

US 20120174253A1

(19) United States

(12) Patent Application Publication Patterson et al.

(10) **Pub. No.: US 2012/0174253 A1** (43) **Pub. Date: Jul. 5, 2012**

(54) GENERATION OF HIGH POLYHYDROXYBUTRATE PRODUCING OILSEEDS

(76) Inventors: Nii Patterson, Chelmsford, MA

(US); Jihong Tang, Brighton, MA (US); Edgar Benjamin Cahoon, Lincoln, NE (US); Jan G. Jaworski, Town and Country, MO (US); Wenyu Yang, Saint Louis, MO (US); Oliver P. Peoples,

Arlington, MA (US); **Kristi D. Snell**, Belmont, MA (US)

(21) Appl. No.: 13/395,616

(22) PCT Filed: Sep. 15, 2010

(86) PCT No.: **PCT/US10/48962**

§ 371 (c)(1),

(2), (4) Date: Mar. 12, 2012

Related U.S. Application Data

(60) Provisional application No. 61/242,522, filed on Sep. 15, 2009.

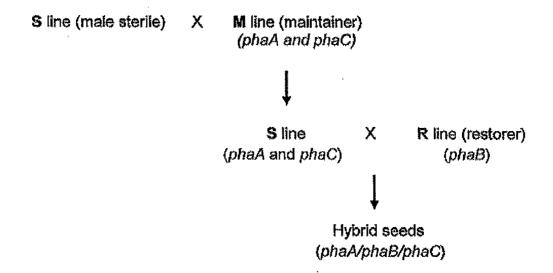
Publication Classification

(51) Int. Cl.

A01H 1/02 (2006.01)

A01H 5/00 (2006.01)

C07C 59/147 (2006.01)


(52) **U.S. Cl.** **800/264**; 554/115; 800/298; 800/306; 800/312; 800/314; 800/317.3; 800/320.1;

800/322

(57) ABSTRACT

Transgenic oilseed plants, plant material, plant cells, and genetic constructs for synthesis of polyhydroxyalkanoates ("PHA") are provided. In a preferred embodiment, the transgenic oilseed plants synthesize (poly)3-hydroxybutyrate ("PHB") in the seed. Genes utilized include phaA, phaB, phaC, all of which are known in the art. The genes can be introduced in the plant, plant tissue, or plant cell using conventional plant molecular biology techniques.

Figure 1

GENERATION OF HIGH POLYHYDROXYBUTRATE PRODUCING OILSEEDS

FIELD OF THE INVENTION

[0001] The invention is in the field of polymer production in transgenic plants. Methods for generating industrial oil-seeds producing high levels of polyhydroxybutyrate (PHB) and industrial oilseeds producing high levels of PHB are described.

BACKGROUND OF THE INVENTION

[0002] Production of polyhydroxyalkanoates (PHAs), a family of naturally occurring renewable and biodegradable plastics, in crops has the potential of providing a renewable source of polymers, chemical intermediates and bio-energy from one crop if plant residues remaining after polymer isolation are converted to liquid fuels and/or energy. PHAs can provide an additional revenue stream that would make bioenergy crops more economically viable.

[0003] PHAs are a natural component of numerous organisms in multiple ecosystems and accumulate in a wide range of bacteria as a granular storage material when the microbes are faced with an unfavorable growth environment, such as a limitation in an essential nutrient (Madison et al., Microbiol. Mol. Biol. Rev., 1999, 63, 21-53; Suriyamongkol et al., Biotechnol Adv, 2007, 25, 148-175). The monomer unit composition of these polymers is largely dictated by available carbon source as well as the native biochemical pathways present in the organism. Today PHAs are produced industrially from renewable resources in bacterial fermentations providing an alternative to plastics derived from fossil fuels. PHAs possess properties enabling their use in a variety of applications currently served by petroleum-based plastics and are capable of matching or exceeding the performance characteristics of fossil fuel derived plastics with a broad spectrum of properties that can be obtained by varying the monomer composition of homo- and co-polymers, or by manipulating properties such as molecular weight (Sudesh et al., Prog. Polym. Sci., 2000, 25, 1503-1555; Sudesh et al., CLEAN—Soil, Air, Water, 2008, 36, 433-442).

[0004] Industrial production of PHAs in crop plants would provide a low cost, renewable source of plastics. Production of PHAs in plants has been an as yet unsolved goal for plant scientists and has previously been demonstrated in a number of crops unsuitable for industrial production or in industrially useful crops at levels to low to be commercially attractive [for review, see (Suriyamongkol et al., Biotechnol Adv, 2007, 25, 148-175); (van Beilen et al., The Plant Journal, 2008, 54, 684-701) and references within] including maize (Poirier et al., 2002, Polyhydroxyalkanoate production in transgenic plants, in Biopolymers, Vol 3a, Steinbuchel, A. (ed), Wiley-VHC Verlag GmbH, pgs 401-435), sugarcane (Purnell et al., Plant Biotechnol. J., 2007, 5, 173-184), switchgrass (Somleva et al., Plant Biotechnol J, 2008, 6, 663-678), flax (Wrobel et al., J. Biotechnol., 2004, 107, 41-54; Wrobel-Kwiatkowsk et al., Biotechnol Prog, 2007, 23, 269-277), cotton (John et al., Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12768-12773), alfalfa (Saruul et al., Crop Sci., 2002, 42, 919-927), tobacco (Arai et al., Plant Biotechnol., 2001, 18, 289-293; Bohmert et al., Plant Physiol., 2002, 128, 1282-1290; Lossl et al., Plant Cell Reports, 2003, 21, 891-899; Lössl et al., Plant Cell Physiol,

2005, 46, 1462-1471), potato (Bohmert et al., Plant Physiol., 2002, 128, 1282-1290), and oilseed rape (Valentin et al., Int. J. Biol. Macromol., 1999, 25, 303-306; Slater et al., Nat. Biotechnol., 1999, 17, 1011-1016). Most of the efforts to produce PHAs in plants have focused on production of the homopolymer P3HB or the copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HBV). While there have been some efforts to produce medium chain length PHAs in plants, these studies have yielded barely detectable levels of polymer (Romano et al., Planta, 2005, 220, 455-464; Mittendorf et al., Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13397-13402; Poirier et al., Plant Physiol., 1999, 121, 1359-1366; Matsumoto, Journal of Polymers and the Environment, 2006, 14, 369-374; Wang et al., Chinese Science Bulletin, 2005, 50, 1113-1120).

[0005] To date, the highest levels of polymer have been obtained when the homopolymer poly-3-hydroxybutyrate (P3HB or PHB) is produced in plastids (Suriyamongkol et al., Biotechnol Adv, 2007, 25, 148-175; van Beilen et al., The Plant Journal, 2008, 54, 684-701; Bohmert et al., Molecular Biology and Biotechnology of Plant Organelles, 2004, 559-585). This is likely due to the high flux of acetyl-CoA, the precursor for PHB in these organelles during fatty acid biosynthesis (Bohmert et al, Molecular Biology and Biotechnology of Plant Organelles, 2004, 559-585). Expression of three genes encoding β-ketothiolase, acetoacetyl CoA reductase, and PHA synthase, allows the conversion of acetyl-CoA within the plastid to PHB. Previous work has reported producing levels of PHB in Brassica napus up to a maximum of 6.7% of seed weight, a level too low for commercial production

SUMMARY OF THE INVENTION

[0006] Transgenic oilseed plants, plant material, plant cells, and genetic constructs for synthesis of polyhydroxyal-kanoates ("PHA") are provided. In a preferred embodiment, the transgenic oilseed plants synthesize (poly)3-hydroxybutyrate ("PHB") in the seed. Host plants, plant tissue, and plant material have been engineered to express genes encoding enzymes in the biosynthetic pathway for PHB production such that polymer precursors in the plastid are polymerized to polymer. Genes utilized include phaA, phaB, phaC, all of which are known in the art. The genes can be introduced in the plant, plant tissue, or plant cell using conventional plant molecular biology techniques.

[0007] It is an object of the invention to provide methods and compositions for producing transgenic oilseeds having commercially viable levels of polyhydroxyalkanoates in the seed, for example greater than 7%, 10%, 15%, or 19% polyhydroxyalkanoate or more of the total dry seed weight.

[0008] It is another object of the invention to provide oil-seeds having increased levels of polyhydroxyalkanoate greater than 7%, 10%, 15%, or 19% polyhydroxyalkanoate or more of the total dry seed weight and having impaired germination relative to non-transgenic oilseeds.

[0009] Using a non-traditional screening method to identify transgenic lines than those used in all other reported studies, it has been discovered that very high levels of PHA, for example PHB can be produced in the oilseed but that oilseeds with high levels of PHA fail to germinate or germinate but produce impaired seedlings which do not survive to produce viable fertile plants. The failure to produce viable progeny explains why previous researchers failed to demon-

strate that commercial levels of PHA can be produced in transgenic oilseeds. A preferred PHA produced in oilseeds is PHB

[0010] In another embodiment the transgenes encoding PHA biosynthesis genes are expressed in a seed specific manner such that the PHA accumulates in the seed. In this embodiment the level of PHA accumulated is greater than 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% of the dry weight of the seed.

[0011] Methods and compositions for producing hybrid lines are also provided. Hybrid lines can be created by crossing a line containing one or more PHAs, for example PHB genes with a line containing the other gene(s) needed to complete the PHA biosynthetic pathway. Use of lines that possess cytoplasmic male sterility with the appropriate maintainer and restorer lines allows these hybrid lines to be produced efficiently.

[0012] In still another embodiment the oilseeds produced by the disclosed methods produce high levels of PHA and are impaired in their ability to germinate and survive to produce viable plants relative to oilseeds containing little or no PHA, for example less than 7% PHA of the dry weight of the seed. Germination can be impaired by 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% relative to oilseeds with less than 7% PHA. Impaired germination provides a built in mechanism for gene containment reducing the risk of unwanted growth of these oilseeds when a different crop is planted on the production fields.

[0013] Transgenic plants useful for the invention include dicots or monocots. Preferred host plants are oilseed plants, but are not limited to members of the Brassica family including *B. napus*, *B. rapa*, *B. carinata* and *B. juncea*. Additional preferred host plants include industrial oilseeds such as *Camelina sativa*, Crambe, jatropha, and castor. Other preferred host plants include *Arabidopsis thaliana*, *Calendula*, *Cuphea*, maize, soybean, cottonseed, sunflower, palm, coconut, safflower, peanut, mustards including *Sinapis alba*, and tobacco.

[0014] Other embodiments provide plant material and plant parts of the transgenic plants including seeds, flowers, stems, and leaves. The oilseeds can be used for the extraction of PHA biopolymer or as a source of PHA biopolymer based chemical intermediates. The residual parts of the seed can be used as meal for animal feed or steam and power generation and a source of vegetable oil for industrial oelochemicals or biofuel.

BRIEF DESCRIPTION OF THE DRAWINGS

 ${\bf [0015]}$ FIG. 1 is a schematic diagram describing a strategy for creating hybrid seeds using cytoplasmic male sterility.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

[0016] Unless otherwise indicated, the disclosure encompasses all conventional techniques of plant breeding, microbiology, cell biology and recombinant DNA, which are within the skill of the art. See, e.g., Sambrook and Russell, Molecular Cloning: A Laboratory Manual, 3rd edition (2001); Current Protocols In Molecular Biology [(F. M. Ausubel, et al. eds., (1987)]; Plant Breeding Principles and Prospects (Plant Breeding, Vol 1) M. D. Hayward, N. O. Bosemark, I. Romagosa; Chapman & Hall, (1993.); Coligan, Dunn, Ploegh, Spe-

icher and Wingfeld, eds. (1995) Current Protocols in Protein Science (John Wiley & Sons, Inc.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)].

[0017] Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology may be found in Lewin, Genes VII, published by Oxford University Press, 2000; Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Wiley-Interscience., 1999; and Robert A. Meyers (ed.), Molecular Biology and Biotechnology, a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995; Ausubel et al. (1987) Current Protocols in Molecular Biology, Green Publishing; Sambrook and Russell. (2001) Molecular Cloning: A Laboratory Manual 3rd. edition.

[0018] A number of terms used herein are defined and clarified in the following section.

[0019] The term PHB refers to polyhydroxybutyrate and is used interchangeably with the term PHA which refers to polyhydroxyalkanoate.

[0020] The tend PHB also encompasses copolymers of hydroxybutyrate with other hydroxyacid monomers.

[0021] The term "PHA copolymer" refers to a polymer composed of at least two different hydroxyalkanoic acid monomers.

[0022] The term "PHA homopolymer" refers to a polymer that is composed of a single hydroxyalkanoic acid monomer.

[0023] As used herein, a "vector" is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. The vectors can be expression vectors.

[0024] As used herein, an "expression vector" is a vector that includes one or more expression control sequences

[0025] As used herein, an "expression control sequence" is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence. Control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and the like. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

[0026] As used herein, "operably linked" means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.

[0027] As used herein, "transformed" and "transfected" encompass the introduction of a nucleic acid into a cell by a number of techniques known in the art.

[0028] "Plasmids" are designated by a lower case "p" preceded and/or followed by capital letters and/or numbers.

[0029] As used herein the term "heterologous" means from another host. The other host can be the same or different species.

[0030] The term "cell" refers to a membrane-bound biological unit capable of replication or division.

[0031] The term "construct" refers to a recombinant genetic molecule including one or more isolated polynucle-otide sequences.

[0032] Genetic constructs used for transgene expression in a host organism comprise in the 5'-3' direction, a promoter sequence; a nucleic acid sequence encoding the desired transgene product; and a termination sequence. The open reading frame may be orientated in either a sense or anti-sense direc-

tion. The construct may also comprise selectable marker gene (s) and other regulatory elements for expression.

[0033] The term "plant" is used in it broadest sense. It includes, but is not limited to, any species of woody, ornamental or decorative, crop or cereal, fruit or vegetable plant, and photosynthetic green algae (e.g., *Chlamydomonas reinhardtii*). It also refers to a plurality of plant cells that are largely differentiated into a structure that is present at any stage of a plant's development. Such structures include, but are not limited to, a fruit, shoot, stem, leaf, flower petal, etc. The term "plant tissue" includes differentiated and undifferentiated tissues of plants including those present in roots, shoots, leaves, pollen, seeds and tumors, as well as cells in culture (e.g., single cells, protoplasts, embryos, callus, etc.). Plant tissue may be in planta, in organ culture, tissue culture, or cell culture. The term "plant part" as used herein refers to a plant structure, a plant organ, or a plant tissue.

[0034] A non-naturally occurring plant refers to a plant that does not occur in nature without human intervention. Non-naturally occurring plants include transgenic plants and plants produced by non-transgenic means such as plant breeding.

[0035] The term "plant cell" refers to a structural and physiological unit of a plant, comprising a protoplast and a cell wall. The plant cell may be in form of an isolated single cell or a cultured cell, or as a part of higher organized unit such as, for example, a plant tissue, a plant organ, or a whole plant.

[0036] The term "plant cell culture" refers to cultures of plant units such as, for example, protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, ovules, embryo sacs, zygotes and embryos at various stages of development. [0037] The term "plant material" refers to leaves, stems, roots, flowers or flower parts, fruits, pollen, egg cells, zygotes, seeds, cuttings, cell or tissue cultures, or any other part or product of a plant.

[0038] A "plant organ" refers to a distinct and visibly structured and differentiated part of a plant such as a root, stem, leaf, flower bud, or embryo.

[0039] "Plant tissue" refers to a group of plant cells organized into a structural and functional unit. Any tissue of a plant, whether in a plant or in culture, is included. This term includes, but is not limited to, whole plants, plant organs, plant seeds, tissue culture and any groups of plant cells organized into structural and/or functional units. The use of this term in conjunction with, or in the absence of, any specific type of plant tissue as listed above or otherwise embraced by this definition is not intended to be exclusive of any other type of plant tissue.

[0040] "Seed germination" refers to growth of an embryonic plant contained within a seed resulting in the formation and emergence of a seedling.

[0041] "Cotyledon" refers to the embryonic first leaves of a seedling.

[0042] "Early plantlet development" refers to growth of the cotyledon containing seedling to form a plantlet.

II. Transgenic Plants

[0043] Transgenic plants have been developed that produce increased levels of biopolymers such as polyhydroxyal-kanoates (PHAs) in seeds. Methods and constructs for engineering plants for seed specific production of PHA, in particular PHB, are described. One embodiment provides transgenic plants for the direct, large scale production of PHAs in crop plants or in energy crops where a plant by-

product, such as oil, can be used for production of energy. Proof of concept studies for polyhydroxybutyrate (PHB) synthesis in canola (Valentin et al., *Int. J. Biol. Macromol.*, 1999, 25, 303-306; Houmiel et al., *Planta*, 1999, 209, 547-550; Slater et al., *Nat. Biotechnol.*, 1999, 17, 1011-1016.) have been reported. There have been instances where high level PHB production in the chloroplasts of plants has led to decreases in total plant growth (Bohmert et al., *Molecular Biology and Biotechnology of Plant Organelles*, 2004, 559-585; Bohmert et al., *Planta*, 2000, 211, 841-845) for unidentified reasons. There have been several studies that have attempted to alleviate this problem by inducible expression of enzymes (Bohmert et al., *Plant Physiol.*, 2002, 128, 1282-1290; Lössl et al., *Plant Cell Physiol*, 2005, 46, 1462-1471; Kourtz et al., *Transgenic Res*, 2007, 16, 759-769).

[0044] Transgenic oilseeds comprising at least about 8% dry weight PHA are provided. In one embodiment we provide transgenic oilseeds having at least 10% PHA dry weight and which are impaired in germination and plant survival.

[0045] A. Genetic Constructs for Transformation

[0046] Suitable genetic constructs include expression cassettes for enzymes for production of polyhydroxyalkanoates, in particular from the polyhydroxybutyrate biosynthetic pathway. In one embodiment, the construct contains operatively linked in the 5' to 3' direction, a seed specific promoter that directs transcription of a nucleic acid sequence in the nucleus; a nucleic acid sequence encoding one of the PHB biosynthetic enzymes; and a 3' polyadenylation signal that increases levels of expression of transgenes. In one embodiment, enzymes for formation of polymer precursors are targeted to the plastid using appropriate plastid-targeting signals. In another embodiment, the PHA pathway is expressed directly from the plastid genome using appropriate plastidial promoters and regulatory sequences.

[0047] DNA constructs useful in the methods described herein include transformation vectors capable of introducing transgenes into plants. As used herein, "transgenic" refers to an organism in which a nucleic acid fragment containing a heterologous nucleotide sequence has been introduced. The transgenes in the transgenic organism are preferably stable and inheritable. The heterologous nucleic acid fragment may or may not be integrated into the host genome.

[0048] Several plant transformation vector options are available, including those described in "Gene Transfer to Plants" (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); "Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins" (Owen, et al., eds.) John Wiley & Sons Ltd. England (1996); and "Methods in Plant Molecular Biology: A Laboratory Course Manual" (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995). Plant transformation vectors generally include one or more coding sequences of interest under the transcriptional control of 5' and 3' regulatory sequences, including a promoter, a transcription termination and/or polyadenylation signal, and a selectable or screenable marker gene. For the expression of two or more polypeptides from a single transcript, additional RNA processing signals and ribozyme sequences can be engineered into the construct (U.S. Pat. No. 5,519,164). This approach has the advantage of locating multiple transgenes in a single locus, which is advantageous in subsequent plant breeding efforts.

[0049] Engineered minichromosomes can also be used to express one or more genes in plant cells. Cloned telomeric repeats introduced into cells may truncate the distal portion of

a chromosome by the formation of a new telomere at the integration site. Using this method, a vector for gene transfer can be prepared by trimming off the arms of a natural plant chromosome and adding an insertion site for large inserts (Yu et al., Proc Natl Acad Sci USA, 2006, 103, 17331-6; Yu et al., Proc Natl Acad Sci USA, 2007, 104, 8924-9). The utility of engineered minichromosome platforms has been shown using Cre/lox and FRT/FLP site-specific recombination systems on a maize minichromosome where the ability to undergo recombination was demonstrated (Yu et al., Proc Natl Acad Sci USA, 2006, 103, 17331-6; Yu et al., Proc Natl Acad Sci USA, 2007, 104, 8924-9). Such technologies could be applied to minichromosomes, for example, to add genes to an engineered plant. Site specific recombination systems have also been demonstrated to be valuable tools for marker gene removal (Kerbach, S. et al., Theor Appl Genet, 2005, 111, 1608-1616), gene targeting (Chawla, R. et al., Plant Biotechnol J, 2006, 4, 209-218; Choi, S. et al., Nucleic Acids Res, 2000, 28, E19; Srivastava, V, & Ow, DW, Plant Mol Biol, 2001, 46, 561-566; Lyznik, L A, et al., Nucleic Acids Res, 1993, 21, 969-975), and gene conversion (Djukanovic, V, et al., Plant Biotechnol J, 2006, 4, 345-357).

[0050] An alternative approach to chromosome engineering in plants involves in vivo assembly of autonomous plant minichromosomes (Carlson et al., *PLoS Genet*, 2007, 3, 1965-74). Plant cells can be transformed with centromeric sequences and screened for plants that have assembled autonomous chromosomes de novo. Useful constructs combine a selectable marker gene with genomic DNA fragments containing centromeric satellite and retroelement sequences and/or other repeats.

[0051] Another approach is Engineered Trait Loci ("ETL") technology (U.S. Pat. No. 6,077,697 to Hadlaczky et al.; US Patent Application 2006/0143732). This system targets DNA to a heterochromatic region of plant chromosomes, such as the pericentric heterochromatin, in the short arm of acrocentric chromosomes. Targeting sequences may include ribosomal DNA (rDNA) or lambda phage DNA. The pericentric rDNA region supports stable insertion, low recombination, and high levels of gene expression. This technology is also useful for stacking of multiple traits in a plant (US Patent Application 2006/0246586, 2010/0186117 and PCT WO 2010/037209).

[0052] Zinc-finger nucleases (ZFNs) are also useful in that they allow double strand DNA cleavage at specific sites in plant chromosomes such that targeted gene insertion or deletion can be performed (Shukla et al., *Nature*, 2009; Townsend et al., *Nature*, 2009).

[0053] For direct expression of transgenes from the plastid genome, a vector to transform the plant plastid chromosome by homologous recombination (as described in U.S. Pat. No. 5,545,818 to McBride et al.) is used in which case it is possible to take advantage of the prokaryotic nature of the plastid genome and insert a number of transgenes as an operon. WO 2010/061186 describes an alternative method for introducing genes into the plastid chromosome using an adapted endogenous cellular process for the transfer of RNAs from the cytoplasm to the plastid where they are incorporated by homologous recombination. This plastid transformation procedure is also suitable for practicing the disclosed compositions and methods.

[0054] A transgene may be constructed to encode a multifunctional enzyme through gene fusion techniques in which the coding sequences of different genes are fused with or without linker sequences to obtain a single gene encoding a single protein with the activities of the individual genes. Transgenes encoding a bifunctional protein containing thiolase and reductase activities (Kourtz, L., K. et al. (2005), Plant Biotechnol. 3: 435-447) and a trifunctional protein having each of the three enzyme activities required for PHB expression in plants (Mullaney and Rehm (2010), Journal of Biotechnology 147: 31-36) have been described. Such synthetic fusion gene/enzyme combinations can be further optimized using molecular evolution technologies.

[0055] A transgene may be constructed to encode a series of enzyme activities separated by intein sequences such that on expression, two or more enzyme activities are expressed from a single promoter as described by Snell in U.S. Pat. No. 7,026,526 to Metabolix, Inc.

[0056] 1. Genes Involved in Polyhydroxyalkanoate Synthesis

[0057] In a preferred embodiment, the products of the transgenes are enzymes and other factors required for production of a biopolymer, such as a polyhydroxyalkanoate (PHA).

[0058] For PHA production, transgenes encode enzymes such as beta-ketothiolase, acetoacetyl-CoA reductase, PHB ("short chain") synthase, PHA ("long chain") synthase, threonine dehydratase, dehydratases such as 3-OH acyl ACP, isomerases such as Δ 3-cis, Δ 2-trans isomerase, propionyl-CoA synthetase, hydroxyacyl-CoA synthetase, hydroxyacyl-CoA transferase, R-3-hydroxyacyl-ACP:CoA transferase, thioesterase, fatty acid synthesis enzymes and fatty acid betaoxidation enzymes. Useful genes are well known in the art, and are disclosed for example by Snell and Peoples Metab. Eng. 4: 29-40 (2002); Bohmert et. al. in Molecular Biology and Biotechnology of Plant Organelles. H. Daniell, C. D. Chase Eds., Kluwer Academic Publishers, Netherlands, 2004, pp. 559-585; (Suriyamongkol et al., Biotechnol Adv. 2007, 25, 148-175; van Beilen et al., The Plant Journal, 2008, 54, 684-701).

[0059] PHA Synthases

[0060] Examples of PHA synthases include a synthase with medium chain length substrate specificity, such as phaC1 from Pseudomonas oleovorans (WO 91/000917; Huisman, et al. J. Biol. Chem. 266, 2191-2198 (1991)) or Pseudomonas aeruginosa (Timm, A. & Steinbuchel, A. Eur. J. Biochem. 209: 15-30 (1992)), the synthase from Alcaligenes eutrophus with short chain length specificity (Peoples, O. P. & Sinskey, A. J. J. Biol. Chem. 264:15298-15303 (1989)), or a two subunit synthase such as the synthase from Thiocapsa pfennigii encoded by phaE and phaC (U.S. Pat. No. 6,011,144). Other useful PHA synthase genes have been isolated from, for example, Alcaligenes latus (Accession ALU47026), Burkholderia sp. (Accession AF153086), Aeromonas caviae (Fukui & Doi, J. Bacteriol. 179: 4821-30 (1997)), Acinetobacter sp. strain RA3849 (Accession L37761), Rhodospirillum rubrum (U.S. Pat. No. 5,849,894), Rhodococcus ruber (Pieper & Steinbuechel, FEMS Microbiol. Lett. 96(1): 73-80 (1992)), and Nocardia corallina (Hall et. al., Can. J. Microbiol. 44: 687-91 (1998)), Arthrospira sp. PCC 8005 (Accessions ZP_07166315 and ZP_07166316), Cyanothece sp. PCC 7425 (Accessions ACL46371 and ACL46370) and Synechocystis sp. PCC6803 (Accession BAA17430; Hein et al. (1998), Archives of Microbiology 170: 162-170).

[0061] PHA synthases with broad substrate specificity useful for producing copolymers of 3-hydroxybutyrate and longer chain length (from 6 to 14 carbon atoms) hydroxyacids

have also been isolated from *Pseudomonas* sp. A33 (Appl. Microbiol. Biotechnol. 42: 901-909 (1995)) and *Pseudomonas* sp. 61-3 (Accession AB014757; Kato, et al. Appl. Microbiol. Biotechnol. 45: 363-370 (1996)).

[0062] A range of PHA synthase genes and genes encoding additional metabolic steps useful in PHA biosynthesis are described by Madison and Huisman. *Microbiology and Molecular biology Reviews* 63:21-53 (1999)) and Suriyamongkol et al. (Suriyamongkol et al., *Biotechnol Adv*, 2007, 25, 148-175).

[0063] Hydratase and Dehydrogenase

[0064] An alpha subunit of beta-oxidation multienzyme complex pertains to a multifunctional enzyme that minimally possesses hydratase and dehydrogenase activities. The subunit may also possess epimerase and A 3-cis, A 2-trans isomerase activities. Examples of alpha subunits of the betaoxidation multienzyme complex are FadB from E. coli (Di-Russo, C. C. J. Bacteriol. 1990, 172, 6459-6468), FaoA from Pseudomonas fragi (Sato, S., Hayashi, et al. J. Biochem. 1992, 111, 8-15), and the E. coli open reading frame 1714 that contains homology to multifunctional α subunits of the β -oxidation complex (Genbank Accession #1788682). A β subunit of the β-oxidation complex refers to a polypeptide capable of forming a multifunctional enzyme complex with its partner α subunit. The β subunit possesses thiolase activity. Examples of β subunits are FadA from E. coli (DiRusso, C. C. J. Bacteriol. 172: 6459-6468 (1990)), FaoB from Pseudomonas fragi (Sato, S., Hayashi, M., Imamura, S., Ozeki, Y., Kawaguchi, A. J. Biochem. 111: 8-15 (1992)), and the E. coli open reading frame f436 that contains homology to α subunits of the β -oxidation complex (Genbank Accession # AE000322; gene b2342).

[0065] Reductases

[0066] The transgene can encode a reductase. A reductase refers to an enzyme that can reduce β-ketoacyl CoAs to R-3-OH-acyl CoAs, such as the NADH dependent reductase from Chromatium vinosum (Liebergesell, M., & Steinbuchel, A. Eur. J. Biochem. 209: 135-150 (1992)), the NADPH dependent reductase from Alcaligenes eutrophus (Accession J04987, Peoples, O. P. & Sinskey, A. J. J. Biol. Chem. 264: 15293-15297 (1989))), the NADPH reductase from *Zoogloea* ramigera (Accession P23238; Peoples, O. P. & Sinskey, A. J. Molecular Microbiology 3: 349-357 (1989)) or the NADPH reductase from Bacillus megaterium (U.S. Pat. No. 6,835, 820), Alcaligenes latus (Accession ALU47026), Rhizobium meliloti (Accession RMU17226), Paracoccus denitrificans (Accession D49362), Burkholderia sp. (Accession AF153086), Pseudomonas sp. strain 61-3 (Accession AB014757), Acinetobacter sp. strain RA3849 (Accession L37761), P. denitrificans, (Accession P50204), and Synechocystis sp. Strain PCC6803 (Taroncher-Oldenburg et al., (2000), Appl. Environ. Microbiol. 66: 4440-4448).

[0067] Thiolases

[0068] The transgene can encode a thiolase. A beta-ketothiolase refers to an enzyme that can catalyze the conversion of acetyl CoA and an acyl CoA to a β-ketoacyl CoA, a reaction that is reversible. An example of such thiolases are PhaA from *Alcaligenes eutropus* (Accession J04987, Peoples, O. P. & Sinskey, A. J. J. Biol. Chem. 264: 15293-15297 (1989)), BktB from *Alcaligenes eutrophus* (Slater et al. *J Bacteriol*. 180(8):1979-87 (1998)) and thiolases from the following *Rhizobium meliloti* (Accession RMU17226), *Z. ramigera* (Accession P07097), *Paracoccus denitrificans* (Accession D49362), *Burkholderia* sp. (Accession AF153086),

Alcaligenes latus (Accession ALU47026), Allochromatium vinosum (Accession P45369), Thiocystis violacea (Accession P45363); Pseudomonas sp. strain 61-3 (Accession AB014757), Acinetobacter sp. strain RA3849 (Accession L37761) and Synechocystis sp. Strain PCC6803 (Taroncher-Oldenburg et al., (2000), Appl. Environ. Microbiol. 66: 4440-4448).

[0069] Oxidases

[0070] An acyl CoA oxidase refers to an enzyme capable of converting saturated acyl CoAs to Δ 2 unsaturated acyl CoAs. Examples of acyl CoA oxidases are POX1 from *Saccharomyces cerevisiae* (Dmochowska, et al. Gene, 1990, 88, 247-252) and ACX1 from *Arabidopsis thaliana* (Genbank Accession # AF057044).

[0071] Catalases

[0072] The transgene can also encode a catalase. A catalase refers to an enzyme capable of converting hydrogen peroxide to hydrogen and oxygen. Examples of catalases are KatB from *Pseudomonas aeruginosa* (Brown, et al.): Bacterial. 177: 6536-6544 (1995)) and KatG from *E. coli* (Triggs-Raine, B. L. & Loewen, P. C. *Gene* 52: 121-128 (1987)).

[0073] 2. Promoters

[0074] Plant promoters can be selected to control the expression of the transgene in different plant tissues or organelles for all of which methods are known to those skilled in the art (Gasser & Fraley, *Science* 244:1293-99 (1989)). In one embodiment, promoters are selected from those of eukaryotic or synthetic origin that are known to yield high levels of expression in plant and algae cytosol. In another embodiment, promoters are selected from those of plant or prokaryotic origin that are known to yield high expression in plastids. In certain embodiments the promoters are inducible. Inducible plant promoters are known in the art.

[0075] Suitable constitutive promoters for nuclear-encoded expression include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in U.S. Pat. No. 6,072,050; the core CAMV 355 promoter, (Odell et al. (1985) *Nature* 313:810-812); rice actin (McElroy et al. (1990) *Plant Cell* 2:163-171); ubiquitin (Christensen et al. (1989) *Plant Mol. Biol.* 12:619-632 and Christensen et al. (1992) *Plant Mol. Biol.* 18:675-689); pEMU (Last et al. (1991) *Theor. Appl. Genet.* 81:581-588); MAS (Velten et al. (1984) *EMBO J.* 3:2723-2730); and ALS promoter (U.S. Pat. No. 5,659,026). Other constitutive promoters include, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142.

[0076] "Tissue-preferred" promoters can be used to target a gene expression within a particular tissue such as seed, leaf or root tissue. Tissue-preferred promoters include Yamamoto et al. (1997) Plant J 12(2)255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al (1997) Mol. Gen. Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112 (3):1331-1341; Van Camp et al (1996) Plant Physiol. 112(2): 525-535; Canevascini et al. (1996) Plant Physiol. 112(2): 513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5): 773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) *Plant J.* 4(3):495-505. [0077] "Seed-preferred" promoters include both "seedspecific" promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See Thompson et al. (1989) *BioEssays* 10:108. Such seed-preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); milps (myo-inositol-1-phosphate synthase); and ce1A (cellulose synthase). Gama-zein is a preferred endosperm-specific promoter. Glob-1 is a preferred embryo-specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean β-phaseolin, napin β-conglycinin, soybean lectin, cruciferin, oleosin, the *Lesquerella* hydroxylase promoter, and the like. For monocots, seed-specific promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, g-zein, waxy, shrunken 1, shrunken 2, globulin 1, etc. Additional seed specific promoters useful for practicing this invention are described in the Examples disclosed herein.

[0078] Leaf-specific promoters are known in the art. See, for example, Yamamoto et al. (1997) *Plant J.* 12(2):255-265; Kwon et al. (1994) *Plant Physiol.* 105:357-67; Yamamoto et al. (1994) *Plant Cell Physiol.* 35(5):773-778; Gotor et al. (1993) *Plant J.* 3:509-18; Orozco et al. (1993) *Plant Mol. Biol.* 23(6):1129-1138; and Matsuoka et al. (1993) *Proc. Natl. Acad. Sci. USA* 90(20):9586-9590.

[0079] Root-preferred promoters are known and may be selected from the many available from the literature or isolated de nova from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2): 207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) Plant Cell 3(1):1 1'-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179.

[0080] Plastid specific promoters include the PrbcL promoter [Allison L. A. et al., EMBO 15: 2802-2809 (1996); Shiina T. et al., Plant Cell 10: 1713-1722 (1998)]; the PpsbA promoter [Agrawal G K, et al., Nucleic Acids Research 29: 1835-1843 (2001)]; the Prrn 16 promoter [Svab Z & Maliga P., Proc. Natl. Acad. Sci. USA 90: 913-917 (1993), Allison L A et al., EMBO 15: 2802-2809 (1996)]; the PaccD promoter (WO97/06250; Hajdukiewicz P T J et al., EMBO J. 16: 4041-4048 (1997)).

[0081] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemicalinducible promoters are known in the art and include, but are not limited to, the maize 1n2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1 a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. Proc. Natl. Acad. Sci. USA 88:10421-10425 (1991) and McNellis et al. Plant J 14(2):247-257 (1998)) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. *Mol. Gen. Genet.* 227:229-237 (1991), and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference in their entirety.

[0082] In one embodiment, coordinated expression of the three transgenes, phaA, phaB, and phaC, necessary for conversion of acetyl-CoA to PHB is controlled by a seed specific promoter, such as the soybean oleosin promoter (Rowley et al., Biochim Biophys Acta, 1997, 1345, 1-4) or the promoter from the lesquerlla hydroxylase gene (U.S. Pat. No. 6,437, 220 B1). In another embodiment, coordinated expression of the three transgenes, phaA, phaB, and phaC, necessary for conversion of acetyl-CoA to PHB is controlled by a promoter active primarily in the biomass plant, such as the maize chlorophyll A/B binding protein promoter (Sullivan et al., Mol. Gen. Genet., 1989, 215, 431-40). It has been previously shown that plants transformed with multi-gene constructs produced higher levels of polymer than plants obtained from crossing single transgene lines (Valentin et al., Int. J. Biol. Macromol., 1999, 25, 303-306; Bohmert et al., Planta, 2000, 211, 841-845).

[0083] In one embodiment, the final molecular weight of the polymer produced is controlled by the choice of promoter for expression of the PHA synthase gene. As described in U.S. Pat. No. 5,811,272, high PHA synthase activity will lower polymer molecular weight and low PHA synthase activity will increase polymer molecular weight. In another embodiment, a strong promoter is used for expression of the genes encoding plastid-targeted monomer producing enzymes while a weaker promoter is used to control expression of synthase.

[0084] 3. Transcription Termination Sequences

[0085] At the extreme 3' end of the transcript of the transgene, a polyadenylation signal can be engineered. A polyadenylation signal refers to any sequence that can result in polyadenylation of the mRNA in the nucleus prior to export of the mRNA to the cytosol, such as the 3' region of nopaline synthase (Bevan, M., Barnes, W. M., Chilton, M. D. Nucleic Acids Res. 1983, 11, 369-385).

[0086] 4. Selectable Markers

[0087] Genetic constructs may encode a selectable marker to enable selection of plastid transformation events. There are many methods that have been described for the selection of transformed plants [for review see (Miki et al., Journal of Biotechnology, 2004, 107, 193-232) and references incorporated within]. Selectable marker genes that have been used extensively in plants include the neomycin phosphotransferase gene nptII (U.S. Pat. No. 5,034,322, U.S. Pat. No. 5,530,196), hygromycin resistance gene (U.S. Pat. No. 5,668, 298), the bar gene encoding resistance to phosphinothricin (U.S. Pat. No. 5,276,268), the expression of aminoglycoside 3"-adenyltransferase (aadA) to confer spectinomycin resistance (U.S. Pat. No. 5,073,675), the use of inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase (U.S. Pat. No. 4,535,060) and methods for producing glyphosate tolerant plants (U.S. Pat. No. 5,463,175; U.S. Pat. No. 7,045,684). Methods of plant selection that do not use antibiotics or herbicides as a selective agent have been previously described and include expression of glucosamine-6-phosphate deaminase to inactive glucosamine in plant selection medium (U.S. Pat. No. 6,444,878) and a positive/negative system that utilizes D-amino acids (Erikson et al., Nat Biotechnol, 2004, 22, 455-8). European Patent Publication No. EP 0 530 129 A1 describes a positive selection system which enables the transformed plants to outgrow the non-transformed lines by expressing a transgene encoding an enzyme that activates an inactive compound added to the growth media. U.S. Pat. No. 5,767,378 describes the use of mannose or xylose for the positive selection of transgenic plants. Methods for positive selection using sorbitol dehydrogenase to convert sorbitol to fructose for plant growth have also been described (WO 2010/102293). Screenable marker genes include the beta-glucuronidase gene (Jefferson et al., 1987, EMBO J. 6: 3901-3907; U.S. Pat. No. 5,268,463) and native or modified green fluorescent protein gene (Cubitt et al., 1995, Trends Biochem. Sci. 20: 448-455; Pan et al., 1996, Plant Physiol. 112: 893-900).

[0088] Transformation events can also be selected through visualization of fluorescent proteins such as the fluorescent proteins from the nonbioluminescent Anthozoa species which include DsRed, a red fluorescent protein from the Discosoma genus of coral (Matz et al. (1999), Nat Biotechnol 17: 969-73). An improved version of the DsRed protein has been developed (Bevis and Glick (2002), Nat Biotech 20: 83-87) for reducing aggregation of the protein. Visual selection can also be performed with the yellow fluorescent proteins (YFP) including the variant with accelerated maturation of the signal (Nagai, T. et al. (2002), Nat Biotech 20: 87-90), the blue fluorescent protein, the cyan fluorescent protein, and the green fluorescent protein (Sheen et al. (1995), Plant J 8: 777-84; Davis and Vierstra (1998), Plant Molecular Biology 36: 521-528). A summary of fluorescent proteins can be found in Tzfira et al. (Tzfira et al. (2005), Plant Molecular Biology 57: 503-516) and Verkhusha and Lukyanov (Verkhusha, V. V. and K. A. Lukyanov (2004), Nat Biotech 22: 289-296) whose references are incorporated in entirety. Improved versions of many of the fluorescent proteins have been made for various applications. Use of the improved versions of these proteins or the use of combinations of these proteins for selection of transformants will be obvious to those skilled in the art. It is also practical to simply analyze progeny from transformation events for the presence of the PHB thereby avoiding the use of any selectable marker.

[0089] For plastid transformation constructs, a preferred selectable marker is the spectinomycin-resistant allele of the plastid 16S ribosomal RNA gene (Staub J M, Maliga P, *Plant* Cell 4: 39-45 (1992); Svab Z, Hajdukiewicz P, Maliga P, Proc. Natl., Acad. Sci. USA 87: 8526-8530 (1990)). Selectable markers that have since been successfully used in plastid transformation include the bacterial aadA gene that encodes aminoglycoside adenyltransferase (AadA) conferring spectinomycin and streptomycin resistance (Svab et al., Proc, Natl. Acad. Sci. USA, 1993, 90, 913-917), nptII that encodes aminoglycoside phosphotransferase for selection on kanamycin (Carrer H, Hockenberry T N, Svab Z, Maliga P., Mol. Gen. Genet. 241: 49-56 (1993); Lutz K A, et al., Plant J. 37: 906-913 (2004); Lutz K A, et al., Plant Physiol. 145: 1201-1210 (2007)), aphA6, another aminoglycoside phosphotransferase (Huang F-C, et al, Mol. Genet. Genomics 268: 19-27 (2002)), and chloramphenicol acetyltransferase (Li, W., et al. (2010), Plant Mol Biol, DOI 10.1007/s11103-010-9678-4). Another selection scheme has been reported that uses a chimeric betaine aldehyde dehydrogenase gene (BADH) capable of converting toxic betaine aldehyde to nontoxic glycine betaine (Daniell H, et al., Curr. Genet. 39: 109-116 (2001)).

[0090] 5. Plastid Targeting Signals

[0091] Plastid targeting sequences are known in the art and include the chloroplast small subunit of ribulose-1,5-bispho-

sphate carboxylase (Rubisco) (de Castro Silva Filho et al, Plant Mal. Biol. 30:769-780 (1996); Schnell et J. Biol. Chem. 266(5):3335-3342 (1991)); 5-(enolpyruvyl)shikimate-3-phosphate synthase (EPSPS) (Archer et al. *J. Bioenerg*. Biomemb. 22(6):789-810 (1990)); tryptophan synthase (Zhao et al. J. Biol. Chem. 270(11):6081-6087 (1995)); plastocyanin (Lawrence et al. J. Biol. Chem. 272(33):20357-20363 (1997)); chorismate synthase (Schmidt et al. J. Biol. Chem. 268(36):27447-27457 (1993)); and the light harvesting chlorophyll a/b binding protein (LHBP) (Lamppa et al. J. Biol. Chem. 263:14996-14999 (1988)). See also Von Heijne et al. Plant Mol. Biol. Rep. 9:104-126 (1991); Clark et al. J. Biol. Chem. 264:17544-17550 (1989); Della-Cioppa et al. Plant Physiol. 84:965-968 (1987); Romer et al. Biochem. Biophys. Res. Commun. 196:1414-1421 (1993); and Shah et al. Science 233:478-481 (1986). Alternative plastid targeting signals have also been described in the following: US 2008/0263728; Miras, S. et al. (2002), J Biol Chem 277(49): 47770-8; Miras, S. et al. (2007), J Biol Chem 282: 29482-29492.

[0092] B. Exemplary Host Plants

[0093] Plants transformed in accordance with the present disclosure may be monocots or dicots. The transformation of suitable agronomic plant hosts using vectors for nuclear transformation or direct plastid transformation can be accomplished with a variety of methods and plant tissues. Representative plants useful in the methods disclosed herein include the Brassica family including *B. napus*, *B. rapa*, *B. carinata* and *B. juncea*; industrial oilseeds such as *Camelina sativa*, Crambe, jatropha, castor; *Calendula*, *Cuphea*, *Arabidopsis thaliana*; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including *Sinapis alba*; sugarcane flax and tobacco, also are useful with the methods disclosed herein. Representative tissues for transformation using these vectors include protoplasts, cells, callus tissue, leaf discs, pollen, and meristems.

[0094] C. Methods of Plant Transformation

[0095] Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium-mediated transformation (Townsend et al., U.S. Pat. No. 5,563,055; Zhao et al. WO US98/01268), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Pat. No. 4,945,050; Tomes et al. (1995) Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe et al. Biotechnology 6:923-926 (1988)). Also see Weissinger et al. Ann. Rev. Genet. 22:421-477 (1988); Sanford et al, Particulate Science and Technology 5:27-37 (1987) (onion); Christou et al. *Plant Physiol.* 87:671-674 (1988) (soybean); McCabe et al. (1988) BioTechnology 6:923-926 (soybean); Finer and McMullen In Vitro Cell Dev. Biol. 27P:175-182 (1991) (soybean); Singh et al. Theor. Appl. Genet. 96:319-324 (1998) (soybean); Dafta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. Proc. Natl. Acad. Sci. USA 85:4305-4309 (1988) (maize); Klein et al. Biotechnology 6:559-563 (1988) (maize); Tomes, U.S. Pat. No. 5,240,855; Buising et al., U.S. Pat. Nos. 5,322,783 and 5,324,646; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture Fundamental Methods, ed. Gamborg (Springer-Verlag, Berlin) (maize); Klein et al. Plant Physiol. 91:440-444 (1988) (maize); Fromm et al. Biotechnology 8:833-839 (1990) (maize); Hooykaas-Van Slogteren et al. Nature 311:763-764 (1984); Bowen et al., U.S. Pat. No. 5,736,369 (cereals); Bytebier et al. Proc. Natl. Acad. Sci. USA 84:5345-5349 (1987) (Liliaceae); De Wet et al. in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, N.Y.), pp. 197-209 (1985) (pollen); Kaeppler et al. Plant Cell Reports 9:415-418 (1990) and Kaeppler et al. Theor. Appl. Genet. 84:560-566 (1992) (whisker-mediated transformation); D'Halluin et al. Plant Cell 4:1495-1505 (1992) (electroporation); Li et al. Plant Cell Reports 12:250-255 (1993) and Christou and Ford Annals of Botany 75:407-413 (1995) (rice); Osjoda et al. Nature Biotechnology 14:745-750 (1996) (maize via Agrobacterium tumefaciens); all of which are herein incorporated by reference in their entirety. References for protoplast transformation and/or gene gun for Agrisoma technology are described in WO 2010/037209. Methods for transforming plant protoplasts are available including transformation using polyethylene glycol (PEG), electroporation, and calcium phosphate precipitation (see for example Potrykus et al., 1985, Mol. Gen. Genet., 199, 183-188; Potrykus et al., 1985, Plant Molecular Biology Reporter, 3, 117-128), Methods for plant regeneration from protoplasts have also been described [Evans et al., in Handbook of Plant Cell Culture, Vol 1, (Macmillan Publishing Co., New York, 1983); Vasil, 1K in Cell Culture and Somatic Cell Genetics (Academic, Orlando, 1984)].

[0096] Methods for transformation of plastids such as chloroplasts are known in the art. See, for example, Svab et al. (1990) Proc. Natl. Acad. Sci. USA 87:8526-8530; Svab and Maliga (1993) Proc. Natl. Acad. Sci. USA 90:913-917; Svab and Maliga (1993) EMBO J. 12:601-606. The method relies on particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination. Additionally, plastid transformation may be accomplished by transactivation of a silent plastid-borne transgene by tissue-preferred expression of a nuclear-encoded and plastid-directed RNA polymerase (McBride et al., Proc. Natl. Acad. Sci. USA, 1994, 91:7301-7305) or by use of an integrase, such as the phiC31 phage site-specific integrase, to target the gene insertion to a previously inserted phage attachment site (Lutz et al., Plant J, 2004, 37, 906-13). Plastid transformation vectors can be designed such that the transgenes are expressed from a promoter sequence that has been inserted with the transgene during the plastid transformation process or, alternatively, from an endogenous plastidial promoter such that an extension of an existing plastidial operon is achieved (Herz et al., Transgenic Research, 2005, 14, 969-982). An alternative method for plastid transformation as described in WO 2010/ 061186 wherein RNA produced in the nucleus of a plant cell can be targeted to the plastid genome can also be used to practice the disclosed invention. Inducible gene expression from the plastid genome using a synthetic riboswitch has also been reported (Verhounig et al. (2010), Proc Natl Acad Sci USA 107: 6204-6209). Methods for designing plastid transformation vectors are described by Lutz et al. (Lutz et al., Plant Physiol, 2007, 145, 1201-10).

[0097] Recombinase technologies which are useful for producing the disclosed transgenic plants include the cre-lox, FLP/FRT and Gin systems. Methods by which these technologies can be used for the purpose described herein are

described for example in (U.S. Pat. No. 5,527,695; Dale And Ow, 1991, *Proc. Natl. Acad. Sci. USA* 88: 10558-10562; Medberry et al., 1995, *Nucleic Acids Res.* 23: 485-490).

[0098] D. Methods for Reproducing Transgenic Plants

[0099] Following transformation by any one of the methods described above, the following procedures can be used to obtain a transformed plant expressing the transgenes: select the plant cells that have been transformed on a selective medium; regenerate the plant cells that have been transformed to produce differentiated plants; select transformed plants expressing the transgene producing the desired level of desired polypeptide(s) in the desired tissue and cellular location.

[0100] In plastid transformation procedures, further rounds of regeneration of plants from explants of a transformed plant or tissue can be performed to increase the number of transgenic plastids such that the transformed plant reaches a state of homoplasmy (all plastids contain uniform plastomes containing transgene insert).

[0101] The cells that have been transformed may be grown into plants in accordance with conventional techniques. See, for example, McCormick et al, *Plant Cell Reports* 5:81-84 (1986). These plants may then be grown, and either pollinated with the same transformed variety or different varieties, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that constitutive expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure constitutive expression of the desired phenotypic characteristic has been achieved.

[0102] In some scenarios, it may be advantageous to insert a multi-gene pathway into the plant by crossing of lines containing portions of the pathway to produce hybrid plants in which the entire pathway has been reconstructed. This is especially the case when high levels of product in a seed compromises the ability of the seed to germinate or the resulting seedling to survive under normal soil growth conditions. Hybrid lines can be created by crossing a line containing one or more PHB genes with a line containing the other gene(s) needed to complete the PHB biosynthetic pathway. Use of lines that possess cytoplasmic male sterility (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52) with the appropriate maintainer and restorer lines allows these hybrid lines to be produced efficiently. Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina.

III. Methods for Use

[0103] The disclosed genetic constructs can be used to produce industrial oilseed plants for high levels of PHA production. Specifically, PHA is produced in the seed.

[0104] The transgenic plants can be grown and harvested. The polyhydroxyalkanoate can be isolated from the oilseeds and the remaining plant material can be used as a feedstock for industrial use, preferably for the production of oleochemicals, energy or for use as feed for animals. The polyhydroxyalkanoate harvested from the plants can then be used to produce plastics, rubber material, coating material, and binders for paints, or as a feedstock for producing chemical deriva-

tives such as hydroxyacids, esters, alkenoic acids or amines. PHA also has several medical applications.

[0105] The present invention will be further understood by reference to the following non-limiting examples.

EXAMPLES

Example 1

Design and Construction of Transformation Vectors for Production of PHB in Oilseeds

[0106] Five different vectors for seed specific expression of the PHB pathway were constructed containing different seed specific promoters for production of PHB in oilseeds (Table 1). Vector pMBXS490, a pCAMBIA based plasmid (Centre for Application of Molecular Biology to International Agriculture, Canberra, Australia), contains the following gene expression cassettes: (1) an expression cassette for PHA synthase containing the promoter from the soybean oleosin isoform A gene, a DNA fragment encoding the signal peptide of the small subunit of rubisco from pea (*P. sativum*) and the first 24 amino acids of the mature protein (Cashmore, A. R. 1983, In Genetic Engineering of Plants, pp. 29-38), a DNA fragment encoding a hybrid PHA synthase (PhaC; U.S. Pat. No. 6,316,262) in which the first nine amino acids at the N-terminus of this synthase are derived from the Pseudomonas oleovorans phaC1 gene and the remainder of the synthase coding sequence is derived from Zoogloea ramigera phaC gene, and the 3' termination sequence from the soybean oleosin isoform A gene; (2) an expression cassette for reductase containing the promoter from the soybean oleosin isoform A gene, a DNA fragment encoding the signal peptide and the first 24 amino acids of the mature protein of the small subunit of rubisco from pea, a DNA fragment encoding a NADPH dependent reductase (PhaB) from Ralstonia eutropha eutropha (Peoples, O. & A. Sinskey, 1989, J. Biol. Chem., 264, 15293-15297), and the 3' termination sequence from the soybean oleosin isoform A gene; (3) an expression cassette for thiolase containing the promoter from the soybean glycinin (gy1) gene (Iida et al., 1995, Plant Cell Reports, 14, 539-544), a DNA fragment encoding the signal peptide and the first 24 amino acids of the mature protein of the small subunit of rubisco from pea, the phaA gene encoding a β-ketothiolase (PhaA) from Ralstonia eutropha (Peoples, O. & A. Sinskey, 1989, J. Biol. Chem., 264, 15293-15297), and a 3' termination sequence from the soybean glycinin gene; (4) an expression cassette for DsRed, a protein that can be visualized in seeds by placing them in light of the appropriate wavelength, containing the promoter from the cassava mosaic virus (CMV), a DNA fragment encoding a modified red fluorescent protein from Discosoma sp. (DsRed) in which eleven amino acids have been added to the C-terminus to increase solubility and/or prevent aggregation of the protein, and a termination sequence from the Agrobacterium tumefaciens nopaline synthase gene.

TABLE 1

Summary of transformation vectors containing seed specific promoters					
Plasmid	Promoter controlling expression of pha genes	Selectable or visible marker			
pMBXS490 pMBXS364	Oleosin LH	DsRed DsRed			

TABLE 1-continued

	Summary of transformation v containing seed specific pron	
Plasmid	Promoter controlling expression of pha genes	Selectable or visible marker
pMBXS355 pMBXS491 pMBXS492	LH Napin Glycinin	bar DsRed

[0107] Promoters are as follows: LH, promoter from the *Lesquerella fendleri* bifunctional oleate 12-hydroxylase: saturate gene (U.S. Pat. No. 6,437,220 B1); Oleosin, promoter from the soybean oleosin isoform A gene (Rowley and Herman, 1997, Biochim. Biophys. Acta 1345, 1-4); Napin, promoter from the *Brassica* napes napin gene (Ellenstrom, M. et al., 1996, Plant Molecular Biology, 32: 1019-1027); Glycinin, promoter from the soybean glycinin (gy1) gene (Iida, A. et al., 1995, Plant Cell Reports, 14:539-544).

[0108] Vectors pMBXS364, pMBXS355, pMBXS491, and pMBXS492 contain the same PHB pathway genes as pMBXS490 with the exception that the expression of these genes is under the control of different promoters as outlined in Table 1. Vector pMBXS355 contains an expression cassette for the bar gene, encoding phosphinothricin acetyltransferase whose expression is under the control of the 35S promoter. Expression of the bar gene allows selection of transformants based on their resistance to bialaphos. All other vectors in Table 1 contain expression cassettes for DsRed allowing the identification of transgenic seeds under the appropriate wavelength of light.

Example 2

Transformation of Camelina

[0109] In preparation for plant transformation experiments, seeds of *Camelina sativa* cultivar Suneson or Celine were sown directly into 4 inch pots filled with soil (Metro mix) in the greenhouse. Growth conditions were maintained at 24° C. during the day and 18° C. during the night. Plants were grown until flowering. Plants with a number of unopened flower buds were used in 'floral dip' transformations.

[0110] Agrobacterium strain GV3101 was transformed with the construct of interest using electroporation. A single colony of GV3101 containing the construct of interest was obtained from a freshly streaked plate and was inoculated into 5 mL LB medium. After overnight growth at 28° C., 2 mL of culture was transferred to a 500-mL flask containing 300 mL of LB and incubated overnight at 28° C. Cells were pelleted by centrifugation (6,000 rpm, 20 min), and diluted to an OD600 of ~0.8 with infiltration medium containing 5% sucrose and 0.05% (v/v) Silwet-L77 (Lehle Seeds, Round Rock, Tex., USA). Camelina plants were transformed by "floral dip" using transformation constructs as follows. Pots containing plants at the flowering stage were placed inside a 460 mm height vacuum desiccator (Bel-Art, Pequannock, N.J., USA). Inflorescences were immersed into the Agrobacterium inoculum contained in a 500-ml beaker. A vacuum (85 kPa) was applied and held for 5 min. Plants were removed from the desiccator and were covered with plastic bags in the dark for 24 h at room temperature. Plants were removed from the bags and returned to normal growth conditions within the greenhouse for seed formation.

[0111] To identify Camelina seeds expressing DsRed, fully mature seeds were harvested from transformed plants and placed in a desiccator with anhydrous calcium sulfate as desiccant for at least 2 days prior to screening. DsRed expressing seeds were visualized in a darkroom with a green LumaMax LED flashlight (Lab Safety Supply, Inc., Janesville, Wis.) and a pair of KD's Dark Red glasses (Pacific Coast Sunglasses Inc., Santa Maria, Calif.).

[0112] To identify bialaphos resistant seeds, seeds from floral dip transformations were sterilized in 70% ethanol and 10% bleach, and washed in water. Sterilized seeds were placed on germination and selection medium in square Petri dishes. The germination and selection medium contained 10 mg/L bialaphos (Gold BioTechnology, 130178-500) in ½x MS medium, which was made with Murashige & Skoog medium mixture (Caisson Labs, MSP09) at half concentration. The plates were sealed and placed in a growth chamber for germination under a 16-h photoperiod, 3,000 lux light intensity, and temperatures of 23/20° C. at day/night. Seedlings with greenish cotyledons were picked and transferred to soil about six days after initiation of germination.

Example 3

Production of PHB in Seeds of Camelina

[0113] In initial transformation experiments with pMBXS490, 24 DsRed positive seeds were isolated. Four of these seeds were sacrificed to determine their PHB content using a previously described gas chromatography/butanolysis technique performed essentially as previously described (Somleva et al., 2008, *Plant Biotechnol. J.*, 663-678). These four seeds contained 19.9, 12.0, 9.8, and 6.4% dwt PHB in the seed. When other seeds from this transformation were planted in soil, seedlings possessed whitish cotyledons and their growth was severely impaired. Only a few T₁ seeds with low levels of PHB were capable of germination and survival in soil in a greenhouse. These seedlings were still weak and possessed white or variegated cotyledons.

[0114] In transformations of pMBXS355 and pMBXS364, seeds from transformed plants were screened for resistance to bialophos and or visual screening for DsRed, respectively. Despite having the same promoter controlling the expression of the PHB biosynthetic pathway, the maximum PHB production in pMBXS355 (0.54% PHB) was significantly lower than the amount produced by pMBXS364 (3.4%) (Table 2). This is likely due to difficulty in distinguishing between weak pMBXS355 seedlings that produced higher levels of PHB and the non-transformed, bialophos sensitive seedlings.

TABLE 2

Comparison of PHB production in Lines isolated using bialaphos selection or visual screening						
Vector	Selectable or	# of	# of Lines w/	Range of PHB		
	Screenable	Lines	PHB in T2	Production		
	Marker	Tested	Seeds	(% seed weight)		
pMBXS355	Bar ¹	204	5	0.05 to 0.54%		
pMBXS364	DsRed ²	170	85	0.5 to 3.4%		

¹Selection of transformants performed by germination of seeds on tissue culture plates containing 10 mg/L bialophos. *Selection of transformants performed by visual screening for DsRed expression.

[0115] In transformations with pMBX491 and pMBX492 containing the PHB genes under the control of the napin and glycinin promoters, respectively, were healthier than trans-

formants obtained from pMBX490 transformations. For pMBX491, T2 seeds were isolated containing 8% PHB in DsRed seeds picked from the segregating population. These seeds possessed a 75% germination rate and a 60% survival rate under greenhouse conditions in soil. The cotyledons after 11 days were chlorotic and the growth of this line was significantly delayed compared to wild-type. For pMBX492, T2 seeds were isolated containing 6.9% PHB in DsRed seeds picked from the segregating population. These seeds possessed a 75% germination rate and a 70% survival rate under greenhouse conditions in soil. After 11 days, the cotyledons and first true leaves of this transformant were green. The growth of this line was somewhat delayed compared to wild-type but faster than the pMBXS491 line.

[0116] The 19% dwt PHB produced in a single seed obtained from Camelina plants transformed with construct pMBXS490 was an unexpected result and is the highest level of PHB reported in oilseeds to date. Previous studies with *Brassica napus* produced up to 7.7% dwt PHB. These seeds were obtained from transformation of *Brassica napus* using stem segments as the explants and selection of the transformed explants (Fry, J. et al., 1987, 6, 321-325) using glyphosate resistance obtained from expression of a gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Researchers did not report any germination issues with seeds isolated from the transformed plants [Houmiel et al., 1999, Planta, 209, 547-550; Valentin et al., 1999, Int. J. Biol. Macromol. 25, 303-306].

[0117] The use of DsRed as a visual marker in Camelina enabled the identification of high PHB producing seeds that would not have germinated in a typical seed screening procedure where an antibiotic or herbicide selectable marker, such as glyphosate resistance, is employed to provide resistance to the selection agent during seed germination and seedling development in tissue culture medium.

Example 4

Transformation of *Brassica napus, Brassica cari*nata, and *Brassica juncea*

[0118] Transformation of Brassica carinata

[0119] Brassica carinata can be transformed using a previously described floral dip method (Shiv et al., 2008, Journal of Plant Biochemistry and Biotechnology 17, 1-4). Briefly constructs of interest are transformed into Agrobacterium strain GV-3101 and cells are grown in liquid medium. Cells are harvested and resuspended in a transformation medium consisting of ½ MS salts, 5% sucrose, and 0.05% Silwet L-77. Brassica carinata plants are grown in a greenhouse until inflorescences develop and approximately 25% of their flowers are opened. Plants are submerged in the prepared Agrobacterium solution for approximately 1 minute, and covered for 24 hours. Plants are returned to the greenhouse and allowed to set seed. Transformed seeds are screened by picking DsRed seeds under the appropriate wavelength of light as described above.

[0120] Transformation of Brassica napus

[0121] Brassica seeds are surface sterilized in 10% commercial bleach (Javex, Colgate-Palmolive) for 30 min with gentle shaking. The seeds are washed three times in sterile distilled water and placed in germination medium comprising Murashige-Skoog (MS) salts and vitamins, 3% (w/v) sucrose and 0.7% (w/v) phytagar, pH 5.8 at a density of 20 per plate

and maintained at 24° C. an a 16 h light/8 h dark photoperiod at a light intensity of 60-80 μEm^{-2} s⁻¹ for 4-5 days.

[0122] Constructs of interest are introduced into *Agrobacterium tumefacians* strain EHA101 (Hood et. al., 1986, J. Bacteriol. 168: 1291-1301) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHA101 harboring each construct are grown in 5 ml of minimal medium supplemented with appropriate antibiotics for 48 hr at 28° C. One ml of bacterial suspension was pelleted by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 ml minimal medium.

[0123] For transformation, cotyledons are excised from 4 or in some cases 5 day old seedlings so that they included ~2 mm of petiole at the base. Individual cotyledons with the cut surface of their petioles are immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of ~2 mm in co-cultivation medium, MS medium with 3% (w/v) sucrose and 0.7% phytagar and enriched with 20 µM benzyladenine. The inoculated cotyledons are plated at a density of 10 per plate and incubated under the same growth conditions for 48 h. After co-cultivation, the cotyledons are transferred to regeneration medium comprising MS medium supplemented with 3% sucrose, 20 μM benzyladenine, 0.7% (w/v) phytagar, pH 5.8, 300 mg/L timentinin and 20 mg/L kanamycin sulfate. [0124] After 2-3 weeks regenerant shoots obtained are cut and maintained on "shoot elongation" medium (MS medium containing, 3% sucrose, 300 mg/L timentin, 0.7% (w/v) phytagar, 300 mg/L timentinin and 20 mg/L kanamycin sulfate, pH 5.8) in Magenta jars. The elongated shoots are transferred to "rooting" medium comprising MS medium, 3% sucrose, 2 mg/L indole butyric acid, 0.7% phytagar and 500mg/L carbenicillin. After roots emerge, plantlets are transferred to potting mix (Redi Earth, W.R. Grace and Co.). The plants are maintained in a misting chamber (75% relative humidity) under the same growth conditions. Plants are allowed to self pollinate to produce seeds. Seeds are screened by visualization of DsRed as described above.

[0125] Brassica napus can also be transformed using the floral dip procedure described by Shiv et al. (Shiv et al., 2008, Journal of Plant Biochemistry and Biotechnology 17, 1-4) as described above for Brassica carinata.

[0126] Transformation of Brassica juncea

[0127] Brassica juncea can be transformed using hypocotyl explants according to the methods described by Barfield and Pua (Barfield and Pua, Plant Cell Reports, 10, 308-314) or Pandian et al. (Pandian, et al., 2006, Plant Molecular Biology Reporter 24: 103a-103i) as follows.

[0128] B. juncea seeds are sterilized 2 min in 70% (v/v) ethanol and washed for 20 min in 25% commercial bleach (10 g/L hypochlorite). Seeds are rinsed 3× in sterile water. Surface-sterilized seeds are plated on germination medium (1× MS salts, 1×MS vitamins, 30 g/L sucrose, 500 mg/L MES. pH 5.5) and kept in the cold room for 2 days. Seeds are incubated for 4-6 days at 24° C. under low light (20 $\mu m \ m^{-1} s^{-1}$). Hypocotyl segments are excised and rinsed in 50 mL of callus induction medium (1× MS salts, 1× B5 vitamins, 30 g/L sucrose, 500 mg/L MES, 1.0 mg/L 2.4-D, 1.0 mg/L kinetin pH 5.8) for 30 min without agitation. This procedure is repeated but with agitation on orbital shaker (~140 g) for 48 h at 24° C. in low light (10 $\mu m \ m^{-1} s^{-1}$).

[0129] Agrobacterium can be prepared as follows: Cells of Agrobacterium strain AGL1 (Lazo, G. et al. (1991), Biotechnology, 9: 963-967) containing the construct of interest are grown in 5 mL of LB medium with appropriate antibiotic at

 28° C. for 2 days. The 5 mL culture is transferred to 250 mL flask with 45 mL of LB and cultured for 4 h at 28° C. Cells is pelleted and resuspended in BM medium (1×MS salts, 1×B5 vitamins, 30 g/L sucrose, 500 mg/L MES, pH 5.8). The optical density at 600 nm is adjusted to 0.2 with BM medium and used for inoculation.

[0130] Explants are cocultivated with *Agrobacterium* for 20 min after which time the *Agrobacterium* suspension is removed. Hypocotyl explants are washed once in callus induction medium after which cocultivation proceeds for 48 h with gentle shaking on orbital shaker. After several washes in CIM, explants are transferred to selective shoot-inducing medium (500 mg/L AgNO2, 0.4 mg/L zeatin riboside, 2.0 mg/L benzylamino purine, 0.01 mg/L GA, 200 mg/L Timentin appropriate selection agent and 8 g/L agar added to basal medium) plates for regeneration at 24° C. Root formation is induced on root-inducing medium (0.5×MS salts, 0.5× B5 vitamins, 10 g/L sucrose, 500 mg/L MES, 0.1 mg/L indole-3-butyric acid, 200 mg/L Timentin, appropriate selection agent and S g/L agar, pH 5.8).

[0131] Plantlets are transferred to are removed from agar, gently washed, and transferred to potting soil in pots. Plants are grown in a humid environment for a week and then transferred to the greenhouse.

Example 5

Production of Hybrid Lines that are not Capable of Germinating

[0132] In previous experiments in Arabidopsis, lower levels of PHB were obtained when lines expressing individual PHB genes were crossed to produce a plant containing the entire PHB biosynthetic pathway (Nawrath, C., Y. Poirier, et al., 1994, Proc. Natl. Acad. Sci. USA 91, 12760-12764) than when multi-gene constructs containing the entire PHB biosynthetic pathway were constructed and transformed (Bohmert, K., I. et al., 2000, Planta 211, 841-845; U.S. Pat. No. 6,448,473). This observation led to the subsequent predominant use of multi-gene constructs for PHB production in plants. However, in some scenarios, it may be advantageous to insert a multi-gene pathway into the plant by crossing of lines containing portions of the pathway to produce hybrid plants in which the entire pathway has been reconstructed. This is especially the case when high levels of product in a seed compromises the ability of the seed to germinate or the resulting seedling to survive under normal soil growth conditions. Hybrid lines can be created by crossing a line containing one or more PHB genes with a line containing the other gene(s) needed to complete the PHB biosynthetic pathway. Use of lines that possess cytoplasmic male sterility (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52) with the appropriate maintainer and restorer lines allows these hybrid lines to be produced efficiently. Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina. Cytoplasmic male sterility has also been reported upon expression of a β-ketothiolase from the chloroplast genome in tobacco (Ruiz, O. N. and H. Daniell, 2005, Plant Physiol. 138, 1232-1246). Male sterility has also been reported upon expression of the faoA gene

encoding the α -subunit of the fatty acid β -oxidation complex from *Pseudomonas putida* (U.S. Pat. No. 6,586,658).

[0133] High PHB producing lines that are not capable of germination can be produced using oilseed lines that possess cytoplasmic male sterility (CMS) controlled by an extranuclear genome (i.e. mitochondria or chloroplast). The male sterile line is typically maintained by crossing with a maintainer line that is genetically identical except that it possesses normal fertile cytoplasm and is therefore male fertile. Transformation of the maintainer line with one or more genes for the PHB biosynthetic pathway and crossing this modified maintainer line with the original male sterile line will produce a male sterile line possessing a portion of the PHB biosynthetic pathway. In this example, insertion of the phaA and phaC genes into the maintainer line and crossing with the original male cytoplasmic sterile line will form a male sterile line containing the phaA and phaC genes.

[0134] Fertility can be restored to this line using a "restorer line" that carries the appropriate nuclear restorer genes. Alternatively, the restorer line can be transformed with the remaining genes required to complete the PHB biosynthetic pathway and crossed with the previously created male sterile line containing phaA and phaC to produce a hybrid line containing the entire PHB biosynthetic pathway.

[0135] Crosses can be performed in the field by planting multiple rows of the male sterile line, the line that will produce the seed, next to a few rows of the male fertile line. Harvested seed can be used for subsequent plantings or as the PHB containing seed for crushing and extraction. When expression cassettes for the PHB genes in this example are

controlled by strong promoters, such as the soybean oleosin promoter, high PHB producing seeds generated in this manner will possess weak seedlings upon germination and will not be able to survive field conditions under normal growth circumstances unless treated with a material that promotes seedling strength/vigor. This adds a level of gene containment.

[0136] Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina. Cytoplasmic male sterility has also been reported upon expression of a β -ketothiolase from the chloroplast genome in tobacco (Ruiz, O. N. and H. Daniell, 2005, Plant Physiol. 138, 1232-1246). Overexpression of β -ketothiolase in Camelina to generate a male sterile line and subsequent crossing with a line expressing phaB and phaC could also be used for hybrid seed production.

[0137] Male sterile lines have also been produced in *Brassica napus* by overexpression of the faoA gene from *Pseudomonas putida* under the control of the phaseolin promoter sequence (U.S. Pat. No. 6,586,658).

[0138] Double haploid technology can be used to speed up the breeding process. In the double haploid technique, immature pollen grains (haploids) are exposed to treatments that result in doubling of the existing genetic material resulting in homozygous, true breeding material in a single generation.

[0139] The references, patents, and patent applications cited throughout are incorporated by reference where permissible in their entireties.

Vector: pMBXS490 (SEQ ID NO: 1) 1 GGGGATCCGT ACGTAAGTAC GTACTCAAAA TGCCAACAAA TAAAAAAAAA 51 GTTGCTTTAA TAATGCCAAA ACAAATTAAT AAAACACTTA CAACACCGGA 101 TTTTTTTAA TTAAAATGTG CCATTTAGGA TAAATAGTTA ATATTTTTAA 151 TAATTATTTA AAAAGCCGTA TCTACTAAAA TGATTTTTAT TTGGTTGAAA 201 ΑΤΑΤΤΑΑΤΑΤ GTTTAAATCA ACACAATCTA ΤCAAAATTAA ACTAAAAAA 251 AAATAAGTGT ACGTGGTTAA CATTAGTACA GTAATATAAG AGGAAAATGA 301 GAAATTAAGA AATTGAAAGC GAGTCTAATT TTTAAATTAT GAACCTGCAT 351 ATATAAAAGG AAAGAAAGAA TCCAGGAAGA AAAGAAATGA AACCATGCAT 401 GGTCCCCTCG TCATCACGAG TTTCTGCCAT TTGCAATAGA AACACTGAAA 451 CACCTTTCTC TTTGTCACTT AATTGAGATG CCGAAGCCAC CTCACACCAT 501 GAACTTCATG AGGTGTAGCA CCCAAGGCTT CCATAGCCAT GCATACTGAA 551 GAATGTCTCA AGCTCAGCAC CCTACTTCTG TGACGTGTCC CTCATTCACC 601 TTCCTCTCTT CCCTATAAAT AACCACGCCT CAGGTTCTCC GCTTCACAAC 651 TCAAACATTC TCTCCATTGG TCCTTAAACA CTCATCAGTC ATCACCGCGG 701 CCGCGGAATT CATGGCTTCT ATGATATCCT CTTCCGCTGT GACAACAGTC 751 AGCCGTGCCT CTAGGGGGCA ATCCGCCGCA GTGGCTCCAT TCGGCGGCCT 801 CAAATCCATG ACTGGATTCC CAGTGAAGAA GGTCAACACT GACATTACTT 851 CCATTACAAG CAATGGTGGA AGAGTAAAGT GCATGCAGGT GTGGCCTCCA

-continued
901 ATTGGAAAGA AGAAGTTTGA GACTCTTTCC TATTTGCCAC CATTGACGAG 951 AGATTCTAGA GTGACTGACG TTGTCATCGT ATCCGCCGCC CGCACCGCGG 1001 TCGGCAAGTT TGGCGGCTCG CTGGCCAAGA TCCCGGCACC GGAACTGGGT 1051 GCCGTGGTCA TCAAGGCCGC GCTGGAGCGC GCCGGCGTCA AGCCGGAGCA 1101 GGTGAGCGAA GTCATCATGG GCCAGGTGCT GACCGCCGGT TCGGGCCAGA 1151 ACCCGCACG CCAGGCCGCG ATCAAGGCCG GCCTGCCGGC GATGGTGCCG 1201 GCCATGACCA TCAACAAGGT GTGCGGCTCG GGCCTGAAGG CCGTGATGCT 1251 GGCCGCCAAC GCGATCATGG CGGGCGACGC CGAGATCGTG GTGGCCGGCG 1301 GCCAGGAAAA CATGAGCGCC GCCCCGCACG TGCTGCCGGG CTCGCGCGAT 1351 GGTTTCCGCA TGGGCGATGC CAAGCTGGTC GACACCATGA TCGTCGACGG 1401 CCTGTGGGAC GTGTACAACC AGTACCACAT GGGCATCACC GCCGAGAACG 1451 TGGCCAAGGA ATACGGCATC ACACGCGAGG CGCAGGATGA GTTCGCCGTC 1501 GGCTCGCAGA ACAAGGCCGA AGCCGCGCAG AAGGCCGGCA AGTTTGACGA 1551 AGAGATCGTC CCGGTGCTGA TCCCGCAGCG CAAGGGCGAC CCGGTGGCCT 1601 TCAAGACCGA CGAGTTCGTG CGCCAGGGCG CCACGCTGGA CAGCATGTCC 1651 GGCCTCAAGC CCGCCTTCGA CAAGGCCGGC ACGGTGACCG CGGCCAACGC 1701 CTCGGGCCTG AACGACGGCG CCGCCGCGGT GGTGGTGATG TCGGCGGCCA 1751 AGGCCAAGGA ACTGGGCCTG ACCCCGCTGG CCACGATCAA GAGCTATGCC 1801 AACGCCGGTG TCGATCCCAA GGTGATGGGC ATGGGCCCGG TGCCGGCCTC 1851 CAAGCGCGCC CTGTCGCGCG CCGAGTGGAC CCCGCAAGAC CTGGACCTGA 1901 TGGAGATCAA CGAGGCCTTT GCCGCGCAGG CGCTGGCGGT GCACCAGCAG 1951 ATGGGCTGGG ACACCTCCAA GGTCAATGTG AACGGCGGCG CCATCGCCAT 2001 CGGCCACCG ATCGGCGCGT CGGGCTGCCG TATCCTGGTG ACGCTGCTGC 2051 ACGAGATGAA GCGCCGTGAC GCGAAGAAGG GCCTGGCCTC GCTGTGCATC 2101 GGCGGCGGCA TGGGCGTGGC GCTGGCAGTC GAGCGCAAAT AACTCGAGGC 2151 GGCCGCAGCC CTTTTTGTAT GTGCTACCCC ACTTTTGTCT TTTTGGCAAT 2201 AGTGCTAGCA ACCAATAAAT AATAATAATA ATAATGAATA AGAAAACAAA 2251 GGCTTTAGCT TGCCTTTTGT TCACTGTAAA ATAATAATGT AAGTACTCTC 2301 TATAATGAGT CACGAAACTT TTGCGGGAAT AAAAGGAGAA ATTCCAATGA 2351 GTTTCTGTC AAATCTTCTT TTGTCTCTCT CTCTCTCTT TTTTTTTT 2401 TCTTTCTTCT GAGCTTCTTG CAAAACAAAA GGCAAACAAT AACGATTGGT 2451 CCAATGATAG TTAGCTTGAT CGATGATATC TTTAGGAAGT GTTGGCAGGA 2501 CAGGACATGA TGTAGAAGAC TAAAATTGAA AGTATTGCAG ACCCAATAGT 2551 TGAAGATTAA CTTTAAGAAT GAAGACGTCT TATCAGGTTC TTCATGACTT 2601 AAGCTTTAAG AGGAGTCCAC CATGGTAGAT CTGACTAGTA GAAGGTAATT 2651 ATCCAAGATG TAGCATCAAG AATCCAATGT TTACGGGAAA AACTATGGAA 2701 GTATTATGTG AGCTCAGCAA GAAGCAGATC AATATGCGGC ACATATGCAA 2751 CCTATGTTCA AAAATGAAGA ATGTACAGAT ACAAGATCCT ATACTGCCAG 2801 AATACGAAGA AGAATACGTA GAAATTAAGA AAGAAGAACC AGGCGAAGAA

2851	AAGAATCTTG	AAGACGTAAG	CACTGACGAC	AACACTGAAA	AGAAGAAGAT
2901	AAGGTCGGTG	ATTGTGAAAG	AGACATAGAG	GACACATGTA	AGGTGGAAAA
2951	TGTAAGGGCG	GAAAGTAACC	TTATCACAAA	GGAATCTTAT	CCCCCACTAC
3001	TTATCCTTTT	ATATTTTCC	GTGTCATTTT	TGCCCTTGAG	TTTTCCTATA
3051	TAAGGAACCA	AGTTCGGCAT	TTGTGAAAAC	AAGAAAAAAT	TGGTGTAAGC
3101	TATTTTCTTT	GAAGTACTGA	GGATACAACT	TCAGAGAAAT	TTGTAAGAAA
3151	GTGGATCGAA	ACCATGGCCT	CCTCCGAGAA	CGTCATCACC	GAGTTCATGC
3201	GCTTCAAGGT	GCGCATGGAG	GGCACCGTGA	ACGGCCACGA	GTTCGAGATC
3251	GAGGGCGAGG	GCGAGGGCCG	CCCCTACGAG	GGCCACAACA	CCGTGAAGCT
3301	GAAGGTGACC	AAGGGCGGCC	CCCTGCCCTT	CGCCTGGGAC	ATCCTGTCCC
3351	CCCAGTTCCA	GTACGGCTCC	AAGGTGTACG	TGAAGCACCC	CGCCGACATC
3401	CCCGACTACA	AGAAGCTGTC	CTTCCCCGAG	GGCTTCAAGT	GGGAGCGCGT
3451	GATGAACTTC	GAGGACGGCG	GCGTGGCGAC	CGTGACCCAG	GACTCCTCCC
3501	TGCAGGACGG	CTGCTTCATC	TACAAGGTGA	AGTTCATCGG	CGTGAACTTC
3551	CCCTCCGACG	GCCCCGTGAT	GCAGAAGAAG	ACCATGGGCT	GGGAGGCCTC
3601	CACCGAGCGC	CTGTACCCCC	GCGACGGCGT	GCTGAAGGGC	GAGACCCACA
3651	AGGCCCTGAA	GCTGAAGGAC	GGCGGCCACT	ACCTGGTGGA	GTTCAAGTCC
3701	ATCTACATGG	CCAAGAAGCC	CGTGCAGCTG	CCCGGCTACT	ACTACGTGGA
3751	CGCCAAGCTG	GACATCACCT	CCCACAACGA	GGACTACACC	ATCGTGGAGC
3801	AGTACGAGCG	CACCGAGGGC	CGCCACCACC	TGTTCCTGGT	ACCAATGAGC
3851	TCTGTCCAAC	AGTCTCAGGG	TTAATGTCTA	TGTATCTTAA	ATAATGTTGT
3901	CGGCGATCGT	TCAAACATTT	GGCAATAAAG	TTTCTTAAGA	TTGAATCCTG
3951	TTGCCGGTCT	TGCGATGATT	ATCATATAAT	TTCTGTTGAA	TTACGTTAAG
4001	CATGTAATAA	TTAACATGTA	ATGCATGACG	TTATTTATGA	GATGGGTTTT
4051	TATGATTAGA	GTCCCGCAAT	TATACATTTA	ATACGCGATA	GAAAACAAAA
4101	TATAGCGCGC	AAACTAGGAT	AAATTATCGC	GCGCGGTGTC	ATCTATGTTA
4151	CTAGATCGGG	AATTAAACTA	TCAGTGTTTG	ACAGGATATA	TTGGCGGGTA
4201	AACCTAAGAG	AAAAGAGCGT	TTATTAGAAT	AACGGATATT	TAAAAGGGCG
4251	TGAAAAGGTT	TATCCGTTCG	TCCATTTGTA	TGTGCATGCC	AACCACAGGG
			CTTTGATCCA		
			GTGCAGCCGT		
4401	CACAAGTCCT	AAGTTACGCG	ACAGGCTGCC	GCCCTGCCCT	TTTCCTGGCG
			GTCGCATAAA		
			AACAAGAGCG		
			CGACCAGGAC		
			CCAAGCTGTT		
			CTGGCCAGGA		
4701	GGCGACGTTG	TGACAGTGAC	CAGGCTAGAC	CGCCTGGCCC	GCAGCACCCG

-continued
4751 CGACCTACTG GACATTGCCG AGCGCATCCA GGAGGCCGGC GCGGGCCTGC 4801 GTAGCCTGGC AGAGCCGTGG GCCGACACCA CCACGCCGGC CGGCCGCATG 4851 GTGTTGACCG TGTTCGCCGG CATTGCCGAG TTCGAGCGTT CCCTAATCAT 4901 CGACCGCACC CGGAGCGGGC GCGAGGCCGC CAAGGCCCGA GGCGTGAAGT 4951 TTGGCCCCG CCCTACCCTC ACCCCGGCAC AGATCGCGCA CGCCCGCGAG 5001 CTGATCGACC AGGAAGGCCG CACCGTGAAA GAGGCGGCTG CACTGCTTGG 5051 CGTGCATCGC TCGACCCTGT ACCGCGCACT TGAGCGCAGC GAGGAAGTGA 5101 CGCCCACCGA GGCCAGGCGG CGCGGTGCCT TCCGTGAGGA CGCATTGACC 5151 GAGGCCGACG CCCTGGCGGC CGCCGAGAAT GAACGCCAAG AGGAACAAGC 5201 ATGAAACCGC ACCAGGACGG CCAGGACGAA CCGTTTTTCA TTACCGAAGA 5251 GATCGAGGCG GAGATGATCG CGGCCGGGTA CGTGTTCGAG CCGCCCGCGC 5301 ACGTCTCAAC CGTGCGGCTG CATGAAATCC TGGCCGGTTT GTCTGATGCC 5351 AAGCTGGCGG CCTGGCCGGC CAGCTTGGCC GCTGAAGAAA CCGAGCGCCG 5401 CCGTCTAAAA AGGTGATGTG TATTTGAGTA AAACAGCTTG CGTCATGCGG 5451 TCGCTGCGTA TATGATGCGA TGAGTAAATA AACAAATACG CAAGGGGAAC 5501 GCATGAAGGT TATCGCTGTA CTTAACCAGA AAGGCGGGTC AGGCAAGACG 5551 ACCATCGCAA CCCATCTAGC CCGCGCCCTG CAACTCGCCG GGGCCGATGT 5601 TCTGTTAGTC GATTCCGATC CCCAGGGCAG TGCCCGCGAT TGGGCGGCCG 5651 TGCGGGAAGA TCAACCGCTA ACCGTTGTCG GCATCGACCG CCCGACGATT 5701 GACCGCGACG TGAAGGCCAT CGGCCGGCGC GACTTCGTAG TGATCGACGG 5751 AGCGCCCCAG GCGGCGGACT TGGCTGTGTC CGCGATCAAG GCAGCCGACT 5801 TCGTGCTGAT TCCGGTGCAG CCAAGCCCTT ACGACATATG GGCCACCGCC 5851 GACCTGGTGG AGCTGGTTAA GCAGCGCATT GAGGTCACGG ATGGAAGGCT 5901 ACAAGCGGCC TTTGTCGTGT CGCGGGCGAT CAAAGGCACG CGCATCGGCG 5951 GTGAGGTTGC CGAGGCGCTG GCCGGGTACG AGCTGCCCAT TCTTGAGTCC 6001 CGTATCACGC AGCGCGTGAG CTACCCAGGC ACTGCCGCCG CCGGCACAAC 6051 CGTTCTTGAA TCAGAACCCG AGGGCGACGC TGCCCGCGAG GTCCAGGCGC 6101 TGGCCGCTGA AATTAAATCA AAACTCATTT GAGTTAATGA GGTAAAGAGA 6151 AAATGAGCAA AAGCACAAAC ACGCTAAGTG CCGGCCGTCC GAGCGCACGC 6201 AGCAGCAAGG CTGCAACGTT GGCCAGCCTG GCAGACACGC CAGCCATGAA 6251 GCGGGTCAAC TTTCAGTTGC CGGCGGAGGA TCACACCAAG CTGAAGATGT 6301 ACGCGGTACG CCAAGGCAAG ACCATTACCG AGCTGCTATC TGAATACATC 6351 GCGCAGCTAC CAGAGTAAAT GAGCAAATGA ATAAATGAGT AGATGAATTT 6401 TAGCGGCTAA AGGAGGCGGC ATGGAAAATC AAGAACAACC AGGCACCGAC 6451 GCCGTGGAAT GCCCCATGTG TGGAGGAACG GGCGGTTGGC CAGGCGTAAG 6501 CGGCTGGGTT GTCTGCCGGC CCTGCAATGG CACTGGAACC CCCAAGCCCG 6551 AGGAATCGGC GTGACGGTCG CAAACCATCC GGCCCGGTAC AAATCGGCGC 6601 GGCGCTGGGT GATGACCTGG TGGAGAAGTT GAAGGCCGCC CAGGCCGCCC 6651 AGCGGCAACG CATCGAGGCA GAAGCACGCC CCGGTGAATC GTGGCAAGCG

6701 GCCGCTGATC GAATCCGCAA AGAATCCCGG CAACCGCCGG CAGCCGGTGC 6751 GCCGTCGATT AGGAAGCCGC CCAAGGGCGA CGAGCAACCA GATTTTTTCG 6801 TTCCGATGCT CTATGACGTG GGCACCCGCG ATAGTCGCAG CATCATGGAC 6851 GTGGCCGTTT TCCGTCTGTC GAAGCGTGAC CGACGAGCTG GCGAGGTGAT 6901 CCGCTACGAG CTTCCAGACG GGCACGTAGA GGTTTCCGCA GGGCCGGCCG 6951 GCATGGCCAG TGTGTGGGAT TACGACCTGG TACTGATGGC GGTTTCCCAT 7001 CTAACCGAAT CCATGAACCG ATACCGGGAA GGGAAGGGAG ACAAGCCCGG 7051 CCGCGTGTTC CGTCCACACG TTGCGGACGT ACTCAAGTTC TGCCGGCGAG 7101 CCGATGGCGG AAAGCAGAAA GACGACCTGG TAGAAACCTG CATTCGGTTA 7151 AACACCACGC ACGTTGCCAT GCAGCGTACG AAGAAGGCCA AGAACGGCCG 7201 CCTGGTGACG GTATCCGAGG GTGAAGCCTT GATTAGCCGC TACAAGATCG 7251 TAAAGAGCGA AACCGGGCGG CCGGAGTACA TCGAGATCGA GCTAGCTGAT 7301 TGGATGTACC GCGAGATCAC AGAAGGCAAG AACCCGGACG TGCTGACGGT 7351 TCACCCCGAT TACTTTTTGA TCGATCCCGG CATCGGCCGT TTTCTCTACC 7401 GCCTGGCACG CCGCGCCGCA GGCAAGGCAG AAGCCAGATG GTTGTTCAAG 7451 ACGATCTACG AACGCAGTGG CAGCGCCGGA GAGTTCAAGA AGTTCTGTTT 7501 CACCGTGCGC AAGCTGATCG GGTCAAATGA CCTGCCGGAG TACGATTTGA 7551 AGGAGGAGGC GGGGCAGGCT GGCCCGATCC TAGTCATGCG CTACCGCAAC 7601 CTGATCGAGG GCGAAGCATC CGCCGGTTCC TAATGTACGG AGCAGATGCT 7651 AGGGCAAATT GCCCTAGCAG GGGAAAAAGG TCGAAAAGGT CTCTTTCCTG 7701 TGGATGTACC GTACATTGGG AACCCAAAGC CGTACATTGG GAACCGGAAC 7751 CCGTACATTG GGAACCCAAA GCCGTACATT GGGAACCGGT CACACATGTA 7801 AGTGACTGAT ATAAAAGAGA AAGAAGGCCA TTTTTCCGCC TAAAACTCTT 7851 TAAAACTTAT TAAAACTCTT AAAACCCGCC TGGCCTGTGC ATAACTGTCT 7901 GGCCAGCGCA CAGCCGAAGA GCTGCAAAAA GCGCCTACCC TTCGGTCGCT 7951 GCGCTCCCTA CGCCCGCCG CTTCGCGTCG GCCTATCGCG GCCGCTGGCC 8001 GCTCAAAAAT GGCTGGCCTA CGGCCAGGCA ATCTACCAGG GCGCGGACAA 8051 GCCGCCCCT CGCCACTCGA CCGCCGCCC CCACATCAAG GCACCCTGCC 8101 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG 8151 GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG 8201 TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCGCA GCCATGACCC 8251 AGTCACGTAG CGATAGCGGA GTGTATACTG GCTTAACTAT GCGGCATCAG 8301 AGCAGATTGT ACTGAGAGTG CACCATATGC GGTGTGAAAT ACCGCACAGA 8351 TGCGTAAGGA GAAAATACCG CATCAGGCGC TCTTCCGCTT CCTCGCTCAC 8401 TGACTCGCTG CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA TCAGCTCACT 8451 CAAAGGCGGT AATACGGTTA TCCACAGAAT CAGGGGATAA CGCAGGAAAG 8501 AACATGTGAG CAAAAGGCCA GCAAAAGGCC AGGAACCGTA AAAAGGCCGC 8551 GTTGCTGGCG TTTTTCCATA GGCTCCGCCC CCCTGACGAG CATCACAAAA

-continued 8601 ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC 8651 CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCT 8701 GCCGCTTACC GGATACCTGT CCGCCTTTCT CCCTTCGGGA AGCGTGGCGC 8751 TTTCTCATAG CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGTCGTTCGC 8801 TCCAAGCTGG GCTGTGTGCA CGAACCCCCC GTTCAGCCCG ACCGCTGCGC 8851 CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA CACGACTTAT 8901 CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC GAGGTATGTA 8951 GGCTGGCCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG 9001 AAGGACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA 9051 AAAGAGTTGG TAGCTCTTGA TCCGGCAAAC AAACCACCGC TGGTAGCGGT 9101 GGTTTTTTTG TTTGCAAGCA GCAGATTACG CGCAGAAAAA AAGGATCTCA 9151 AGAAGATCCT TTGATCTTTT CTACGGGGTC TGACGCTCAG TGGAACGAAA 9201 ACTCACGTTA AGGGATTTTG GTCATGCATT CTAGGTACTA AAACAATTCA 9251 TCCAGTAAAA TATAATATTT TATTTTCTCC CAATCAGGCT TGATCCCCAG 9301 TAAGTCAAAA AATAGCTCGA CATACTGTTC TTCCCCGATA TCCTCCCTGA 9351 TCGACCGGAC GCAGAAGGCA ATGTCATACC ACTTGTCCGC CCTGCCGCTT 9401 CTCCCAAGAT CAATAAAGCC ACTTACTTTG CCATCTTTCA CAAAGATGTT 9451 GCTGTCTCCC AGGTCGCCGT GGGAAAAGAC AAGTTCCTCT TCGGGCTTTT 9501 CCGTCTTTAA AAAATCATAC AGCTCGCGCG GATCTTTAAA TGGAGTGTCT 9551 TCTTCCCAGT TTTCGCAATC CACATCGGCC AGATCGTTAT TCAGTAAGTA 9601 ATCCAATTCG GCTAAGCGGC TGTCTAAGCT ATTCGTATAG GGACAATCCG 9651 ATATGTCGAT GGAGTGAAAG AGCCTGATGC ACTCCGCATA CAGCTCGATA 9701 ATCTTTCAG GGCTTTGTTC ATCTTCATAC TCTTCCGAGC AAAGGACGCC 9751 ATCGGCCTCA CTCATGAGCA GATTGCTCCA GCCATCATGC CGTTCAAAGT 9801 GCAGGACCTT TGGAACAGGC AGCTTTCCTT CCAGCCATAG CATCATGTCC 9851 TTTTCCCGTT CCACATCATA GGTGGTCCCT TTATACCGGC TGTCCGTCAT 9901 TTTTAAATAT AGGTTTTCAT TTTCTCCCAC CAGCTTATAT ACCTTAGCAG 9951 GAGACATTCC TTCCGTATCT TTTACGCAGC GGTATTTTTC GATCAGTTTT 10001 TTCAATTCCG GTGATATTCT CATTTTAGCC ATTTATTATT TCCTTCTCT 10051 TTTCTACAGT ATTTAAAGAT ACCCCAAGAA GCTAATTATA ACAAGACGAA 10101 CTCCAATTCA CTGTTCCTTG CATTCTAAAA CCTTAAATAC CAGAAAACAG 10151 CTTTTCAAA GTTGTTTTCA AAGTTGGCGT ATAACATAGT ATCGACGGAG 10201 CCGATTTTGA AACCGCGGTG ATCACAGGCA GCAACGCTCT GTCATCGTTA 10251 CAATCAACAT GCTACCCTCC GCGAGATCAT CCGTGTTTCA AACCCGGCAG 10301 CTTAGTTGCC GTTCTTCCGA ATAGCATCGG TAACATGAGC AAAGTCTGCC 10351 GCCTTACAAC GGCTCTCCCG CTGACGCCGT CCCGGACTGA TGGGCTGCCT 10401 GTATCGAGTG GTGATTTTGT GCCGAGCTGC CGGTCGGGGA GCTGTTGGCT 10451 GGCTGGTGGC AGGATATATT GTGGTGTAAA CAAATTGACG CTTAGACAAC 10501 TTAATAACAC ATTGCGGACG TTTTTAATGT ACTGAATTAA CGCCGAATTA

10551 ATTCCTAGGC CACCATGTTG GGCCCGGGGC GCGCCGTACG TAGTGTTTAT 10601 CTTTGTTGCT TTTCTGAACA ATTTATTTAC TATGTAAATA TATTATCAAT 10651 GTTTAATCTA TTTTAATTTG CACATGAATT TTCATTTTAT TTTTACTTTA 10701 CAAAACAAT AAATATATAT GCAAAAAAT TTACAAACGA TGCACGGGTT 10751 ACAAACTAAT TTCATTAAAT GCTAATGCAG ATTTTGTGAA GTAAAACTCC 10801 AATTATGATG AAAAATACCA CCAACACCAC CTGCGAAACT GTATCCCAAC 10851 TGTCCTTAAT AAAAATGTTA AAAAGTATAT TATTCTCATT TGTCTGTCAT 10901 AATTTATGTA CCCCACTTTA ATTTTTCTGA TGTACTAAAC CGAGGGCAAA 10951 CTGAAACCTG TTCCTCATGC AAAGCCCCTA CTCACCATGT ATCATGTACG 11001 TGTCATCACC CAACAACTCC ACTTTTGCTA TATAACAACA CCCCCGTCAC 11051 ACTCTCCCTC TCTAACACAC ACCCCACTAA CAATTCCTTC ACTTGCAGCA 11101 CTGTTGCATC ATCATCTTCA TTGCAAAACC CTAAACTTCA CCTTCAACCG 11151 CGGCCGCATG GCTTCTATGA TATCCTCTTC CGCTGTGACA ACAGTCAGCC 11201 GTGCCTCTAG GGGGCAATCC GCCGCAGTGG CTCCATTCGG CGGCCTCAAA 11251 TCCATGACTG GATTCCCAGT GAAGAAGGTC AACACTGACA TTACTTCCAT 11301 TACAAGCAAT GGTGGAAGAG TAAAGTGCAT GCAGGTGTGG CCTCCAATTG 11351 GAAAGAAGAA GTTTGAGACT CTTTCCTATT TGCCACCATT GACGAGAGAT 11401 TCTAGAGTGA GTAACAAGAA CAACGATGAG CTGCAGTGGC AATCCTGGTT 11451 CAGCAAGGCG CCCACCACCG AGGCGAACCC GATGGCCACC ATGTTGCAGG 11501 ATATCGGCGT TGCGCTCAAA CCGGAAGCGA TGGAGCAGCT GAAAAACGAT 11551 TATCTGCGTG ACTTCACCGC GTTGTGGCAG GATTTTTTGG CTGGCAAGGC 11601 GCCAGCCGTC AGCGACCGCC GCTTCAGCTC GGCAGCCTGG CAGGGCAATC 11651 CGATGTCGGC CATCATGTCC GCATCTTACC TGCTCAACGC CAAATTCCTC 11701 AGTGCCATGG TGGAGGCGGT GGACACCGCA CCCCAGCAAA AGCAGAAAAT 11751 ACGCTTTGCC GTGCAGCAGG TGATTGATGC CATGTCGCCC GCGAACTTCC 11801 TCGCCACCAA CCCGGAAGCG CAGCAAAAAC TGATTGAAAC CAAGGGCGAG 11851 AGCCTGACGC GTGGCCTGGT CAATATGCTG GGCGATATCA ACAAGGGCCA 11901 TATCTCGCTG TCGGACGAAT CGGCCTTTGA AGTGGGCCGC AACCTGGCCA 11951 TTACCCCGGG CACCGTGATT TACGAAAATC CGCTGTTCCA GCTGATCCAG 12001 TACACGCCGA CCACGCCGAC GGTCAGCCAG CGCCCGCTGT TGATGGTGCC 12051 GCCGTGCATC AACAAGTTCT ACATCCTCGA CCTTCAACCG GAAAATTCGC 12101 TGGTGCGCTA CGCGGTGGAG CAGGGCAACA CCGTGTTCCT GATCTCGTGG 12151 AGCAATCCGG ACAAGTCGCT GGCCGGCACC ACCTGGGACG ACTACGTGGA 12201 GCAGGGCGTG ATCGAAGCGA TCCGCATCGT CCAGGACGTC AGCGGCCAGG 12251 ACAAGCTGAA CATGTTCGGC TTCTGCGTGG GCGGCACCAT CGTTGCCACC 12301 GCACTGGCGG TACTGGCGGC GCGTGGCCAG CACCCGGCGG CCAGCCTGAC 12351 CCTGCTGACC ACCTTCCTCG ACTTCAGCGA CACCGGCGTG CTCGACGTCT 12401 TCGTCGATGA AACCCAGGTC GCGCTGCGTG AACAGCAATT GCGCGATGGC

-continued
12451 GGCCTGATGC CGGGCCGTGA CCTGGCCTCG ACCTTCTCGA GCCTGCGTCC 12501 GAACGACCTG GTATGGAACT ATGTGCAGTC GAACTACCTC AAAGGCAATG 12551 AGCCGGCGGC GTTTGACCTG CTGTTCTGGA ATTCGGACAG CACCAATTTG 12601 CCGGGCCCGA TGTTCTGCTG GTACCTGCGC AACACCTACC TGGAAAACAG 12651 CCTGAAAGTG CCGGGCAAGC TGACGGTGGC CGGCGAAAAG ATCGACCTCG 12701 GCCTGATCGA CGCCCCGGCC TTCATCTACG GTTCGCGCGA AGACCACATC 12751 GTGCCGTGGA TGTCGGCGTA CGGTTCGCTC GACATCCTCA ACCAGGCCAA 12801 GCCGGCCCC AACCGCTTCG TGCTGGCCGC GTCCGGCCAT ATCGCCGGCG 12851 TGATCAACTC GGTGGCCAAG AACAAGCGCA GCTACTGGAT CAACGACGGT 12901 GGCGCCGCG ATGCCCAGGC CTGGTTCGAT GGCGCGCAGG AAGTGCCGGG 12951 CAGCTGGTGG CCGCAATGGG CCGGGTTCCT GACCCAGCAT GGCGGCAAGA 13001 AGGTCAAGCC CAAGGCCAAG CCCGGCAACG CCCGCTACAC CGCGATCGAG 13051 GCGGCGCCCG GCCGTTACGT CAAAGCCAAG GGCTGAGCGG CCGCTGAGTA 13101 ATTCTGATAT TAGAGGGAGC ATTAATGTGT TGTTGTGATG TGGTTTATAT 13151 GGGGAAATTA AATAAATGAT GTATGTACCT CTTGCCTATG TAGGTTTGTG 13201 TGTTTTGTTT TGTTGTCTAG CTTTGGTTAT TAAGTAGTAG GGACGTTCGT 13251 TCGTGTCTCA AAAAAAGGGG TACTACCACT CTGTAGTGTA TATGGATGCT 13301 GGAAATCAAT GTGTTTTGTA TTTGTTCACC TCCATTGTTG AATTCAATGT 13351 CAAATGTGTT TTGCGTTGGT TATGTGTAAA ATTACTATCT TTCTCGTCCG 13401 ATGATCAAAG TTTTAAGCAA CAAAACCAAG GGTGAAATTT AAACTGTGCT 13451 TTGTTGAAGA TTCTTTTATC ATATTGAAAA TCAAATTACT AGCAGCAGAT 13501 TTTACCTAGC ATGAAATTTT ATCAACAGTA CAGCACTCAC TAACCAAGTT 13551 CCAAACTAAG ATGCGCCATT AACATCAGCC AATAGGCATT TTCAGCAAGG 13601 CGCGCCCGCG CCGATGTATG TGACAACCCT CGGGATTGTT GATTTATTTC 13651 AAAACTAAGA GTTTTTGTCT TATTGTTCTC GTCTATTTTG GATATCAATC 13701 TTAGTTTTAT ATCTTTTCTA GTTCTCTACG TGTTAAATGT TCAACACACT 13751 AGCAATTTGG CCTGCCAGCG TATGGATTAT GGAACTATCA AGTCTGTGAC 13801 GCGCCGTACG TAGTGTTTAT CTTTGTTGCT TTTCTGAACA ATTTATTTAC 13851 TATGTAAATA TATTATCAAT GTTTAATCTA TTTTAATTTG CACATGAATT 13951 TTACAAACGA TGCACGGGTT ACAAACTAAT TTCATTAAAT GCTAATGCAG 14001 ATTTTGTGAA GTAAAACTCC AATTATGATG AAAAATACCA CCAACACCAC 14051 CTGCGAAACT GTATCCCAAC TGTCCTTAAT AAAAATGTTA AAAAGTATAT 14101 TATTCTCATT TGTCTGTCAT AATTTATGTA CCCCACTTTA ATTTTTCTGA 14151 TGTACTAAAC CGAGGGCAAA CTGAAACCTG TTCCTCATGC AAAGCCCCCTA 14201 CTCACCATGT ATCATGTACG TGTCATCACC CAACAACTCC ACTTTTGCTA 14251 TATAACAACA CCCCCGTCAC ACTCTCCCTC TCTAACACAC ACCCCACTAA 14301 CAATTCCTTC ACTTGCAGCA CTGTTGCATC ATCATCTTCA TTGCAAAACC 14351 CTAAACTTCA CCTTCAACCG CGGCCGCATG GCTTCTATGA TATCCTCTTC

14401 CGCTGTGACA ACAGTCAGCC GTGCCTCTAG GGGGCAATCC GCCGCAGTGG 14451 CTCCATTCGG CGGCCTCAAA TCCATGACTG GATTCCCAGT GAAGAAGGTC 14501 AACACTGACA TTACTTCCAT TACAAGCAAT GGTGGAAGAG TAAAGTGCAT 14551 GCAGGTGTGG CCTCCAATTG GAAAGAAGAA GTTTGAGACT CTTTCCTATT 14601 TGCCACCATT GACGAGAGAT TCTAGAGTGA CTCAGCGCAT TGCGTATGTG 14651 ACCGGCGGCA TGGGTGGTAT CGGAACCGCC ATTTGCCAGC GGCTGGCCAA 14701 GGATGGCTTT CGTGTGGTGG CCGGTTGCGG CCCCAACTCG CCGCGCGCG 14751 AAAAGTGGCT GGAGCAGCAG AAGGCCCTGG GCTTCGATTT CATTGCCTCG 14801 GAAGGCAATG TGGCTGACTG GGACTCGACC AAGACCGCAT TCGACAAGGT 14851 CAAGTCCGAG GTCGGCGAGG TTGATGTGCT GATCAACAAC GCCGGTATCA 14901 CCCGCGACGT GGTGTTCCGC AAGATGACCC GCGCCGACTG GGATGCGGTG 14951 ATCGACACCA ACCTGACCTC GCTGTTCAAC GTCACCAAGC AGGTGATCGA 15001 CGGCATGGCC GACCGTGGCT GGGGCCGCAT CGTCAACATC TCGTCGGTGA 15051 ACGGGCAGAA GGGCCAGTTC GGCCAGACCA ACTACTCCAC CGCCAAGGCC 15101 GGCCTGCATG GCTTCACCAT GGCACTGGCG CAGGAAGTGG CGACCAAGGG 15151 CGTGACCGTC AACACGGTCT CTCCGGGCTA TATCGCCACC GACATGGTCA 15201 AGGCGATCCG CCAGGACGTG CTCGACAAGA TCGTCGCGAC GATCCCGGTC 15251 AAGCGCCTGG GCCTGCCGGA AGAGATCGCC TCGATCTGCG CCTGGTTGTC 15301 GTCGGAGGAG TCCGGTTTCT CGACCGGCGC CGACTTCTCG CTCAACGGCG 15351 GCCTGCATAT GGGCTGAGCG GCCGCTGAGT AATTCTGATA TTAGAGGGAG 15451 TGTATGTACC TCTTGCCTAT GTAGGTTTGT GTGTTTTGTT TTGTTGTCTA 15501 GCTTTGGTTA TTAAGTAGTA GGGACGTTCG TTCGTGTCTC AAAAAAAGGG 15551 GTACTACCAC TCTGTAGTGT ATATGGATGC TGGAAATCAA TGTGTTTTGT 15601 ATTTGTTCAC CTCCATTGTT GAATTCAATG TCAAATGTGT TTTGCGTTGG 15651 TTATGTGTAA AATTACTATC TTTCTCGTCC GATGATCAAA GTTTTAAGCA 15701 ACAAAACCAA GGGTGAAATT TAAACTGTGC TTTGTTGAAG ATTCTTTTAT 15751 CATATTGAAA ATCAAATTAC TAGCAGCAGA TTTTACCTAG CATGAAATTT 15801 TATCAACAGT ACAGCACTCA CTAACCAAGT TCCAAACTAA GATGCGCCAT 15851 TAACATCAGC CAATAGGCAT TTTCAGCAAG GCGCGTAA

pMBXS364

1 CATGCCAACC ACAGGGTTCC CCTCGGGATC AAAGTACTTT GATCCAACCC

51 CTCCGCTGCT ATAGTGCAGT CGGCTTCTGA CGTTCAGTGC AGCCGTCTTC

101 TGAAAACGAC ATGTCGCACA AGTCCTAAGT TACGCGACAG GCTGCCGCCC

151 TGCCCTTTTC CTGGCGTTTT CTTGTCGCGT GTTTTAGTCG CATAAAGTAG

201 AATACTTGCG ACTAGAACCG GAGACATTAC GCCATGAACA AGAGCGCCGC

251 CGCTGGCCTG CTGGGCTATG CCCGCGTCAG CACCGACGAC CAGGACTTGA

301 CCAACCAACG GGCCGAACTG CACGCGGCCG GCTGCACCAA GCTGTTTTCC

-continued
351 GAGAAGATCA CCGGCACCAG GCGCGACCGC CCGGAGCTGG CCAGGATGCT 401 TGACCACCTA CGCCCTGGCG ACGTTGTGAC AGTGACCAGG CTAGACCGCC 451 TGGCCGCAG CACCCGCGAC CTACTGGACA TTGCCGAGCG CATCCAGGAG 501 GCCGGCGCG GCCTGCGTAG CCTGGCAGAG CCGTGGGCCG ACACCACCAC 551 GCCGGCCGGC CGCATGGTGT TGACCGTGTT CGCCGGCATT GCCGAGTTCG 601 AGCGTTCCCT AATCATCGAC CGCACCCGGA GCCGGCGGA GGCCGCCAAG 651 GCCCGAGGCG TGAAGTTTGG CCCCCGCCT ACCCTCACCC CGGCACAGAT 701 CGCGCACGCC CGCGAGCTGA TCGACCAGGA AGGCCGCACC GTGAAAGAGG 751 CGGCTGCACT GCTTGGCGTG CATCGCTCGA CCCTGTACCG CGCACTTGAG 801 CGCAGCGAGG AAGTGACGCC CACCGAGGCC AGGCGGCGCG GTGCCTTCCG 851 TGAGGACGCA TTGACCGAGG CCGACGCCCT GGCGGCCGCC GAGAATGAAC 901 GCCAAGAGGA ACAAGCATGA AACCGCACCA GGACGGCCAG GACGAACCGT 951 TTTTCATTAC CGAAGAGATC GAGGCGGAGA TGATCGCGGC CGGGTACGTG 1001 TTCGAGCCGC CCGCGCACGT CTCAACCGTG CGGCTGCATG AAATCCTGGC 1051 CGGTTTGTCT GATGCCAAGC TGGCGGCCTG GCCGGCCAGC TTGGCCGCTG 1101 AAGAAACCGA GCGCCGCCGT CTAAAAAGGT GATGTGTATT TGAGTAAAAC 1151 AGCTTGCGTC ATGCGGTCGC TGCGTATATG ATGCGATGAG TAAATAAACA 1201 AATACGCAAG GGGAACGCAT GAAGGTTATC GCTGTACTTA ACCAGAAAGG 1251 CGGGTCAGGC AAGACGACCA TCGCAACCCA TCTAGCCCGC GCCCTGCAAC 1301 TCGCCGGGGC CGATGTTCTG TTAGTCGATT CCGATCCCCA GGGCAGTGCC 1351 CGCGATTGGG CGGCCGTGCG GGAAGATCAA CCGCTAACCG TTGTCGGCAT 1401 CGACCGCCCG ACGATTGACC GCGACGTGAA GGCCATCGGC CGGCGCGACT 1451 TCGTAGTGAT CGACGGAGCG CCCCAGGCGG CGGACTTGGC TGTGTCCGCG 1501 ATCAAGGCAG CCGACTTCGT GCTGATTCCG GTGCAGCCAA GCCCTTACGA 1551 CATATGGGCC ACCGCCGACC TGGTGGAGCT GGTTAAGCAG CGCATTGAGG 1601 TCACGGATGG AAGGCTACAA GCGGCCTTTG TCGTGTCGCG GGCGATCAAA 1651 GGCACGCGCA TCGGCGGTGA GGTTGCCGAG GCGCTGGCCG GGTACGAGCT 1701 GCCCATTCTT GAGTCCCGTA TCACGCAGCG CGTGAGCTAC CCAGGCACTG 1751 CCGCCGCGG CACAACCGTT CTTGAATCAG AACCCGAGGG CGACGCTGCC 1801 CGCGAGGTCC AGGCGCTGGC CGCTGAAATT AAATCAAAAC TCATTTGAGT 1851 TAATGAGGTA AAGAGAAAAT GAGCAAAAGC ACAAACACGC TAAGTGCCGG 1901 CCGTCCGAGC GCACGCAGCA GCAAGGCTGC AACGTTGGCC AGCCTGGCAG 1951 ACACGCCAGC CATGAAGCGG GTCAACTTTC AGTTGCCGGC GGAGGATCAC 2001 ACCAAGCTGA AGATGTACGC GGTACGCCAA GGCAAGACCA TTACCGAGCT 2051 GCTATCTGAA TACATCGCGC AGCTACCAGA GTAAATGAGC AAATGAATAA 2101 ATGAGTAGAT GAATTTTAGC GGCTAAAGGA GGCGGCATGG AAAATCAAGA 2151 ACAACCAGGC ACCGACGCCG TGGAATGCCC CATGTGTGGA GGAACGGGCG 2201 GTTGGCCAGG CGTAAGCGGC TGGGTTGTCT GCCGGCCCTG CAATGGCACT 2251 GGAACCCCCA AGCCCGAGGA ATCGGCGTGA CGGTCGCAAA CCATCCGGCC

2301 CGGTACAAAT CGGCGCGGCG CTGGGTGATG ACCTGGTGGA GAAGTTGAAG 2351 GCCGCGAGG CCGCCCAGCG GCAACGCATC GAGGCAGAAG CACGCCCCGG 2401 TGAATCGTGG CACGCGGCCG CTGATCGAAT CCGCAAAGAA TCCCGGCAAC 2451 CGCCGCCAGC CGGTGCGCCG TCGATTAGGA AGCCGCCCAA GGGCGACGAG 2501 CAACCAGATT TTTTCGTTCC GATGCTCTAT GACGTGGGCA CCCGCGTCAG 2551 TCGCAGCATC ATGGACGTGG CCGTTTTCCG TCTGTCGAAG CGTGACCGAC 2601 GAGCTGGCGA GGTGATCCGC TACGAGCTTC CAGACGGCA CGTAGAGGTT 2651 TCCGCAGGGC CGGCCGGCAT GGCCAGTGTG TGGGATTACG ACCTGGTACT 2701 GATGGCGGTT TCCCATCTAA CCGAATCCAT GAACCGATAC CGGGAAGGGA 2751 AGGGAGACAA GCCCGGCCGC GTGTTCCGTC CACACGTTGC GGACGTACTC 2801 AAGTTCTGCC GGCGAGCCGA TGGCGGAAAG CAGAAAGACG ACCTGGTAGA 2851 AACCTGCATT CGGTTAAACA CCACGCACGT TGCCATGCAG CGTACGAAGA 2901 AGGCCAAGAA CGGCCGCCTG GTGACGGTAT CCGAGGGTGA AGCCTTGATT 2951 AGCCGCTACA AGATCGTAAA GAGCGAAACC GGGCGGCCGG AGTACATCGA 3001 GATCGAGCTA GCTGATTGGA TGTACCGCGA GATCACAGAA GGCAAGAACC 3051 CGGACGTGCT GACGGTTCAC CCCGATTACT TTTTGATCGA TCCCGGCATC 3101 GGCCGTTTTC TCTACCGCCT GGCACGCCGC GCCGCAGGCA AGGCAGAAGC 3151 CAGATGGTTG TTCAAGACGA TCTACGAACG CAGTGGCAGC GCCGGAGAGT 3201 TCAAGAAGTT CTGTTTCACC GTGCGCAAGC TGATCGGGTC AAATGACCTG 3251 CCGGAGTACG ATTTGAAGGA GGAGGCGGGG CAGGCTGGCC CGATCCTAGT 3301 CATGCGCTAC CGCAACCTGA TCGAGGGCGA AGCATCCGCC GGTTCCTAAT 3351 GTACGGAGCA GATGCTAGGG CAAATTGCCC TAGCAGGGGA AAAAGGTCGA 3401 AAAGGTCTCT TTCCTGTGGA TAGCACGTAC ATTGGGAACC CAAAGCCGTA 3451 CATTGGGAAC CGGAACCCGT ACATTGGGAA CCCAAAGCCG TACATTGGGA 3501 ACCGGTCACA CATGTAAGTG ACTGATATAA AAGAGAAAAA AGGCGATTTT 3551 TCCGCCTAAA ACTCTTTAAA ACTTATTAAA ACTCTTAAAA CCCGCCTGGC 3601 CTGTGCATAA CTGTCTGGCC AGCCCACAGC CGAAGAGCTG CAAAAAGCGC 3651 CTACCCTTCG GTCGCTGCGC TCCCTACGCC CCGCCGCTTC GCGTCGGCCT 3701 ATCGCGGCCG CTGGCCGCTC AAAAATGGCT GGCCTACGGC CAGGCAATCT 3751 ACCAGGGCGC GGACAAGCCG CGCCGTCGCC ACTCGACCGC CGGCGCCCAC 3801 ATCAAGGCAC CCTGCCTCGC GCGTTTCGGT GATGACGGTG AAAACCTCTG 3851 ACACATGCAG CTCCCGGAGA CGGTCACAGC TTGTCTGTAA GCGGATGCCG 3901 GGAGCAGACA AGCCCGTCAG GGCGCGTCAG CGGGTGTTGG CGGGTGTCGG 3951 GGCGCAGCCA TGACCCAGTC ACGTAGCGAT AGCGGAGTGT ATACTGGCTT 4001 AACTATGCGG CATCAGAGCA GATTGTACTG AGAGTGCACC ATATGCGGTG 4051 TGAAATACCG CACAGATGCG TAAGGAGAAA ATACCGCATC AGGCGCTCTT 4101 CCGCTTCCTC GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCGA 4151 GCGGTATCAG CTCACTCAAA GGCGGTAATA CGGTTATCCA CAGAATCAGG

-continued
4201 GGATAACGCA GGAAAGAACA TGTGAGCAAA AGGCCAGCAA AAGGCCAGGA 4251 ACCGTAAAAA GGCCGCGTTG CTGGCGTTTT TCCATAGGCT CCGCCCCCCT 4301 GACGAGCATC ACAAAAATCG ACGCTCAAGT CAGAGGTGGC GAAACCCGAC 4351 AGGACTATAA AGATACCAGG CGTTTCCCCC TGGAAGCTCC CTCGTGCGCT 4401 CTCCTGTTCC GACCCTGCCG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT 4451 TCGGGAAGCG TGGCGCTTTC TCATAGCTCA CGCTGTAGGT ATCTCAGTTC 4501 GGTGTAGGTC GTTCGCTCCA AGCTGGGCTG TGTGCACGAA CCCCCCGTTC 4551 AGCCCGACCG CTGCGCCTTA TCCGGTAACT ATCGTCTTGA GTCCAACCCG 4601 GTAAGACACG ACTTATCGCC ACTGGCAGCA GCCACTGGTA ACAGGATTAG 4651 CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG TGGTGGCCTA 4701 ACTACGGCTA CACTAGAAGG ACAGTATTTG GTATCTGCGC TCTGCTGAAG 4751 CCAGTTACCT TCGGAAAAAG AGTTGGTAGC TCTTGATCCG GCAAACAAAC 4801 CACCGCTGGT AGCGGTGGTT TTTTTGTTTG CAAGCAGCAG ATTACGCGCA 4851 GAAAAAAGG ATCTCAAGAA GATCCTTTGA TCTTTTCTAC GGGGTCTGAC 4901 GCTCAGTGGA ACGAAAACTC ACGTTAAGGG ATTTTGGTCA TGCATTCTAG 4951 GTACTAAAAC AATTCATCCA GTAAAATATA ATATTTTATT TTCTCCCAAT 5001 CAGGCTTGAT CCCCAGTAAG TCAAAAAATA GCTCGACATA CTGTTCTTCC 5051 CCGATATCCT CCCTGATCGA CCGGACGCAG AAGGCAATGT CATACCACTT 5101 GTCCGCCCTG CCGCTTCTCC CAAGATCAAT AAAGCCACTT ACTTTGCCAT 5151 CTTTCACAAA GATGTTGCTG TCTCCCAGGT CGCCGTGGGA AAAGACAAGT 5201 TCCTCTTCGG GCTTTTCCGT CTTTAAAAAA TCATACAGCT CGCGCGGATC 5251 TTTAAATGGA GTGTCTTCTT CCCAGTTTTC GCAATCCACA TCGGCCAGAT 5301 CGTTATTCAG TAAGTAATCC AATTCGGCTA AGCGGCTGTC TAAGCTATTC 5351 GTATAGGGAC AATCCGATAT GTCGATGGAG TGAAAGAGCC TGATGCACTC 5401 CGCATACAGC TCGATAATCT TTTCAGGGCT TTGTTCATCT TCATACTCTT 5451 CCGAGCAAAG GACGCCATCG GCCTCACTCA TGAGCAGATT GCTCCAGCCA 5501 TCATGCCGTT CAAAGTGCAG GACCTTTGGA ACAGGCAGCT TTCCTTCCAG 5551 CCATAGCATC ATGTCCTTTT CCCGTTCCAC ATCATAGGTG GTCCCTTTAT 5601 ACCGGCTGTC CGTCATTTTT AAATATAGGT TTTCATTTTC TCCCACCAGC 5651 TTATATACCT TAGCAGGAGA CATTCCTTCC GTATCTTTA CGCAGCGGTA 5701 TTTTTCGATC AGTTTTTTCA ATTCCGGTGA TATTCTCATT TTAGCCATTT 5751 ATTATTTCCT TCCTCTTTTC TACAGTATTT AAAGATACCC CAAGAAGCTA 5801 ATTATAACAA GACGAACTCC AATTCACTGT TCCTTGCATT CTAAAACCTT 5851 AAATACCAGA AAACAGCTTT TTCAAAGTTG TTTTCAAAGT TGGCGTATAA 5901 CATAGTATCG ACGGAGCCGA TTTTGAAACC GCGGTGATCA CAGGCAGCAA 5951 CGCTCTGTCA TCGTTACAAT CAACATGCTA CCCTCCGCGA GATCATCCGT 6001 GTTTCAAACC CGGCAGCTTA GTTGCCGTTC TTCCGAATAG CATCGGTAAC 6051 ATGAGCAAAG TCTGCCGCCT TACAACGGCT CTCCCGCTGA CGCCGTCCCG 6101 GACTGATGGG CTGCCTGTAT CGAGTGGTGA TTTTGTGCCG AGCTGCCGGT

6151	CGGGGAGCTG	TTGGCTGGCT	GGTGGCAGGA	TATATTGTGG	TGTAAACAAA
6201	TTGACGCTTA	GACAACTTAA	TAACACATTG	CGGACGTTTT	TAATGTACTG
6251	AATTAACGCC	GAATTAATTC	GGGGGATCTG	GATTTTAGTA	CTGGATTTTG
6301	GTTTTAGGAA	TTAGAAATTT	TATTGATAGA	AGTATTTTAC	AAATACAAAT
6351	ACATACTAAG	GGTTTCTTAT	ATGCTCAACA	CATGAGCGAA	ACCCTATAGG
6401	AACCCTAATT	CCCTTATCTG	GGAACTACTC	ACACATTTTT	ATGGAGAAAC
6451	TCGAGTTAAC	CCTGAGACTG	TTGGACAGAG	CTCATTGGTA	CCAGGAACAG
6501	GTGGTGGCGG	CCCTCGGTGC	GCTCGTACTG	CTCCACGATG	GTGTAGTCCT
6551	CGTTGTGGGA	GGTGATGTCC	AGCTTGGCGT	CCACGTAGTA	GTAGCCGGGC
6601	AGCTGCACGG	GCTTCTTGGC	CATGTAGATG	GACTTGAACT	CCACCAGGTA
6651	GTGGCCGCCG	TCCTTCAGCT	TCAGGGCCTT	GTGGGTCTCG	CCCTTCAGCA
6701	CGCCGTCGCG	GGGGTACAGG	CGCTCGGTGG	AGGCCTCCCA	GCCCATGGTC
6751	TTCTTCTGCA	TCACGGGGCC	GTCGGAGGG	AAGTTCACGC	CGATGAACTT
6801	CACCTTGTAG	ATGAAGCAGC	CGTCCTGCAG	GGAGGAGTCC	TGGGTCACGG
6851	TCGCCACGCC	GCCGTCCTCG	AAGTTCATCA	CGCGCTCCCA	CTTGAAGCCC
6901	TCGGGGAAGG	ACAGCTTCTT	GTAGTCGGGG	ATGTCGGCGG	GGTGCTTCAC
6951	GTACACCTTG	GAGCCGTACT	GGAACTGGGG	GGACAGGATG	TCCCAGGCGA
7001	AGGGCAGGGG	GCCGCCCTTG	GTCACCTTCA	GCTTCACGGT	GTTGTGGCCC
7051	TCGTAGGGGC	GGCCCTCGCC	CTCGCCCTCG	ATCTCGAACT	CGTGGCCGTT
7101	CACGGTGCCC	TCCATGCGCA	CCTTGAAGCG	CATGAACTCG	GTGATGACGT
7151	TCTCGGAGGA	GGCCATTTTG	GTAGACTCGA	GAGAGATAGA	TTTGTAGAGA
7201	GAGACTGGTG	ATTTCAGCGT	GTCCTCTCCA	AATGAAATGA	ACTTCCTTAT
7251	ATAGAGGAAG	GTCTTGCGAA	GGATAGTGGG	ATTGTGCGTC	ATCCCTTACG
7301	TCAGTGGAGA	TATCACATCA	ATCCACTTGC	TTTGAAGACG	TGGTTGGAAC
7351	GTCTTCTTTT	TCCACGATGC	TCCTCGTGGG	TGGGGGTCCA	TCTTTGGGAC
7401	CACTGTCGGC	AGAGGCATCT	TGAACGATAG	CCTTTCCTTT	ATCGCAATGA
7451	TGGCATTTGT	AGGTGCCACC	TTCCTTTTCT	ACTGTCCTTT	TGATGAAGTG
7501	ACAGATAGCT	GGGCAATGGA	ATCCGAGGAG	GTTTCCCGAT	ATTACCCTTT
7551	GTTGAAAAGT	CTCAATAGCC	CTTTGGTCTT	CTGAGACTGT	ATCTTTGATA
7601	TTCTTGGAGT	AGACGAGAGT	GTCGTGCTCC	ACCATGTTAT	CACATCAATC
7651	CACTTGCTTT	GAAGACGTGG	TTGGAACGTC	TTCTTTTTCC	ACGATGCTCC
7701	TCGTGGGTGG	GGGTCCATCT	TTGGGACCAC	TGTCGGCAGA	GGCATCTTGA
7751	ACGATAGCCT	TTCCTTTATC	GCAATGATGG	CATTTGTAGG	TGCCACCTTC
7801	CTTTTCTACT	GTCCTTTTGA	TGAAGTGACA	GATAGCTGGG	CAATGGAATC
7851	CGAGGAGGTT	TCCCGATATT	ACCCTTTGTT	GAAAAGTCTC	AATAGCCCTT
7901	TGGTCTTCTG	AGACTGTATC	TTTGATATTC	TTGGAGTAGA	CGAGAGTGTC
7951	GTGCTCCACC	ATGTTGGCAA	GCTGCTCTAG	CCAATACGCA	AACCGCCTCT
8001	CCCCGCGCGT	TGGCCGATTC	ATTAATGCAG	CTGGCACGAC	AGGTTTCCCG

-continued 8051 ACTGGAAAGC GGGCAGTGAG CGCAACGCAA TTAATGTGAG TTAGCTCACT 8101 CATTAGGCAC CCCAGGCTTT ACACTTTATG CTTCCGGCTC GTATGTTGTG 8151 TGGAATTGTG AGCGGATAAC AATTTCACAC AGGAAACAGC TATGACCATG 8201 ATTACGAATT CAGGTACCAT TTAAATCCTG CAGGGTTTAA ACAGTGTTTT 8251 ACTCCTCATA TTAACTTCGG TCATTAGAGG CCACGATTTG ACACATTTTT 8301 ACTCAAAACA AAATGTTTGC ATATCTCTTA TAATTTCAAA TTCAACACAC 8351 AACAAATAAG AGAAAAAACA AATAATATTA ATTTGAGAAT GAACAAAAGG 8401 ACCATATCAT TCATTAACTC TTCTCCATCC ATTTCCATTT CACAGTTCGA 8451 TAGCGAAAAC CGAATAAAAA ACACAGTAAA TTACAAGCAC AACAAATGGT 8501 ACAAGAAAA CAGTTTTCCC AATGCCATAA TACTCGAACG GCGCGCCTCA 8551 GCCCATATGC AGGCCGCCGT TGAGCGAGAA GTCGGCGCCG GTCGAGAAAC 8601 CGGACTCCTC CGACGACAAC CAGGCGCAGA TCGAGGCGAT CTCTTCCGGC 8651 AGGCCCAGGC GCTTGACCGG GATCGTCGCG ACGATCTTGT CGAGCACGTC 8701 CTGGCGGATC GCCTTGACCA TGTCGGTGGC GATATAGCCC GGAGAGACCG 8751 TGTTGACGGT CACGCCCTTG GTCGCCACTT CCTGCGCCAG TGCCATGGTG 8801 AAGCCATGCA CGCCGGCCTT GGCGGTGGAG TAGTTGGTCT GGCCGAACTG 8851 GCCCTTCTGC CCGTTCACCG ACGAGATGTT GACGATGCGG CCCCAGCCAC 8901 GGTCGGCCAT GCCGTCGATC ACCTGCTTGG TGACGTTGAA CAGCGAGGTC 8951 AGGTTGGTGT CGATCACCGC ATCCCAGTCG GCGCGGGTCA TCTTGCGGAA 9001 CACCACGTCG CGGGTGATAC CGGCGTTGTT GATCAGCACA TCAACCTCGC 9051 CGACCTCGGA CTTGACCTTG TCGAATGCGG TCTTGGTCGA GTCCCAGTCA 9101 GCCACATTGC CTTCCGAGGC AATGAAATCG AAGCCCAGGG CCTTCTGCTG 9151 CTCCAGCCAC TTTTCGCGGC GCGGCGAGTT GGGGCCGCAA CCGGCCACCA 9201 CACGAAAGCC ATCCTTGGCC AGCCGCTGGC AAATGGCGGT TCCGATACCA 9251 CCCATGCCGC CGGTCACATA CGCAATGCGC TGAGTCACTC TAGAATCTCT 9301 CGTCAATGGT GGCAAATAGG AAAGAGTCTC AAACTTCTTC TTTCCAATTG 9351 GAGGCCACAC CTGCATGCAC TTTACTCTTC CACCATTGCT TGTAATGGAA 9401 GTAATGTCAG TGTTGACCTT CTTCACTGGG AATCCAGTCA TGGATTTGAG 9451 GCCGCCGAAT GGAGCCACTG CGGCGGATTG CCCCCTAGAG GCACGGCTGA 9501 CTGTTGTCAC AGCGGAAGAG GATATCATAG AAGCCATTTT ACTAGTAAGA 9551 AGCTGAAAAT ATCAAAAGAA GGAACAGTCA TTAATCTATT GCATGTACTA 9601 GATTTTAGAT ATGAGTGGTC AAAAAAAACT TACGTTAATA ACGATGAAGA 9651 AGACAATGAT CCTCAGCACA ATCTCTCTCT CTCTCTTTG GCTTCTCTTC 9701 TGGTGAATAG CACGAGAGAG GGTTTAAATG GAAGGCTCGT GGGTCCAAAA 9751 TGGGTGGCGG AGGAAATAGG AGAAGTAGGC AGTGACAAGT AATGTAGTAT 9801 TTAGTATTTG ATGAATGACA CATTTTCATT TCAGCATCAT CACCAACCAT 9851 CCTTTTGTTC CTTTGCTTCA ACTGTCACTT TCAATTGACA AAATTTTTTA 9901 TGTTTCATG AGAAAACTAA ATTCTTATAA AGATTCATCT TCTTGAGTAT 9951 TATACGTGTA GTTTATGAAC AACACGTGTT GTTCCTATAT TTTTGTTCTG

10001 TTAC	CTCTAG AAT	AAAGTTG	TCACCATTTC	ATGAGTTCAA	TTTTTCTTTA
10051 ATAG	CCCCAA AAA	CAAAAGA	TGATTCACAA	GAAAGATGCG	AATATTTTGC
10101 TATG	AATCTT TTC	TTAAGAG	AAGCAATTAC	ATTTTCACAA	TAAAATTAGA
10151 TCCA	CGACTT AAC	CTAGTTT	ATGTTGATTA	TTTCTAGTGT	TAGTATTAAG
10201 CAAA	AATAAA ACT	TATGAAT	ACGAAGGCCT	TTAAAGGAAA	CTAAAGAAAG
10251 GACA	AGGTAT AAA	CGTCCTA	GAAAGTTCTA	GGGTTTAGGC	TTAGGGTCTA
10301 AGAT	ATATGC TTT	GAGTTTT	ATGGCTTAGT	AACACATTTT	TGTAACACTT
10351 CTTT	GTAACA TTT	CTTGATA	TGTTGGAGAA	GTAACTCGTC	TGGACAATAG
10401 TTAT	TTCCAA TAT	ATAGGAA	AAACGGCCTA	AACAATAGCC	GACGGGGACA
10451 AATA	CATCAT AAA	CAAAAAA	TCCCGGTTAC	AAACTTCCTA	AAAAGCCATT
10501 CGGT	CCACTC CGT	TAAGCCT	GAACTGTGCC	TCCGTTATGC	AAAAACGCCG
10551 TTGA	CCATCC GTA	ACCTAGT	TGACTGACGG	ATTATGGATT	TAATCCGTTT
10601 TAAG	GCCGTT AAT	AACACCA	AAACGACGTC	GTTTTGGTGT	TTAAATTTTT
10651 TTTA	ACAACA ATT	AAACCAA	ACGACGTCGT	TTTGGTTTAA	TTAAATTTTT
10701 TTAT	CAAAAA CCC	AAGCCCA	AGCCCAAAAC	TCTTAACAAA	AGATAAAGCC
10751 CATC	TCTATT TTT	TCTAATT	AAAACGCACA	GCATTATGTT	TCTTCTCTAA
10801 CGGA	TATATT TTC	AATCTCA	TAAATTGGGG	ATTAGGGTTC	TTATTTCCCA
10851 ATTC	TCAATC TCT	CAAAATT	CTCCAAAATT	CTCTGAAATT	GATAATGCCT
10901 TCTT	CTTCTT CAA	ACTCGTT	TTTCTCTTTT	GACAGTGAGC	TTGAAGATGA
10951 TAAC	CATCGT GGT	TTTCCTA	AGACCTGTCG	ATTTGGATGT	CGTGTTGTGA
11001 TCAG	AACCTC AAG	AACTCCA	AAAAACCTAG	GTAGATTATT	CCATACCTGT
11051 GAGA	AAAATT TCA	AAAGAGG	AGGATTCCAC	ACCTGGAAGT	GGACTGATGT
11101 GTCT	TTAGTA GAA	GAAGTAG	AGGACATAAA	GGCTTACATT	CATAACCGTG
11151 AGAA	GTGTCA CGA	TGAAGAA	ATGTTATTAT	TGAAGGCTCA	GATTCGTGGC
11201 TGTG	AGAAGA TGA	TTGAAGG	CTTGAAAGGA	GAAGCAAAAC	GTATGAAGCT
11251 AATT	GTTGTT GCC	GGAATAG	TTGTGTTTGG	TTGCTTTTTG	TGTCTCTCTA
11301 AGTG	ATGTAT GAG	ATGAATG	TTTGTGTATG	TGATGTTGTT	TTGTCTCAAT
11351 AATT	AGTCAC TGA	TGTTGTA	TGTAATGTTG	TGTTTTGCAT	CTCTAATTAG
11401 TTAA	TAATGA ATG	TTGTTCT	TATGTAATGT	TTGATTTAAT	CAATGGCTTT
11451 TGCA	AATAAA TCC	ATAACAG	AACNTATTCA	ATATTTTCGA	AAACATAACA
11501 AAGG	TTTCAA AAG	AAATTGC	ATGTTGATTA	GCTGAGTTTT	CAAACAAAAT
11551 GCAT	TACATA GAC	AGACCCT	GCTTCATAAT	CCCCAAAACA	CAAAAGAGAA
11601 GCAT	GCTAAT AAC	CGCAACT	AATATCCAAA	GACAGCTTCA	TAATCCCAAA
11651 ACAC	aaaaaa aga	AGATTCA	TAACCGATCC	TTCATGTATT	TAAAGAAAAT
				AGTAACTGAT	
11751 CGAC	GTTTAA ACA	GTGTTTT	ACTCCTCATA	TTAACTTCGG	TCATTAGAGG
11801 CCAC	GATTTG ACA	CATTTTT	ACTCAAAACA	AAATGTTTGC	ATATCTCTTA
11851 TAAT	TTCAAA TTC	AACACAC	AACAAATAAG	AGAAAAAACA	AATAATATTA

-continued
11901 ATTTGAGAAT GAACAAAAGG ACCATATCAT TCATTAACTC TTCTCCATCC 11951 ATTTCCATTT CACAGTTCGA TAGCGAAAAC CGAATAAAAA ACACAGTAAA 12001 TTACAAGCAC AACAAATGGT ACAAGAAAAA CAGTTTTCCC AATGCCATAA 12051 TACTCGAACT ACGTATTATT TGCGCTCGAC TGCCAGCGCC ACGCCCATGC 12101 CGCCGCCGAT GCACAGCGAG GCCAGGCCCT TCTTCGCGTC ACGGCGCTTC 12151 ATCTCGTGCA GCAGCGTCAC CAGGATACGG CAGCCCGACG CGCCGATCGG 12201 GTGGCCGATG GCGATGGCGC CGCCGTTCAC ATTGACCTTG GAGGTGTCCC 12251 AGCCCATCTG CTGGTGCACC GCCAGCGCCT GCGCGGCAAA GGCCTCGTTG 12301 ATCTCCATCA GGTCCAGGTC TTGCGGGGGTC CACTCGGCGC GCGACAGGGC 12351 GCGCTTGGAG GCCGGCACCG GGCCCATGCC CATCACCTTG GGATCGACAC 12401 CGGCGTTGGC ATAGCTCTTG ATCGTGGCCA GCGGGGTCAG GCCCAGTTCC 12451 TTGGCCTTGG CCGCCGACAT CACCACCACC GCGGCGGCGC CGTCGTTCAG 12501 GCCCGAGGCG TTGGCCGCGG TCACCGTGCC GGCCTTGTCG AAGGCGGGCT 12551 TGAGGCCGGA CATGCTGTCC AGCGTGGCGC CCTGGCGCAC GAACTCGTCG 12601 GTCTTGAAGG CCACCGGGTC GCCCTTGCGC TGCGGGATCA GCACCGGGAC 12651 GATCTCTTCG TCAAACTTGC CGGCCTTCTG CGCGGCTTCG GCCTTGTTCT 12701 GCGAGCCGAC GGCGAACTCA TCCTGCGCCT CGCGTGTGAT GCCGTATTCC 12751 TTGGCCACGT TCTCGGCGGT GATGCCCATG TGGTACTGGT TGTACACGTC 12801 CCACAGGCCG TCGACGATCA TGGTGTCGAC CAGCTTGGCA TCGCCCATGC 12851 GGAAACCATC GCGCGAGCCC GGCAGCACGT GCGGGGCGGC GCTCATGTTT 12901 TCCTGGCCGC CGGCCACCAC GATCTCGGCG TCGCCCGCCA TGATCGCGTT 12951 GGCGGCCAGC ATCACGGCCT TCAGGCCCGA GCCGCACACC TTGTTGATGG 13001 TCATGGCCGG CACCATCGCC GGCAGGCCGG CCTTGATCGC GGCCTGGCGT 13051 GCGGGGTTCT GGCCCGAACC GGCGGTCAGC ACCTGGCCCA TGATGACTTC 13101 GCTCACCTGC TCCGGCTTGA CGCCGGCGCG CGCCGGCGCG GCCTTGATGA 13151 CCACGGCACC CAGTTCCGGT GCGGGGTTCT TGGCCAGCGA GCCGCCAAAC 13201 TTGCCGACCG CGGTGCGGCC GGCGGATACG ATGACAACGT CAGTCACTCT 13251 AGAATCTCTC GTCAATGGTG GCAAATAGGA AAGAGTCTCA AACTTCTTCT 13301 TTCCAATTGG AGGCCACACC TGCATGCACT TTACTCTTCC ACCATTGCTT 13351 GTAATGGAAG TAATGTCAGT GTTGACCTTC TTCACTGGGA ATCCAGTCAT 13401 GGATTTGAGG CCGCCGAATG GAGCCACTGC GGCGGATTGC CCCCTAGAGG 13451 CACGGCTGAC TGTTGTCACA GCCGAACAGG ATATCATAGA AGCCATTTTG 13501 GATCCAAGAA GCTGAAAATA TCAAAAGAAG GAACAGTCAT TAATCTATTG 13551 CATGTACTAG ATTTTAGATA TGAGTGGTCA AAAAAAACTT ACGTTAATAA 13601 CGATGAAGAA GACAATGATC CTCAGCACAA TCTCTCTCTC TCTCTCTTGG 13651 CTTCTCTTCT GGTGAATAGC ACGAGAGAG GTTTAAATGG AAGGCTCGTG 13701 GGTCCAAAAT GGGTGGCGGA GGAAATAGGA GAAGTAGGCA GTGACAAGTA 13751 ATGTAGTATT TAGTATTTGA TGAATGACAC ATTTTCATTT CAGCATCATC 13801 ACCAACCATC CTTTTGTTCC TTTGCTTCAA CTGTCACTTT CAATTGACAA

13851 AATTTTTAT GTTTTCATGA GAAAACTAAA TTCTTATAAA GATTCATCTT 13901 CTTGAGTATT ATACGTGTAG TTTATGAACA ACACGTGTTG TTCCTATATT 13951 TTTGTTCTGT TACCTCTAGA ATAAAGTTGT CACCATTTCA TGAGTTCAAT 14001 TTTTCTTTAA TAGCCCCAAA AACAAAGAT GATTCACAAG AAAGATGCGA 14051 ATATTTTGCT ATGAATCTTT TCTTAAGAGA AGCAATTACA TTTTCACAAT 14101 AAAATTAGAT CCACGACTTA ACCTAGTTTA TGTTGATTAT TTCTAGTGTT 14151 AGTATTAAGC ACAAATAAGA CTTATGAATA CGAAGGCCTT TAAAGGAAAC 14201 TAAAGAAAGG ACAAGGTATA AACGTCCTAG AAAGTTCTAG GGTTTAGGCT 14251 TAGGGTCTAA GATATATGCT TTGAGTTTTA TGGCTTAGTA ACACATTTTT 14301 GTAACACTTC TTTGTAACAT TTCTTGATAT GTTGGAGAAG TAACTCGTCT 14351 GGACAATAGT TATTTCCAAT ATATAGGAAA AACTTCCTAA ACAATAGCCG 14401 ACGGGGACAA ATACATCATA AACAAAAGAT CCCGGTTACA AACTTCCTAA 14451 AAAGCCATTC GGTCCACTCC GTTAAGCCTG AACTGTGCCT CCGTTATGCA 14501 AAAACGCCGT TGACCATCCG TAACCTAGTT GACTGACGGA TTATGGATTT 14551 AATCCGTTTT AAGGCCGTTA ATAACACCAA AACGACGTCG TTTTGGTGTT 14601 TTAATTTTTT TTAACAACAA TTAAACCAAA CGACGTCGTT TTGGTTTAAT 14651 TAAATTTTTT TATCAAAAAC CCAAGCCCAA GCCCAAAACT CTTAACAAAA 14701 GATAAAGCCC ATCTCTATTT TTTCTAATTA AAACGCACAG CATTATGTTT 14751 CTTCTCTAAC GGATATATTT TCAATCTCAT AAATTGGGGA TTAGGGTTCT 14801 TATTTCCCAA TTCTCAATCT CTCAAAATTC TCCAAAATTC TCTGAAATTG 14851 ATAATGCCTT CTTCTTCTTC AAACTCGTTT TTCTCTTTTG ACAGTGAGCT 14901 TGAAGATGAT AACCATCGTG GTTTTCCTAA GACCTGTCGA TTTGGATGTC 14951 GTGTTGTGAT CAGAACCTCA ATAACACCAA AAAACCTAGG TAGATTATTC 15001 CATACCTGTG AGAAAAATTT CAAAAGAGGA GGATTCCACA CCTGGAAGTG 15051 GACTGATGTG TCTTTAGTAG AAGAAGTAGA GGACATAAAG GCTTACATTC 15101 ATAACCGTGA GAAGTGTCAC GATGAAGAAA TGTTATTATT GAAGGCTCAG 15151 ATTCGTGGCT GTGAGAGAT GATTGAAGGC TTGAAAGGAG AAGCAAAACG 15201 TATGAAGCTA ATTGTTCTTG CCGGAATAGT TGTGTTTGGT TGCTTTTTGT 15251 GTCTCTCTAA GTGATGTATG AGATGAATGT TTGTGTATGT GATGTTGTTT 15301 TGTCTCAATA ATTAGTCACT GATGTTGTAT GTAATGTTGT GTTTTGCATC 15351 TCTAATTAGT TAATAATGAA TGTTGTTCTT ATGTAATGTT TGATTTAATC 15401 AATGGCTTTT GCAAATAAAT CCATAACAGA ACNTATTCAA TATTTTCGAA 15451 AACATAACAA AGGTTTCAAA AGAAATTGCA TTAGCATTAG CTGAGTTTTC 15501 AAACAAAATG CATTACATAG ACAGACCCTG CTTCATAATC CCCAAAACAC 15551 AAAAGAGAAG CATGCTAATA ACCGCAACTA ATATCCAAAG ACAGCTTCAT 15601 AATCCCAAAA CACAAAAAAA GAAGATTCAT AACCGATCCT TCATGTATTT 15651 AAAGAAAATC AGACAACAAG CAAAGACTTA ATCTTCCTGA GTAATGGAAG 15701 AGCTCAACTG CAGGTTTAAA CAGTGTTTTA CTCCTCATAT TAACTTCGGT

-continued
15751 CATTAGAGGC CACGATTTGA CACATTTTTA CTCAAAACAA AATGTTTGCA 15801 TATCTCTTAT AATTTCAAAT TCAACACAA ACAAATAAGA GAAAAAACAA 15851 ATAATATTAA TTTGAGAATG AACAAAAGGA CCATATCATT CATTAACTCT 15901 TCTCCATCCA TTTCCATTTC ACAGTTCGAT AGCGAAAACC GAATAAAAAA 15951 CACAGTAAAT TACAAGCACA ACAAATGGTA CAAGAAAAAC AGTTTTCCCA 16001 ATGCCATAAT ACTCGAACGC GATCGCTCAG CCCTTGGCTT TGACGTAACG 16051 GCCGGCCCC GCCTCGATCG CGGTGTAGCG GGCGTTGCCG GGCTTGGCCT 16101 TGGGCTTGAC CTTCTTGCCG CCATGCTGGG TCAGGAACCC GGCCCATTGC 16151 GGCCACCAGC TGCCCGGCAC TTCCTGCGCG CCATCGAACC AGGCCTGGGC 16201 ATCGGCGGCG CCACCGTCGT TGATCCAGTA GCTGCGCTTG TTCTTGGCCA 16251 CCGAGTTGAT CACGCCGGCG ATATGGCCGG ACGCGCCCAG CACGAAGCGG 16301 TTGGCGCCCG GCTTGCCCTG GTTGAGGATG TCGAGCGAAC CGTACGCCGA 16351 CATCCACGGC ACGATGTGGT CTTCGCGCGA ACCGTAGATG AAGGCCGGGG 16401 CGTCGATCAG GCCGAGGTCG ATCTTTTCGC CGGCCACCGT CAGCTTGCCC 16451 GGCACTTTCA GGCTGTTTTC CAGGTAGGTG TTGCGCAGGT ACCAGCAGAA 16501 CATCGGGCCC GGCAAATTGG TGCTGTCCGA ATTCCAGAAC AGCAGGTCAA 16551 ACGCCGCCGG CTCATTGCCT TTGAGGTAGT TCGACTGCAC ATAGTTCCAT 16601 ACCAGGTCGT TCGGACGCAG GCTCGAGAAG GTCGAGGCCA GGTCACGGCC 16651 CGGCATCAGG CCGCCATCGC GCAATTGCTG TTCACGCAGC GCGACCTGGG 16701 TTTCATCGAC GAAGACGTCG AGCACGCCGG TGTCGCTGAA GTCGAGGAAG 16751 GTGGTCAGCA GGGTCAGGCT GGCCGCCGGG TGCTGGCCAC GCGCCGCCAG 16801 TACCGCCAGT GCGGTGGCAA CGATGGTGCC GCCCACGCAG AAGCCGAACA 16851 TGTTCAGCTT GTCCTGGCCG CTGACGTCCT GGACGATGCG GATCGCTTCG 16901 ATCACGCCCT GCTCCACGTA GTCGTCCCAG GTGGTGCCGG CCAGCGACTT 16951 GTCCGGATTG CTCCACGAGA TCAGGAACAC GGTGTTGCCC TGCTCCACCG 17001 CGTAGCGCAC CAGCGAATTT TCCGGTTGCA GGTCGAGGAT GTAGAACTTG 17051 TTGATGCACG GCGGCACCAT CAACAGCGGG CGCTGGCTGA CCGTCGGCGT 17101 GGTCGGCGTG TACTGGATCA GCTGGAACAG CGGATTTTCG TAAATCACGG 17151 TGCCCGGGT AATGGCCAGG TTGCGGCCCA CTTCAAAGGC CGATTCGTCC 17201 GACAGCGAGA TATGGCCCTT GTTGATATCG CCCAGCATAT TGACCAGGCC 17251 ACGCGTCAGG CTCTCGCCCT TGGTTTCAAT CAGTTTTTGC TGCGCTTCCG 17301 GGTTGGTGGC GAGGAAGTTC GCGGGCGACA TGGCATCAAT CACCTGCTGC 17351 ACGGCAAAGC GTATTTTCTG CTTTTGCTGG GGTGCGGTGT CCACCGCCTC 17401 CACCATGGCA CTGAGGAATT TGGCGTTGAG CAGGTAAGAT GCGGCATTGA 17451 AGGCCGACAT CGGATTGCCC TGCCAGGCTG CCGAGCTGAA GCGGCGGTCG 17501 CTGACGGCTG GCGCCTTGCC AGCCAAAAAA TCCTGCCACA ACGCGGTGAA 17551 GTCACGCAGA TAATCGTTTT TCAGCTGCTC CATCGCTTCC GGTTTGAGCG 17601 CAACGCCGAT ATCCTGCAAC ATGGTGGCCA TCGGGTTCGC CTCGGTGGTG 17651 GGCGCCTTGC TGAACCAGGA TTGCCACTGC AGCTCATCGT TGTTCTTGTT

17701 ACTCACTCTA GAATCTCTCG TCAATGGTGG CAAATAGGAA AGAGTCTCAA 17751 ACTTCTTCTT TCCAATTGGA GGCCACACCT GCATGCACTT TACTCTTCCA 17801 CCATTGCTTG TAATGGAAGT AATGTCAGTG TTGACCTTCT TCACTGGGAA 17851 TCCAGTCATG GATTTGAGGC CGCCGAATGG AGCCACTGCG GCGGATTGCC 17901 CCCTAGAGGC ACGCTGACT GTTGTCACAG CGGAAGAGGA TATCATAGAA 17951 GCCATTTTTG TACAAAGAAG CTGAAAATAT CAAAAGAAGG AACAGTCATT 18001 AATCTATTGC ATGTACTAGA TTTTAGATAT GAGTGGTCAA AAAAAACTTA 18051 CGTTAATAAC GATGAAGAAG ACAATGATCC TCAGCACAAT CTCTCTCTCT 18101 CTCTCTTGGC TTCTCTTCTG GTGAATAGCA CGAGAGAGGG TTTAAATGGA 18151 AGGCTCGTGG GTCCAAAATG GGTGGCGGAG GAAATAGGAG AAGTAGGCAG 18201 TGACAAGTAA TGTAGTATTT AGTATTTGAT GAATGACACA TTTTCATTTC 18251 AGCATCATCA CCAACCATCC TTTTGTTCCT TTGCTTCAAC TGTCACTTTC 18301 AATTGACAAA ATTTTTTATG TTTTCATGAG AAAACTAAAT TCTTATAAAG 18351 ATTCATCTTC TTGAGTATTA TACGTGTAGT TTATGAACAA CACGTGTTGT 18401 TCCTATATTT TTGTTCTGTT ACCTCTAGAA TAAAGTTGTC ACCATTTCAT 18451 GAGTTCAATT TTTCTTTAAT AGCCCCAAAA ACAAAAGATG ATTCACAAGA 18501 AAGATGCGAA TATTTTGCTA TGAATCTTTT CTTAAGAGAA GCAATTACAT 18551 TTTCACAATA AAATTAGATC CACGACTTAA CCTAGTTTAT GTTGATTATT 18601 TCTAGTGTTA GTATTAAGCA AAAATAAAAC TTATGAATAC GAAGGCCTTT 18651 AAAGGAAACT AAAGAAAGGA CAAGGTATAA ACGTCCTAGA AAGTTCTAGG 18701 GTTTAGGCTT AGGGTCTAAG ATATATGCTT TGAGTTTTAT GGCTTAGTAA 18751 CACATTTTG TAACACTTCT TTGTAACATT TCTTGATATG TTGGAGAAGT 18801 AACTCGTCTG GACAATAGTT ATTTCCAATA TATAGGAAAA ACGGCCTAAA 18851 CAATAGCCGA CGGGGACAAA TACATCATAA ACAAAAAATC CCGGTTACAA 18901 ACTTCCTAAA AAGCCATTCG GTCCACTCCG TTAAGCCTGA ACTGTGCCTC 18951 CGTTATGCAA AAACGCCGTT GACCATCCGT AACCTAGTTG ACTGACGGAT 19001 TATGGATTTA ATCCGTTTTA AGGCCGTTAA TAACACCAAA ACGACGTCGT 19051 TTTGGTGTTT TAATTTTTTT TAACAACAAT TAAACCAAAC GACGTCGTTT 19101 TGGTTTAATT AAATTTTTTT ATCAAAAACC CAAGCCCAAG CCCAAAACTC 19151 TTAACAAAG ATAAAGCCCA TCTCTATTTT TTCTAATTAA AACGCACAGC 19201 ATTATGTTTC TTCTCTAACG GATATATTTT CAATCTCATA AATTGGGGAT 19251 TAGGGTTCTT ATTTCCCAAT TCTCAATCTC TAACACTTCT CCAAAATTCT 19301 CTGAAATTGA TAATGCCTTC TTCTTCTTCA AACTCGTTTT TCTCTTTTGA 19351 CAGTGAGCTT GAAGATGATA ACCATCGTGG TTTTCCTAAG ACCTGTCGAT 19401 TTGGATGTCG TGTTGTGATC AGAACCTCAA GAACTCCAAA AAACCTAGGT 19451 AGATTATTCC ATACCTGTGA GAAAAATTTC AAAAGAGGAG GATTCCACAC 19501 CTGGAAGTGG ACTGATGTGT CTTTAGTAGA AGAAGTAGAG GACATAAAGG 19551 CTTACATTCA TAACCGTGAG AAGTGTCACG ATGAAGAAAT GTTATTATTG

<160> NUMBER OF SEQ ID NOS: 2

-continued
19601 AAGGCTCAGA TTCGTGGCTG TGAGAAGATG ATTGAAGGCT TGAAAGGAGA 19651 AGCAAAACGT ATGAAGCTAA TTGTTGTTGC CGGAATAGTT GTGTTTGGTT 19701 GCTTTTTGTG TCTCTCTAAG TGATGTATGA GATGAATGTT TGTGTATGTG 19751 ATGTTGTTTT GTCTCAATAA TTAGTCACTG ATGTTGTATG TAATGTTGTG 19801 TTTTGCATCT CTAATTAGTT AATAATGAAT GTTGTTCTTA TGTAATGTTT 19851 GATTTAATCA ATGGCTTTTG CAAATAAATC CATAACAGAA CNTATTCAAT 19901 ATTTTCGAAA ACATAACAAA GGTTTCAAAA GAAATTGCAT TAGCATTAGC 19951 TGAGTTTTCA AACAAATGC ATTACATAGA CAGACCCTGC TTCATAATCC 20001 CCAAAACACA AAAGAGAAGC ATGCTAATAA CCGCAACTAA TATCCAAAGA 20051 CAGCTTCATA ATCCCAAAAC ACAAAAAAAG AAGATTCATA ACCGATCCTT 20101 CATGTATTTA AAGAAAATCA GACAACAAGC AAAGACTTAA TCTTCCTGAG 20151 TAACTGATGA GCTCAAAAGC TTGGCACTGG CCGTCGTTTT ACAACGTCGT 20201 GACTGGGAAA ACCCTGGCGT TACCCAACTT AATCGCCTTG CAGCACATCC 20251 CCCTTCGCC AGCTGGCGTA ATAGCGAAGA GGCCCGCACC GATCGCCCTT 20301 CCCAACAGTT GCGCAGCCTG AATGGCGAAT GCTAGAGCAG CTTGAGCTTG 20351 GATCAGATTG TCGTTTCCCG CCTTCAGTTT AAACTATCAG TGTTTGACAG 20401 GATATATTGG CGGGTAAACC TAAGAGAAAA GAGCGTTTAT TAGAATAACG 20451 GATATTTAAA AGGGCGTGAA AAGGTTTATC CGTTCGTCCA TTTGTATGTG

SEQUENCE LISTING

<210> SEO ID NO 1 <211> LENGTH: 15888 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Plasmid Vector <400> SEOUENCE: 1 ggggatccgt acgtaagtac gtactcaaaa tgccaacaaa taaaaaaaaa gttgctttaa 60 taatgccaaa acaaattaat aaaacactta caacaccgga ttttttttaa ttaaaatgtg 120 ccatttagga taaatagtta atatttttaa taattattta aaaagccgta tctactaaaa 180 tgatttttat ttggttgaaa atattaatat gtttaaatca acacaatcta tcaaaattaa 240 actaaaaaaa aaataagtgt acgtggttaa cattagtaca gtaatataag aggaaaatga 300 gaaattaaga aattgaaagc gagtctaatt tttaaattat gaacctgcat atataaaagg 360 aaagaaagaa tocaggaaga aaagaaatga aaccatgcat ggtcccctcg tcatcacgag tttctgccat ttgcaataga aacactgaaa cacctttctc tttgtcactt aattgagatg ccgaagccac ctcacaccat gaacttcatg aggtgtagca cccaaggctt ccatagccat 540 gcatactgaa gaatgtctca agctcagcac cctacttctg tgacgtgtcc ctcattcacc ttcctctctt ccctataaat aaccacgcct caggttctcc gcttcacaac tcaaacattc

tetecattgg teettaaaca eteateagte ateacegegg eegeggaatt eatggettet

720

atgatatcct	cttccgctgt	gacaacagtc	agccgtgcct	ctagggggca	atccgccgca	780
gtggctccat	teggeggeet	caaatccatg	actggattcc	cagtgaagaa	ggtcaacact	840
gacattactt	ccattacaag	caatggtgga	agagtaaagt	gcatgcaggt	gtggcctcca	900
attggaaaga	agaagtttga	gactctttcc	tatttgccac	cattgacgag	agattctaga	960
gtgactgacg	ttgtcatcgt	atccgccgcc	cgcaccgcgg	tcggcaagtt	tggcggctcg	1020
ctggccaaga	tcccggcacc	ggaactgggt	gccgtggtca	tcaaggccgc	gctggagcgc	1080
gccggcgtca	agccggagca	ggtgagcgaa	gtcatcatgg	gccaggtgct	gaccgccggt	1140
tegggeeaga	accccgcacg	ccaggccgcg	atcaaggccg	gcctgccggc	gatggtgccg	1200
gccatgacca	tcaacaaggt	gtgcggctcg	ggcctgaagg	ccgtgatgct	ggccgccaac	1260
gcgatcatgg	cgggcgacgc	cgagatcgtg	gtggccggcg	gccaggaaaa	catgagcgcc	1320
geeeegeaeg	tgetgeeggg	ctcgcgcgat	ggtttccgca	tgggcgatgc	caagctggtc	1380
gacaccatga	tegtegaegg	cctgtgggac	gtgtacaacc	agtaccacat	gggcatcacc	1440
gccgagaacg	tggccaagga	atacggcatc	acacgcgagg	cgcaggatga	gttcgccgtc	1500
ggctcgcaga	acaaggccga	agccgcgcag	aaggccggca	agtttgacga	agagatcgtc	1560
ccggtgctga	tecegeageg	caagggcgac	ccggtggcct	tcaagaccga	cgagttcgtg	1620
cgccagggcg	ccacgctgga	cagcatgtcc	ggcctcaagc	ccgccttcga	caaggccggc	1680
acggtgaccg	cggccaacgc	ctcgggcctg	aacgacggcg	ccgccgcggt	ggtggtgatg	1740
teggeggeea	aggccaagga	actgggcctg	accccgctgg	ccacgatcaa	gagctatgcc	1800
aacgccggtg	tcgatcccaa	ggtgatgggc	atgggcccgg	tgccggcctc	caagcgcgcc	1860
ctgtcgcgcg	ccgagtggac	cccgcaagac	ctggacctga	tggagatcaa	cgaggccttt	1920
gccgcgcagg	cgctggcggt	gcaccagcag	atgggctggg	acacctccaa	ggtcaatgtg	1980
aacggcggcg	ccatcgccat	cggccacccg	atcggcgcgt	cgggctgccg	tatcctggtg	2040
acgctgctgc	acgagatgaa	gcgccgtgac	gcgaagaagg	gcctggcctc	gctgtgcatc	2100
ggcggcggca	tgggcgtggc	gctggcagtc	gagcgcaaat	aactcgaggc	ggccgcagcc	2160
ctttttgtat	gtgctacccc	acttttgtct	ttttggcaat	agtgctagca	accaataaat	2220
aataataata	ataatgaata	agaaaacaaa	ggctttagct	tgccttttgt	tcactgtaaa	2280
ataataatgt	aagtactctc	tataatgagt	cacgaaactt	ttgcgggaat	aaaaggagaa	2340
attccaatga	gttttctgtc	aaatcttctt	ttgtctctct	ctctctctct	tttttttt	2400
tetttettet	gagcttcttg	caaaacaaaa	ggcaaacaat	aacgattggt	ccaatgatag	2460
ttagcttgat	cgatgatatc	tttaggaagt	gttggcagga	caggacatga	tgtagaagac	2520
taaaattgaa	agtattgcag	acccaatagt	tgaagattaa	ctttaagaat	gaagacgtct	2580
tatcaggttc	ttcatgactt	aagctttaag	aggagtccac	catggtagat	ctgactagta	2640
gaaggtaatt	atccaagatg	tagcatcaag	aatccaatgt	ttacgggaaa	aactatggaa	2700
gtattatgtg	agctcagcaa	gaagcagatc	aatatgcggc	acatatgcaa	cctatgttca	2760
aaaatgaaga	atgtacagat	acaagatcct	atactgccag	aatacgaaga	agaatacgta	2820
gaaattgaaa	aagaagaacc	aggcgaagaa	aagaatcttg	aagacgtaag	cactgacgac	2880
aacaatgaaa	agaagaagat	aaggtcggtg	attgtgaaag	agacatagag	gacacatgta	2940
aggtggaaaa	tgtaagggcg	gaaagtaacc	ttatcacaaa	ggaatcttat	ccccactac	3000

ttatcctttt	atattttcc	gtgtcatttt	tgcccttgag	ttttcctata	taaggaacca	3060
agttcggcat	ttgtgaaaac	aagaaaaaat	tggtgtaagc	tattttcttt	gaagtactga	3120
ggatacaact	tcagagaaat	ttgtaagaaa	gtggatcgaa	accatggcct	cctccgagaa	3180
cgtcatcacc	gagttcatgc	gcttcaaggt	gcgcatggag	ggcaccgtga	acggccacga	3240
gttcgagatc	gagggcgagg	gcgagggccg	cccctacgag	ggccacaaca	ccgtgaagct	3300
gaaggtgacc	aagggcggcc	ccctgccctt	cgcctgggac	atcctgtccc	cccagttcca	3360
gtacggctcc	aaggtgtacg	tgaagcaccc	cgccgacatc	cccgactaca	agaagctgtc	3420
cttccccgag	ggcttcaagt	gggagcgcgt	gatgaacttc	gaggacggcg	gcgtggcgac	3480
cgtgacccag	gactcctccc	tgcaggacgg	ctgcttcatc	tacaaggtga	agttcatcgg	3540
cgtgaacttc	ccctccgacg	gccccgtgat	gcagaagaag	accatgggct	gggaggcctc	3600
caccgagcgc	ctgtaccccc	gcgacggcgt	gctgaagggc	gagacccaca	aggccctgaa	3660
gctgaaggac	ggcggccact	acctggtgga	gttcaagtcc	atctacatgg	ccaagaagcc	3720
cgtgcagctg	cccggctact	actacgtgga	cgccaagctg	gacatcacct	cccacaacga	3780
ggactacacc	atcgtggagc	agtacgagcg	caccgagggc	cgccaccacc	tgttcctggt	3840
accaatgagc	tctgtccaac	agtctcaggg	ttaatgtcta	tgtatcttaa	ataatgttgt	3900
cggcgatcgt	tcaaacattt	ggcaataaag	tttcttaaga	ttgaatcctg	ttgccggtct	3960
tgcgatgatt	atcatataat	ttctgttgaa	ttacgttaag	catgtaataa	ttaacatgta	4020
atgcatgacg	ttatttatga	gatgggtttt	tatgattaga	gtcccgcaat	tatacattta	4080
atacgcgata	gaaaacaaaa	tatagcgcgc	aaactaggat	aaattatcgc	gcgcggtgtc	4140
atctatgtta	ctagatcggg	aattaaacta	tcagtgtttg	acaggatata	ttggcgggta	4200
aacctaagag	aaaagagcgt	ttattagaat	aacggatatt	taaaagggcg	tgaaaaggtt	4260
tatccgttcg	tccatttgta	tgtgcatgcc	aaccacaggg	ttcccctcgg	gatcaaagta	4320
ctttgatcca	acccctccgc	tgctatagtg	cagtcggctt	ctgacgttca	gtgcagccgt	4380
cttctgaaaa	cgacatgtcg	cacaagtcct	aagttacgcg	acaggetgee	gccctgccct	4440
tttcctggcg	ttttcttgtc	gcgtgtttta	gtcgcataaa	gtagaatact	tgcgactaga	4500
accggagaca	ttacgccatg	aacaagagcg	ccgccgctgg	cctgctgggc	tatgcccgcg	4560
tcagcaccga	cgaccaggac	ttgaccaacc	aacgggccga	actgcacgcg	gccggctgca	4620
ccaagctgtt	ttccgagaag	atcaccggca	ccaggcgcga	ccgcccggag	ctggccagga	4680
tgcttgacca	cctacgccct	ggcgacgttg	tgacagtgac	caggctagac	cgcctggccc	4740
gcagcacccg	cgacctactg	gacattgccg	agcgcatcca	ggaggccggc	gegggeetge	4800
gtagcctggc	agagccgtgg	gccgacacca	ccacgccggc	cggccgcatg	gtgttgaccg	4860
tgttcgccgg	cattgccgag	ttcgagcgtt	ccctaatcat	cgaccgcacc	cggagcgggc	4920
gcgaggccgc	caaggcccga	ggcgtgaagt	ttggcccccg	ccctaccctc	accccggcac	4980
agatcgcgca	cgcccgcgag	ctgatcgacc	aggaaggccg	caccgtgaaa	gaggcggctg	5040
cactgcttgg	cgtgcatcgc	tcgaccctgt	accgcgcact	tgagcgcagc	gaggaagtga	5100
cgcccaccga	ggccaggcgg	cgcggtgcct	tccgtgagga	cgcattgacc	gaggccgacg	5160
ccctggcggc	cgccgagaat	gaacgccaag	aggaacaagc	atgaaaccgc	accaggacgg	5220
ccaggacgaa	ccgtttttca	ttaccgaaga	gatcgaggcg	gagatgatcg	cggccgggta	5280

cgtgttcgag	ccgcccgcgc	acgtctcaac	cgtgcggctg	catgaaatcc	tggccggttt	5340
gtctgatgcc	aagctggcgg	cctggccggc	cagcttggcc	gctgaagaaa	ccgagcgccg	5400
ccgtctaaaa	aggtgatgtg	tatttgagta	aaacagcttg	cgtcatgcgg	tcgctgcgta	5460
tatgatgcga	tgagtaaata	aacaaatacg	caaggggaac	gcatgaaggt	tatcgctgta	5520
cttaaccaga	aaggcgggtc	aggcaagacg	accatcgcaa	cccatctagc	ccgcgccctg	5580
caactcgccg	gggccgatgt	tctgttagtc	gattccgatc	cccagggcag	tgcccgcgat	5640
tgggcggccg	tgcgggaaga	tcaaccgcta	accgttgtcg	gcatcgaccg	cccgacgatt	5700
gaccgcgacg	tgaaggccat	cggccggcgc	gacttcgtag	tgatcgacgg	agegeeceag	5760
gcggcggact	tggctgtgtc	cgcgatcaag	gcagccgact	tcgtgctgat	tccggtgcag	5820
ccaagccctt	acgacatatg	ggccaccgcc	gacctggtgg	agctggttaa	gcagcgcatt	5880
gaggtcacgg	atggaaggct	acaagcggcc	tttgtcgtgt	cgcgggcgat	caaaggcacg	5940
cgcatcggcg	gtgaggttgc	cgaggcgctg	gccgggtacg	agctgcccat	tcttgagtcc	6000
cgtatcacgc	agcgcgtgag	ctacccaggc	actgccgccg	ccggcacaac	cgttcttgaa	6060
tcagaacccg	agggcgacgc	tgcccgcgag	gtccaggcgc	tggccgctga	aattaaatca	6120
aaactcattt	gagttaatga	ggtaaagaga	aaatgagcaa	aagcacaaac	acgctaagtg	6180
ceggeegtee	gagegeaege	agcagcaagg	ctgcaacgtt	ggccagcctg	gcagacacgc	6240
cagccatgaa	gcgggtcaac	tttcagttgc	cggcggagga	tcacaccaag	ctgaagatgt	6300
acgcggtacg	ccaaggcaag	accattaccg	agctgctatc	tgaatacatc	gcgcagctac	6360
cagagtaaat	gagcaaatga	ataaatgagt	agatgaattt	tageggetaa	aggaggcggc	6420
atggaaaatc	aagaacaacc	aggcaccgac	gccgtggaat	gccccatgtg	tggaggaacg	6480
ggcggttggc	caggcgtaag	cggctgggtt	gtctgccggc	cctgcaatgg	cactggaacc	6540
cccaagcccg	aggaatcggc	gtgacggtcg	caaaccatcc	ggcccggtac	aaatcggcgc	6600
ggcgctgggt	gatgacctgg	tggagaagtt	gaaggccgcg	caggccgccc	ageggeaaeg	6660
catcgaggca	gaagcacgcc	ccggtgaatc	gtggcaagcg	gccgctgatc	gaatccgcaa	6720
agaatcccgg	caaccgccgg	cagccggtgc	gccgtcgatt	aggaagccgc	ccaagggcga	6780
cgagcaacca	gattttttcg	ttccgatgct	ctatgacgtg	ggcacccgcg	atagtcgcag	6840
catcatggac	gtggccgttt	tccgtctgtc	gaagcgtgac	cgacgagctg	gcgaggtgat	6900
ccgctacgag	cttccagacg	ggcacgtaga	ggtttccgca	gggccggccg	gcatggccag	6960
tgtgtgggat	tacgacctgg	tactgatggc	ggtttcccat	ctaaccgaat	ccatgaaccg	7020
ataccgggaa	gggaagggag	acaagcccgg	ccgcgtgttc	cgtccacacg	ttgcggacgt	7080
actcaagttc	tgccggcgag	ccgatggcgg	aaagcagaaa	gacgacctgg	tagaaacctg	7140
cattcggtta	aacaccacgc	acgttgccat	gcagcgtacg	aagaaggcca	agaacggccg	7200
cctggtgacg	gtatccgagg	gtgaagcctt	gattagccgc	tacaagatcg	taaagagcga	7260
aaccgggcgg	ccggagtaca	tcgagatcga	gctagctgat	tggatgtacc	gcgagatcac	7320
agaaggcaag	aacccggacg	tgctgacggt	tcaccccgat	tactttttga	tcgatcccgg	7380
catcggccgt	tttctctacc	gcctggcacg	ccgcgccgca	ggcaaggcag	aagccagatg	7440
gttgttcaag	acgatctacg	aacgcagtgg	cagcgccgga	gagttcaaga	agttctgttt	7500
caccgtgcgc	aagctgatcg	ggtcaaatga	cctgccggag	tacgatttga	aggaggaggc	7560

ggggcaggct	ggcccgatcc	tagtcatgcg	ctaccgcaac	ctgatcgagg	gcgaagcatc	7620
cgccggttcc	taatgtacgg	agcagatgct	agggcaaatt	gccctagcag	gggaaaaagg	7680
tcgaaaaggt	ctctttcctg	tggatagcac	gtacattggg	aacccaaagc	cgtacattgg	7740
gaaccggaac	ccgtacattg	ggaacccaaa	gccgtacatt	gggaaccggt	cacacatgta	7800
agtgactgat	ataaaagaga	aaaaaggcga	ttttccgcc	taaaactctt	taaaacttat	7860
taaaactctt	aaaacccgcc	tggcctgtgc	ataactgtct	ggccagcgca	cagccgaaga	7920
gctgcaaaaa	gcgcctaccc	ttcggtcgct	gcgctcccta	egeceegeeg	cttcgcgtcg	7980
gcctatcgcg	gccgctggcc	gctcaaaaat	ggctggccta	cggccaggca	atctaccagg	8040
gcgcggacaa	gccgcgccgt	cgccactcga	ccgccggcgc	ccacatcaag	gcaccctgcc	8100
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	8160
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	8220
ttggcgggtg	tcggggcgca	gccatgaccc	agtcacgtag	cgatagcgga	gtgtatactg	8280
gcttaactat	gcggcatcag	agcagattgt	actgagagtg	caccatatgc	ggtgtgaaat	8340
accgcacaga	tgcgtaagga	gaaaataccg	catcaggcgc	tcttccgctt	cctcgctcac	8400
tgactcgctg	cgctcggtcg	ttcggctgcg	gcgagcggta	tcagctcact	caaaggcggt	8460
aatacggtta	tccacagaat	caggggataa	cgcaggaaag	aacatgtgag	caaaaggcca	8520
gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	tttttccata	ggctccgccc	8580
ccctgacgag	catcacaaaa	atcgacgctc	aagtcagagg	tggcgaaacc	cgacaggact	8640
ataaagatac	caggcgtttc	cccctggaag	ctccctcgtg	cgctctcctg	ttccgaccct	8700
gccgcttacc	ggatacctgt	ccgcctttct	cccttcggga	agcgtggcgc	tttctcatag	8760
ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tccaagctgg	gctgtgtgca	8820
cgaacccccc	gttcagcccg	accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	8880
cccggtaaga	cacgacttat	cgccactggc	agcagccact	ggtaacagga	ttagcagagc	8940
gaggtatgta	ggcggtgcta	cagagttctt	gaagtggtgg	cctaactacg	gctacactag	9000
aaggacagta	tttggtatct	gcgctctgct	gaagccagtt	accttcggaa	aaagagttgg	9060
tagctcttga	tccggcaaac	aaaccaccgc	tggtagcggt	ggttttttg	tttgcaagca	9120
gcagattacg	cgcagaaaaa	aaggatctca	agaagatcct	ttgatctttt	ctacggggtc	9180
tgacgctcag	tggaacgaaa	actcacgtta	agggattttg	gtcatgcatt	ctaggtacta	9240
aaacaattca	tccagtaaaa	tataatattt	tattttctcc	caatcaggct	tgatccccag	9300
taagtcaaaa	aatagctcga	catactgttc	ttccccgata	tcctccctga	tegaceggae	9360
gcagaaggca	atgtcatacc	acttgtccgc	cctgccgctt	ctcccaagat	caataaagcc	9420
acttactttg	ccatctttca	caaagatgtt	gctgtctccc	aggtcgccgt	gggaaaagac	9480
aagttcctct	tcgggctttt	ccgtctttaa	aaaatcatac	agctcgcgcg	gatctttaaa	9540
tggagtgtct	tcttcccagt	tttcgcaatc	cacateggee	agatcgttat	tcagtaagta	9600
atccaattcg	gctaagcggc	tgtctaagct	attcgtatag	ggacaatccg	atatgtcgat	9660
ggagtgaaag	agcctgatgc	actccgcata	cagctcgata	atcttttcag	ggctttgttc	9720
atcttcatac	tcttccgagc	aaaggacgcc	atcggcctca	ctcatgagca	gattgctcca	9780
gccatcatgc	cgttcaaagt	gcaggacctt	tggaacaggc	agctttcctt	ccagccatag	9840

catcatgtcc	ttttcccgtt	ccacatcata	ggtggtccct	ttataccggc	tgtccgtcat	9900
ttttaaatat	aggttttcat	tttctcccac	cagcttatat	accttagcag	gagacattcc	9960
ttccgtatct	tttacgcagc	ggtatttttc	gatcagtttt	ttcaattccg	gtgatattct	10020
cattttagcc	atttattatt	teetteetet	tttctacagt	atttaaagat	accccaagaa	10080
gctaattata	acaagacgaa	ctccaattca	ctgttccttg	cattctaaaa	ccttaaatac	10140
cagaaaacag	ctttttcaaa	gttgttttca	aagttggcgt	ataacatagt	atcgacggag	10200
ccgattttga	aaccgcggtg	atcacaggca	gcaacgctct	gtcatcgtta	caatcaacat	10260
gctaccctcc	gcgagatcat	ccgtgtttca	aacccggcag	cttagttgcc	gttcttccga	10320
atagcatcgg	taacatgagc	aaagtetgee	gccttacaac	ggeteteeeg	ctgacgccgt	10380
cccggactga	tgggetgeet	gtatcgagtg	gtgattttgt	gccgagctgc	cggtcgggga	10440
gctgttggct	ggetggtgge	aggatatatt	gtggtgtaaa	caaattgacg	cttagacaac	10500
ttaataacac	attgcggacg	tttttaatgt	actgaattaa	cgccgaatta	attcctaggc	10560
caccatgttg	ggcccggggc	gegeegtaeg	tagtgtttat	ctttgttgct	tttctgaaca	10620
atttatttac	tatgtaaata	tattatcaat	gtttaatcta	ttttaatttg	cacatgaatt	10680
ttcattttat	ttttacttta	caaaacaaat	aaatatatat	gcaaaaaaat	ttacaaacga	10740
tgcacgggtt	acaaactaat	ttcattaaat	gctaatgcag	attttgtgaa	gtaaaactcc	10800
aattatgatg	aaaaatacca	ccaacaccac	ctgcgaaact	gtatcccaac	tgtccttaat	10860
aaaaatgtta	aaaagtatat	tattctcatt	tgtctgtcat	aatttatgta	ccccacttta	10920
atttttctga	tgtactaaac	cgagggcaaa	ctgaaacctg	ttcctcatgc	aaagccccta	10980
ctcaccatgt	atcatgtacg	tgtcatcacc	caacaactcc	acttttgcta	tataacaaca	11040
cccccgtcac	actctccctc	tctaacacac	accccactaa	caattccttc	acttgcagca	11100
ctgttgcatc	atcatcttca	ttgcaaaacc	ctaaacttca	ccttcaaccg	cggccgcatg	11160
gcttctatga	tatcctcttc	cgctgtgaca	acagtcagcc	gtgcctctag	ggggcaatcc	11220
gccgcagtgg	ctccattcgg	cggcctcaaa	tccatgactg	gattcccagt	gaagaaggtc	11280
aacactgaca	ttacttccat	tacaagcaat	ggtggaagag	taaagtgcat	gcaggtgtgg	11340
cctccaattg	gaaagaagaa	gtttgagact	ctttcctatt	tgccaccatt	gacgagagat	11400
tctagagtga	gtaacaagaa	caacgatgag	ctgcagtggc	aatcctggtt	cagcaaggcg	11460
cccaccaccg	aggcgaaccc	gatggccacc	atgttgcagg	atateggegt	tgcgctcaaa	11520
ccggaagcga	tggagcagct	gaaaaacgat	tatctgcgtg	acttcaccgc	gttgtggcag	11580
gattttttgg	ctggcaaggc	gccagccgtc	agegaeegee	gcttcagctc	ggcagcctgg	11640
cagggcaatc	cgatgtcggc	cttcaatgcc	gcatcttacc	tgctcaacgc	caaattcctc	11700
agtgccatgg	tggaggcggt	ggacaccgca	ccccagcaaa	agcagaaaat	acgctttgcc	11760
gtgcagcagg	tgattgatgc	catgtcgccc	gcgaacttcc	tcgccaccaa	cccggaagcg	11820
cagcaaaaac	tgattgaaac	caagggcgag	agcctgacgc	gtggcctggt	caatatgctg	11880
ggcgatatca	acaagggcca	tatctcgctg	tcggacgaat	cggcctttga	agtgggccgc	11940
aacctggcca	ttaccccggg	caccgtgatt	tacgaaaatc	cgctgttcca	gctgatccag	12000
tacacgccga	ccacgccgac	ggtcagccag	cgcccgctgt	tgatggtgcc	gccgtgcatc	12060
aacaagttct	acatcctcga	cctgcaaccg	gaaaattcgc	tggtgcgcta	cgcggtggag	12120

cagggcaaca	ccgtgttcct	gatctcgtgg	agcaatccgg	acaagtcgct	ggccggcacc	12180
acctgggacg	actacgtgga	gcagggcgtg	atcgaagcga	tccgcatcgt	ccaggacgtc	12240
agcggccagg	acaagctgaa	catgttcggc	ttctgcgtgg	gcggcaccat	cgttgccacc	12300
gcactggcgg	tactggcggc	gcgtggccag	cacccggcgg	ccagcctgac	cctgctgacc	12360
accttcctcg	acttcagcga	caccggcgtg	ctcgacgtct	tcgtcgatga	aacccaggtc	12420
gcgctgcgtg	aacagcaatt	gcgcgatggc	ggcctgatgc	cgggccgtga	cctggcctcg	12480
accttctcga	gcctgcgtcc	gaacgacctg	gtatggaact	atgtgcagtc	gaactacctc	12540
aaaggcaatg	agccggcggc	gtttgacctg	ctgttctgga	attcggacag	caccaatttg	12600
ccgggcccga	tgttctgctg	gtacctgcgc	aacacctacc	tggaaaacag	cctgaaagtg	12660
ccgggcaagc	tgacggtggc	cggcgaaaag	atcgacctcg	gcctgatcga	cgccccggcc	12720
ttcatctacg	gttcgcgcga	agaccacatc	gtgccgtgga	tgtcggcgta	cggttcgctc	12780
gacateetea	accagggcaa	geegggegee	aaccgcttcg	tgctgggcgc	gtccggccat	12840
atcgccggcg	tgatcaactc	ggtggccaag	aacaagcgca	gctactggat	caacgacggt	12900
ggcgccgccg	atgcccaggc	ctggttcgat	ggcgcgcagg	aagtgccggg	cagctggtgg	12960
ccgcaatggg	ccgggttcct	gacccagcat	ggcggcaaga	aggtcaagcc	caaggccaag	13020
cccggcaacg	cccgctacac	cgcgatcgag	geggegeeeg	gccgttacgt	caaagccaag	13080
ggctgagcgg	ccgctgagta	attctgatat	tagagggagc	attaatgtgt	tgttgtgatg	13140
tggtttatat	ggggaaatta	aataaatgat	gtatgtacct	cttgcctatg	taggtttgtg	13200
tgttttgttt	tgttgtctag	ctttggttat	taagtagtag	ggacgttcgt	tcgtgtctca	13260
aaaaaagggg	tactaccact	ctgtagtgta	tatggatgct	ggaaatcaat	gtgttttgta	13320
tttgttcacc	tccattgttg	aattcaatgt	caaatgtgtt	ttgcgttggt	tatgtgtaaa	13380
attactatct	ttetegteeg	atgatcaaag	ttttaagcaa	caaaaccaag	ggtgaaattt	13440
aaactgtgct	ttgttgaaga	ttcttttatc	atattgaaaa	tcaaattact	agcagcagat	13500
tttacctagc	atgaaatttt	atcaacagta	cagcactcac	taaccaagtt	ccaaactaag	13560
atgcgccatt	aacatcagcc	aataggcatt	ttcagcaagg	egegeeegeg	ccgatgtatg	13620
tgacaaccct	cgggattgtt	gatttatttc	aaaactaaga	gtttttgtct	tattgttctc	13680
gtctattttg	gatatcaatc	ttagttttat	atcttttcta	gttctctacg	tgttaaatgt	13740
tcaacacact	agcaatttgg	cctgccagcg	tatggattat	ggaactatca	agtctgtgac	13800
gcgccgtacg	tagtgtttat	ctttgttgct	tttctgaaca	atttatttac	tatgtaaata	13860
tattatcaat	gtttaatcta	ttttaatttg	cacatgaatt	ttcattttat	ttttacttta	13920
caaaacaaat	aaatatatat	gcaaaaaaat	ttacaaacga	tgcacgggtt	acaaactaat	13980
ttcattaaat	gctaatgcag	attttgtgaa	gtaaaactcc	aattatgatg	aaaaatacca	14040
ccaacaccac	ctgcgaaact	gtatcccaac	tgtccttaat	aaaaatgtta	aaaagtatat	14100
tattctcatt	tgtctgtcat	aatttatgta	ccccacttta	atttttctga	tgtactaaac	14160
cgagggcaaa	ctgaaacctg	ttcctcatgc	aaagccccta	ctcaccatgt	atcatgtacg	14220
tgtcatcacc	caacaactcc	acttttgcta	tataacaaca	cccccgtcac	actctccctc	14280
tctaacacac	accccactaa	caattccttc	acttgcagca	ctgttgcatc	atcatcttca	14340
ttgcaaaacc	ctaaacttca	ccttcaaccg	cggccgcatg	gcttctatga	tatcctcttc	14400

cggcctcaaa tccatgactg gattcccagt gaagaaggtc aacactgaca ttacttccat 14520 tacaagcaat ggtggaagag taaagtgcat gcaggtgtgg cctccaattg gaaagaagaa 14580 gtttgagact ctttcctatt tgccaccatt gacgagagat tctagagtga ctcagcgcat 14640 tgcgtatgtg accggcggca tgggtggtat cggaaccgcc atttgccagc ggctggccaa 14700 ggatggettt egtgtggtgg eeggttgegg eeccaacteg eegegeegeg aaaagtgget 14760 ggagcagcag aaggccctgg gcttcgattt cattgcctcg gaaggcaatg tggctgactg 14820 ggactcgacc aagaccgcat tcgacaaggt caagtccgag gtcggcgagg ttgatgtgct 14880 gatcaacaac gccggtatca cccgcgacgt ggtgttccgc aagatgaccc gcgccgactg 14940 ggatgcggtg atcgacacca acctgacctc gctgttcaac gtcaccaagc aggtgatcga 15000 cggcatggcc gaccgtggct ggggccgcat cgtcaacatc tcgtcggtga acgggcagaa 15060 gggccagttc ggccagacca actactccac cgccaaggcc ggcctgcatg gcttcaccat 15120 ggcactggcg caggaagtgg cgaccaaggg cgtgaccgtc aacacggtct ctccgggcta 15180 tategecace gacatggtea aggegateeg ceaggaegtg etegacaaga tegtegegae 15240 gateceggte aagegeetgg geetgeegga agagategee tegatetgeg eetggttgte 15300 gteggaggag teeggtttet egaceggege egactteteg eteaaeggeg geetgeatat 15360 gggctgagcg gccgctgagt aattctgata ttagagggag cattaatgtg ttgttgtgat 15420 gtgttttgtt ttgttgtcta gctttggtta ttaagtagta gggacgttcg ttcgtgtctc 15540 aaaaaaaggg gtactaccac totgtagtgt atatggatgc tggaaatcaa tgtgttttgt 15600 atttgttcac ctccattgtt gaattcaatg tcaaatgtgt tttgcgttgg ttatgtgtaa 15660 aattactatc tttctcgtcc gatgatcaaa gttttaagca acaaaaccaa gggtgaaatt 15720 taaactqtqc tttqttqaaq attcttttat catattqaaa atcaaattac taqcaqcaqa 15780 ttttacctag catgaaattt tatcaacagt acagcactca ctaaccaagt tccaaactaa 15840 15888 gatgcgccat taacatcagc caataggcat tttcagcaag gcgcgtaa <210> SEO ID NO 2 <211> LENGTH: 20500 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: SYnthetic Plasmid Vector <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (11474)..(11474) <223 > OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15433) .. (15433) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (19892)..(19892) <223 > OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 2 catgccaacc acagggttcc cctcgggatc aaagtacttt gatccaaccc ctccgctgct 60

atagtgcagt cggcttctga cgttcagtgc agccgtcttc tgaaaacgac atgtcgcaca

120

cgctgtgaca acagtcagcc gtgcctctag ggggcaatcc gccgcagtgg ctccattcgg 14460

agtcctaagt	tacgcgacag	gctgccgccc	tgcccttttc	ctggcgtttt	cttgtcgcgt	180
gttttagtcg	cataaagtag	aatacttgcg	actagaaccg	gagacattac	gccatgaaca	240
agagegeege	cgctggcctg	ctgggctatg	cccgcgtcag	caccgacgac	caggacttga	300
ccaaccaacg	ggccgaactg	cacgcggccg	gctgcaccaa	gctgttttcc	gagaagatca	360
ccggcaccag	gegegaeege	ccggagctgg	ccaggatgct	tgaccaccta	cgccctggcg	420
acgttgtgac	agtgaccagg	ctagaccgcc	tggcccgcag	cacccgcgac	ctactggaca	480
ttgccgagcg	catccaggag	geeggegegg	gcctgcgtag	cctggcagag	ccgtgggccg	540
acaccaccac	geeggeegge	cgcatggtgt	tgaccgtgtt	cgccggcatt	gccgagttcg	600
agegtteeet	aatcatcgac	cgcacccgga	gegggegega	ggccgccaag	gcccgaggcg	660
tgaagtttgg	ccccgccct	acceteacce	cggcacagat	cgcgcacgcc	cgcgagctga	720
tcgaccagga	aggccgcacc	gtgaaagagg	cggctgcact	gcttggcgtg	catcgctcga	780
ccctgtaccg	cgcacttgag	cgcagcgagg	aagtgacgcc	caccgaggcc	aggeggegeg	840
gtgccttccg	tgaggacgca	ttgaccgagg	ccgacgccct	ggcggccgcc	gagaatgaac	900
gccaagagga	acaagcatga	aaccgcacca	ggacggccag	gacgaaccgt	ttttcattac	960
cgaagagatc	gaggcggaga	tgatcgcggc	cgggtacgtg	ttcgagccgc	ccgcgcacgt	1020
ctcaaccgtg	cggctgcatg	aaatcctggc	cggtttgtct	gatgccaagc	tggcggcctg	1080
gccggccagc	ttggccgctg	aagaaaccga	gcgccgccgt	ctaaaaaggt	gatgtgtatt	1140
tgagtaaaac	agcttgcgtc	atgcggtcgc	tgcgtatatg	atgcgatgag	taaataaaca	1200
aatacgcaag	gggaacgcat	gaaggttatc	gctgtactta	accagaaagg	cgggtcaggc	1260
aagacgacca	tegeaaceca	tctagcccgc	gccctgcaac	tcgccggggc	cgatgttctg	1320
ttagtcgatt	ccgatcccca	gggcagtgcc	cgcgattggg	cggccgtgcg	ggaagatcaa	1380
ccgctaaccg	ttgtcggcat	cgaccgcccg	acgattgacc	gcgacgtgaa	ggccatcggc	1440
cggcgcgact	tcgtagtgat	cgacggagcg	ccccaggcgg	cggacttggc	tgtgtccgcg	1500
atcaaggcag	ccgacttcgt	gctgattccg	gtgcagccaa	gcccttacga	catatgggcc	1560
accgccgacc	tggtggagct	ggttaagcag	cgcattgagg	tcacggatgg	aaggctacaa	1620
gcggcctttg	tegtgtegeg	ggcgatcaaa	ggcacgcgca	tcggcggtga	ggttgccgag	1680
gcgctggccg	ggtacgagct	gcccattctt	gagtcccgta	tcacgcagcg	cgtgagctac	1740
ccaggcactg	ccgccgccgg	cacaaccgtt	cttgaatcag	aacccgaggg	cgacgctgcc	1800
cgcgaggtcc	aggcgctggc	cgctgaaatt	aaatcaaaac	tcatttgagt	taatgaggta	1860
aagagaaaat	gagcaaaagc	acaaacacgc	taagtgccgg	ccgtccgagc	gcacgcagca	1920
gcaaggctgc	aacgttggcc	agcctggcag	acacgccagc	catgaagcgg	gtcaactttc	1980
agttgccggc	ggaggatcac	accaagctga	agatgtacgc	ggtacgccaa	ggcaagacca	2040
ttaccgagct	gctatctgaa	tacatcgcgc	agctaccaga	gtaaatgagc	aaatgaataa	2100
atgagtagat	gaattttagc	ggctaaagga	ggcggcatgg	aaaatcaaga	acaaccaggc	2160
accgacgccg	tggaatgccc	catgtgtgga	ggaacgggcg	gttggccagg	cgtaagcggc	2220
tgggttgtct	gccggccctg	caatggcact	ggaaccccca	agcccgagga	atcggcgtga	2280
cggtcgcaaa	ccatccggcc	cggtacaaat	cggcgcggcg	ctgggtgatg	acctggtgga	2340
gaagttgaag	gccgcgcagg	ccgcccagcg	gcaacgcatc	gaggcagaag	cacgccccgg	2400

tgaatcgtgg	caageggeeg	ctgatcgaat	ccgcaaagaa	teceggeaac	cgccggcagc	2460
cggtgcgccg	tcgattagga	agccgcccaa	gggcgacgag	caaccagatt	ttttcgttcc	2520
gatgctctat	gacgtgggca	cccgcgatag	tcgcagcatc	atggacgtgg	ccgttttccg	2580
tctgtcgaag	cgtgaccgac	gagetggega	ggtgatccgc	tacgagette	cagacgggca	2640
cgtagaggtt	teegeaggge	cggccggcat	ggccagtgtg	tgggattacg	acctggtact	2700
gatggcggtt	tcccatctaa	ccgaatccat	gaaccgatac	cgggaaggga	agggagacaa	2760
geeeggeege	gtgttccgtc	cacacgttgc	ggacgtactc	aagttetgee	ggcgagccga	2820
tggcggaaag	cagaaagacg	acctggtaga	aacctgcatt	cggttaaaca	ccacgcacgt	2880
tgccatgcag	cgtacgaaga	aggccaagaa	cggccgcctg	gtgacggtat	ccgagggtga	2940
agccttgatt	agccgctaca	agatcgtaaa	gagcgaaacc	gggeggeegg	agtacatcga	3000
gatcgagcta	gctgattgga	tgtaccgcga	gatcacagaa	ggcaagaacc	cggacgtgct	3060
gacggttcac	cccgattact	ttttgatcga	teceggeate	ggccgttttc	tctaccgcct	3120
ggcacgccgc	gccgcaggca	aggcagaagc	cagatggttg	ttcaagacga	tctacgaacg	3180
cagtggcagc	gccggagagt	tcaagaagtt	ctgtttcacc	gtgcgcaagc	tgatcgggtc	3240
aaatgacctg	ccggagtacg	atttgaagga	ggaggcgggg	caggctggcc	cgatcctagt	3300
catgcgctac	cgcaacctga	tcgagggcga	agcateegee	ggttcctaat	gtacggagca	3360
gatgctaggg	caaattgccc	tagcagggga	aaaaggtcga	aaaggtctct	ttcctgtgga	3420
tagcacgtac	attgggaacc	caaagccgta	cattgggaac	cggaacccgt	acattgggaa	3480
cccaaagccg	tacattggga	accggtcaca	catgtaagtg	actgatataa	aagagaaaaa	3540
aggcgatttt	tccgcctaaa	actctttaaa	acttattaaa	actcttaaaa	cccgcctggc	3600
ctgtgcataa	ctgtctggcc	agcgcacagc	cgaagagctg	caaaaagcgc	ctacccttcg	3660
gtcgctgcgc	tccctacgcc	ccgccgcttc	gcgtcggcct	atcgcggccg	ctggccgctc	3720
aaaaatggct	ggcctacggc	caggcaatct	accagggcgc	ggacaagccg	cgccgtcgcc	3780
actcgaccgc	cggcgcccac	atcaaggcac	cctgcctcgc	gcgtttcggt	gatgacggtg	3840
aaaacctctg	acacatgcag	ctcccggaga	cggtcacagc	ttgtctgtaa	gcggatgccg	3900
ggagcagaca	agcccgtcag	ggcgcgtcag	cgggtgttgg	cgggtgtcgg	ggcgcagcca	3960
tgacccagtc	acgtagcgat	agcggagtgt	atactggctt	aactatgcgg	catcagagca	4020
gattgtactg	agagtgcacc	atatgcggtg	tgaaataccg	cacagatgcg	taaggagaaa	4080
ataccgcatc	aggcgctctt	ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	4140
gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	4200
ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	4260
ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	acaaaaatcg	4320
acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	4380
tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	4440
ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	atctcagttc	4500
ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	agcccgaccg	4560
ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	4620
actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	4680

gttcttgaag	tggtggccta	actacggcta	cactagaagg	acagtatttg	gtatctgcgc	4740
tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	gcaaacaaac	4800
caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	4860
atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	4920
acgttaaggg	attttggtca	tgcattctag	gtactaaaac	aattcatcca	gtaaaatata	4980
atattttatt	ttctcccaat	caggettgat	ccccagtaag	tcaaaaaata	gctcgacata	5040
ctgttcttcc	ccgatatcct	ccctgatcga	ccggacgcag	aaggcaatgt	cataccactt	5100
gteegeeetg	cegettetee	caagatcaat	aaagccactt	actttgccat	ctttcacaaa	5160
gatgttgctg	teteccaggt	cgccgtggga	aaagacaagt	teetettegg	gcttttccgt	5220
ctttaaaaaa	tcatacagct	cgcgcggatc	tttaaatgga	gtgtcttctt	cccagttttc	5280
gcaatccaca	tcggccagat	cgttattcag	taagtaatcc	aattcggcta	ageggetgte	5340
taagctattc	gtatagggac	aatccgatat	gtcgatggag	tgaaagagcc	tgatgcactc	5400
cgcatacagc	tcgataatct	tttcagggct	ttgttcatct	tcatactctt	ccgagcaaag	5460
gacgccatcg	gcctcactca	tgagcagatt	gctccagcca	tcatgccgtt	caaagtgcag	5520
gacctttgga	acaggcagct	ttccttccag	ccatagcatc	atgtcctttt	cccgttccac	5580
atcataggtg	gtccctttat	accggctgtc	cgtcattttt	aaatataggt	tttcattttc	5640
tcccaccagc	ttatatacct	tagcaggaga	cattccttcc	gtatctttta	cgcagcggta	5700
tttttcgatc	agtttttca	attccggtga	tattctcatt	ttagccattt	attatttcct	5760
tcctctttc	tacagtattt	aaagataccc	caagaagcta	attataacaa	gacgaactcc	5820
aattcactgt	tccttgcatt	ctaaaacctt	aaataccaga	aaacagcttt	ttcaaagttg	5880
ttttcaaagt	tggcgtataa	catagtatcg	acggagccga	ttttgaaacc	gcggtgatca	5940
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	6000
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6060
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6120
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6180
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6240
taatgtactg	aattaacgcc	gaattaattc	gggggatctg	gattttagta	ctggattttg	6300
gttttaggaa	ttagaaattt	tattgataga	agtattttac	aaatacaaat	acatactaag	6360
ggtttcttat	atgctcaaca	catgagcgaa	accctatagg	aaccctaatt	cccttatctg	6420
ggaactactc	acacattatt	atggagaaac	tcgagttaac	cctgagactg	ttggacagag	6480
ctcattggta	ccaggaacag	gtggtggcgg	ccctcggtgc	gctcgtactg	ctccacgatg	6540
gtgtagtcct	cgttgtggga	ggtgatgtcc	agcttggcgt	ccacgtagta	gtagccgggc	6600
agctgcacgg	gcttcttggc	catgtagatg	gacttgaact	ccaccaggta	gtggccgccg	6660
tccttcagct	tcagggcctt	gtgggtctcg	cccttcagca	cgccgtcgcg	ggggtacagg	6720
cgctcggtgg	aggcctccca	gcccatggtc	ttcttctgca	tcacggggcc	gtcggagggg	6780
aagttcacgc	cgatgaactt	caccttgtag	atgaagcagc	cgtcctgcag	ggaggagtcc	6840
tgggtcacgg	tcgccacgcc	gccgtcctcg	aagttcatca	cgcgctccca	cttgaagccc	6900
tcggggaagg	acagcttctt	gtagtcgggg	atgtcggcgg	ggtgcttcac	gtacaccttg	6960

gagccgtact	ggaactgggg	ggacaggatg	teccaggega	agggcagggg	gccgcccttg	7020
gtcaccttca	gcttcacggt	gttgtggccc	tcgtaggggc	ggccctcgcc	ctcgccctcg	7080
atctcgaact	cgtggccgtt	cacggtgccc	tccatgcgca	ccttgaagcg	catgaactcg	7140
gtgatgacgt	tctcggagga	ggccattttg	gtagactcga	gagagataga	tttgtagaga	7200
gagactggtg	atttcagcgt	gtcctctcca	aatgaaatga	acttccttat	atagaggaag	7260
gtcttgcgaa	ggatagtggg	attgtgcgtc	atcccttacg	tcagtggaga	tatcacatca	7320
atccacttgc	tttgaagacg	tggttggaac	gtcttctttt	tccacgatgc	tcctcgtggg	7380
tgggggtcca	tctttgggac	cactgtcggc	agaggcatct	tgaacgatag	cctttccttt	7440
atcgcaatga	tggcatttgt	aggtgccacc	ttccttttct	actgtccttt	tgatgaagtg	7500
acagatagct	gggcaatgga	atccgaggag	gtttcccgat	attacccttt	gttgaaaagt	7560
ctcaatagcc	ctttggtctt	ctgagactgt	atctttgata	ttcttggagt	agacgagagt	7620
gtcgtgctcc	accatgttat	cacatcaatc	cacttgcttt	gaagacgtgg	ttggaacgtc	7680
ttcttttcc	acgatgctcc	tegtgggtgg	gggtccatct	ttgggaccac	tgtcggcaga	7740
ggcatcttga	acgatagcct	ttcctttatc	gcaatgatgg	catttgtagg	tgccaccttc	7800
cttttctact	gtccttttga	tgaagtgaca	gatagetggg	caatggaatc	cgaggaggtt	7860
tcccgatatt	accctttgtt	gaaaagtctc	aatagccctt	tggtcttctg	agactgtatc	7920
tttgatattc	ttggagtaga	cgagagtgtc	gtgctccacc	atgttggcaa	gctgctctag	7980
ccaatacgca	aaccgcctct	ccccgcgcgt	tggccgattc	attaatgcag	ctggcacgac	8040
aggtttcccg	actggaaagc	gggcagtgag	cgcaacgcaa	ttaatgtgag	ttagctcact	8100
cattaggcac	cccaggcttt	acactttatg	cttccggctc	gtatgttgtg	tggaattgtg	8160
agcggataac	aatttcacac	aggaaacagc	tatgaccatg	attacgaatt	caggtaccat	8220
ttaaatcctg	cagggtttaa	acagtgtttt	actcctcata	ttaacttcgg	tcattagagg	8280
ccacgatttg	acacatttt	actcaaaaca	aaatgtttgc	atatctctta	taatttcaaa	8340
ttcaacacac	aacaaataag	agaaaaaaca	aataatatta	atttgagaat	gaacaaaagg	8400
accatatcat	tcattaactc	ttctccatcc	atttccattt	cacagttcga	tagcgaaaac	8460
cgaataaaaa	acacagtaaa	ttacaagcac	aacaaatggt	acaagaaaaa	cagttttccc	8520
aatgccataa	tactcgaacg	gegegeetea	gcccatatgc	aggeegeegt	tgagcgagaa	8580
gteggegeeg	gtcgagaaac	cggactcctc	cgacgacaac	caggcgcaga	tcgaggcgat	8640
ctcttccggc	aggcccaggc	gcttgaccgg	gatcgtcgcg	acgatcttgt	cgagcacgtc	8700
ctggcggatc	gccttgacca	tgtcggtggc	gatatagece	ggagagaccg	tgttgacggt	8760
cacgcccttg	gtcgccactt	cctgcgccag	tgccatggtg	aagccatgca	ggccggcctt	8820
ggcggtggag	tagttggtct	ggccgaactg	gecettetge	ccgttcaccg	acgagatgtt	8880
gacgatgcgg	ccccagccac	ggtcggccat	gccgtcgatc	acctgcttgg	tgacgttgaa	8940
cagcgaggtc	aggttggtgt	cgatcaccgc	atcccagtcg	gcgcgggtca	tcttgcggaa	9000
caccacgtcg	cgggtgatac	cggcgttgtt	gatcagcaca	tcaacctcgc	cgacctcgga	9060
cttgaccttg	tcgaatgcgg	tcttggtcga	gtcccagtca	gccacattgc	cttccgaggc	9120
aatgaaatcg	aagcccaggg	ccttctgctg	ctccagccac	ttttcgcggc	geggegagtt	9180
ggggccgcaa	ccggccacca	cacgaaagcc	atccttggcc	agccgctggc	aaatggcggt	9240

tccgatacca	cccatgccgc	cggtcacata	cgcaatgcgc	tgagtcactc	tagaatctct	9300
cgtcaatggt	ggcaaatagg	aaagagtctc	aaacttcttc	tttccaattg	gaggccacac	9360
ctgcatgcac	tttactcttc	caccattgct	tgtaatggaa	gtaatgtcag	tgttgacctt	9420
cttcactggg	aatccagtca	tggatttgag	gccgccgaat	ggagccactg	cggcggattg	9480
ccccctagag	gcacggctga	ctgttgtcac	agcggaagag	gatatcatag	aagccatttt	9540
actagtaaga	agctgaaaat	atcaaaagaa	ggaacagtca	ttaatctatt	gcatgtacta	9600
gattttagat	atgagtggtc	aaaaaaaact	tacgttaata	acgatgaaga	agacaatgat	9660
cctcagcaca	atctctctct	ctctctcttg	gettetette	tggtgaatag	cacgagagag	9720
ggtttaaatg	gaaggetegt	gggtccaaaa	tgggtggcgg	aggaaatagg	agaagtaggc	9780
agtgacaagt	aatgtagtat	ttagtatttg	atgaatgaca	cattttcatt	tcagcatcat	9840
caccaaccat	ccttttgttc	ctttgcttca	actgtcactt	tcaattgaca	aaattttta	9900
tgttttcatg	agaaaactaa	attcttataa	agattcatct	tcttgagtat	tatacgtgta	9960
gtttatgaac	aacacgtgtt	gttcctatat	ttttgttctg	ttacctctag	aataaagttg	10020
tcaccatttc	atgagttcaa	tttttcttta	atagccccaa	aaacaaaaga	tgattcacaa	10080
gaaagatgcg	aatattttgc	tatgaatctt	ttcttaagag	aagcaattac	attttcacaa	10140
taaaattaga	tccacgactt	aacctagttt	atgttgatta	tttctagtgt	tagtattaag	10200
caaaaataaa	acttatgaat	acgaaggcct	ttaaaggaaa	ctaaagaaag	gacaaggtat	10260
aaacgtccta	gaaagttcta	gggtttaggc	ttagggtcta	agatatatgc	tttgagtttt	10320
atggcttagt	aacacatttt	tgtaacactt	ctttgtaaca	tttcttgata	tgttggagaa	10380
gtaactcgtc	tggacaatag	ttatttccaa	tatataggaa	aaacggccta	aacaatagcc	10440
gacggggaca	aatacatcat	aaacaaaaaa	tcccggttac	aaacttccta	aaaagccatt	10500
cggtccactc	cgttaagcct	gaactgtgcc	tccgttatgc	aaaaacgccg	ttgaccatcc	10560
gtaacctagt	tgactgacgg	attatggatt	taatccgttt	taaggccgtt	aataacacca	10620
aaacgacgtc	gttttggtgt	tttaattttt	tttaacaaca	attaaaccaa	acgacgtcgt	10680
tttggtttaa	ttaaattttt	ttatcaaaaa	cccaagccca	agcccaaaac	tcttaacaaa	10740
agataaagcc	catctctatt	ttttctaatt	aaaacgcaca	gcattatgtt	tcttctctaa	10800
cggatatatt	ttcaatctca	taaattgggg	attagggttc	ttatttccca	attctcaatc	10860
tctcaaaatt	ctccaaaatt	ctctgaaatt	gataatgcct	tcttcttctt	caaactcgtt	10920
tttctctttt	gacagtgagc	ttgaagatga	taaccatcgt	ggttttccta	agacctgtcg	10980
atttggatgt	cgtgttgtga	tcagaacctc	aagaactcca	aaaaacctag	gtagattatt	11040
ccatacctgt	gagaaaaatt	tcaaaagagg	aggattccac	acctggaagt	ggactgatgt	11100
gtctttagta	gaagaagtag	aggacataaa	ggcttacatt	cataaccgtg	agaagtgtca	11160
cgatgaagaa	atgttattat	tgaaggctca	gattcgtggc	tgtgagaaga	tgattgaagg	11220
cttgaaagga	gaagcaaaac	gtatgaagct	aattgttgtt	gccggaatag	ttgtgtttgg	11280
ttgctttttg	tgtctctcta	agtgatgtat	gagatgaatg	tttgtgtatg	tgatgttgtt	11340
ttgtctcaat	aattagtcac	tgatgttgta	tgtaatgttg	tgttttgcat	ctctaattag	11400
ttaataatga	atgttgttct	tatgtaatgt	ttgatttaat	caatggcttt	tgcaaataaa	11460
tccataacag	aacntattca	atattttcga	aaacataaca	aaggtttcaa	aagaaattgc	11520

attagcatta	gctgagtttt	caaacaaaat	gcattacata	gacagaccct	gcttcataat	11580
ccccaaaaca	caaaagagaa	gcatgctaat	aaccgcaact	aatatccaaa	gacagcttca	11640
taatcccaaa	acacaaaaaa	agaagattca	taaccgatcc	ttcatgtatt	taaagaaaat	11700
cagacaacaa	gcaaagactt	aatcttcctg	agtaactgat	gagctcaagt	cgacgtttaa	11760
acagtgtttt	actcctcata	ttaacttcgg	tcattagagg	ccacgatttg	acacatttt	11820
actcaaaaca	aaatgtttgc	atatctctta	taatttcaaa	ttcaacacac	aacaaataag	11880
agaaaaaaca	aataatatta	atttgagaat	gaacaaaagg	accatatcat	tcattaactc	11940
ttctccatcc	atttccattt	cacagttcga	tagcgaaaac	cgaataaaaa	acacagtaaa	12000
ttacaagcac	aacaaatggt	acaagaaaaa	cagttttccc	aatgccataa	tactcgaact	12060
acgtattatt	tgcgctcgac	tgccagcgcc	acgcccatgc	cgccgccgat	gcacagcgag	12120
gccaggccct	tettegegte	acggcgcttc	atctcgtgca	gcagcgtcac	caggatacgg	12180
cagecegaeg	cgccgatcgg	gtggccgatg	gcgatggcgc	cgccgttcac	attgaccttg	12240
gaggtgtccc	agcccatctg	ctggtgcacc	gccagcgcct	gcgcggcaaa	ggcctcgttg	12300
atctccatca	ggtccaggtc	ttgcggggtc	cacteggege	gcgacagggc	gcgcttggag	12360
gccggcaccg	ggcccatgcc	catcaccttg	ggatcgacac	cggcgttggc	atagetettg	12420
atcgtggcca	gcggggtcag	gcccagttcc	ttggccttgg	ccgccgacat	caccaccacc	12480
geggeggege	cgtcgttcag	gcccgaggcg	ttggccgcgg	tcaccgtgcc	ggccttgtcg	12540
aaggeggget	tgaggccgga	catgctgtcc	agegtggege	cctggcgcac	gaactcgtcg	12600
gtcttgaagg	ccaccgggtc	gecettgege	tgcgggatca	gcaccgggac	gatctcttcg	12660
tcaaacttgc	eggeettetg	egeggetteg	gccttgttct	gcgagccgac	ggcgaactca	12720
teetgegeet	cgcgtgtgat	gccgtattcc	ttggccacgt	teteggeggt	gatgcccatg	12780
tggtactggt	tgtacacgtc	ccacaggccg	tcgacgatca	tggtgtcgac	cagcttggca	12840
tegeceatge	ggaaaccatc	gcgcgagccc	ggcagcacgt	geggggegge	gctcatgttt	12900
teetggeege	cggccaccac	gateteggeg	tegecegeca	tgatcgcgtt	ggcggccagc	12960
atcacggcct	tcaggcccga	gccgcacacc	ttgttgatgg	tcatggccgg	caccategee	13020
ggcaggccgg	ccttgatcgc	ggcctggcgt	gcggggttct	ggcccgaacc	ggcggtcagc	13080
acctggccca	tgatgacttc	gctcacctgc	tccggcttga	egeeggegeg	ctccagcgcg	13140
gccttgatga	ccacggcacc	cagttccggt	gccgggatct	tggccagcga	gccgccaaac	13200
ttgccgaccg	cggtgcgggc	ggcggatacg	atgacaacgt	cagtcactct	agaatctctc	13260
gtcaatggtg	gcaaatagga	aagagtctca	aacttcttct	ttccaattgg	aggccacacc	13320
tgcatgcact	ttactcttcc	accattgctt	gtaatggaag	taatgtcagt	gttgaccttc	13380
ttcactggga	atccagtcat	ggatttgagg	ccgccgaatg	gagccactgc	ggcggattgc	13440
cccctagagg	cacggctgac	tgttgtcaca	gcggaagagg	atatcataga	agccattttg	13500
gatccaagaa	gctgaaaata	tcaaaagaag	gaacagtcat	taatctattg	catgtactag	13560
attttagata	tgagtggtca	aaaaaaactt	acgttaataa	cgatgaagaa	gacaatgatc	13620
ctcagcacaa	tctctctc	tctctcttgg	cttctcttct	ggtgaatagc	acgagagagg	13680
gtttaaatgg	aaggctcgtg	ggtccaaaat	gggtggcgga	ggaaatagga	gaagtaggca	13740
gtgacaagta	atgtagtatt	tagtatttga	tgaatgacac	attttcattt	cagcatcatc	13800

accaaccatc	cttttgttcc	tttgcttcaa	ctgtcacttt	caattgacaa	aatttttat	13860
gttttcatga	gaaaactaaa	ttcttataaa	gattcatctt	cttgagtatt	atacgtgtag	13920
tttatgaaca	acacgtgttg	ttcctatatt	tttgttctgt	tacctctaga	ataaagttgt	13980
caccatttca	tgagttcaat	ttttctttaa	tagccccaaa	aacaaaagat	gattcacaag	14040
aaagatgcga	atattttgct	atgaatcttt	tcttaagaga	agcaattaca	ttttcacaat	14100
aaaattagat	ccacgactta	acctagttta	tgttgattat	ttctagtgtt	agtattaagc	14160
aaaaataaaa	cttatgaata	cgaaggcctt	taaaggaaac	taaagaaagg	acaaggtata	14220
aacgtcctag	aaagttctag	ggtttaggct	tagggtctaa	gatatatgct	ttgagtttta	14280
tggcttagta	acacatttt	gtaacacttc	tttgtaacat	ttcttgatat	gttggagaag	14340
taactcgtct	ggacaatagt	tatttccaat	atataggaaa	aacggcctaa	acaatagccg	14400
acggggacaa	atacatcata	aacaaaaaat	cccggttaca	aacttcctaa	aaagccattc	14460
ggtccactcc	gttaagcctg	aactgtgcct	ccgttatgca	aaaacgccgt	tgaccatccg	14520
taacctagtt	gactgacgga	ttatggattt	aatccgtttt	aaggccgtta	ataacaccaa	14580
aacgacgtcg	ttttggtgtt	ttaattttt	ttaacaacaa	ttaaaccaaa	cgacgtcgtt	14640
ttggtttaat	taaattttt	tatcaaaaac	ccaagcccaa	gcccaaaact	cttaacaaaa	14700
gataaagccc	atctctattt	tttctaatta	aaacgcacag	cattatgttt	cttctctaac	14760
ggatatattt	tcaatctcat	aaattgggga	ttagggttct	tatttcccaa	ttctcaatct	14820
ctcaaaattc	tccaaaattc	tctgaaattg	ataatgcctt	cttcttcttc	aaactcgttt	14880
ttctcttttg	acagtgagct	tgaagatgat	aaccatcgtg	gttttcctaa	gacctgtcga	14940
tttggatgtc	gtgttgtgat	cagaacctca	agaactccaa	aaaacctagg	tagattattc	15000
catacctgtg	agaaaaattt	caaaagagga	ggattccaca	cctggaagtg	gactgatgtg	15060
tctttagtag	aagaagtaga	ggacataaag	gcttacattc	ataaccgtga	gaagtgtcac	15120
gatgaagaaa	tgttattatt	gaaggctcag	attcgtggct	gtgagaagat	gattgaaggc	15180
ttgaaaggag	aagcaaaacg	tatgaagcta	attgttgttg	ccggaatagt	tgtgtttggt	15240
tgctttttgt	gtctctctaa	gtgatgtatg	agatgaatgt	ttgtgtatgt	gatgttgttt	15300
tgtctcaata	attagtcact	gatgttgtat	gtaatgttgt	gttttgcatc	tctaattagt	15360
taataatgaa	tgttgttctt	atgtaatgtt	tgatttaatc	aatggctttt	gcaaataaat	15420
ccataacaga	acntattcaa	tattttcgaa	aacataacaa	aggtttcaaa	agaaattgca	15480
ttagcattag	ctgagttttc	aaacaaaatg	cattacatag	acagaccctg	cttcataatc	15540
cccaaaacac	aaaagagaag	catgctaata	accgcaacta	atatccaaag	acagcttcat	15600
aatcccaaaa	cacaaaaaaa	gaagattcat	aaccgatcct	tcatgtattt	aaagaaaatc	15660
agacaacaag	caaagactta	atcttcctga	gtaactgatg	agctcaactg	caggtttaaa	15720
cagtgtttta	ctcctcatat	taacttcggt	cattagaggc	cacgatttga	cacattttta	15780
ctcaaaacaa	aatgtttgca	tatctcttat	aatttcaaat	tcaacacaca	acaaataaga	15840
gaaaaaacaa	ataatattaa	tttgagaatg	aacaaaagga	ccatatcatt	cattaactct	15900
tctccatcca	tttccatttc	acagttcgat	agcgaaaacc	gaataaaaaa	cacagtaaat	15960
tacaagcaca	acaaatggta	caagaaaaac	agttttccca	atgccataat	actcgaacgc	16020
gatcgctcag	cccttggctt	tgacgtaacg	gccgggcgcc	gcctcgatcg	cggtgtagcg	16080

ggcgttgccg	ggettggeet	tgggcttgac	cttcttgccg	ccatgctggg	tcaggaaccc	16140
ggcccattgc	ggccaccagc	tgcccggcac	ttcctgcgcg	ccatcgaacc	aggcctgggc	16200
atcggcggcg	ccaccgtcgt	tgatccagta	gctgcgcttg	ttcttggcca	ccgagttgat	16260
cacgccggcg	atatggccgg	acgcgcccag	cacgaagcgg	ttggcgcccg	gcttgccctg	16320
gttgaggatg	tegagegaae	cgtacgccga	catccacggc	acgatgtggt	cttcgcgcga	16380
accgtagatg	aaggccgggg	cgtcgatcag	gccgaggtcg	atcttttcgc	cggccaccgt	16440
cagettgeee	ggcactttca	ggctgttttc	caggtaggtg	ttgcgcaggt	accagcagaa	16500
catcgggccc	ggcaaattgg	tgctgtccga	attccagaac	agcaggtcaa	acgccgccgg	16560
ctcattgcct	ttgaggtagt	tcgactgcac	atagttccat	accaggtcgt	tcggacgcag	16620
gctcgagaag	gtcgaggcca	ggtcacggcc	cggcatcagg	ccgccatcgc	gcaattgctg	16680
ttcacgcagc	gcgacctggg	tttcatcgac	gaagacgtcg	agcacgccgg	tgtcgctgaa	16740
gtcgaggaag	gtggtcagca	gggtcaggct	ggccgccggg	tgctggccac	gcgccgccag	16800
taccgccagt	gcggtggcaa	cgatggtgcc	gcccacgcag	aagccgaaca	tgttcagctt	16860
gteetggeeg	ctgacgtcct	ggacgatgcg	gategetteg	atcacgccct	gctccacgta	16920
gtcgtcccag	gtggtgccgg	ccagcgactt	gtccggattg	ctccacgaga	tcaggaacac	16980
ggtgttgccc	tgctccaccg	cgtagcgcac	cagcgaattt	tccggttgca	ggtcgaggat	17040
gtagaacttg	ttgatgcacg	gcggcaccat	caacagcggg	cgctggctga	ccgtcggcgt	17100
ggtcggcgtg	tactggatca	gctggaacag	cggattttcg	taaatcacgg	tgcccggggt	17160
aatggccagg	ttgcggccca	cttcaaaggc	cgattcgtcc	gacagcgaga	tatggccctt	17220
gttgatatcg	cccagcatat	tgaccaggcc	acgcgtcagg	ctctcgccct	tggtttcaat	17280
cagtttttgc	tgcgcttccg	ggttggtggc	gaggaagttc	gcgggcgaca	tggcatcaat	17340
cacctgctgc	acggcaaagc	gtattttctg	cttttgctgg	ggtgcggtgt	ccaccgcctc	17400
caccatggca	ctgaggaatt	tggcgttgag	caggtaagat	gcggcattga	aggccgacat	17460
cggattgccc	tgccaggctg	ccgagctgaa	gcggcggtcg	ctgacggctg	gcgccttgcc	17520
agccaaaaaa	tcctgccaca	acgcggtgaa	gtcacgcaga	taatcgtttt	tcagctgctc	17580
catcgcttcc	ggtttgagcg	caacgccgat	atcctgcaac	atggtggcca	tcgggttcgc	17640
ctcggtggtg	ggcgccttgc	tgaaccagga	ttgccactgc	agctcatcgt	tgttcttgtt	17700
actcactcta	gaatctctcg	tcaatggtgg	caaataggaa	agagtctcaa	acttcttctt	17760
tccaattgga	ggccacacct	gcatgcactt	tactcttcca	ccattgcttg	taatggaagt	17820
aatgtcagtg	ttgaccttct	tcactgggaa	tccagtcatg	gatttgaggc	cgccgaatgg	17880
agccactgcg	gcggattgcc	ccctagaggc	acggctgact	gttgtcacag	cggaagagga	17940
tatcatagaa	gccatttttg	tacaaagaag	ctgaaaatat	caaaagaagg	aacagtcatt	18000
aatctattgc	atgtactaga	ttttagatat	gagtggtcaa	aaaaaactta	cgttaataac	18060
gatgaagaag	acaatgatcc	tcagcacaat	ctctctctct	ctctcttggc	ttctcttctg	18120
gtgaatagca	cgagagaggg	tttaaatgga	aggctcgtgg	gtccaaaatg	ggtggcggag	18180
gaaataggag	aagtaggcag	tgacaagtaa	tgtagtattt	agtatttgat	gaatgacaca	18240
ttttcatttc	agcatcatca	ccaaccatcc	ttttgttcct	ttgcttcaac	tgtcactttc	18300
aattgacaaa	attttttatg	ttttcatgag	aaaactaaat	tcttataaag	attcatcttc	18360

ttgagtatta tacgtgtagt ttatgaacaa cacgtgttgt tcctatattt tt	gttctgtt 18420
acctctagaa taaagttgtc accatttcat gagttcaatt tttctttaat ag	ccccaaaa 18480
acaaaagatg attcacaaga aagatgcgaa tattttgcta tgaatctttt ct	taagagaa 18540
gcaattacat tttcacaata aaattagatc cacgacttaa cctagtttat gt	tgattatt 18600
tctagtgtta gtattaagca aaaataaaac ttatgaatac gaaggccttt aa	aggaaact 18660
aaagaaagga caaggtataa acgtoctaga aagttotagg gtttaggott ag	ggtctaag 18720
atatatgctt tgagttttat ggcttagtaa cacatttttg taacacttct tt	gtaacatt 18780
tcttgatatg ttggagaagt aactcgtctg gacaatagtt atttccaata ta	taggaaaa 18840
acggcctaaa caatagccga cggggacaaa tacatcataa acaaaaaatc cc	ggttacaa 18900
acttectaaa aageeatteg gteeacteeg ttaageetga actgtgeete eg	ttatgcaa 18960
aaacgccgtt gaccatccgt aacctagttg actgacggat tatggattta at	ccgtttta 19020
aggccgttaa taacaccaaa acgacgtcgt tttggtgttt taatttttt ta	acaacaat 19080
taaaccaaac gacgtcgttt tggtttaatt aaattttttt atcaaaaacc ca	agcccaag 19140
cccaaaactc ttaacaaaag ataaagccca tctctatttt ttctaattaa aa	acgcacage 19200
attatgtttc ttctctaacg gatatatttt caatctcata aattggggat ta	gggttett 19260
atttcccaat totcaatoto toaaaattot ocaaaattot otgaaattga ta	atgccttc 19320
ttettettea aactegtttt tetettttga eagtgagett gaagatgata ac	catcgtgg 19380
ttttcctaag acctgtcgat ttggatgtcg tgttgtgatc agaacctcaa ga	actccaaa 19440
aaacctaggt agattattcc atacctgtga gaaaaatttc aaaagaggag ga	ttccacac 19500
ctggaagtgg actgatgtgt ctttagtaga agaagtagag gacataaagg ct	tacattca 19560
taaccgtgag aagtgtcacg atgaagaaat gttattattg aaggctcaga tt	cgtggctg 19620
tgagaagatg attgaaggct tgaaaggaga agcaaaacgt atgaagctaa tt	gttgttgc 19680
eggaatagtt gtgtttggtt getttttgtg tetetetaag tgatgtatga ga	tgaatgtt 19740
tgtgtatgtg atgttgtttt gtctcaataa ttagtcactg atgttgtatg ta	atgttgtg 19800
ttttgcatct ctaattagtt aataatgaat gttgttctta tgtaatgttt ga	tttaatca 19860
atggettttg caaataaate cataacagaa entatteaat attttegaaa ac	ataacaaa 19920
ggtttcaaaa gaaattgcat tagcattagc tgagttttca aacaaaatgc at	tacataga 19980
cagaccetge tteataatee ecaaaacaea aaagagaage atgetaataa ee	gcaactaa 20040
tatecaaaga cagetteata ateceaaaae acaaaaaaag aagatteata ac	regateett 20100
catgtattta aagaaaatca gacaacaagc aaagacttaa tcttcctgag ta	actgatga 20160
gctcaaaagc ttggcactgg ccgtcgtttt acaacgtcgt gactgggaaa ac	
tacccaactt aatogoottg cagcacatcc cootttegcc agetggegta at	
ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat gc	
cttgagettg gateagattg tegttteeeg cetteagttt aaactateag tg	
gatatattgg cgggtaaacc taagagaaaa gagcgtttat tagaataacg ga	
agggcgtgaa aaggtttatc cgttcgtcca tttgtatgtg	20500

- 1. An oilseed comprising greater than 7% polyhydroxyalkanoate (PHA) dry weight of the oilseed, wherein germination of the oilseed is impaired relative to an oilseed having less than 7% polyhydroxyalkanoate.
- 2. The oilseed of claim 1, wherein the PHA comprises (poly) 3-hydroxybutyrate (PHB).
- 3. The oilseed of claim 1 comprises greater than 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% or 19% of the dry weight of the seed.
- **4**. The oilseed of claim **1**, wherein the oilseed is produced by a transgenic plant genetically engineered to produce PHA.
 - 5. The oilseed of claim 4, wherein the PHA is PHB.
- 6. The oilseed of claim 4, wherein the plant transformed to produce the transgenic plant is selected from the group consisting of members of the *Brassica* family: *B. napus*, *B. rapa*, *B. carinata* and *B. juncea*; industrial oilseeds: *Camelina sativa*, Crambe, jatropha, castor; *Arabidopsis thaliana*; *Calendula*, *Cuphea*; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including *Sinapis alba*; and tobacco.
- 7. The oilseed of claim 1, wherein germination of the oilseed is impaired by 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% relative to an oilseed comprising less than 7% PHA.
- **8**. A transgenic plant genetically engineered to produce PHA, wherein the transgenic plant produces the oilseed of claim **1**.
- 9. The transgenic plant of claim 8 wherein the plant transformed to produce the oilseed of claim 1 is selected from the

group consisting of members of the *Brassica* family; *B. napus*, *B. rapa*, *B. carinata* and *B. juncea*; industrial oilseeds: *Camelina sativa*, Crambe, Jatropha, castor; *Arabidopsis thaliana*; *Calendula*, *Cuphea*; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards: *Sinapis alba*; and tobacco.

10. (canceled)

- 11. A method for producing a hybrid transgenic plant line comprising crossing a plant line comprising one or more PHB biosynthetic pathway genes with a plant line containing the remaining PHB biosynthetic pathway gene(s) needed to complete the PHB biosynthetic pathway.
- 12. The method of claim 11 wherein the plant lines comprise cytoplasmic male sterility (CMS) controlled by an extranuclear genome.
- 13. The method of claim 11 wherein the male sterile line is maintained by crossing with a maintainer line that is genetically identical and comprises normal fertile cytoplasm.
- 14. The method of claim 13 wherein the maintainer line is transformed with one or more genes for the PHB biosynthetic pathway.
- 15. The method of claim 14 wherein crossing the transformed maintainer line with the original male sterile line produces a male sterile line possessing a portion of the PHB biosynthetic pathway.
- 16. The method of claim 15 wherein insertion of the phaA and phaC genes into the maintainer line and crossing with the original male cytoplasmic sterile line forms a male sterile line containing the phaA and phaC genes.

* * * * *