J. L. DOSTAL

COOLING MEANS FOR PERMANENT MOLDS

Filed July 9, 1927

2 Sheets-Sheet 1

May 22, 1928.

1,670,614

JOSEPH L. DOSTAL

INVENTOR

BY

Stanley M. Udle

ATTORNEY
J. L. DOSTAL
COOLING MEANS FOR PERMANENT MOLDS
Filed July 9, 1927
2 Sheets-Sheet 2

J. L. DOSTAL
INVENTOR

JOSEPH L. DOSTAL
INVENTOR

BY

ATTORNEY
UNITED STATES PATENT OFFICE.

JOSEPH L. DOSTAL, OF DETROIT, MICHIGAN, ASSIGNOR TO EARL HOLLEY, OF DETROIT, MICHIGAN.

COOLING MEANS FOR PERMANENT MOLDS.

Application filed July 9, 1927. Serial No. 206,872.

The object of this invention is to improve the cooling of a series of molds, such as those illustrated in my Patent No. 1,493,738, and is an improvement on the cooling means shown in Patent No. 1,593,294.

The specific object of the invention is to economize the quantity of air used, as in the construction shown in Patent No. 1,593,294 more than one-half of the air is wasted.

An additional object is to decrease the liability of the rotating mechanism to clog up with dust and dirt, by utilizing the pressure of the cooling air to automatically keep the mechanism clean.

Figure 1 shows a cross sectional elevation on plane 1--1 of Figure 2.

Figure 2 shows a plan view.

In the figures, A is a stationary base located on supports B (only one shown), upon which is mounted a shaft C about which rotates a table D. A roller bearing E is provided to support D on A, so as to reduce friction. The hollow space between A and D is used as an air receiver for the cooling air received from a pipe F. The air from the space A D is distributed through the pipes G, each of which supplies the air for cooling a pair of molds through the cooling nozzles H J.

The molds are mounted on extension bars K, carried around by the table D, and on the supports L M, as shown in the patent to Dostal and Anderson, No. 1,570,950. The molds are shown in broken lines, but of course they may be of any shape and size.

Operation—The cooling air entering at F is economically directed against the molds through the nozzles H J, so as to most effectively cool the molds. The tendency of air to leak out through the bearing E positively prevents the entry of dust and dirt into the bearings, so that the life of the roller bearing E and its track is more than doubled.

Finally, the temperature of the bearing E is kept sufficiently low so that the lubricant will neither be evaporated and cake, nor will it become so fluid as to escape.

What I claim is:

1. In combination with a traveling series of molds, located on a rotating table, a stationary base located below and supporting said table, and forming an enclosed space therewith, a stationary pipe delivering air to said space, air cooling nozzles mounted on said table, said cooling nozzles being adapted to cool said molds.

2. In combination with a traveling series of molds, located on a rotating table, a stationary base located below and supporting said table, and forming an enclosed space therewith, an annular bearing on said base supporting said table, a stationary pipe delivering air to said space, air cooling nozzles mounted on said table, said cooling nozzles being adapted to cool said molds.

3. In combination with a traveling series of molds located on a rotating table, cooling means comprising an enclosed space located in the upper central portion of said table, a stationary pipe delivering air to said space, air cooling nozzles mounted on said table, a plurality of pipes connecting said air nozzles to said enclosed space.

In testimony whereof I affix my signature.

JOSEPH L. DOSTAL.