと約84.6℃近辺の発熱ピークが現れた。

[図17] 例4で得たメタノール水C晶（未粉砕）のC晶の走査電子顕微鏡写真（倍率100倍）である。写真の下の横棒の全長が1000μm（1mm）の長さを示し、横棒の目盛が100μmの長さを示す。柱径約20μm前後、長さ1000μm以上の柱状晶が観察された（例14）。

[図18] 例4で得たメタノール水C晶（未粉砕）の走査電子顕微鏡写真（倍率80倍）である。写真の下の横棒の全長が1000μm（1mm）の長さを示し、横棒の目盛が100μmの長さを示す。柱径約20μm前後、長さ1000μm以上の柱状晶が観察された（例14）。

[図19] 例4で得たメタノール水C晶（未粉砕）の走査電子顕微鏡写真（倍率80倍）である。写真の下の横棒の全長が1000μm（1mm）の長さを示し、横棒の目盛が100μmの長さを示す。柱径約20μm前後、長さ1000μm以上の柱状晶が
観察された（例14）。

[図20]例3で得た未粉碎のアセトニトリルC晶の走査電子顕微鏡写真（倍率500倍）である。写真の下の横棒の全長が200μmの長さを示し、模棒の目盛が20μmの長さを示す。柱径約6μm前後、長さ約20μm前後の柱状晶が観察された（例14）。

[図21]例3で得た未粉碎のアセトニトリルC晶の走査電子顕微鏡写真（倍率500倍）である。写真の下の模棒の全長が200μmの長さを示し、模棒の目盛が20μmの長さを示す。柱径約6μm前後、長さ約20μm前後の柱状晶が観察された（例14）。

[図22]例3で得た未粉碎のアセトニトリルC晶の走査電子顕微鏡写真（倍率500倍）である。写真の下の模棒の全長が200μmの長さを示し、模棒の目盛が20μmの長さを示す。柱径約6μm前後、長さ約20μm前後の柱状晶が観察された（例14）。

[図23]例5で得たアセトニトリルC晶のジエチルミル粉砕物の走査電子顕微鏡写真（倍率4000倍）である。写真の下の模棒の全長が20μmの長さを示し、模棒の目盛が2μmの長さを示す。もはや柱状晶の形状を維持しておらず、多少は短径と長径の長さの差はあっても、概ね1.5μm~6.5μmの径を有する粒状物であった（例14）。

[図24]例5で得たアセトニトリルC晶のジエチルミル粉砕物の走査電子顕微鏡写真（倍率4000倍）である。写真の下の模棒の全長が20μmの長さを示し、模棒の目盛が2μmの長さを示す。もはや柱状晶の形状を維持しておらず、多少は短径と長径の長さの差はあっても、概ね1.5μm~6.5μmの径を有する粒状物であった（例14）。

[図25]例5で得たアセトニトリルC晶のジエチルミル粉砕物の走査電子顕微鏡写真（倍率4000倍）である。写真の下の模棒の全長が20μmの長さを示し、模棒の目盛が2μmの長さを示す。もはや柱状晶の形状を維持しておらず、多少は短径と長径の長さの差はあっても、概ね1.5μm~6.5μmの径を有する粒状物であった（例14）。

[0054]
[図26] アセトニトリルC晶のジェットミル粉砕物 (粉砕圧力3kgf、供給圧力4kgf) の各種試験液 (溶出試験第1液 (pH1.2)、口H5.5のMcケ3イン緩衝液、溶出試験第2液 (pH6.8)、及び水) への溶出速度を測定し、未粉砕のアセトニトリルC晶の溶出速度、及び市販のA晶の溶出速度と対比した図である。いずれの試験液に対しても、アセトニトリルC晶のジェットミル粉砕物は、A晶と同等かA晶以上の溶出速度を示す優れた薬用であることがわかった。（例17）

[図27] アセトニトリルC晶のジェットミル粉砕物を有効成分として含有する錠剤の、McIlvaine緩衝液 (pH5.5) に対する溶出速度を測定し、未粉砕のアセトニトリルC晶を含む錠剤、市販のA晶を含む錠剤、F錠、フィルムコーティング剥離したF錠の溶出速度と対比した図である。アセトニトリルC晶のジェットミル粉砕物を含む錠剤は、C晶であるにもかかわらず、いずれの錠剤よりも速い溶出速度を示し、60分後の時点では、A晶を含む錠剤、F錠（登録商標）及びフィルムコーティング剥離したF錠（登録商標）のいずれとも同等の約95％の溶出率を示す優れた錠剤であることが確認できた（例18）。

[図28] アセトニトリルC晶のジェットミル粉砕物を、褐色ガラス瓶に入れて蓋をするか、ポリエチレン袋に入れて口を閉じて、長期保存条件下においていた場合に、6ヶ月まで不純物の量が増加しないことを確認した図である。アセトニトリルC晶のジェットミル粉砕物は優れた保存安定性を有することが確認できた（例19参照）。

[図29] アセトニトリルC晶のジェットミル粉砕物を、褐色ガラス瓶に入れて蓋をするか、ポリエチレン袋に入れて口を閉じて、加速条件下においていた場合に6ヶ月まで不純物の量が増加しないことを確認した図である。アセトニトリルC晶のジェットミル粉砕物は優れた保存安定性を有することが確認できた（例19参照）。

[図30] アセトニトリルC晶のジェットミル粉砕物を、褐色ガラス瓶に入れて蓋をするか、ポリエチレン袋に入れて口を閉じて、長期保存条件下または加速条件下においていた場合に3ヶ月の時点で結晶転移が生じていないことを確認した図である。アセトニトリルC晶のジェットミル粉砕物は優れた保存安定性を有
することが確認できた（例19参照）。

[図31] アセトニトリルC晶のジエチルトミル粉砕物を用いて製造した試作錠（素錠およびフィルムコーティング錠）、及びF錠を、褐色ガラス瓶に入れて蓋をして、ポリエチレン袋に入れて口を閉じて、加速条件下において3ヶ月まで不純物の量が増加しないことを確認した図である。アセトニトリルC晶のジエチルトミル粉砕物を用いて製造した試作錠は、F錠と同等の保存安定性を有することが確認された（例20参照）。

[図32] アセトニトリルC晶のジエチルトミル粉砕物を用いて製造した試作錠（素錠およびフィルムコーティング錠）、及びF錠を、褐色ガラス瓶に入れて蓋をして、ポリエチレン袋に入れて口を閉じて、苛酷条件下において3ヶ月まで不純物の量が増加しないことを確認した図である。アセトニトリルC晶のジエチルトミル粉砕物を用いて製造した試作錠は、F錠と同等の保存安定性を有することが確認された（例20参照）。

[図33] アセトニトリルC晶のジエチルトミル粉砕物を用いて製造した試作錠（フィルムコーティング錠）及びF錠（20mg錠）の日本薬局方の溶出試験第1液（pH1.2）：図33左上、MeI Lva in緩衝液（pH5.0）：図33右下、溶出試験第2液（pH6.8）：図33左下、精製水：図33右上に対する溶出性を示した図である。いずれの条件においても、アセトニトリルC晶のジエチルトミル粉砕物を用いて作製した試作FC錠（MeCN粉砕）（20mg錠）の溶出液への溶出率は、F錠（20mg錠）の溶出率とほぼ同じか若干上回っており、良好な溶出特性を示した。

[図34] 未粉砕のメタノール水C晶の性状を示す外観写真である。未粉砕のメタノール水C晶（例23参照）は、ふわふわした縞毛状の高かい塊であり、未粉砕のA晶よりも大きな1mmを超えるサイズの針状晶を目視で確認できた（例23参照）。未粉砕のメタノール水C晶の安定角の測定は困難であることがあるが一度で理解できる。

[図35] 未粉砕のアセトニトリルC晶の性状を示す外観写真である。未粉砕のアセトニトリルC晶（例23参照）は、やや高かい塊を形成する傾向があるが、未粉砕のメタノール水C晶よりも小さく、かつ、未粉砕のメタノール水C晶より
も密度の高い塊であった。未粉砕のアセトニトリルC晶の塊の周囲を良く目を凝らして見ると、小さな針状晶らしきものが確認できた。
[図36] アセトニトリルC晶のジエチルミル粉砕物の性状を示す外観写真である（例23参照）。アセトニトリルC晶のジエチルミル粉砕物（図36）も、塊を形成する傾向があった。写真では塊が見えるが、スパーテル等で突くと軽く崩れるきめ細かい粉である。
[図37] アセトニトリルC晶のジエチルミル粉砕物をプラスチックスプーンで均した図である。容易に平らになり、きめ細かな微粒子が寄せ集まっていることがわかった（例23参照）。
[図38] アセトニトリルC晶のボールミル粉砕物の性状を示す外観写真である（例23参照）。アセトニトリルC晶のボールミル粉砕物（図38）も、塊を形成する傾向があったが、針状晶らしき構造は見えず、アセトニトリルC晶のジェットミル粉砕物と同様にプラスチックスプーンで均すと、容易に平らになり、崩れやすいきめ細かな微粒子が寄せ集まっていることがわかった。アセトニトリルC晶のジェットミル粉砕物（図36）とアセトニトリルC晶のボールミル粉砕物（図38）では、写真では塊を形成しているが、とても崩れやすい塊であり、スパーテルで掬い取った際の粉の動きはコーヌスターチ（図39）や片栗粉（図40）の粉の動きにとてもよく似ていた。
[図39] コーヌスターチの性状を示す外観写真である（例23参照）。
[図40] 片栗粉の性状を示す外観写真である（例23参照）。
[図41] C晶原体及びC晶製剤の1H固体NMRチャートである。A晶原体及びA晶製剤には存在せず、C晶原体及びC晶製剤には共通して存在するいくつかの特徴的なピークがあることがわかる。
[図42] ラマン分析によってC晶を、A晶及び各添加剤と区別できることを示すスペクトル図である。C晶は約1695 shift/cm-1のピークによって、A晶及び添加物と区別できることが確認できた。
[図43] ラマン分析によってC晶を、A晶及び各添加剤と区別できることを示すスペクトル図。C晶は約1695 shift/cm-1のピークによって、A晶及び各添加剤
と区別でき、A晶は、約1450 shift/cm 1、約1330 shift/cm-1 のピークによつて、C晶及び各添加剤と区別できることが確認できた。
[図44]C晶のラマンイメージングの画像である。直径10 µm以下のC晶の粒子が無数に確認できた。
[図45]C晶のラマンイメージングの粒子解析の結果である。原点から横軸の20の目盛まで順に4本の棒があるのは左から順に0~5 µmのC晶の数、5~10 µmのC晶の数、10~15 µmのC晶の数、15~20 µmのC晶の数をそれぞれ示す。C晶の粒子の大半が5 µm以下であることが確認できた。
[図46]未粉砕のメタノール水C晶の共焦点レーザー蛍光顕微鏡写真である。右側の図は同じ視野の微分干渉撮影写真である。未粉砕のメタノール水C晶には1個を超えるサイズの結晶も多数みられた。
[図47]未粉砕のアセトニトリルC晶の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。長軸の長さが約10 µm ~20 µmの針状晶が多数蛍光観察された。
[図48]アセトニトリルC晶のジェットミル粉砕物の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。図23~図25の走査電子顕微鏡写真と同様に直径3 µm前後の粒子が多数寄り集まっていることが確認できた。
[図49]アセトニトリルC晶のボールミル粉砕物の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。丸みを帯びた様々な大きさの蛍光粒子が観察された。
[図50]プラセボ錠の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。蛍光は観察されなかった。
[図51]未粉砕のアセトニトリルC晶を用いて作製した試作錠の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。多数の直径5 µm前後の蛍光を発する粒子が観察されたことは、未粉砕のアセトニトリルC晶が際立って大きい比表面積を有することとも符合する。未粉砕のアセトニトリルC晶を用いた固形製剤は、良好な溶出特性を具えていることが理解で
きる。

[図52] アセトニトリルC晶のジエチルミル粉砕物を用いて作製した試作錠の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。直径2〜3μm前後のほぼ均一な大きさの蛍光を発する粒子が観察された。

[図53] アセトニトリルC晶のジエチルミル粉砕物を用いて作製した試作錠の共焦点レーザー蛍光顕微鏡写真。右側の図は同じ視野の微分干渉撮影写真である。直径2〜3μm前後のほぼ均一な大きさの蛍光を発する粒子が観察された。

発明を実施するための形態

フェブキソスタットのC晶 (本明細書では特許第3547707号公報の開示に合わせてこの結晶を「C晶」と呼ぶが、「C形結晶」などと呼ばれる場合もある) は、例えばJournal of Chemical Engineering of Japan, Vol. 35, No. 11, pp. 116-122, 2002のCrystalizationの項に記載された結晶化方法に従って製造することができる。得られた結晶がC晶であることは、特許第3547707号公報に示された図4の粉末X線回折図から容易に同定可能である。

同定のためには、必要に応じて同公報に開示された2θのピーク位置 (Cuを線源とする1.54オングストロームの波長のCuKα放射線を用いた場合の回折角で6.62°、10.82°、13.36°、15.52°、16.74°、17.40°、18.00°、18.70°、20.15°、20.62°、21.90°、23.50°、24.78°、25.18°、34.08°、36.72°、及び38.04°のうちのいずれか1つ又は2つ以上、好ましくは同公報の図4に示される高強度のピークとして13.36°及び又は15.52°のピーク位置)、及び同公報の図9の赤外吸収スペクトルを参照することもできる。

フェブキソスタットのC晶は、1.54オングストロームの波長のCuKα放射線 (放射光) を用いた粉末X線回折において、好ましくは6.62°の回折角にピークを有し、12.8°の回折角にピークを有さない結晶として特定され、より好ましくは6.62°、13.36°及び15.52°の回折角にピークを有する結晶として特定され、さらにこのましくは、6.62°、10.82°、13.36°、15.52°及び25.18°の回折角にピークを有する結晶として特定され、もっとも好ましくは6.62°、10.82°、13.36°、15.52°、16.74°、17.40°、18.00°、18.70°、20.15°、20.62°、21.90°、23.50°、24.78°、25.18°、34.08°、36.72°及び38.04°のうちのいずれか1つ又は2つ以上、好ましくは同公報の図4に示される高強度のピークとして13.36°及び又は15.52°のピーク位置)
16°、20.62°、21.90°、23.50°、24.78°、25.18°、34.8°、36.72°、及び38.04°の回折角にピークを有する結晶として特定される。

この場合の回折角の誤差範囲は、粉末X線回折測定装置が適正に構成されていることを条件として、±0.2°以内である。

また、回折角2θは照射する放射光の波長λによって変わるが、放射光の波長λと回折角2θの関係は、ブラッグの式 (nλ=2dsinθ) の関係が成立する。なお、ここで、dは結晶面の間隔、θは結晶面とX線が成す角度、λはX線の波長、nは整数である。したがって、放射光の波長λと回折角2θは一対一に対応し、相互に一意に変換可能である。すなわち、ある放射光の波長λ1を照射したときにA1の回折角を観察されるのであれば、異なる波長の波長λ2を照射したときに観察されるべき回折角A2を計算で求めることができる。

したがって、本発明において、粉末X線回折測定装置によって結晶形を同定する手段は、CuKα放射線を用いて測定した粉末X線回折による回折角の同定に限定されず、異なる波長の放射光を用いても良い。例えば、サイクロトロン等を用いた場合には、波長0.75オングストロームの放射光や波長1.0オングストロームの放射光を用いることもできる。その場合、ブラッグの式を用いて変換された回折角を、ブラッグの式を用いて変換された誤差範囲内に同定することによって、結晶形を同定することができる。

あるいは、フエプキソスタットのC晶は、特許第3547707号公報の図9の赤外吸収スペクトル、あるいは、非特許文献2のFig.3のFT-IRスペクトルから当業者が容易に特定可能な物質である。具体的には、フエプキソスタットのC晶は、赤外吸収スペクトルにおいて、1219cm⁻¹付近、1269cm⁻¹付近、1296cm⁻¹付近、1703cm⁻¹付近、2240cm⁻¹付近に特徴的なピークを有する。

また、あるいは、フエプキソスタットのC晶は、固体¹⁵N-剛Rにおいて、210ppm及び282ppmに鋭いシングルピークを有する結晶形として、あるいは、固体¹³C- NMRにおいて、約20ppmにほぼ等価なトリプレットピークを有する結晶形として当業者が容易に特定可能な物質である（特許第4084309号公報の参考例3を参照）。
特許第3547707号公報に開示されるように、フエブキソスタツトについては、A晶、B晶、C晶、D晶、及びG晶（H晶）の存在が知られている。同公報におけるこれらの結晶について開示の全てを参照により本明細書の開示として含める。一般的には、A晶については同公報の図2に示される粉末x線回折チャートにおける2本の高強度ピークの2θのいずれか又は両方（12.80°及び/又は7.18°）、B晶については同公報の図3に示される粉末x線回折チャートにおける2本の高強度ピークの2θのいずれか又は両方（11.50°及び/又は15.76°）、D晶については同公報の図5に示される粉末x線回折チャートにおける4本の高強度ピークの2θのいずれか1つ又は2つ以上（8.32°、9.68°、12.92°及び17.34°）、G晶については同公報の図6に示される粉末x線回折チャートにおける5本の高強度ピークの2θのいずれか1つ又は2つ以上（8.86°、8.36°、9.60°、11.76°及び/又は15.94°）をそれぞれ特徴的ピークとして利用することが出来る。一般的には、A晶、B晶、D晶、及びG晶についての上記の高強度ピークのいずれの位置にもピークが検出されず、13.36°及び/又は52°の位置に高強度のピークが検出される場合にはC晶として同定することができる。なお、粉末x線回折チャートにおける2θの測定誤差は一般的には0.2°以下程度である。

フエブキソスタツトのC晶は示差走査熱量測定（DSC）で約201℃〜約202℃に単一の吸熱ピークを示すが、C晶に非晶質体が含まれている場合には示差走査熱量測定における加熱により非晶質体が他の結晶形、例えばA晶などに変化して約201℃〜約202℃と異なる吸熱ピークを与える場合がある。例えば、示差走査熱量測定で約201℃〜約202℃に単一の吸熱ピークを与えるC晶をメノウ乳鉢で粉砕して示差走査熱量測定を行うと210℃に小さなピークが発生する場合があり、粉砕の程度に比例して210℃のピークが強くなり、80℃付近に発熱ピークが認められる場合がある。

北村の報告（Crysal Growth & Design, 4, pp. 1153-1159, 2004（非特許文献4））において、フエブキソスタツトのC晶では複数のピークを与えるとされているが（P.1155のFig. 4bのEform）、これはメノウ乳鉢で粉砕すること
によりC晶の一部を非晶質体化し、示差走査熱量測定の加熱条件でこの非晶質体からA晶などの他の結晶形を生成したり、他の結晶形への熱転移を起こすことが理由であると考えられ、本来、C晶は約20℃～約202℃に単一の吸熱ピークを与える結晶であると理解される。

[0063] 本発明のフエブキソスタッタツのC晶の製造方法によれば、好ましくは約200℃～約203℃、より好ましくは約201℃～約202℃にのみ単一のピークを有する示差走査熱量測定スペクトルを示すC晶を製造することができる（図9及び図10）。つまり、本発明の方法によれば、融液接線転移を示さない純粋なフエブキソスタッタツのC晶を得ることができる。

[0064] 上記の観点から、フエブキソスタッタツのC晶から他の結晶形への転移を生じさせないために、フエブキソスタッタツの小型化C晶、及びフエブキソスタッタツの小型化C晶の微粉化物は実質的に非晶質体を含まないことが好ましい。

[0065] 一般的には、フエブキソスタッタツの小型化C晶、及びその微粉化物に含まれる非晶質体、A晶、B晶、D晶又はG晶の割合は約7質量％以下、好ましくは約5質量％以下、より好ましくは約3質量％以下、さらに好ましくは約1％以下、さらにより好ましくは約0.1％以下、もっとも好ましくは実質的に0％である。なお、フエブキソスタッタツの小型化C晶、及びその微粉化物に他の結晶形（A晶、B晶、D晶、及びG晶）が混入していないことは、例えば、C晶粉砕物の粉末X線回折チャートにおいて上記に説明したA晶、B晶、D晶、及びG晶の上の記の高強度ピークがいずれも検出されないことにより確認することができる。

[0066] 本発明のフエブキソスタッタツの小型化C晶の長軸の長さは、約200μm以下、好ましくは約100μm以下、より好ましくは約50μm以下、さらに好ましくは約30μm以下、さらにより好ましくは約20μm以下、もっとも好ましくは約10μm以下である。

[0067] 本発明のフエブキソスタッタツの小型化C晶の粒径は、積算粒度分布（体積基準）が50%となる粒径（50またはメディアン径）が約100μm以下、好ましくは約50μm以下、より好ましくは約20μm以下、さらに好ましくは約10μm以下、よりさらに好ましくは約5μm以下、もっとも好ましくは約3.6μm以下であり
積算粒子分布（体積基準）が90%となる粒径（D90）が約200μm以下、好ましくは約100μm以下、さらに好ましくは約50μm以下、さらに好ましくは約20μm以下、もっとも好ましくは約10μm以下である。

本発明のフエブキソスタツトの小型化C晶は、積算粒度分布（体積基準）が50%なる粒径（D50またはメディアン径）が約21μm以下、及びノオは、積算粒度分布（体積基準）が90%となる粒径（D90）が74μm以下の小型化C晶が得られるのであれば特に限定されず、いかなる手段を採用しても良いが、上記のとおり、粉砕後のC晶粉砕物が実質的に非晶質体を含まない粉砕物であることが好ましいことから、粉砕に際してC晶を実質的に非晶質化しない手段を採用することが好ましい。

本発明のフエブキソスタツトの小型化C晶の定容量法による実密度は、好ましくは約0.15g/ml以上であり、より好ましくは約0.20g/ml以上であり、さらに好ましくは約0.25g/ml以上である。本発明のフエブキソスタツトの小型化C晶の定容量法によるタップ密度は、好ましくは約0.29g/ml以上であり、より好ましくは約0.25g/ml以上であり、さらに好ましくは約0.30g/ml以上であり、最も好ましくは約0.34g/ml以上である。

このようなフエブキソスタツトの小型化C晶を得るための方法としては、メタノールと混合溶媒以外の溶媒から晶出させることができるが、アセトニトリルまたはアセトニトリルとプロパノール等との混合溶媒から晶出させることとが望ましく、フエブキソスタツトをアセトニトリル中に懸濁して室温で攪拌することがより望ましい。晶出させるための攪拌時間としては約4時間～約16時間が望ましい。本発明の、フエブキソスタツトの小型化C晶は、C晶の種晶を加えなくても製造できるが、短時間で確実に製造するためには種晶を加えることが望ましい。C晶の種晶は背景技術で述べた公知の方法により製造することができ、また、試験研究用に種々の原薬メーカー等から入手することもできる。

さらに別の観点からは、本発明により、フエブキソスタツトの小型化C晶の製造方法であって、G晶を原料としてアセトニトリルからC晶を晶出させるエ
程を含む方法、及びフエボキソスタツトの小型化C晶であって、G晶を原料としてアセトニトリルからC晶を析出させる工程により得ることができるC晶が提供される。この発明の好ましい態様によれば、示差走査熱量測定で好ましく約200℃〜約203℃より好ましくは約201℃〜約202℃に単一の吸熱ピークを有する上記の小型化C晶が提供される。

フエボキソスタツトの小型化C晶の日本薬方第2液に対する溶解速度、例えば、特許第4084309号の参考例2、又は本明細書の例17に記載した方法に従って測定することができ、約0.10 mg/cm³Vm in、好ましくは約0.14 mg/cm³Vm in以上である。あるいは、フエボキソスタツトの小型化C晶の日本薬方第2液に対する溶解速度は、約0.5mg/ml in以上、好ましくは、約0.6 mg/ml in以上である。また、フエボキソスタツトの小型化C晶のpH5.5のMcllvaine緩衝液に対する溶解速度は、約13 μg/ml in以上、好ましくは、約14Atg/ml/ml in以上である。また、フエボキソスタツトの小型化C晶の質量当たりの表面積がメタノールと水の混合溶媒から析出したC晶の質量当たりの表面積に比べて5倍以上増加していることが好ましい。

本発明のフエボキソスタツトの小型化C晶の微粉化物の長径は、約100 μm以下、好ましくは約50 μm以下、より好ましくは約20 μm以下、さらに好ましくは約10 μm以下、よりさらに好ましくは約5 μm以下、もっとも好ましくは約2 μm以下である。

本発明のフエボキソスタツトの小型化C晶の微粉化物は、好ましくは結晶全体の約80%以上、さらに好ましくは約90%以上、さらに好ましくは約95%以上、もっとも好ましくは実質的に100%の結晶において長軸の長さが約20 μm以下となるような粉砕物として得ることができる。

また、本発明のフエボキソスタツトの小型化C晶微粉化物は、その長径が約100 μm以下、好ましくは約50 μm以下、より好ましくは約30 μm以下、さらに好ましくは約20 μm以下、よりさらに好ましくは約10 μm以下、もっとも好ましくは約5 μm以下である。

フエボキソスタツトの小型化C晶の微粉化物の積算粒度分布 (体積基準) が50
%となる粒径 (D50) は、約 25 μm以下、よ り好ましくは約 10 μm以下、さらに約 5 μm以下、よ りさらに約 4 μm以下、もっとも好ましくは約 3 μm以下、積算粒度分布 (体積基準) が 90% となる粒径 (D90) が 50 μm以下、よ り好ましくは約 40 μm以下、より好ましくは約 10 μm以下、さらに好ましくは約 8 μm以下、よ りさらに好ましくは約 7 μm以下、もっとも好まし くは約 6 μm以下である。

本発明のフエブキソスタットの小型化 C2晶の微粉化物の定容重量法による値の、好ましくは約 0.20g/ml 以上であり、より好ましくは約 0.30 g/ml 以上である。本発明のフエブキソスタットの小型化 C2晶の微粉化物の定容重量法によるタップ密度は、好ましくは約 0.30g/ml 以上であり、より好ましくは約 0.40 g/ml 以上であり、さらに好ましくは約 0.50 g/ml 以上である。最も好ましくは0.60 g/ml 以上である。

本発明のフエブキソスタットの小型化 C晶の微粉化物を得るための粉砕手段としては、積算粒度分布 (体積基準) が 50% となる粒径 (D50 またはメディアン径) が 4 μm以下、及びノ又は、積算粒度分布 (体積基準) が 90% となる粒径 (D90) が 8 μm以下での小型化 C晶が得られるのであれば特に限定されず、いかなる手段を採用しても良いが、上記のとおり、粉砕後の C晶粉砕物が実質的に非晶質体を含まない粉砕物であることが好ましいことから、粉砕に際して C晶を実質的に非晶質化しない手段を採用することが好ましい。

このような粉砕手段としては、例えば、流体製粉砕 (気流式粉砕) または溶液中における湿式粉砕を採用することができ、流体製粉砕に先立って粗粉砕工程を採用することもでき、乾式粉砕と組み合わせることも可能である。また、積算粒度分布 (体積基準) が 50% となる粒径 (D50 またはメディアン径) が 4 μm以下、及びノ又は、積算粒度分布 (体積基準) が 90% となる粒径 (D90) が 8 μm以下での小型化 C晶が得られるのであれば、粉砕手段は不要である。流体製粉砕としては、ジェットミル粉砕またはチビニングアタ向気流乾式粉砕が望ましく、ジェットミル粉砕がより望ましい。

湿式粉砕とは、浸溶媒中に懸濁した結晶に衝撃を加えて粉砕する方法であ
リ、例えば、湿式ボールミル（ビーズミル）では、ジルコニア製容器に材料、液体、ジルコニアボール等の粉砕メディアを入れて、粉末メディアの衝突によって材料の粉砕を行うことができる。溶媒中で粉砕することから、熱の発生を抑えるため微粉砕可能である点で優れている粉砕方法であるので、本発明の粉砕手段として用いることができる。

ジェットミル粉砕とは、粉砕したい物を高速気流に乗せて密閉空間に送り込み、気流ごと互いに衝突させることにより微粉砕する粉砕方法である。ジェットミル粉砕は、発熱を抑えつつ瞬時に微粉化できるので、工業生産に適している。ツインインペラ対向気流乾式粉砕（ドライバースト粉砕）とは、密閉された空間内において、近接して向かい合う歯車状の構造物である一対のインペラを互いに逆方向に高速回転させた状態で、一方のインペラの側から粉砕したい物を投入して他方のインペラの側へ送り込み、他方のインペラを通過した後に回収することにより、一対のインペラの間で発生する高速な対向気流中での衝突によって粉砕する装置であり、シャープな粒度分布で微粉砕することができる。これらの流体式粉砕（気流式粉砕）は、安定した粒度分布を与えること、及びC晶粉末物に非晶質体が混入しない点で本発明において好ましい粉砕手段である。

気流式粉砕又は湿式粉砕は、通常は室温下で行うことができ、ジェットミルを用いる場合には粉砕圧力を例えば0.5〜5 kgf、好ましくは1〜3 kgf、供給圧力を1〜6 kgf、好ましくは2〜4 kgf程度で行えばよい。

粉砕手段として、例えば摩碎を伴う乳鉢やボールミルなどのタンブラー式粉砕機（媒体式）を用いることもできるが、微粉化に限界があり、長時間操作すると粒度分布が悪化し、非晶質体が混入する場合があら。また、ハンマーの高速回転を基本原理とするハンマーミルなどの衝撃式粉砕機（高速回転式）や、その一種であるサンプルミルを使用することもできるが、粉砕を長時間行うと粒度分布が悪化し、非晶質体化及び、又は結晶転移が生じる場合があるので、好ましくなく、衝撃式粉砕機（高速回転式）を用いる場合には短時間に粉砕を完了することが望ましい。
フェブキソスタットの小型化c晶の微粉化物の日本薬局方第2液に対する溶出速度は、例えば、特許第4084309号の参考例2、又は本明細書の例17に記載した方法に従って測定することができ、約0.10 mg/cmVm in、好ましくは約0.14 mg/cmVm in以上である。あるいは、フェブキソスタットの小型化c晶の微粉化物の日本薬局方第2液に対する溶解速度は、約0.5mg/ml/min以上、好ましくは、約0.6 mg/ml/min以上である。また、フェブキソスタットの小型化c晶の微粉化物のpH5.5のMcl vaine緩衝液に対する溶解速度は、約13 μg/ml/min以上、好ましくは、約14 μg/ml/min以上である。また、フェブキソスタットの小型化c晶の質量当たりの表面積がメタノールと水の混合溶媒から析出したc晶の質量当たりの表面積に比べて、5倍以上増加していることが好ましい。

別の観点からは、本発明により、フェブキソスタットの小型化c晶又はその微粉化物の製造方法であって、柱状晶であるc晶の長さが約100 μm以下、好ましくは約50 μm以下、さらに好ましくは約20 μm以下、もっとも好ましくは約10 μm以下となるように粉碎してフェブキソスタットのc晶の微粉化物を調製する工程を含む方法が提供される。

なお、本発明においては、フェブキソスタットのc晶は柱状晶として得られ、フェブキソスタットの小型化c晶の微粉化物は柱状晶の晶癖をとどめない粒状物であることから、以下、柱状晶の長軸を含めてもっとも長く長径と呼び、柱状晶の端部の短径も含めてもっとも短い径を短径と呼ぶ。

これらの条件を満足するフェブキソスタットの小型化c晶の微粉化物を本発明の図形製剤において特に好ましく使用することができる。

このようにして得たフェブキソスタットの小型化c晶又はその微粉化物を図形成分の有効成分として用いることにより、長期にわたり安定で、かつ溶出速度が著しく改善し、溶出特性にばらつきを生じない図形製剤を提供することができる。

本発明の図形製剤は、小型化c晶又はc晶の微粉化物を、有効成分である2-[(3-シアノ-4-((2-メチルプロポキシ)フェニル)-4-メチルチアゾール-5-カルボン酸（すなわちフエブキソスタット）の総量の少なくとも30%以上、好まし
くは50%以上、より好ましくは70%以上、さらに好ましくは90%以上、よりさらに好ましくは95%以上、もっとも好ましくは好ましくは99%以上の含有量で含有することにより、長期にわたり安定で、かつ溶出速度が顕著に改善し、溶出特性にばらつきを生じない固形製剤を提供することができる。

なお、フエブキソスタツトの含有量は、重量で特定することができるが、粒子の重量は粒子の体積または粒子数に応じて定まることから、フエブキソスタツト粒子の体積または粒子数で特定しても良い。フエブキソスタツト粒子の体積及び粒子数は蛍光顕微鏡写真や顕微ラマン画像から算出することができる。したがって、小型化c晶又はg晶の微粉化物の含有量は、蛍光顕微鏡写真や顕微ラマン画像から算出して決定することができる。

[0089] 好ましい態様によれば、本発明により、フエブキソスタツトの小型化c晶又はその微粉化物が実質的にa晶を含まない上記の固形製剤；フエブキソスタツトの小型化c晶又はその微粉化物が実質的にg晶を含まない上記の固形製剤；フエブキソスタツトの小型化c晶又はその微粉化物が実質的に非晶質体を含まない上記の固形製剤；フエブキソスタツトの小型化c晶又はその微粉化物に含まれる非晶質体が約7重量％以下である上記の固形製剤；g晶を原料としてアセトニトリルから晶出させて製造したフエブキソスタツトの小型化c晶又はその微粉化物を含有する上記の固形製剤；示差走査熱量測定で好ましく約200℃～約203℃、より好ましくは約201℃～約202℃に単一の吸熱ピークを有するフエブキソスタツトの小型化c晶又はその微粉化物を含有する上記の固形製剤；及び、錠剤の形態である上記の固形製剤が提供される。

[0090] 別の観点からは、本発明により、フエブキソスタツトの小型化c晶又はその微粉化物を有効成分として含む固形製剤の製造方法であって、長径が約200μm以下、好ましくは約100μm以下、より好ましくは約50μm以下、さらに好ましくは約30μm以下または約20μm以下、さらにより好ましくは約10μm以下、もっとも好ましくは約5μm以下となるようフエブキソスタツトの小型化c晶又はその微粉化物を調製する工程を含む方法が提供される。

[0091] また別の観点からは、本発明により、フエブキソスタツトの小型化c晶又は
その微粉化物を有効成分として含む固形製剤の製造方法であって、アセトニトリルから晶出したC晶をそのまま原薬として用い、強い負荷のかかる造粒手段を用いて造粒することによって、フエブキソスタツトの小型化C晶又はその微粉化物を有効成分として含む固形製剤の製造方法が提供される。具体的には、混式造粒、乾式造粒または手造粒のような機械的負荷のかかる造粒方法を用いて、繰り返し造粒するか、または通常の造粒時間よりも長時間かけて造粒することによって、造粒と同時に、フエブキソスタツトのC晶を小型化又は微粉化し、フエブキソスタツトの小型化C晶又はその微粉化物を有効成分として含む固形製剤を製造することができる。

また、本発明により、フエブキソスタツトの小型化C晶又はその微粉化物を有効成分として含む固形製剤の製造方法であって、長径が約100 μm以下、好ましくは約50 μm以下、より好ましくは約20 μm以下、さらに好ましくは約10 μm以下、さらによより好ましくは約5 μm以下となるようフエブキソスタツトの小型化C晶又はその微粉化物を有効成分として含有する固形製剤の製造のための上記のフェブキソスタツトの小型化C晶又はその微粉化物の使用も本発明により提供される。

本発明の形製剤において好ましく使用することができるフエブキソスタツトの小型化C晶又はその微粉化物の質量当たりの表面積は、粉砕前のフエブキソスタツトの小型化C晶の質量当たりの表面積に比べて少なくとも約3倍以上、好ましくは約6倍以上、より好ましくは約10倍以上、よりさらに好ましくは約30倍以上増加していることが好ましい。

フエブキソスタツトの小型化C晶、及びその微粉化物の走査電子顕微鏡写真の一例をそれぞれ図20～図22及び図23～図25に示した。フエブキソスタツトの小型化C晶、及びその微粉化物は、たとえ、固形製剤中に含まれていたとしても顕微鏡下で観察する手法などの画像解析法により、その形状及び大きさを容易に観測することができる。この手法は例えば錠剤を圧縮成型した後の錠剤中に含まれるC晶粉砕物の様子を観察するために用いることもでき、例えば蛍光顕微鏡下において結晶の長軸の長さや平均長を測定することができる。
具体的には、非特許文献9の中ではTEI-6720と呼ばれているフエブキソスタットの蛍光観察については、励起波長314nm、蛍光波長390nmで蛍光観察できることが同文献の1849頁右欄最下行に記載されていることから、共焦点蛍光顕微鏡を用いて、励起波長314nm、蛍光波長390nmで観察することにより錠剤中に含まれるフエブキソスタットの結晶の大きさを測定することができ、その結晶がG晶であること、粉末X線回折スペクトル、固体15N-レッN、顕微ラマンを測定することによって決定することができる。

本発明の固形製剤に含まれるフエブキソスタットの小型化G晶又はその微粉化物の含有量は、一般的には固形製剤100重量部に対して1重量部から50重量部程度の範囲である。フエブキソスタットの結晶を含む固形製剤の製造方法は特許第4084309号公報の第3頁34行→第5頁9行に具体的に説明されている。上記公報の該当部分の開示を参照により本明細書の開示として含める。

一般的に医薬の製剤化において当業界で汎用される製剤用添加物を1種又は2種以上使用することができる。例えば、乳糖、無水乳糖、結晶セルロース、トウモロコシデンプン、アルファー化デンプン、部分アルファー化デンプン、ローマンニトール、又はリン酸水素カルシウムなどの賦形剤、カルメロースナトリウム、カルメロースカルシウム、低置換度ヒドロキシプロピルセルロース、クロスカルメロースナトリウム、カルボキシメチルセルロースナトリウム、又はクロスポリビドンなどの崩壊剤、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、またはポリビニルポリリドンなどの結合剤を用いることができる。賦形剤の使用量は、例えば固形製剤100重量部に対して50〜98重量部程度であり、崩壊剤の使用量は、例えば固形製剤100重量部に対して1〜25重量部程度であり、結合剤の使用量は、例えば固形製剤100重量部に対して0.5〜25重量部程度であるが、これらの量に限定される事はない。必要に応じて、結合剤、滑沢剤、コーティング剤、可塑剤、希釈剤、着色剤、保存剤、防腐剤、又は嬌臭剤等の製剤用添加物を1種又は2種以上用いてもよい。

本発明の固形製剤の形態は特に限定されないが、錠剤の形態が好ましい。
錠剤は、一般的にはC晶粉砕物に賦形剤及び崩壊剤を添加した混合物を圧縮成形することにより製造することができる。例えば、フエブキソスタツトの小型化C晶又はその微粉化物を含む上記混合物を直接打錠することにより錠剤を製造することができ、あるいはスラッグマシンやローラーコンパクターなどを用いた乾式造粒により錠剤用顆粒を製造した後にて圧縮成型する方法、又は水やエタノールを用い、必要に応じて結合剤の溶液を用いて湿式造粒により錠剤用顆粒を製造した後に圧縮成型する方法などを採用してもよい。錠剤には必要に応じて糖衣や腸溶コーティングなどのコーティングを施すこともできる。
乾燥するか、あるいは粉砕することによって非晶質体を調製できることから、c 晶をポールミルで長時間粉砕した粉砕品を標準品として示差走査熱量スペクトル上のピーク面積比により非晶質体を定量することができる。具体的には、示差走査熱量スペクトル上の 150℃以下の発熱ピークの面積比を指標とし、て C 晶に混入する非晶質体の含有量を定量することができ、この方法を実施例に具体的に示した。

[0103] また、本願の発明者は、示差走査熱量測定において、150℃以下の領域に現れる発熱ピークの発熱ピーク量 (J/g) と非晶質体のフェブキソスタツトの量とが正比例の関係にあることを見出したことから、ほぼ 0℃以下の領域に現れる発熱ピークの発熱ピーク量 (J/g) に基づいて、フェブキソスタツト試料中の非晶質体の含有率を測定する方法の発明が提供される。

[0104] フェブキソスタツト原薬中の非晶質体の含有率を測定する方法の発明は、例えば、次の工程によって提供される。

(1) フェブキソスタツト試料を示差走査熱量測定する工程、
(2) 150℃以下の領域に現れる発熱ピークの発熱ピーク量 (J/g) を定量する工程、
(3) 次式: \(y = 6.0675x \) の \(x \) に前記工程 (2) で得られた値を代入してフェブキソスタツト試料中の非晶質体の含有率 \(y \) を算出する工程、

ただし、ここで、式中、\(x \) は示差走査熱量測定における 150℃以下の発熱ピーク量 (J/g) を表し、\(y \) は非晶質体の含有率 (質量%) を表す。

本発明のフェブキソスタツト試料中の非晶質体の含有率を測定する方法で用いられる式における定数は、測定条件及び定量方法によって適宜変更して用いることができる。

実施例

[0105] 以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。

[0106] 例 1: フェブキソスタツトエチルエステルの製造

2 - [3-ホルミル-4 -(2-メチルプロポキシ)フエニル] -4-メチ
ルチアゾール—5—カルボン酸エチル (10.0 g, 28.8 mmol) を90%ギ酸 (70 ml) に懸濁後、塩酸ヒドロキシアルミン (2.41 g, 34.7 mmol) 及びギ酸ナトリウム (3.14 g, 46.2 mmol) を加え、4時間加熱還流した。水を加え、析出した結晶をろ取後、水で洗浄し、表題化合物の粗結晶（ウェット状態）を得た。この粗結晶をメタノールに懸濁させ、室温で摂拌後、結晶をろ取し、メタノールで洗浄した。更に得られた結晶をジクロロメタンに溶出し、不溶物をろ過後、メタノールを加え摂拌した。析出した結晶をろ取し、メタノールで洗浄後、室温で減圧乾燥して表題化合物 (3.31 g, 収率83.9%) を白色結晶性粉末として得た。

例1 用いた高密度液体クロマトグラフィー (HPLC) 条件における原料化合物及び表題化合物の保持時間はそれぞれ約9.7 min、約13 minであった。

検出器:紫外線吸光光度計（測定波長:320 nm）
カラム: L-column ODS 4.6X250 mm
移動相:50 mM KH₂PO₄/アセトニトリル=1/3
流量:1 ml/min
カラム温度:40℃

例2: フエブキソスタットのG晶の製造
例1で得たフエブキソスタットエチルエステル (0.00 g, 23.2 mmol) をエタノール (32 ml) 及びテトラヒドロフラン (32 ml) の混合溶液に懸濁後、水酸化カリウム (1.84 g, 27.9 mmol) の水 (1.84 ml) ノエタノール (16 ml) 溶液を加え、50℃で3.5時間加熱摂拌した。水を加え、不溶物をろ過後、ろ液に1 mol/L 塩酸を加えた。析出した結晶をろ取し、水で洗浄後、40℃で一晩減圧乾燥した。表題化合物の湿結晶7.90 g（理論収率7.77 g）を得た。粉末X線回折スペクトルを測定して、この結晶がG晶であることを確認した（図1）。

例3: アセトニトリリルを用いた、フエブキソスタットのC晶の製造。

上述のG晶の一部を採取して、これにC晶の種晶 (Journal of Chemical Engineering of Japan, 35, pp. 1116-1122, 2002 の 5.3. Crystal ization) の
項目に記載された結晶化方法により製造して粉末X線回折スペクトラム及び赤外吸収スペクトラムにより同定したもの、19.5 mgを添加し、アセトニトリル（117 ml）を加え、更にC晶の種晶（19.5 mg）を追加。室温で一晩摂拌後、結晶をろ取し、アセトニトリルで洗浄した。得られた結晶を一晩風乾後、80℃で48時間減圧乾燥して表題化合物のC晶（6.69 g、収率91%）を白色結晶性粉末として得た（以下、このC晶を「アセトニトリルC晶」と呼ぶ）。

得られた白色結晶性粉末に含まれる不純物は上記(a)のHPLC条件のピーク面積比において個々の不純物の最大で0.1以下、総量で0.5%以下であり、白色結晶性粉末のピーク面積比は99.8%であった。

例4 ケタノールと水の混合溶媒を用いた、フエブキソスタットのC晶の製造。

フエブキソスタットのC晶（20.0 g）をケタノール/水（1050 ml / 450 ml）に懸濁後、フエブキソスタットのC晶の種晶（50 mg）を加え、50℃で12時間加熱摂拌した。室温まで放冷後、析出物を濾過し、80℃で16時間減圧乾燥した。得られた粉末は粉末X線回折スペクトラム、赤外分光スペクトラムによりフエブキソスタットのC晶であることを確認した（以下、このC晶を「ケタノール水C晶」と呼ぶ）。

例5

例3で得たアセトニトリルC晶（190 g）をジェットミル（100型/クレック社製）で粉末した。粉砕圧力1kgf・供給圧力2kgf、粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfのいずれの条件でも良好に微粉末化された。

これらのアセトニトリルC晶のジェットミル粉末中のアセトニトリル残留量を測定したところ、いずれも約100 ppmであり、粉砕前のアセトニトリル残留量（200 ppm）に比べてアセトニトリルの残余濃度が約2分の1に減少した。なお、1998年に厚生省から通知された「医薬品の残留溶媒ガイドラインについて」におけるアセトニトリル残留量の許容濃度は410 ppmであるので、200 ppmのアセトニトリルが残っている場合には、許容濃度の2分の1のアセトニトリル濃度であるので許容濃度ぎりぎりであるが、約100ppmの残留アセトニ
トリル濃度であれば、許容濃度の4分の1の濃度であるので、許容限度を超えるリスクがかなり低くなる点で、大きなメリットがある。

例6:粉末X線回折スペクトルの測定
試料約100mgを標準的試料ホルダーに緩く詰め込み、スライドガラスで平滑にし、ブルカーエイパックスエス(Bruker AXS)卓上型X線回折装置D2 PHASER (CuKα放射線)を用いて回折パターンを測定した。回折パターンを管電圧30kV、管電流=10mA、ロックドカップル走査(locked-coupled scan)、スリット0.6μm、スキャッター0.5μm、2θ範囲=4から40°、ステップサイズ=0.02°、及びステップ時間=0.5秒として収集した。DIFFRAのSUITE Version2.2.59.0及びDUFFRAにEVA version 2.1の各ソフトウェアをデータ収集及び分析のために用いた。

粉末X線回折スペクトルを測定した結果を図1-4に示す。例2で得たG晶の粉末X線回折スペクトルを図1に、例4で得た未粉碎のメタノール水C晶の粉末X線回折スペクトルを図2に、例3で得た未粉碎のアセトントリルC晶の粉末X線回折スペクトルを図3に、例5で得たアセトニトリルC晶のジエチルトミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)の粉末X線回折スペクトルを図4に示す。未粉碎のアセトニトリルC晶(図3)及びアセトニトリルC晶のジエチルトミル粉砕物(図4)は、いずれも、6.62°、13.36°、15.52°の回折角にピークを有するが、この粉末X線回折スペクトルを示し、他の結晶形や非晶質体の混入は認められなかった。なお、例4で得た未粉碎のメタノール水C晶についても、同様に、6.62°、13.36°、15.52°の回折角にピークを有するC晶の粉末X線回折スペクトルを示し、他の結晶形や非晶質体の混入を認められなかった。

例7:赤外吸収スペクトルの測定
試料約2mgをメノウ鉱で粉末とし、これに赤外吸収スペクトル用臭化カリウム0.20gを加え、遠さかにすり混ぜた後、錠剤成型器に入れて加圧製錠し、堀場(HORIBA)フーリエ変換赤外分光光度計FT-720を用いて赤外吸収スペクトルを測定した。スペクトルはスキャン回数=10、走査速度=2.5、分解能=
4、測定範囲 = 400 から 4000 cm⁻¹ として収集した。HORIBA FT-IR for Windows（登録商標）version 4.07 ソフトウエアをデータ収集及び分析のために用いた。

[01 17] 赤外吸収スペクトルを測定した結果を図5、図6及び図7に示す。例4で得た未粉砕のメタノール水C晶（図5）、例3で得た未粉砕のアセトニトリルC晶（図6）、例5で得たミリル粉砕（粉砕圧力3kgf、供給圧力4kgf）後のアセトニトリルC晶（図7）のいずれも、1703cm⁻¹付近及び2240cm⁻¹付近にピークを有する。C晶に特徴的な赤外吸収スペクトルを示し、他の結晶形や非晶質体の混入は認められなかった。例4で得た未粉砕のメタノール水C晶についても同様に、C晶に特徴的な赤外吸収スペクトルを示し、他の結晶形や非晶質体の混入は認められなかった。

[01 18] 例8: 示差走査熱量スペクトルの測定
試料約2 mgを試料容器（アルミ＝ウム製、φ5×2.5mm、50枚いに充てんし、リガク（Rigaku）Therm plus EVOシリーズ高感度示差走査熱量計DSC8230を用いて、加熱速度10℃/分、大気圧下で示差走査熱量（DSC）を測定した。Rigaku Thermo plus EVO version 1.006-6 ソフトウェアをデータ収集及び分析のために用いた。

示差走査熱量スペクトルを測定した結果を図9、図8及び図10に示す。例4で得た未粉砕のメタノール水C晶（図8）、例3で得た未粉砕のアセトニトリルC晶（図9）、例5で得たミリル粉砕（粉砕圧力3kgf、供給圧力4kgf）後のアセトニトリルC晶（図10）のいずれも、約201℃〜約202℃に単一ピークを示したことから、他の結晶形や非晶質体の混入は認められなかった。例4で得た未粉砕のメタノール水C晶についても同様に、約201℃〜約202℃に単一ピークを示し、他の結晶形や非晶質体の混入は認められなかった。

[01 19] 同様に、例5においてジェットミル粉砕の条件を変えて得られたアセトニトリルC晶のジェットミル粉砕物の示差走査熱量の測定結果のまとめを表1に示す。ジェットミル粉砕条件は、粉砕圧力1kgf・供給圧力2kgf・粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfの3条件である。いずれの条
件で粉砕しても、約201℃〜約202℃に単一の吸熱ピークを示したことから、非晶質体や他の結晶形を含まない純粋なC晶であることが確認できた。

表1

| 粉砕圧力 | 供給圧力 | 発熱ピーク(150℃以下) | 吸熱ピーク(|約201℃付近|) | 吸熱ピーク(|約210℃|) |
|----------|----------|----------------------|------------------|------------------|
| 1kgf | なし | なし | なし | |
| 2kgf | なし | なし | なし | |
| 3kgf | なし | なし | なし | |
| 4kgf | なし | なし | なし | |
1以下のD50、及び、10分の1以下のD90を示すこと、並びに、1μm〜10μmの粒子径の間に90%以上の粒子が分布するより均一な粒度分布を示すことがわかった。

[0123] 同様に、例5においてジエットミル粉砕の条件を変えて得られたアセトニトリルC晶のジエットミル粉砕物の粒度分布の測定結果のまとめを表2に示す。

ジエットミル粉砕条件は、粉砕圧力1kgf・供給圧力2kgf、粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfの3条件である。いずれの条件で粉砕しても、D90が10μm未満である十分に小さい粒度を示したが、これら3条件の中では、粉砕圧力3kgf・供給圧力4kgfの条件でジエットミル粉砕した場合に最も小さい粒子径の粉砕物が得られることを確認できた。

[0124] [表2]

<table>
<thead>
<tr>
<th>粉砕圧力</th>
<th>粒度分布</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D50(μm)</td>
</tr>
<tr>
<td>供給圧力</td>
<td></td>
</tr>
<tr>
<td>1kgf</td>
<td>5.101</td>
</tr>
<tr>
<td>2kgf</td>
<td></td>
</tr>
<tr>
<td>2kgf</td>
<td>3.635</td>
</tr>
<tr>
<td>3kgf</td>
<td></td>
</tr>
<tr>
<td>3kgf</td>
<td>3.637</td>
</tr>
<tr>
<td>4kgf</td>
<td></td>
</tr>
</tbody>
</table>

[0125] 例10：乳鉢による粉碎

例3で得られたアセトニトリルC晶の未粉砕物（6g）を磁研乳鉢（直径13cm）、磁研乳棒（長さ15cm、重量154g）で強く粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した（表3）。

示差走査熱量測定の結果、乳鉢で粉碎すると、10分後には約210℃に吸熱ビ
ークが現れることから、C晶以外の結晶形への転移が認められた。また、30分後には、150℃以下に発熱ピークが現れたことから、非晶質体の混入も確認された。さらに、30分間にわたって乳鉢粉砕したアセトニトリルC晶の粒度は、10分間にわたって乳鉢粉砕したアセトニトリルC晶の粒度に比べて、明らかに粒子径が増大していた。メノウ乳鉢およびメノウ乳棒によって粉砕を行っても同様の結果が得られた。

[0126] [表3]

<table>
<thead>
<tr>
<th>粉砕時間</th>
<th>発熱ピーク</th>
<th>吸熱ピーク</th>
<th>粒度分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>150℃以下</td>
<td>(約201℃付近)</td>
<td>(約210℃付近)</td>
<td>D50 (μm)</td>
</tr>
<tr>
<td>10分</td>
<td>-</td>
<td>201.5℃</td>
<td>210.2℃</td>
</tr>
<tr>
<td>30分</td>
<td>81.3℃</td>
<td>201.6℃</td>
<td>210.1℃</td>
</tr>
</tbody>
</table>

[0127] 例11: ボールミルによる粉砕

例3で得られたアセトニトリルC晶の未粉砕物(15 g) を遊星ボールミル (Wn00ZRetsh 社製 : 125 mL容器/20 mmボール6個/回転数400 rpm) で粉砕し、経時的に粉末物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した（表4）。

示差走査熱量測定の結果、ボールミル粉砕すると約210℃の吸熱ピークは30分後→60分後で最大になったこと、及び、150℃以下に現れる発熱ピークは60分間の間、ボールミルによる粉砕時間に依存して増え続けたこと、及び、60分後にはC晶に特徴的な約201℃→約202℃付近に現れる吸熱ピークが消失したことから、ボールミル粉砕によって、C晶が消失して非晶質化したことが確認できた。さらに、粒度分布もボールミルによる粉砕時間に依存して増大し続けたことがわかった。なお、以下、60分間ボールミルで粉砕したアセトニトリルC晶を「アセトニトリルC晶のボールミル粉砕物」ということにする。
[表4]

<table>
<thead>
<tr>
<th>粉砕時間</th>
<th>示差走査熱量測定</th>
<th>粒度分布</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>発熱(\triangle T)(150^\circ C)以下</td>
<td>吸熱(\triangle T)(约201^\circ C)付近</td>
</tr>
<tr>
<td>1分</td>
<td>201.6°C 87.779 J/g</td>
<td>210.6°C 9.598 J/g</td>
</tr>
<tr>
<td>3分</td>
<td>2.3333 J/g 201.0°C</td>
<td>3.3217 J/g 82.272°C</td>
</tr>
<tr>
<td>30分</td>
<td>18.84 J/g 199.8°C</td>
<td>116.193 J/g 210.0°C</td>
</tr>
<tr>
<td>60分</td>
<td>30.510 J/g 210.5°C</td>
<td>109.29 J/g 210.5°C</td>
</tr>
</tbody>
</table>

[0129] また、アセトニトリルC晶を60分間ボールミル粉砕した後の粉末X線回折スペクトル（図14）、赤外分光スペクトル（図15）、示差走査熱量測定スペクトル（図16）を示す。

アセトニトリルC晶のボールミル粉砕物の示差走査熱量測定スペクトル（表4、図16）では、C晶に特徴的な約201\(^\circ\)C～約203\(^\circ\)Cの吸熱ピーキーが消失しており、さらに、84.5\(^\circ\)C付近に発熱ピーキーがあることから、C晶が消失していること及び非晶質が生じていることがわかった。また、粉末X線回折スペクトル（図14）は明らかに平坦化した非晶質体に特徴的なスペクトルを示していた。これらの結果から、アセトニトリルC晶を60分間ボールミル粉砕した粉末物の粉末は、実質的に非晶質体のみならなくなると考えられた。

[0130] アセトニトリルC晶のボールミル粉砕物の赤外分光スペクトル（図15）は、非晶質体に特徴的な位置にピークが現れていた（特許3547707号の図16を参照）。さらに、示差走査熱量測定スペクトル（図16）では、未粉砕のアセトニトリルC晶では約201\(^\circ\)C～約202\(^\circ\)Cにのみ単一の吸熱ピーキーを有していたのに対して、ボールミル粉砕によって約201\(^\circ\)C～約202\(^\circ\)Cの吸熱ピーキーが消失するとともに、アセトニトリルC晶のボールミル粉砕物では、約210\(^\circ\)Cに強い吸熱ピーキーが現れるとともに、150\(^\circ\)C以下の位置、具体的には、図16の約84.6\(^\circ\)C近辺の位置に発熱ピーキーが現れていた。

[0131] 例12：サンプルミルによる粉砕、および、ハンマーミルによる粉砕

実施例1のC晶（15 g）を、ハンマーの高速回転による衝撃で粉砕を行った。
サンプルミル（SM-1 アズワン社製）で粉碎し、経時的に粉碎物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した（表5）。

示差走査熱量測定の結果、サンプルミル粉碎によってほ0℃以下の発熱ピークは生じなかったものの、アセトニトリルC晶が有さない約210℃の吸熱ピークは粉碎時間に依存して增大し続け240分後には-44.106 J/gに達したところから、サンプルミル粉碎によって、他の結晶形への転移が進行したことがわかった。さらに、粒度分布も、未粉碎のアセトニトリルC晶のD50（20.483 μm）及びD90（73.755 μm）に比べて細かくなかったものの、サンプルミル粉碎を240分間行った後の粒度分布は、D50で11.281 μm、D90で29.768 μmに過ぎず、D50が60分後、120分後、240分後でほぼ同じであったことから、サンプルミル粉碎による微粉化の程度には限界があることがわかった。

[0132] [表5]

<table>
<thead>
<tr>
<th>粉碎時間</th>
<th>半導体 -7</th>
<th>吸熱 -7 (約201℃付近)</th>
<th>吸熱 -7 (約210℃付近)</th>
<th>D50(μm)</th>
<th>D90(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60分</td>
<td>-</td>
<td>202.9℃ 111.052 J/g</td>
<td>210.0℃ 1.99 J/g</td>
<td>11.909</td>
<td>15.081</td>
</tr>
<tr>
<td>120分</td>
<td>202.9℃ 101.316 J/g</td>
<td>299.7℃ 28.275 J/g</td>
<td>10.587</td>
<td>30.041</td>
<td></td>
</tr>
<tr>
<td>240分</td>
<td>202.5℃ 80.828 J/g</td>
<td>210.3℃ 116.106 J/g</td>
<td>11.281</td>
<td>29.768</td>
<td></td>
</tr>
</tbody>
</table>

[0133] 市販のA晶（D50 19 μm）北京連本医薬化学技術有限公司／Beijing Lianbi Pharma Chemicals Tech. Co., Ltd. から購入したもの）をハンマーミル（大徳製機械、DF-15）を用いて12000 rpmの回転数で瞬時に粉碎した。ハンマーミルで粉碎したA晶（以下、A晶のハンマーミル粉碎物」という。）は、例2の比表面積の測定に用いた。

[0134] 例13:示差走査熱量測定による非晶質体の定量法の確立

非晶質体の定量法の確立のためのフエブキソスタツトの非晶質体の標準として、例11でアセトニトリルC晶をボールミルで60分間粉碎して得られたものを用いた。

アセトニトリルC晶のジェットミル粉碎物（粉碎圧力3kgf・供給圧力4kgf）
に、1、2.5、5、10、25、及び50％相当量の非晶質体（C晶を遊星ボールミルで60分間粉砕して調製したもの）を添加して総量約200 mgとし、袋混合した調製物について示差走査熱量測定における挙動変化を測定した。

非晶質体の混合物は1％以上の非晶質体が存在すると210℃付近に吸熱ピークを示し、非晶質体混合割合の増加とともに増大した。一方、C晶に特徴的な約201℃～約202℃に現れる吸熱ピークは、非晶質体混合割合の増加とともに減少し、非晶質体混合割合が100％になると消失した。非晶質体の混合割合と200℃以上の吸熱及び発熱ピークのピーカーク強度との間に線形性は認められなかった。一方、150℃以下の再結晶化に伴う発熱ピーク（J/g）は非晶質体の含有割合に応じて直線的に増加することが確認され、非晶質体の含有割合の定量が可能であった。C晶及び非晶質体の混合物の示差走査熱量測定結果のまとめを表6に示す。約150℃以下に現れる発熱ピークの発熱ピーク量（J/g）をx、非晶質体の割合をyとしたときの直線回帰式は、[y = 6.0675x]であり、相関係数（r）は0.995であった。

[表6]

<table>
<thead>
<tr>
<th>非晶質体混合割合 [%]</th>
<th>約150℃以下</th>
<th>約201℃付近</th>
<th>約201℃付近</th>
<th>約210℃付近</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.051</td>
<td>2.352</td>
<td>108.108</td>
<td>19.289</td>
</tr>
<tr>
<td>1</td>
<td>0.186</td>
<td>6.424</td>
<td>96.555</td>
<td>43.083</td>
</tr>
<tr>
<td>2.5</td>
<td>0.608</td>
<td>11.362</td>
<td>78.603</td>
<td>63.584</td>
</tr>
<tr>
<td>5</td>
<td>1.038</td>
<td>12.441</td>
<td>59.563</td>
<td>74.914</td>
</tr>
<tr>
<td>10</td>
<td>3.960</td>
<td>11.641</td>
<td>49.423</td>
<td>91.356</td>
</tr>
<tr>
<td>25</td>
<td>9.503</td>
<td>6.675</td>
<td>24.549</td>
<td>111.017</td>
</tr>
<tr>
<td>50</td>
<td>15.809</td>
<td></td>
<td></td>
<td>104.331</td>
</tr>
</tbody>
</table>

回帰式 [y = 6.0675x (0.995)]

例14: 走査電子顕微鏡による結晶の観察

日立製の電子顕微鏡（TM3000 Miniscope/HITACHI）を用いて例3、例4、例
5で得た各結晶の走査電子顕微鏡写真を撮影した。

例4で得たメタノール水C晶（未粉末）の走査電子顕微鏡写真を撮影したところ、柱状晶であり、柱の柱径は約20μm前後、柱の長さは1000μmを超えることが確認できた。その代表的な写真を図17〜図19に示す。一部の結晶は、より細い柱状晶が寄り添っているように観察されることから、裂けやすい柱状晶であることが窺える。なお、図17の写真の倍率は100倍、図18及び図19の写真の倍率は80倍である。図17〜図19の電子顕微鏡写真の下の横棒は1m（1000μm）の縮尺を示し、模様の上の目盛は0.1m（100μm）の間隔を示す。

例3で得た未粉末のアセトニトリルC晶を走査電子顕微鏡写真で観察したところ、メタノール水C晶よりも短く、かつ、柱の柱径に対する柱の長さの比が小さい柱状晶であり、柱の柱径が6μm前後、柱の長さが20μm前後であることが確認できた。その代表的な写真を図20〜図22に示す。図20〜図22の写真の倍率は500倍である。図20〜図22の写真の下の横棒は200μmの縮尺を示し、模様の上の目盛は20μmの間隔を示す。

例5で得たアセトニトリルC晶のジェットミル粉砕物を走査電子顕微鏡写真で観察したところ、さらに小さく粉砕されており、もはや、柱状晶の形状を維持しておらず、多少は短径と長径の長さの差はあっても、概ね1.5μm〜6.5μmの径を有する粒状であることが確認できた。その代表的な写真を図23〜図25に示す。図23〜図25の写真の下の横棒は20μmの縮尺を示し、模様の上の目盛は2μmの間隔を示す。

例15:走査電子顕微鏡写真に写った結晶の大きさの測定

未粉末のアセトニトリルC晶、アセトニトリルC晶のジェットミル粉砕物（粉砕圧力3kgf、供給圧力4kgf）の各々について、走査電子顕微鏡写真に写っている結晶の長さを測定した。未粉末のアセトニトリルC晶は柱状晶であるので、柱の長さを測定した。一方、アセトニトリルC晶のジェットミル粉砕物は粒状であるので、長径の長さを測定した。測定した結晶の数は、各群430個である。その結果を表7に示す。未粉末のアセトニトリルC晶の長径の長さの平
均值は17.32 μmであるのに対して、アセトニトリルC晶のジエットミル粉砕物の長径の平均値は2.96 μmであり、未粉砕のアセトニトリルC晶の長径の長さの平均値の約17%の長さになっていた。なお、粉砕していないメタノール水C晶の長径の長さについては、統計解析可能な個数の方は示し難いものの、図17〜図19の電子顕微鏡写真には1箇を超える長さの柱状晶が多数観察されることから、少なくとも、未粉砕のアセトニトリルC晶の長さの5倍以上、おそらくは10倍以上の平均長を有することは明らかと考えられた。

[0141]（表7）

<table>
<thead>
<tr>
<th>結晶の長径</th>
<th>アセトニトリルC晶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>未粉砕</td>
</tr>
<tr>
<td>平均値</td>
<td>17.32 μm</td>
</tr>
<tr>
<td>中央値</td>
<td>13.71 μm</td>
</tr>
<tr>
<td>最大値</td>
<td>86.29 μm</td>
</tr>
<tr>
<td>最小値</td>
<td>3.23 μm</td>
</tr>
<tr>
<td>標準偏差</td>
<td>12.29 μm</td>
</tr>
</tbody>
</table>

[0142]例16:かさ密度及びタップ密度の測定

例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジエットミル粉砕物（粉砕压力3kgf・供給圧力4kgf）、市販のA晶（φ50 19 μm；北京連本医薬化学技術有限公司／Beijing Lianben Pharm-chemicals Tech. Co., Ltd. から購入したもの）、前記の市販のA晶を例12と同様にハンマー・ミル（大薬機製、DF-15）で粉砕した試料の夫々について、定容量法によって、かさ密度及びタップ密度を測定した。かさ密度及びタップ密度は以下の方法で求めた。

[0143]＜定容量法による高密度の測定法＞

定容量法による高密度は、次式により計算した。

\[
\text{定容量法による高密度} = (\text{MT} - \text{M0}) / V
\]

ここで、式の右辺の変数は、次のとおりである。
MT1 : タップ前の紛体と測定用容器の合計質量 (g)
M0 : 測定用容器の質量 (g)
V : 測定用容器の容積 (ml)

＜定容量法によるタップ密度の測定法＞

定容量法によるタップ密度は、次式により計算した。
定容量法によるタップ密度 (g/ml) = (MT2-M0) / V

ここで、式の右辺の変数は、次のとおりである。
MT2 : タップ後の紛体と測定用容器の合計質量 (g)
M0 : 測定用容器の質量 (g)
V : 測定用容器の容積 (ml)

右辺の変数は、次のように測定した。
かさ比重測定器 (容量25 ml、JIS Z 2504/筒井理化学器具)の重量 (M0)
を測定後、測定器の上部から、測定器内にあけるまで結晶を入れ、測定器内が結晶で十分に満たされたのを確認後、測定器上部に堆積した過剰量の結晶をスパーテルで擦りきり、全体の重量 (MT1) を量った。

この測定器を手で30回程度タッピングし、再び測定器上部からあけるまで結晶を入れる。この工程を数回繰り返し、測定器内が結晶で十分に満たされたのを確認後、スパーテルで擦りきり、全体の重量 (MT2) を量った。

これらの変数を上記の式に与えて定容量法による高密度及び定容量法によるタップ密度を算出した（表8）。

例4で得た未粉砕のメタノール水C晶及び市販のA晶については、紛体が繊状であるために、容器内に大きな空隙ができてしまうとともに、容器の上に盛り上げてしまうため、定容量法による高密度は測定できなかった。

例3で得た未粉砕のアセトニトリルC晶のタップ密度は、例4で得た未粉砕のメタノール水C晶のタップ密度と比べて3.1倍高かった。また、例3で得た未粉砕のアセトニトリルC晶のタップ密度は、市販のA晶のタップ密度と比べて2.4倍高かった。
[表8]

<table>
<thead>
<tr>
<th>試料</th>
<th>蒸密度 (g/ml)</th>
<th>タップ密度 (g/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>市販のA晶 <sup>17</sup> (Beijing Lianben Pharm-chemicals Tech.Co., Ltd. / 北京連本医薬化学技術有限公司)</td>
<td>溶解不能</td>
<td>0.14</td>
</tr>
<tr>
<td>市販のA晶をサンプルミルで粉碎した試料</td>
<td>0.23</td>
<td>0.37</td>
</tr>
<tr>
<td>例4で得た未粉碎のメタノールC晶</td>
<td>溶解不能</td>
<td>0.11</td>
</tr>
<tr>
<td>例5で得た未粉碎のアセトニトリルC晶</td>
<td>0.25</td>
<td>0.34</td>
</tr>
<tr>
<td>例5で得たアセトニトリルC晶のジェットミル粉碎物</td>
<td>0.21</td>
<td>0.38</td>
</tr>
</tbody>
</table>

例17: アセトニトリルC晶のジェットミル粉碎物の溶解速度

例5で得たアセトニトリルC晶のジェットミル粉碎物(粉碎圧力3kgf・供給圧力4kgf)の溶解速度を例3で得た未粉碎のアセトニトリルC晶及び市販のA晶(D50=19μm; Beijing Lianben Pharm-chemicals Tech. Co., Ltd. / 北京連本医薬化学技術有限公司より購入)と比較した。なお、例3で得た末粉碎のアセトニトリルC晶は、目開き16メッシュの篩過品を用いた。試料100mg及びマグネット機械式スクリューサンプルミル(スターラーサー)を200mlのコニカルビーカーに入れ、溶出試験第1液(pH1.2)、pH5.5のMcIvaine緩衝液、溶出試験第2液(pH6.8)、及び水をそれぞれ100mlを加え、ヤマト科学(Yamato)製マグミキサーM-41を用い、每分500回転で攪拌した。経時に試験液の一部を採取し、フィルターでろ過して試料溶液とし、標準溶液に対して吸光度測定法(測定波長317nm)により試験した。

試験結果を図26に示す。溶出試験第1液(pH1.2)に対する、アセトニトリルC晶のジェットミル粉碎物の3分後及び5分後の溶解速度は、A晶よりも速かった。また、水に対する、アセトニトリルC晶のジェットミル粉碎物の1分後～10分後の溶解速度は、A晶よりも未粉碎のアセトニトリルC晶よりも速かった。さらに、PH5.5のMcIvaine緩衝液及び溶出試験第2液(pH6.8)に対する、アセトニトリルC晶のジェットミル粉碎物の溶解速度および溶解量は、未粉碎のアセトニトリルC晶と比較して高値を示し、市販のA晶と同等であった。

これらの結果から、溶出試験第1液(pH1.2)、pH5.5のMcIvaine緩衝液、溶
出試験第2液（pH6.8）、及び水のいずれに対しても、アセトニトリルC晶のジェットミル粉砕物は、市販のA晶と同等か市販のA晶以上の溶解速度を示す優れた原薬であることがわかった。

例18: アセトニトリルC晶のジェットミル粉砕物を含む錠剤の溶出速度

例5で得たアセトニトリルC晶のジェットミル粉砕物（粉砕圧力3kgf・供給圧力4kgf）を用いて特許4084399号明細書の実施例1の処方に従って錠剤を製造した。例3で得た未粉砕C晶（目聞き16メッシュの篩過品）又はA晶（D50=19μm, Beijing Lianben Pharm-chemicals Tech. Co., Ltd. / 北京連本医薬化学技術有限公司より購入）を用いて同様に錠剤を製造して溶出プロファイルを比較した。各結晶50.0g、乳糖水和物（Super Tab U SD, DFE Pharma製）183.8g、部分アルファ化デンプン（PC-10, 旭化成ケミカルズ製）37.5g、ヒドロキシプロピルセルロース（HP-S製）の日本曹達製）7.5g、クロスカルメロースナトリウム（ND-200, 旭化成ケミカルズ製）31.3gを乳鉢を使用して混合した。精製水93gを混合末に加えて練合した。得られた湿潤顆粒を8号メッシュで整粒後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を22号メッシュで整粒した後、篩過顆粒290gにステアリン酸マグネシウム（大平化学産業製）9.4gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm²）で打錠し7mm径の錠剤を得た。

試験液としてPH5.5のMcIlvaine緩衝液900mlを用い、パドル法により毎分60回転で富山産業（Toyama）恒温水槽式溶出試験器NTR-6200Aを用いて攪拌した。5分間、10分間、15分間、30分間、45分間、60分間の各時間攪拌後に試験液をフィルターでろ過して試料溶液とし、標準溶液に対して吸光度測定法（測定波長317nm）によりフエブキソスタットの濃度を測定した。例5で得られたアセトニトリルC晶のジェットミル粉砕物を含む錠剤は、全ての攪拌時間において、未粉砕のアセトニトリルC晶を含む錠剤よりも早い溶出を示し、60分攪拌後には、未粉砕のアセトニトリルC晶と比較して約20%高い溶出率を示した。また、アセトニトリルC晶のジェットミル粉砕物を含む錠剤は、攪拌開始から
5分後、10分後及び30分後の時点において、A晶を含む錠剤、F錠、フィルムコーティング剤されたF錠のいずれと比較しても、より速い溶出速度を示し、最終的にこれらのA晶を含有する錠剤と同等の約95%の溶出率を示した（図27）。

例19：アセトニトリルC晶のジエテトミル粉砕物の安定性試験

例5で得たアセトニトリルC晶のジエテトミル粉砕物（圧盤圧力3kgf、供給圧力4kgf）を褐色ガラス瓶（蓋はポリエチレンの中蓋が付いたポリプロピレン製。）または厚さ0.04mmのポリエチレン袋に入れて密封し、長期保存試験（25℃±2℃/60%RH±5%）、および、加速試験（40℃±2℃/75%RH±5%）の各条件下での安定性を検討した。安定性の測定は、乾燥減量、HPLCによる純度試験および粉末X線回折を測定することにより行った。

アセトニトリルC晶のジエトミル粉砕物の乾燥減量：

乾燥減量とは、文字通り、乾燥による重量変化の試験である。乾燥減量の測定は、アセトニトリルC晶1グラムを長期保存試験条件で3ヶ月保存した場合と、加速試験条件で1ヶ月および3ヶ月保存した場合の差々について、その乾燥減量測定した。測定は、乾燥機（IKEDA RIKAI AUTOMATIC OVEN DEK）を用いて105℃で2時間乾燥させたときの重量を天秤にて測定することにより行った。

表9に示すように、3ヶ月までの加速試験と長期保存試験において、問題となるレベルの乾燥減量は観察されなかった。

<table>
<thead>
<tr>
<th>加速試験</th>
<th>長期保存試験</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1ヶ月</td>
</tr>
<tr>
<td>棕色瓶</td>
<td>0.003%</td>
</tr>
<tr>
<td>ポリエチレン袋</td>
<td>0.023%</td>
</tr>
</tbody>
</table>

アセトニトリルC晶のジエトミル粉砕物の純度試験：

HPLCによる純度試験は、長期保存試験条件で3ヶ月および6ヶ月保存した場合と、加速試験条件で1ヶ月、3ヶ月および6ヶ月保存した場合について測定した。

まず、測定試料10mgを移動相25mLに溶かし、試料溶液とした。この試料溶
液を1mL分取し、移動相を加えて200mLとし、標準溶液とした。試料溶液及び標準溶液、10μLずつを正確に、次の条件で液体クロマトグラフィーにより試験を行った。試料溶液中のフエブキソスタツトのピーク面積と、類縁物質のピーク面積の比により純度を算出した。長期保存条件下においても（図28）、加速条件下においても（図29）、6ヶ月の保存期間中、不純物の総量はフエブキソスタツトの約0.05%で一定しており、不純物の総量の変化は見られなかった。同様に、個々の不純物の中で最もピーク面積の大きな不純物（保持時間2.6min）は、長期保存条件下においても、加速条件下においても、6ヶ月の保存期間中、約0.035%で一定しており、最も多く含まれる不純物の量に変化は見られなかった。このように、長期保存条件および加速条件の々々において、アセトニトリルC6のジエチルトミルフェノール中に不純物の増加は認められなかった。

[0156] 試験条件

検出器：紫外吸光度計（測定波長：320nm）
カラム：内径4.6mm、長さ15cmのステンレス管に粒子径5μmのオクタデシルシリカゲルが充填された市販のカラムを用いた。
カラム温度：40℃
移動相：アセトニトリル／pH2.0の0.1mol/Lリン酸二水素カリウム液を2倍に希釈した液 = 13/7
流量：フエブキソスタツトの保持時間が約5分になるように調整する（約1mL/min）。
面積測定範囲：フエブキソスタツトの保持時間の約6倍の範囲

[0157] 測定機器

SHIMADZU 高速液体クロマトグラフ装置
ポンプ：LG-20AD
オートサンプラーや：SIL-20ACHT
UV検出器：SPD-M20A
カラムオーブン：CTO-20AC
デガッサ：DGU-20A3R

【0158】アセトニトリルC晶のジェットミル粉砕物の粉末X線回折:
粉末X線回折は、アセトニトリルC晶のジェットミル粉砕物をポリエチレン
袋中に密封した試料、および、同じ試料を褐色ガラス瓶に入れた試料の3つ
について、長期保存試験条件と加速試験条件の3つについて3ヶ月保存したサ
ンプルを測定した。測定方法は、例6と同様であった。

図30に示すように、ポリエチレン袋中に密封して加速条件下で3ヶ月保存
した場合、褐色ガラス瓶に入れて長年にわたり保存した場合、ポリエチ
レン袋中に密封して長期保存下で3ヶ月保存した場合、褐色ガラス瓶に入
れて長期保存条件下で3ヶ月保存した場合、のいずれも、粉末X線回折チャー
トにおけるピークの位置及び強度に変化はなかったことから、保存期間中で結晶
性に変化はなかったことが確認できた。

【0159】例20:アセトニトリルC晶のジェットミル粉砕物を用いた試作錠の安定性
例5で得たアセトニトリルC晶のジェットミル粉砕物（粉砕圧力3kgf/供給
圧力4kgf）を用いて20mgのフエブキソスタットを含有する素錠（以下、試
作素錠（MeCN粉砕）という。）とフィルムコーティング錠（以下、試作F
C錠（MeCN粉砕）という。）を作製し、夫々について、加速試験（40℃±2
℃/75%RH±5%）、および、苛酷試験（60℃±2℃/湿度コントロールなし
）の各条件下での安定性を検討した。測定項目としては、硬度、重量、容出
性及び純度を測定した。なお、比較のため、FC錠である市販のF錠（10mg錠:
ロット番号5051及び5049、20mg錠：ロット番号6062及び6056、40mg錠：ロッ
ト番号8016）についても同じ測定を行った。

【0160】素錠の作製は、以下のようになった。まず、アセトニトリルC晶のジェット
ミル粉砕物70.0g、乳糖水和物263.9g、部分アルファー化デンプン64.8g、ヒ
ドロキシプロピルセルロース10.5g、を攪拌混合造粒装置（VG-5、バウレック
製）を使用して混合した。次に、精製水102gを混合末に加えて練合した。得
られた混潤顆粒を湿式乾式造粒機（IC-197s、バウレック製）φ4.75mmを使用
して造粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を湿式乾
式整粒機（QC-197s、パウレック製）で整粒した後、篩過顆粒185gにクロスカルメロースナトリウム11.9gをポリ袋にて混合した後、ステアリン酸マグネシウム1gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm²）で打錠し7薬径の素錠（重量125mg）を得た。

フィルムコーティング錠の作製は、以下のように行った。まず、アセトニトリルC晶のジェットミル粉末物70.0g、乳糖水和物263.9g、大部分アルファ化デンプン64.8g、ヒドロキシプロピルセルロース10.5gを攪拌混合造粒装置（VG-5、パウレック製）を使用して混合した。次に、精製水102gを混合末に加えて練合した。得られた湿潤顆粒を湿式乾式整粒機（QC-197s、パウレック製）で4.75倍を使用して整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を湿式乾式整粒機（QC-197s、パウレック製）で1.1倍で整粒した後、篩過顆粒185gにクロスカルメロースナトリウム11.9gをポリ袋にて混合した後、ステアリン酸マグネシウム1gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm²）で打錠し7薬径の素錠（重量125mg）を得た。次に、ヒドロメロース25.2g、2.8gのマクロガル6000を精製水289.6gに溶解し、コーティング液を作製した。得られた素錠に、調製したコーティング液を自動コーティング装置を用いて、給気70℃にて7mg/錠の被覆を行い、フィルムコート錠を得た。

試作錠の硬度試験：
試作素錠（MeCN粉碎）（20mg錠）、試作FC錠（MeCN粉碎）（20mg錠）、F錠（10mg錠、20mg錠、40mg錠）の夫々について、長期保存条件（3ヶ月、6ヶ月）、加速条件（1ヶ月、3ヶ月、6ヶ月）及び苛酷条件（1ヶ月、3ヶ月）で保存した後の硬度をOKADA SEIKO PC-30を用いて測定し、測定開始時の硬度と比較した（表10）。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠（MeCN粉碎）も、試作FC錠（MeCN粉碎）も、F錠に対しても色ない十分な硬度を有し、保存による硬度の低下は見られなかった。
硬度の単位はニュートン (N) である。

試作錠の重量変化:
試作素錠 (MeCN粉砕) (20mg錠)、試作FC錠 (MeCN粉砕) (20mg錠)、F錠 (10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件 (3ヶ月、6ヶ月)、加速条件 (1ヶ月、3ヶ月、6ヶ月)及び苛酷条件 (1ヶ月、3ヶ月)で保存した後の重量の変化を測定し、測定開始時の重量と比較した（表11）。
ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠 (MeCN粉砕)も、試作FC錠 (MeCN粉砕)も、F錠と同様に、重量の変化は3%未満であり、保存期間中を通じて問題となるレベルの重量変化は認められなかった。

試作錠の溶出性:
試作素錠 (MeCN粉砕) (20mg錠)、試作FC錠 (MeCN粉砕) (20mg錠)、F錠 (10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件 (3ヶ月、6ヶ月)、加速条件 (1ヶ月、3ヶ月、6ヶ月)及び苛酷条件 (1ヶ月、3ヶ月)で保存した後の溶出性を測定し、測定開始時の溶出率と比較した（表12）。
ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠 (MeCN粉砕)も、試作FC錠 (MeCN粉砕)も、F錠と同様に、溶出の変化は3%未満であり、保存期間中を通じて問題となるレベルの溶出変化は認められなかった。
月）、加速条件（1ヶ月、3ヶ月、6ヶ月）及び苛酷条件（1ヶ月、3ヶ月）で保存後、日本薬局方の溶出試験第2液（pH 6.8）の中でパドル速度50r/minで30分間撹拌し、測定開始時の溶出率と比較した（表12）。ただし、表中、「」と表示されている条件での測定は行っていない。試作素錠（MeCN粉砕）、試作FC錠（MeCN粉砕）、F錠と同様に、94%以上の溶出率が保たれており、保存期間中を通じて問題となるレベルの溶出率の変化は認められなかった。

<table>
<thead>
<tr>
<th></th>
<th>開始時</th>
<th>3ヶ月</th>
<th>6ヶ月</th>
<th>1ヶ月</th>
<th>3ヶ月</th>
<th>6ヶ月</th>
<th>1ヶ月</th>
<th>3ヶ月</th>
</tr>
</thead>
<tbody>
<tr>
<td>F錠10mg錠</td>
<td>97.9</td>
<td>99.9</td>
<td>98.4</td>
<td>98.7</td>
<td>96.7</td>
<td>100.3</td>
<td>99.4</td>
<td></td>
</tr>
<tr>
<td>F錠20mg錠</td>
<td>97.9</td>
<td>101.5</td>
<td>98.5</td>
<td>96.7</td>
<td>101.3</td>
<td>96.6</td>
<td>99.9</td>
<td>101.4</td>
</tr>
<tr>
<td>F錠40mg錠</td>
<td>95.9</td>
<td>100.0</td>
<td>97.8</td>
<td>97.8</td>
<td>95.8</td>
<td>96.4</td>
<td>98.8</td>
<td>100.9</td>
</tr>
<tr>
<td>試作素錠（MeCN粉砕）</td>
<td>98.7</td>
<td>-</td>
<td>-</td>
<td>98.3</td>
<td>100.7</td>
<td>-</td>
<td>99.2</td>
<td>100.0</td>
</tr>
<tr>
<td>試作FC錠（MeCN粉砕）</td>
<td>96.7</td>
<td>-</td>
<td>-</td>
<td>93.6</td>
<td>95.4</td>
<td>-</td>
<td>94.4</td>
<td>95.5</td>
</tr>
</tbody>
</table>

※ 溶出率の単位はパーセント（%）である。

試作錠の純度試験:
試作素錠（MeCN粉砕）（20mg錠）、試作FC錠（MeCN粉砕）（20mg錠）、F錠（10mg錠、20mg錠、40mg錠）の夫々について、加速条件（1ヶ月、3ヶ月）及び苛酷条件（1ヶ月、3ヶ月）で保存後、例19の純度試験と同様の方法で不純物の量を経時的に測定した（図31、図32）。ただし、F錠（10mg錠、20mg錠、40mg錠）については、加速条件下でのみ6ヶ月まで測定した。なお、錠剤からの抽出は、1錠を取り薬物10mgに対して移動相25mL相当量に溶解分散し、試料溶液とした。この試料溶液を1mL分取し、移動相を加えて200mLとし、標準溶液とした。加速条件下においても（図31）、苛酷条件下においても（図32）、試作素錠（MeCN粉砕）、試作FC錠（MeCN粉砕）ともに、F錠と同様に、3ヶ月の保存期間中、不純物の総量はFエブキソスタットの総量の0.1%以下であり、不純物の総量の変化は見られなかった。同様に、個々の不純物の中で最もピーク面積の大きな不純物（保持時間2.6min）は、加速条件下
においても、苛酷条件下においても、3ヶ月の保存期間中、0.040%未満の水準で一定しており、最も多く含まれる不純物の量に変化は見られなかった。このように、加速条件および苛酷条件の夫々において、試作素錠（MeCN粉砕）（20mg錠）及び試作FC錠（MeCN粉砕）（20mg錠）に含まれる不純物の増加は認められなかった。

例21：試作FC錠（MeCN粉砕）の溶出試験
例20で作製した試作FC錠（MeCN粉砕）（20mg錠）について、日本薬局方の溶出試験第1液（pH2）、McIlvain緩衡液（pH5.0）、溶出試験第2液（pH6.8）、精製水に対する溶出試験を行って、F錠（20mg錠）の溶出特性と対比した（図33）。なお、溶出試験方法は例18と同様の方法で行った。

いずれの条件においても、アセトニトリルC晶のジェットミル粉砕物を用いて作製した試作FC錠（MeCN粉砕）（20mg錠）の試験液への溶出率は、F錠（20mg錠）の溶出率とほぼ同じか若干上回っており、良好な溶出特性を示した（図33）。

例22：比表面積の測定
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物（粉砕圧力3kgf - 供給圧力4kgf）、例12で調製したA晶のハンマーミル粉砕物の夫々について、BET多点法を用いて比表面積を測定した。BET法は、低温において窒素やクリプトンなどの気体を固体の表面に単分子層で吸着させ、その吸着気体量を測定して夫々の分子の占める面積から固体の表面積を求める方法である。

BET多点法による比表面積測定の測定機器及び測定条件は次のとおりであった。
測定機器：4連式比表面積・細孔分布測定装置 NOVA-4200e型（Quan社製）
使用ガス：窒素ガス
冷媒（温度）：液体窒素（77.35K）
前処理条件：110℃、6Hr以上真空脱気
測定相対圧力：0.05<P/P₀<0.3

表13に示すように、未粉砕のメタノール水C晶の表面積は0.172 m²/gに過ぎなかったものが、未粉砕のアセトニトリルC晶の表面積は5.757 m²/gに増加し、33.5倍に面積が増加していた。未粉砕のメタノール水C晶は、日本薬局方への崩壊試験用第2液への溶解速度がA晶の1/2以下であることが問題であったが、未粉砕のアセトニトリルC晶は未粉砕のメタノール水C晶の33.5倍も大きな表面積を有するので、溶出性に優れることが容易に理解できる。

そして、さらにこれをジェットミル粉砕することにより、表面積は9.001 m²/gに増加し、未粉砕のアセトニトリルC晶の表面積の1.6倍に表面積が増加した。未粉砕のメタノール水C晶とアセトニトリルC晶のジェットミル粉砕物の表面積を対比すると、表面積は約52.3倍に表面積が増加していた。アセトニトリルC晶のジェットミル粉砕物の表面積は、市販のA晶をハンマーミルで粉砕した試料の表面積の約1.2倍あることもからわかるように、大きな表面積を有することが確認できた。アセトニトリルC晶のジェットミル粉砕物は未粉砕のメタノール水C晶の52.3倍も大きな表面積を有するので、とても溶出性に優れることが容易に理解できる。

例23：原薬の外観

例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物（粉砕圧力3kgf・供給圧力4kgf）、アセトニトリルC晶のボールミル粉砕物、未粉砕のA晶（例12および例16を参照）の外観について、安息角の測定を試みたが、安息角が測定できないほどに流動性の悪い現状であった。

そこで、安息角を測定する代わりに、各試料を肉眼視したときの外観を撮
未粉砕のメタノール水C晶（図34）は、ふわふわした線毛状の嵩高い塊であり、未粉砕のA晶よりも大きな1面を超えるサイズの針状晶が目視で確認できた。

未粉砕のアセトニトリルC晶（図35）は、やや嵩高い塊を形成する傾向があるが、未粉砕のメタノール水C晶よりも小さく、かつ、未粉砕のメタノール水C晶よりも密度の高い塊であった。未粉砕のアセトニトリルC晶の塊の周囲を良く目を凝らして見ると、小さな針状晶らしきものが確認できた。

未粉砕のメタノール水C晶（図34）は、ふわふわした綿毛状の嵩高い塊であり、未粉砕のA晶よりも大きな1面を超えるサイズの針状晶が目視で確認できた。

アセトニトリルC晶のポールミル粉砕物（図36）も、塊を形成する傾向があったが、針状晶らしき構造は見えず、アセトニトリルC晶のジェットミル粉砕物と同様にプラスチックスプーンで均すと、容易に平らになり、きめ細かな微粒子が寄り集まっていることがわかった（図37）。

アセトニトリルC晶のジェットミル粉砕物（図36）とアセトニトリルC晶のポールミル粉砕物（図38）は、写真では塊を形成してはいるが、とても崩れやすい塊であり、スパーザーで掻き取った際の粉の動きはコーネスタンチ（図39）や片栗粉（図40）の粉の動きにとてもよく似ていた。アセトニトリルC晶のジェットミル粉砕物は、優れたハンドリング性を有することが確認できた。

例24：^{13}C固体NMRによる結晶形の同定

A晶を含有する製剤は（以下、「A晶製剤」という。）、及び、例20で作製した未粉砕のアセトニトリルC晶を含有する素錠（以下、「C晶製剤」という。）の^{13}C固体NMRを測定するとともに、例12で調製したA晶のハンマーミル粉砕物（以下、「A晶原体」という。）、及び、アセトニトリルC晶のジェットミル粉砕物（以下、「C晶原体」という。）の^{13}C固体NMRを測定して対比し、
製剤中に含まれるフエブキソスタツト原薬の結晶形を確認した。
なお、A晶を含有する製剤、及び、アセトニトリルC晶のジェットミル粉砕物を含有する素線については、ラップでくるんで軽く小槌で数回たたいて粉砕した試料を測定に用いた。
また、A晶製剤は、次のように作製した。まず、市販のA晶 0.50 19 μm；
北京連本薬学化学技術有限公司／Beijing Lianben Pharmaceticals Tech. Co., い. から購入したもの）20. 09、乳糖水和物75. 4g、部分α化デンプン18. 5g、ヒドロキシプロピルセルロース3. 09を乳鉢を使用して混合した。次に、精製水36. 6gを混合末に加えて練合した。得られた湿潤顆粒を14号メッシュで整粒した後、50℃で通風乾燥させ、顆粒を乾かした。得られた顆粒を20号メッシュで整粒した後、篩過顆粒116. 9gにクロスカルメロースナトリウム7. 5g、ステアリン酸マグネシウム0. 6gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm2）で打錠し、重量125mg、7mm径の素錠を得た。
固体Rの測定は、13C（100. 5MHz）の核種を用い、各試料約49μlを直径3. 2mmの固体用R試料管に詰めて、室温で、ほk Hzの回転速度で測定した。測定機器及び測定条件は下記のとおりであった。

* 化学シフトの基準はアダマンタンの信号（13C=29. 5ppm）でシム20を調整した。

図4.1に示すように、C晶原体及びC晶製剤の13C固体NMRチャートでは、約20pp
mにほぼ等価なトリプレットピーク（特許第4084309号公報の参考例3を参照）を有する一方で、A晶原体及びA晶製剤の\(^{13}C\)固体Rチャートには、これらのピークが存在しなかったので、C晶の原薬を用いて湿式造粒して製造した錠剤中の結晶形がC晶のまま、結晶転移を生じていないことを、\(^{13}C\)固体Rによって確認することができた。また、A晶原体及びA晶製剤の\(^{13}C\)固体NMRチャートでは、約19 ppmにほぼ等価なダブルピークを有する一方で、C晶原体及びC晶製剤の\(^{13}C\)固体Rチャートには、これらのピークが存在しなかったので、A晶の原薬を用いて製造した錠剤中の結晶形がA晶のまま、結晶転移を生じていないことを、\(^{13}C\)固体Rによって確認することができた。

例25：ラマン顕微鏡による観察
錠剤中のフェブキソスタツットのC晶の結晶形、形態及び大きさをラマン顕微
鏡を用いて観察した。

事前に、Renishaw社のinVia Reflex/StreamLineを用いて、フエブキソスタットのA晶及び試作錠（MeCN）の製造に用いた各成分のラマンスペクトルを確認した。その結果、C晶は約1695 shift/cm-1のピークによって、A晶及び各添加剤と区別できることがわかった（図42及び図43）。また、A晶は、約1450 shift/cm-1約1330 shift/cm-1のピークによって、C晶及び各添加剤と区別できることがわかった（図42及び図43）。

ラマン顕微鏡はRenishaw社の顕微レーザーラマン分光装置inVia Reflex/StreamLineを用い、ラマンイメージングを測定した。

測定条件は、下記のとおりであった。

- 励起波長: 785nm STLine
- レーザー出力: 50%(45mW八ine)
- 露光時間: 0.88sec/U ne
- グレーティング: 1200l/mm
- マッピングエリア: 1000 X 1000μm(1.2μmstep)
- 取得スペクトル: 695556(5h45m)
- 対物レンズ: X50

例20で作製した試作FC錠（MeCN粉砕）（20mg錠）の表面を切削し観察した。

[0183] C晶のラマンイメージングの画像及び粒子解析の結果を図々図44と図45に示す。顕微鏡画像（図44）から、少なくとも直径10μm未満のC晶の微細な粒子が多数確認できた。また、粒子解析の結果（図45）から、直径5μm以下の粒子（図45の左側のX軸の隅の棒）が大多数であることが確認できた。C晶の粒子が多数密集している場合には、画像だけでは、大きな粒子のように見えてしまうことは容易に想定できるので、ほとんどのC晶の粒子は直径5μm以下であると考えられた。走査型電子顕微鏡型の顕微ラマン装置（例えばRenishaw社の「ラマン複合システムSEM ラマン」）を用いれば、密集している粒子を峻別して観察確認可能であろうと考えられた。
例26：共焦点レーザー蛍光顕微鏡による観察

フエブキソスタットは、励起波長314nm、蛍光波長390nmで蛍光観察できることが非特許文献9に記載されていることから、実際に、錠剤中に含まれるフエブキソスタット原薬の形態及び大きさを観察することが可能かどうかを検証した。

共焦点レーザー蛍光顕微鏡は、Leica社製のTCS-SP5を用いた。試料は紫外光で励起すると蛍光を発することが予備実験で分かっていたので、405nmの励起光を用いて蛍光を観察した。TCS-SP5では、405nmの単一波長の励起光を半導体レーザーを用いて発生させるため、励起フィルターは不要である。今回のが観察では、COHERENT社製の小型ダイアードレーザモジュールを用いて40mmの励起光を発生させた。また、TCS-SP5では、ダイクロイツクミラーの機能を果たすものとして、SP5専用に設計されたライカ製ビームスプリッターを用いた。TCS-SP5は、蛍光波長をプリズムと可動式のスライダーを用いて分光してスキャンするため、5nm単位で蛍光波長の自由な設定ができる。

なお、フエブキソスタットについて非特許文献9に記載されている励起波長314nm、蛍光波長390nmは、いずれも、レンズを透過しにくくし、400nm以下の紫外波長域に属するため、蛍光顕微鏡観察を行うためには、より可視波長域の光で観察することが望ましい。

そして、一般に、ある物質の励起波長と蛍光波長は、一定の幅を有していることが多く、蛍光顕微鏡観察を行うに先立って予備検討として、まず、各結晶を可視波長域ぎりぎりの405nmの光で励起したときの蛍光スペクトル特性を確認した。

なお、蛍光スペクトル特性の確認は、TCS-SP5を用いたスキャンにより、単一波長の光学断層像について、405nmの励起光（出力レベラがみ、25、あるいは35%）を照射し、蛍光を410nmから781.7nmの範囲で、スリット幅5μmで、5.9nm間隔で検出した。画像フォーマットは、512×512pixelでスキャン速度は400Hz、シグナルの平均化はラインモードで行った。

その結果、未粉碎のメタノール水c晶、未粉碎のアセトニトリルc晶、アセ
トニ トリルC晶のジエツトミル粉砕物、アセトニ トリルG晶のポールミル粉砕物のいずれの試料についても、405nm（出力レベルがほぼあるいは20%）の励起波長に対して420nm〜600nmの波長域に強い蛍光を発することを確認したので、以後の蛍光顕微鏡観察は励起波長405nm、蛍光波長420 nm〜600nmで観察することにした。

なお、比較のため緑色蛍光および赤色蛍光も測定した。緑色蛍光に関しては、励起波長は488 nm（出力レベル10%）、蛍光は450〜550nmの波長域で取得し、赤色蛍光に関しては、励起波長は543 nm（出力レベル40%）、蛍光は555〜620nmの波長域で取得した。蛍光検出器は高速度蛍光検出器HyDを用いた。検出感度については、青色蛍光、緑色蛍光、赤色蛍光のいずれの場合も、HyDの取得ゲインは100%とした。Z-stackは、対物レンズが20倍、25倍、63倍、100倍の場合に、光学断層像の間隔をそれぞれ2.5 μm、1μm、0.5μm、あるいは0.5μmとして観察し、最大投影法で行った。スキャン速度は200 Hz、シグナルの平均化はラインモードで行った。画像フォーマットは、512 x 512 pixel、あるいは1024 x 1024 pixelとした。Photon counting modeでは、スキャン速度は10 Hz、シグナルの平均化はラインモードで行った。

その結果、緑色蛍光および赤色蛍光では、ほとんど蛍光はみられないことを確認した。

共焦点レーザー蛍光顕微鏡観察は、(1)未粉砕のメタノール水C晶、(2)未粉砕のアセトニ トリルC晶、(3) アセトニ トリルG晶のジエツトミル粉砕物、(4) アセトニ トリルC晶のポールミル粉砕物、(5)未粉砕のアセトニ トリルC晶を用いて作製した試作錠、(6) アセトニ トリルC晶のジエツトミル粉砕物を用いて作製した試作錠、(7) プラセボ錠、(8) 乳糖水和物、(9) 部分α化デンプン、(10) ヒドロキシプロピルセルロース、(11) クロスカルメロースナトリウム、(12) ステアリン酸マグネシウム、(13) ヒブロメロース、(14) マクロゴール6000の夫々について行った。

未粉砕のアセトニ トリルC晶を用いて作製した試作錠（以下、rwieGN-C素錠」という。）は、次のようにして作製した。
まず、未粉砕のアセトニトリル晶50.0g、乳糖水和物183.8g、部分アルファ化デンプン37.5g、ヒドロキシプロピルセルロース7.5g、クロスカルメルースナトリウム31.39gを乳鉢を使用して混合した。次に精製水93gを混合末に加えて練合した。得られた湿潤顆粒を8号メッシュで整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を22号メッシュで整粒した後、篩過顆粒290gにステアリン酸マグネシウム9.4gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm²）で打錠し7面径のMeCN-C素錠を得た。MeCN-G素錠の重量は128mgであった。

[0191] アセトニトリル晶のジエチルトリル粉砕物を用いて作製した試作錠（以下、粉砕MeCN-C素錠という）、は、次のようにして作製した。

まず、アセトニトリル晶のジエチルトリル粉砕物70.0g、乳糖水和物263.9g、部分アルファ化デンプン64.8g、ヒドロキシプロピルセルロース10.5gを攪拌混合造粒装置（VG-5、パウレックス製）を使用して混合した。次に精製水102gを混合末に加えて練合した。得られた湿潤顆粒を湿式乾式整粒機（QC-197s、パウレックス製）φ4.75mmを使用して整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を湿式乾式整粒機（QC-197s、パウレックス製）φ1.1mmで整粒した後、篩過顆粒185gにクロスカルメルースナトリウム11.9gをポリ袋にて混合した後、ステアリン酸マグネシウム1gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm²）で打錠し7面径の粉砕MeCN-C素錠を得た。粉砕MeCN-G素錠の重量は125mgであった。

[0192] プラセボ錠は、次のようにして作製した。

まず、乳糖水和物333.9g、部分α化デンプン64.89g、ヒドロキシプロピルセルロース10.5gを攪拌混合造粒装置（VG-5、パウレックス製）を使用して混合した。次に精製水102gを混合末に加えて練合した。得られた湿潤顆粒を湿式乾式整粒機（QC-197s、パウレックス製）φ4.75mmを使用して整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒をφ1.1mmを使用して整粒した後
篩過顆粒185gにクロスカルメロースナトリウム11.9gをポリ袋にて混合し、ステアリン酸マグネシウム1gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機（VELA5、菊水製作所製、打錠圧2500kgf/cm2）で打錠し7面径のブラセボ錠を得た。ブラセボ錠の重量は125mgであった。

[0193] MeCN-C素錠、粉碎MeCN-C素錠、ブラセボ錠の処方を表14に記載する。

<table>
<thead>
<tr>
<th>成分名</th>
<th>用途</th>
<th>MeCN-C素錠</th>
<th>粉碎MeCN-C素錠</th>
<th>ブラセボ錠</th>
</tr>
</thead>
<tbody>
<tr>
<td>フェブキソスタット</td>
<td>主薬</td>
<td>20.0</td>
<td>20.0</td>
<td>-</td>
</tr>
<tr>
<td>乳糖水和物</td>
<td>助形剤</td>
<td>75.4</td>
<td>74.0</td>
<td>95.4</td>
</tr>
<tr>
<td>部分α化デンプン</td>
<td>助形剤</td>
<td>15.0</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>ヒドロキシプロピルセルロース</td>
<td>結合剤</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>クロスカルメロースナトリウム</td>
<td>脇剤</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>ステアリン酸マグネシウム</td>
<td>滑沢剤</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>ニーティング剤</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

※ 表中の単位は、ミリグラム（mg）である。

[0194] 各結晶および添加剤についてはそのまま実験に使用した。一方、錠剤試料は、薬包紙に包んだ状態で、木槌で数回（5から7回）強打して、錠剤を粉碎し、粗粉碎物として実験に使用した。

観察は、各結晶、添加剤、および、錠剤の粗粉碎物を微量、スライドガラス（MATSUNAMI製）にのせ、共焦点レーザー蛍光顕微鏡（Leica社製、TCS SP5）により観察を行った。

[0195] その結果、以下の観察結果を得た。図46～図53はすべて白黒であるが、これらの図の右側の画像において、白い部分は、青い蛍光を発している。

(1) 未粉碎のメタノール水C晶（図46）

未粉碎のメタノール水C晶については、図17～図19の走査電子顕微鏡写真と同様の形状及び大きさの蛍光画像および微分干渉画像が観察された（図46）。

図46の結晶は長軸の長さが約670μmの針状晶であるが、1mmを超える長さの針状晶も多数蛍光観察された。なお、針状晶の端部で特に蛍光が強かった。
また、蛍光画像からもささくれ立った針状晶であることがわかった。長軸の中央部で蛍光の強い小さな点が観察されているのは、(2) 未粉砕のアセトニトリルC晶（図47）
未粉砕のアセトニトリルC晶についても、図20〜22の走査電子顕微鏡写真と同様の形状及び大きさの蛍光画像及び微分干渉画像が観察された（図47）。図47左の図の右上の結晶は長軸の長さが約82μmの針状晶であるが、これは形状を判りやすく示すために大きめの結晶を選んで撮影したためであり、実際には、図47左の図の中央付近の結晶のように、長軸の長さが約10μm〜20μmの針状晶が多数蛍光観察された。なお、针状晶の端部で特に蛍光が強かった。また、蛍光画像からもささくれ立った針状晶であることがわかった。
(0196)
(3) アセトニトリルC晶のジェットミル粉末（図48）
アセトニトリルC晶のジェットミル粉末についても、図23〜25の走査電子顕微鏡写真と同様の形状及び大きさの蛍光画像及び微分干渉画像が観察された（図48）。矢印の先に直径3μm前後の蛍光を発する粒子が確認できた。図48左の蛍光画像の中央付近に、直径約17μmの蛍光体が観察されるが、実際には、直径3μm前後の蛍光を発する粒子が多数寄り集まっている構造物である。図23〜25の走査電子顕微鏡写真において直径3μm前後の粒子が多数寄り集まっていることと同様の画像である。蛍光を発しているために輪郭がぼやけて直径約17μmの蛍光体のように見えているが、共焦点レーザー蛍光顕微鏡では、画面手前から奥に向かって多数の断層画像を取得しており、これらの断層画像を追ってゆくと、直径約17μmの蛍光体は実際には直径3μm前後の蛍光を発する粒子であることが確認できた。
(0197)
(4) アセトニトリルC晶のボールミル粉末（図49）
アセトニトリルC晶のボールミル粉末については、直径約1μm〜約40μmに渡る様々な大きさの球状粒子の蛍光が観察された（図49左）。アセトニトリルC晶のジェットミル粉末（図48左）と異なるのは、アセトニトリルC晶のボールミル粉末の蛍光粒子は丸みを帯びていることと、粒子の大きさが実際に様々であることにあたった。
(5) プラセボ錠（図50）

プラセボ錠では青色の蛍光は観察されなかった（図50左）。

(6) 未粉砕のアセトニトリルC晶を用いて作製した試作錠

未粉砕のアセトニトリルC晶を用いて作製した試作錠については、多数の直径5μm前後の蛍光を発する粒子が観察された（図51左）。微分干渉画像と対比すると、添加物と思われる蛍光を発しない直径20μm〜50μm程度の物体の周囲に付着した状態で直径5μm前後の蛍光を発する粒子が観察されたことがわかった。蛍光を発しない直径20μm〜50μm程度の物体の周囲に直径5μm前後の蛍光を発する粒子が多数付着しているために、画像によっては、直径20μm〜50μm程度の一つの蛍光体のように観察される画像もあったが、画面手前から画像奥に向かって多数の断層画像を追ってゆくと、実際には直径5μm前後の蛍光を発する粒子が蛍光を発しない物体に周囲に多数付着していたことがわかった。未粉砕のアセトニトリルC晶を用いて作製した試作錠は、造粒過程で未粉砕のアセトニトリルC晶が粉砕されたと考えられた。このように、未粉砕のアセトニトリルC晶は、造粒によって、十分に小さな粒子粉砕され得るので、良好な保存安定性と溶出性を兼ね備えた製剤に適している優れた結晶であることが確認された。

(7) アセトニトリルC晶のジェットミル粉砕物を用いて作製した試作錠（図52、図53）

アセトニトリルC晶のジェットミル粉砕物を用いて作製した試作錠については、多数の直径2〜3μm前後のほぼ均一な大きさの蛍光を発する粒子が観察された（図52左、図53左）。微分干渉画像と対比すると、短径直径20μm〜30μm、長径50μm〜100μm程度の添加物と思われる蛍光を発しない物体の周囲に付着した状態で直径2〜3μm前後の蛍光を発する粒子が観察されたことがわかった。蛍光を発しない程度の物体の周囲に直径2〜3μm前後の蛍光を発する粒子が多数付着しているために、画像によっては、大きな一つの蛍光体のように観察される画像もあったが、画面手前から画像奥に向かって多数の断層画像を追ってゆくと、実際には直径2〜3μm前後の蛍光を発する粒子が蛍光を
発しない物体に周囲に多数付着していたことがわかった。

[0201] 添加剤

(7) プラセボ錠、(8) 乳糖水和物、(9) 部分α化デンプン、(10) ヒドロキシプロピルセルロース、(11) プロスカルメロースナトリウム、(12) ステアリン酸マグネシウム、(13) ヒプロメロース、(14) マクロゴール6000、の夫々についても、個々に、共焦点レーザー蛍光顕微鏡による観察を行ったが、いずれの添加剤も、405nmの励起光に対して蛍光は発しないことを確認した。
請求の範囲

[請求項1] 長径の長さが実質的に約200 μm以下の結晶のみからなる2-3-シアノ-4-(2-メチルプロピオキシ)フェニル-4-メチルチアゾール-5-カルボン酸の小型化C晶。

[請求項2] D50が約100 μm以下である請求項1に記載の小型化C晶。

[請求項3] D90が約200 μm以下である請求項1又は2に記載の小型化C晶。

[請求項4] 高密度が約0.6g/ml以上である請求項1〜3のいずれか1項に記載の小型化C晶。

[請求項5] タップ密度が約0.20g/ml以上である請求項1〜4のいずれか1項に記載の小型化C晶。

[請求項6] 日本薬局方第2液に対する溶解速度が約0.5mg/ml/kh以上であるが、又は、PH5.5のMcI I vai ne緩衝液に対する溶解速度が約10μg/ml/kh以上である、請求項1〜5のいずれか1項に記載の小型化C晶。

[請求項7] 長径の長さが実質的に約100μm以下の結晶のみからなる2-3-シアノ-4-(2-メチルプロピオキシ)フェニル-4-メチルチアゾール-5-カルボン酸のC晶の微粉化物。

[請求項8] D50が約25 μm以下である請求項7に記載のC晶の微粉化物。

[請求項9] D90が約50 μm以下である請求項7又は8に記載のC晶の微粉化物。

[請求項10] 高密度が約0.20g/ml以上である請求項7〜9のいずれか1項に記載のC晶の微粉化物。

[請求項11] タップ密度が約0.30g/ml以上である請求項7〜10のいずれか1項に記載のC晶の微粉化物。

[請求項12] 日本薬局方第2液に対する溶解速度が約0.5mg/ml/kh以上であるが、又は、PH5.5のMcI I vai ne緩衝液に対する溶解速度が約13μg/ml/kh以上である、請求項6〜10のいずれか1項に記載のC晶の微粉化物。

[請求項13] A晶、G晶、及び/又は非晶質の含有量が7重量%以下である、請求項1〜6のいずれか1項に記載の2-3-シアノ-4-(2-メチルプロピオキシ)フェニル-4-メチルチアゾール-5-カルボン酸の小型化C晶又は請求項7
- 12のいずれか1項に記載の2-[3-シアノ-4-メチルプロポキシ]フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の微粉化物。

[請求項14] 実質的にA晶、G晶、及び/又は非晶質体を含有しない、請求項1~13のいずれか1項に記載の小型化C晶又はC晶の微粉化物。

[請求項15] C晶の微粉化物が流体式粉砕により得られたC晶の微粉化物である請求項7~14のいずれか1項に記載のC晶の微粉化物。

[請求項16] 流体式粉砕ジェットミル粉砕である請求項15に記載のC晶の微粉化物。

[請求項17] G晶がG晶を原料としてアセトニトリルから晶出させたC晶である請求項1~16のいずれか1項に記載の小型化C晶又はC晶の微粉化物。

[請求項18] C晶が示差走査熱量測定で約200℃〜約203℃に単一の吸熱ピークを有する結晶である請求項1~17のいずれか1項に記載の小型化C晶又はG晶の微粉化物。

[請求項19] 2-[3-シアノ-4-メチルプロポキシ]フェニル]-4-メチルチアゾール-5-カルボン酸の長径の長さが約100μm以下となるように粉砕することにより得ることができる請求項7~18のいずれか1項に記載のC晶の微粉化物。

[請求項20] 請求項1~19のいずれか1項に記載の小型化C晶またはC晶の微粉化物の製造方法であって、フェブキシスタントのアセトニトリル溶液からC晶を晶出させる工程を含む方法。

[請求項21] 請求項7~20のいずれか1項に記載のC晶の微粉化物の製造方法であって、長径の長さが約100μm以下となるように微粉化する工程を含む方法。

[請求項22] 小型化G晶又はC晶の微粉化物が示差走査熱量測定で約200℃〜約203℃に単一の吸熱ピークを有する結晶である請求項20又は21に記載の方法。

[請求項23] 請求項1~22のいずれか1項に記載の小型化C晶又はC晶の微粉化物を有効成分として含有する固形製剤。
請求項24 請求項1〜22のいずれか1項に記載の小型化C晶又はC晶の微粉化物を、有効成分である2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸の総量の30%以上の含有量で含有する固形製剤。

請求項25 日本薬局方第2液に対するC晶粉末物の溶出速度が0.50mg/ml/min以上である請求項23又は24に記載の固形製剤。

請求項26 鍛冶の形態である請求項23〜25のいずれか一項に記載の固形製剤。

請求項27 実質的に非晶質体のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸。

請求項28 結晶を含有する2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸試料を、ポールミル粉砕することにより、実質的に非晶質体のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸試料中の非晶質体の含有率を算出する方法。

請求項29 示差走査熱量測定を行い、150℃以下の領域に現れる発熱ピークの発熱ピーク量(J/g)を算出し、所定の数値を乗ずることにより、2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸試料中の非晶質体の含有率を同定する方法。

請求項30 次の工程を含む、2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸試料中の非晶質体の含有率を同定する方法:
(1) 2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸試料を示差走査熱量測定する工程、
(2) 150℃以下の領域に現れる発熱ピークの発熱ピーク量(J/g)を定量する工程、及び
(3) 次式: y = 6.0675x のxに前記工程(2)で得られた値を代入して2-[3-シアノ-4-(2-メチルプロポキシ)フエニル]-4-メチルチアゾール-5-カルボン酸試料中の非晶質体の含有率yを算出する工程。
ただし、ここで式中、xは示差走査熱量測定における150℃以下の
の発熱ピーク量 (J/g) を表し、y は非晶質体の含有率 (質量%) を表す
<table>
<thead>
<tr>
<th>粒子径 (μm)</th>
<th>精度値</th>
<th>差分値</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.374</td>
<td>0.374</td>
</tr>
<tr>
<td>8</td>
<td>0.385</td>
<td>0.385</td>
</tr>
<tr>
<td>10</td>
<td>0.393</td>
<td>0.393</td>
</tr>
<tr>
<td>12</td>
<td>0.402</td>
<td>0.402</td>
</tr>
<tr>
<td>14</td>
<td>0.410</td>
<td>0.410</td>
</tr>
<tr>
<td>16</td>
<td>0.418</td>
<td>0.418</td>
</tr>
<tr>
<td>18</td>
<td>0.426</td>
<td>0.426</td>
</tr>
<tr>
<td>20</td>
<td>0.434</td>
<td>0.434</td>
</tr>
</tbody>
</table>

- 粒子径の範囲は、100～000 μm である。
- 精度値は、0.000～0.000 である。
- 差分値は、0.000～0.000 である。
[図17]

x100 1 mm
[図27]
溶出性比較（pH5.5/50rpm）

[図28]
アセトニトリルC品のジェットミル粉砕物の長期保存条件下における不純物の総量
アセトニトリルC品のジェットミル粉砕物の長期保存条件下における、最も多かった不純物の量
[図43]

A晶
アセトニトリルC晶のジェットミル粉砕物

蛍光画像 インフリアルート画像

アセトニトリルC晶のボールミル粉砕物

蛍光画像 微分干渉画像
[図50]

プラセボ錠

蛍光画像

微分干渉画像

[図51]

未粉砕のアセトニトリルC晶を用いた試作錠

蛍光画像

微分干渉画像
図52
アセトニトリルC晶のジェットミル粉砕物を用いた試作錠

図53
アセトニトリルC晶のジェットミル粉砕物を用いた試作錠
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07D2 77/2 0 (2006.01), A61K31/42 6 (2006.01), A61P19/06 (2006.01), C07D2 77/5 6 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D277/20, A61K31/426, A61P19/06, C07D277/56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAplus / REGI STRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 4084309 B2 (Teijin Ltd.), 22 February 2008 (22.02.2008), page 4, line 42 to page 5, line 9; example 4</td>
<td>1-26</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 05 March 2015 (05.03.15)
Date of mailing of the international search report: 24 March 2015 (24.03.15)

Name and mailing address of the ISA/Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Recent progress in physicochemical characterization and formulation technologies for poorly soluble drugs, CMC Publishing Co., Ltd., 29 January 2010 (29.01.2010), pages 141 to 150</td>
<td>1-26</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
The inventions according to claims 1, 27, 28 and 29 have a common technical feature

" 2 - [3 -cyano - 4 - (2 -methylpropoxy)] - 4 -methylthiaz ole- 5 - carboxylic acid (hereinafter " f e buxos tat ") " .

However, the above-aided technical feature cannot be considered to be a special technical feature, since the technical feature does not make a contribution over the prior art in the light of the contents disclosed in the document 1 (JP 3547707) -

(Continued to extra sheet)

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1 - 26

Remark on Protest + | The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
The inventions according to claims 27, 28 and 29 have a common technical feature "an amorphous body of febuxostat". However, this technical feature is also disclosed in claim 11 of the aforesaid document 1 and, therefore, cannot be considered as a special technical feature.

Accordingly, claims are classified into four inventions each of which has a special technical feature indicated below:

(Invention 1) claims 1-26:
Small-sized C-form febuxostat crystals such as a micropowder

(Invention 2) claim 27:
Febuxostat consisting of an amorphous body alone

(Invention 3) claim 28:
A method for producing an amorphous body of febuxostat

(Invention 4) claims 29-30:
A method for identifying the content of an amorphous body of febuxostat.
国際調査報告

国際出願番号 ＰＣＴ／ＩＢ ２０１４／００２１９５

A. 発明の属する分野の分類（国際特許分類（ＩＰＣ））
IntCl. C07D277/20 (2006. 01) i, A61K3 1/426 (2006. 01) i, A61P19/06 (2006. 01) i, C07D277/56 (2006. 01) i

B. 調査を行なった分野
調査を行なった最小限資料（国際特許分類（ＩＰＣ））
IntCl. C07D277/20, A61K3 1/426, A61P19/06, C07D277/56

最小限資料以外の資料で調査を行なった分野に含まれるもの
日本国実用新案公報 922-1
日本国公開実用新案公報 971-2 1
日本国実用新案登録公報 996-2 1
日本国登録実用新案公報 994-1 0 1

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）
CAplus/REGISTRY (STN)

C. 関連すると認められる文献
引用文献のカテゴリ

<table>
<thead>
<tr>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X JP 3547707 B2 (帝人株式会社) 2004. 04. 23, 請求項 3, 請求項 1 1</td>
<td>1-14, 17-18, 20, 22-26</td>
</tr>
<tr>
<td>Y Al</td>
<td></td>
</tr>
<tr>
<td>Y JP 4084309 B2 (帝人株式会社) 2008. 02. 22, 4 頁 4 行〜 5 頁 9 行、実施例 4</td>
<td></td>
</tr>
</tbody>
</table>

☑ C 場の続きにも文献が挙げられている。

特許ファミリーに関する別紙を参照。

引文文献のカテゴリ

・ 特別に関連のある文献でなく、一般的な技術水準を示すもの
□ 国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの
□ 優先権主張に疑義を提起する文書又はその文書の発行日若しくはその他の特別な理由を確認するために引用する文書（理由を付す）
□ 口頭による開示、使用、展示等に言及する文献
□ 国際出願 日前で、かつ優先権の主張の基礎となる出願の日後に公表された文書

国際調査を完了した日 05. 03. 2015
国際調査報告の発送日 24. 03. 2015

国際調査機関の名称及び住所
ヨーロッパ特許庁 (ＩＳＡ／ＪＰ)
郵便番号 100－8915
東京都千代田区霞が関三丁目 4 番 3 号

特許庁審査官 (権限のある職員) 春日淳一
電話番号 03-3581-1101 内線 3492

株式ＰＣＴ／ＩＳＡ／２１０（第 2 側）（２００９年 7 月）
<table>
<thead>
<tr>
<th>C (続き) 関連すると認められる文献</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-26</td>
<td></td>
</tr>
</tbody>
</table>

難水溶性薬物の物性評価と製剤設計の新展開，株式会社シーエムシー出版，2010.01.29，141〜150頁
国際調査報告

求査の範囲の一部の調査ができないときの意見（第1ページの2の続き）

PCT 17条 (2) (a) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

１．□ 請求項 は、この国際調査機関が調査をすることを要しない対象に係るものである。

つまり、

２．□ 請求項 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。

つまり、

３．□ 請求項 は、従属請求の範囲であってPCT 規則6.4 (a) の第2文及び第3文の規定に従って記載されていない。

発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求項 1、請求項 2、請求項 3 により発明は、「[-3-シクロ-4- (2-メチルプロピオキシン)フニル] -4-メチルチアゾール-5-カルボン酸（以下、フエプキソスタット）」という共通の技術的特徴を有している。しかし、発明1（特許第3547707号）の開示内容に照らして先行技術に発明をもたらすものではないから、当該技術的特徴は、特別な技術的特徴であるとはいえない。

また、請求項 2、請求項 2 により発明は、「フエプキソスタットの非晶質体」という共通の技術的特徴を有しているが、上記発明1の請求項 1: に開示されており、これも特別な技術的徴特性があるとはいいえない。

そして、請求の範囲は、各々下記の特別な技術的特徴を有するの発明に区分される。

(発明1) 請求項 1 ～ 26 akeupキソスタットのc品の微粉、小型化したものの。
(発明2) 請求項 2 ～ 7 akeupキソスタットの非晶質体のみならものの。
(発明3) 請求項 2 ～ 8 akeupキソスタットの非晶質体の製造方法。
(発明4) 請求項 2 ～ 10 akeupキソスタットの非晶質体の含有率を同定する方法。

１．□ 出願人が必要と追加調査手数料をすべて期間内に納付したものので、この国際調査報告書は、すべての調査可能な請求項について作成した。

２．□ 追加調査手数料を要求するまでもなく、すべての調査可能な請求項について調査することができたので、追加調査手数料の納付を求めなかった。

３．□ 出願人が必要と追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告書は、手数料の納付のあつた次の請求項のみについて作成した。

４．□ 出願人が必要と追加調査手数料を期間内に納付しなかったので、この国際調査報告書は、請求の範囲の最初に記載されている発明に係る次の請求項について作成した。

請求項 1 ～ 26

追加調査手数料の異議の申立てに関する注意

□ 追加調査手数料及び、該当する場合には、異議申立手数料の納付と共に、出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがあったが、異議申立手数料の納付命令書に示した期間内に支払われなかった。
□ 追加調査手数料の納付はあったが、異議申立てはなかった。

様式PCT/ISA/210 (第1ページの続葉 (2)) (2009年7月)