

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
19 February 2009 (19.02.2009)

PCT

(10) International Publication Number
WO 2009/023530 A1(51) International Patent Classification:
B29C 70/38 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2008/072505

(22) International Filing Date: 7 August 2008 (07.08.2008)

(25) Filing Language: English

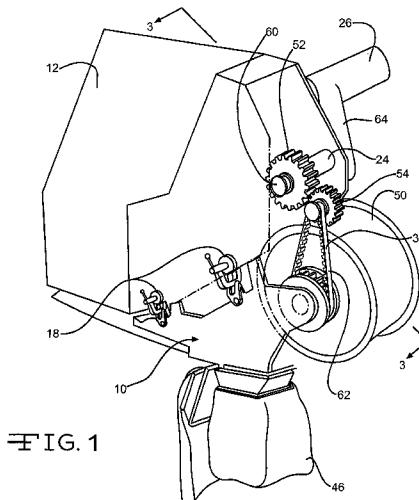
(26) Publication Language: English

(30) Priority Data:
11/837,263 10 August 2007 (10.08.2007) US

(71) Applicant (for all designated States except US): THE BOEING COMPANY [US/US]; 100 North Riverside Plaza, Chicago, Illinois 60606-2016 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MCCOWIN, Peter D [US/US]; 29829 SE 370th Street, Enumclaw, Washington 98022-8744 (US).


(74) Agents: TSUDA, Diane M. et al.; The Boeing Company, P.O. Box 2515, MC 110-SD54, Seal Beach, California 90740-1515 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(54) Title: TAPE REMOVAL APPARATUS AND PROCESS FOR USE WITH AN AUTOMATED COMPOSITE TAPE LAYING MACHINE

WO 2009/023530 A1

(57) Abstract: Apparatus (10) are provided for attaching to a composite tape lamination machine (12) in order to remove composite scrap tape material (72) from a backing paper (30). When a moveable member (14) is in one position composite non-scrap tape material on a backing paper is directed along a path to avoid a removing member and keep composite non-scrap tape material (56) on a backing paper (30). When the moveable member (14) is in another position composite scrap tape material (72) on a backing paper (30) is directed along a different path to contact the removing member (40) and remove composite scrap tape material (72) from a backing paper (30). Composite scrap tape material (72) may be disposed in a scrap disposal member (46). Backing paper (30) having attached composite non-scrap tape material (36) and not having attached composite scrap tape material (72) may be spooled using a spool roller (50).

TAPE REMOVAL APPARATUS AND PROCESS FOR USE WITH AN AUTOMATED COMPOSITE TAPE LAYING MACHINE**BACKGROUND**

5 One or more apparatus and methods exist for automatically preparing cassette spools wound with tape material, such as prepeg unidirectional tape, on original backing paper. This tape material may be used to form a laminate. In one existing apparatus/method, tape material on backing paper is unrolled from a supply reel, the tape material is cut into the required configuration, removed from the original backing paper, and then transferred to another release 10 backing paper and wound onto a cassette spool. However, the transferring of the tape material to another backing paper may create problems. The tape material may lose some of its tacking ability, may not align as well on the new backing paper, may not adhere well to the new backing paper, and may have placement problems when placed on a working surface. Further, the new backing paper may tear, may delaminate from the tape, may stretch and/or have tension 15 problems, may form wrinkles when the tape is placed onto a working surface, and/or may not allow good tacking of the tape material onto the working surface. This may cause problems with tape lifting from the working surface, or may cause wrinkles to be formed in the laminate during tape material layup. Moreover, the process of putting the tape material onto a new backing paper may require more than one machine, may increase the costs, may increase the time required, may 20 reduce efficiency, and/or may lead to one or more other problems.

 An apparatus, and/or method of removing composite scrap tape material from a backing paper, is needed to decrease one or more problems associated with one or more of the existing apparatus and/or methods.

SUMMARY

25 In one aspect of the disclosure, an apparatus is disclosed for attaching to a composite tape lamination machine in order to remove composite scrap tape material from a backing paper. The

apparatus comprises at least one attachment member for attaching the apparatus to a composite tape lamination machine. The apparatus further comprises at least one removing member for removing composite scrap tape material from a backing paper. The apparatus additionally comprises at least one moveable member. When the moveable member is in one position 5 composite non-scrap tape material on a backing paper is directed along a path to avoid the at least one removing member and keep composite non-scrap tape material on a backing paper. When the moveable member is in another position composite scrap tape material on a backing paper is directed along a different path to contact the at least one removing member and remove composite scrap tape material from a backing paper. The apparatus also comprises a scrap 10 disposal member for disposing of composite scrap tape material which has been removed from a backing paper. The apparatus additionally comprises a spool roller for spooling up backing paper having attached composite non-scrap tape material and not having attached composite scrap tape material.

In another aspect of the disclosure, a method is disclosed of removing composite scrap tape 15 material from a backing paper. In one step, an apparatus is provided comprising at least one attachment member, at least one removing member, at least one moveable member, a scrap disposal member, and a spool roller. In another step, the apparatus is attached to a composite tape lamination machine using the at least one attachment member. In still another step, composite tape material is cut on the backing paper using the composite tape lamination 20 machine. In yet another step, composite non-scrap tape material on the backing paper is moved along one path to avoid contact with the at least one removing member with the at least one moveable member in one position. In an additional step, the composite non-scrap tape material on the backing paper is spooled with the spool roller. In a further step, the at least one moveable member is moved into another position so that the composite scrap tape material contacts the at 25 least one removing member. In yet another step, the composite scrap tape material is removed

from the backing paper using the at least one removing member. In an additional step, the composite scrap tape material which has been removed from the backing paper is disposed into the scrap disposal member. In a further step, the backing paper without the composite scrap tape material is spooled with the spool roller.

5 These and other features, aspects and advantages of the disclosure will become better understood with reference to the following drawings, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a partial side perspective view of one embodiment of an apparatus attached to a composite tape lamination machine with some inner components of the apparatus 10 exposed;

Figure 2 shows a partial cross-sectional view through line 2-2 of the embodiment of Figure 1 with one or more moveable members of the apparatus in a raised position, and some of the components of the apparatus and composite tape lamination machine not shown;

Figure 3 shows a partial cross-sectional view through line 3-3 of the embodiment of 15 Figure 1 with the one or more moveable members of the apparatus in another lowered position, and some of the components of the apparatus and composite tape lamination machine not shown.

Figure 4 shows a partial top-side perspective view of only the comb member, high tack roller, and adhesive/tape strips of the apparatus of the embodiment of Figure 1;

Figure 5 shows an embodiment of a method of removing composite scrap tape material 20 from backing paper;

Figure 6 is a flow diagram of an aircraft production and service methodology; and

Figure 7 is a block diagram of an aircraft.

DETAILED DESCRIPTION

The following detailed description is of the best currently contemplated modes of carrying out the disclosure. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the disclosure, since the scope of 5 the disclosure is best defined by the appended claims.

Figure 1 shows a partial side perspective view of one embodiment of an apparatus 10 attached to a composite tape lamination machine 12. Some inner components of the apparatus 10 which would normally be hidden in this view have been shown in order to explain the workings of the apparatus 10. Figure 2 shows a partial cross-sectional view through line 2-2 of 10 the embodiment of Figure 1 with one or more moveable members 14 of the apparatus 10 in one raised (or retracted) position 16, and some of the components of the apparatus 10 and composite tape lamination machine 12 not shown in order to explain the workings of the apparatus 10.

As shown in Figures 1 and 2, the apparatus 10 may be retro-fitted attached to an existing composite tape lamination machine 12 using one or more attachment members 18. The 15 attachment members 18 may comprise bolts, clamping members, or other types of attachment members. The composite tape lamination machine 12 may comprise a supply spool 20, at least one cutting member 22, a second roll-up spool 24, and a servo-drive 26. The supply spool 20 may supply tape material 28 on backing paper 30 which may be unrolled from the supply spool 20 and pass through the at least one cutting member 22. The tape material 28 may comprise for 20 example and without limitation a composite prepeg (pre-impregnated with resin) unidirectional tape, a graphite, ceramic, a graphite epoxy composite, aramid, glass, or other tape material. The at least one cutting member 22 of the composite tape lamination machine 12 may cut the supplied tape material 28 in a pre-determined configuration while still on the backing paper 30.

The apparatus 10 may comprise the one or more attachment members 18, a radius surface 25 32, a detection system 34, a pneumatic cylinder 36, one or more moveable members 14, one or

more removing members 40, comb member 42, one or more nip rollers 44, scrap disposal member 46, computer 48, spool roller 50, and gear members 52 and 54. After being cut by the at least one cutting member 22, the tape material 28 on backing paper 30 may move along radius surface 32. As the tape material 28 on backing paper 30 moves along the radius surface 32, the 5 detection system 34 may detect at least one of a leading edge and a cut line of the tape material 28 on the backing paper 30. The detection system 34 may comprise at least one of a sensor array 35 and a computer 48. The detection system 34 may utilize an algorithm to detect the leading edge and/or cut line of the tape material 28.

If the detection system 34 detects that the tape material 28 on the backing paper 30 10 passing over the radius surface 32 comprises non-scrap tape material 56, the one or more moveable members 14, which may comprise one or more moveable finger members, may be put into one raised (or retracted) position 16 of Figure 2 using the pneumatic cylinder 36 and/or computer 48. In normal operation, the one or more moveable members 14 may remain in the raised position 16 except when the detection system 34 detects that scrap tape material 72 is 15 passing through as shown in Figure 3, at which time the moveable members 14 may extend as discussed later herein. When the one or more moveable members 14 are in position 16, the non-scrap tape material 56 on backing paper 30 may be directed along path 58 to avoid the one or more removing members 40 in order to keep the non-scrap tape material 56 on the backing paper 30. Tension may be maintained on the non-scrap tape material 56 on the backing paper 30 at all 20 times due to the non-scrap tape material 56 being wound around spools 20 and 50. The non-scrap tape material 56 on the backing paper 30 may follow path 58 over the radius surface 32 and may then be rolled up by the spool roller 50.

The spool roller 50 may be driven by the gear members 52 and 54. Gear member 52 of the apparatus may be retrofitted attached to the second roll-up spool 24 of the composite tape 25 lamination machine 12 by attaching it to the hub 60 of the second roll-up spool 24. Gear

member 54 may be driven by gear member 52. Spool roller 50 of the apparatus 10 may be driven by gear member 54 through belt 62. Servo drive 26 of the composite tape lamination machine 12 may drive second roll-up spool 24 through belt 64. When servo drive 26 drives second roll-up spool 24 in a clockwise direction 66, attached gear member 52 may also be driven 5 in a clockwise direction 66. Gear member 52 may drive gear member 54 in a counter-clockwise direction 68. Gear member 54 may drive spool roller 50 in a counter-clockwise direction 68 which is reversibly driven with respect to the clockwise movement 66 of second roll-up spool 24. In such manner, the spool roller 50 of the apparatus 10 may be reversibly driven by the servo drive 26 of the composite tape lamination machine 12 in order to roll up the non-scrap tape 10 material 56 on backing paper 30 after it has moved over path 58.

Figure 3 shows a partial cross-sectional view through line 3-3 of the embodiment of Figure 1 with the one or more moveable members 14 of the apparatus 10 in another lowered (or extended) position 70, and some of the components of the apparatus 10 and composite tape lamination machine 12 not shown in order to explain the workings of the apparatus 10. When 15 the detection system 34 detects that the tape material 28 on the backing paper 30 passing over the radius surface 32 comprises scrap tape material 72, the one or more moveable members 14 may be put into the another lowered (or extended) position 70 of Figure 3 using the pneumatic cylinder 36 and/or computer 48. When the one or more moveable members 14 are in position 70, the scrap tape material 72 on backing paper 30 may be directed along different path 74 to 20 contact the one or more removing members 40 in order to remove the scrap tape material 72 from the backing paper 30.

When in position 70, the one or more moveable members 14, which may comprise one or moveable finger members, may be disposed near the one or more removing members 40. In such manner, as shown in Figure 3, the one or more moveable members 14 may abut against the 25 backing paper 30, which may have a smooth low friction surface, to force the scrap tape material

72 moving along path 74 to abut and/or stick against the one or more removing members 40.

Figure 4 shows a partial top-side perspective view of only the comb member 42, high tack roller 76, and adhesive/tape strips 78 of the apparatus 10 of the embodiment of Figure 1. As shown in Figures 3 and 4, the one or more removing members 40 may comprise at least one high tack roller 76 which is rotating in clockwise direction 66, and is at least partially covered by a plurality of adhesive and/or tape strips 78 which are rolled around a plurality of spaced apart portions 80 of the high tack roller 76. In other embodiments, one or more adhesive and/or tape strips 78 may be attached to any portion of the high tack roller 76. The adhesive and/or tape strips 78 may be removable from the high tack roller 76 to provide refreshed strips when their tackiness wears out.

The comb member 42 of the apparatus 10 may be disposed over a portion 82 of the high tack roller 76. The comb member 42 may comprise a curved surface 84 and a plurality of spaced apart fingers 86. The plurality of spaced apart fingers 86 may be disposed over the high tack roller 76 with the plurality of adhesive and/or tape strips 78 disposed between the plurality of spaced apart fingers 86.

As shown by viewing Figures 3 and 4, when the scrap tape material 72 moving along path 74 contacts the adhesive and/or tape strips 78 of the rotating high tack roller 76, due to the extended moveable members 14 abutting against the backing paper 30, the tackiness of the adhesive and/or tape strips 78 will cause the scrap tape material 72 to stick to the adhesive and/or tape strips 78 and to separate from the backing paper 30 due to the rotation of the high tack roller 76. The separated scrap tape material 72 may then rotate in clockwise direction 66 due to the rotation of the rotating high tack roller 76. As the rotating high tack roller 76 drops below the surface path of the comb member 42, the tack induced adhesion is broken releasing the scrap tape material 72 from the high tack roller 76. The spaced apart fingers 86 of the comb member 42, which may be coated or manufactured from a low friction plastic to reducing sticking of the

scrap tape material 72, may then force the separated scrap tape material 72 to move along path 74 along the curved surface 84 of the comb member 42.

The separated scrap tape material 72 may then continue along path 74 between the one or more nip rollers 44 and the curved surface 84 of the comb member 42. The nip rollers 44 may 5 be rotating in a counter-clockwise direction 68 which may force the separated scrap tape material 72 to abut against and continue along the curved surface 84 and into the scrap disposal member 46. In other embodiments, one or more nip rollers 44 may be used as long as the revolutions per minute of the nip rollers 44 is equal to or slightly greater than that of the feed rate of the scrap 10 tape material 72. The scrap disposal member 46 may comprise at least one of a scrap disposal bag and a scrap disposal receptacle for disposing of the scrap tape material 72 which has been removed from the backing paper 30.

The backing paper 30 which has been separated from the scrap tape material 72 may travel along path 58 over the radius surface 32 and may then be rolled up by the spool roller 50 which may be reversibly driven by the servo drive 26 of the composite tape lamination machine 15 12. In such manner, the spool roller 50 may spool up the backing paper 30 with the scrap tape material 72 removed from the backing paper 30.

By attaching the apparatus 10 to an existing composite tape lamination machine 12, scrap tape material 72 may be removed from backing paper 30 in a less costly, less timely, and/or more timely manner. Use of the apparatus 10 may also reduce one or more other types of problems 20 associated with one or more of the existing composite tape lamination machines.

Figure 5 shows a flowchart of one embodiment of a method 188 of removing composite scrap tape material 72 from a backing paper 30. In one step 189, an apparatus 10 is provided comprising at least one attachment member 18, at least one removing member 40, at least one moveable member 14, a scrap disposal member 46, and a spool roller 50. In other embodiments, 25 the apparatus 10, including its components, may comprise any of the embodiments disclosed

herein. Moreover, the apparatus 10, including its components, may function in any of the ways herein described.

In another step 190, the apparatus 10 may be attached to a composite tape lamination machine 12 using the at least one attachment member 18. The composite tape lamination machine 12, including its components, may comprise any of the embodiments disclosed herein. Moreover, the composite tape lamination machine 12, including its components, may function in any of the ways herein described. Step 190 may comprise retrofitting the apparatus 10 to the composite tape lamination machine 12 using the at least one attachment member 18. In an additional step 191, composite tape material 28 on the backing paper 30 may be cut using the composite tape lamination machine 12.

In still another step 192, composite non-scrap tape material 56 on the backing paper 30 may be moved along one path 58 to avoid contact with the at least one removing member 40 while the at least one moveable member 14 is in one position 16. While in position 16, the at least one moveable member 14 may be disposed away from the at least one removing member 40. In yet another step 193, the composite non-scrap tape material 56 on the backing paper 30 may be spooled with the spool roller 50.

In step 194, the at least one moveable member 14 may be moved into another position 70 so that the composite scrap tape material 72 contacts the at least one removing member 40. While in position 70, the moveable member 14 may be disposed near the at least one removing member 40. In an additional step 195, the composite scrap tape material 72 is removed from the backing paper 30 using the at least one removing member 40. In yet another step 196, the composite scrap tape material 72 which has been removed from the backing paper 30 is disposed of into the scrap disposal member 46. In still another step 197, the backing paper 30 without the composite scrap tape material 72 is spooled with the spool roller 50.

25 One or more embodiment of the disclosure may reduce and/or eliminate one or more

problems which may have been experienced by one or more of the existing apparatus or methods. For instance, one or more embodiments of the disclosure may reduce the numbers and amounts of backing paper needed, may reduce costs, may reduce the number of machines required, may substantially reduce time since the process may be carried out without transferring 5 cut tape to new backing paper, may lead to less wrinkling and/or tension in the tape material against the backing paper since new backing paper is not required, may improve the adherence of the cut tape to the backing paper since new backing paper is not required, may reduce tacking problems, may reduce problems in transferring tape resin to new backing paper, may improve efficiency, may be less complex, may be more reliable, may be more accurate, may make it less 10 difficult to place tape against working surfaces by providing improved tracking and guidance, may reduce tape lifting from working surfaces, and/or may reduce and/or eliminate one or more other types of problems in one or more of the existing apparatus and/or methods.

Referring more particularly to the drawings, embodiments of the disclosure may be described in the context of an aircraft manufacturing and service method 201 as shown in Figure 15 6 and an aircraft 203 as shown in Figure 7. During pre-production, exemplary method 201 may include specification and design 205 of the aircraft 203 and material procurement 207. During production, component and subassembly manufacturing 209 and system integration 211 of the aircraft 203 takes place. Thereafter, the aircraft 203 may go through certification and delivery 213 in order to be placed in service 215. While in service by a customer, the aircraft 203 is 20 scheduled for routine maintenance and service 217 (which may also include modification, reconfiguration, refurbishment, and so on).

Each of the processes of method 201 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft 25 manufacturers and major-system subcontractors; a third party may include without limitation any

number of vendors, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.

As shown in Figure 7, the aircraft 203 produced by exemplary method 201 may include an airframe 219 with a plurality of systems 221 and an interior 223. Examples of high-level 5 systems 221 include one or more of a propulsion system 225, an electrical system 227, a hydraulic system 229, and an environmental system 231. Any number of other systems may be included. Although an aerospace example is shown, the principles of the invention may be applied to other industries, such as the automotive industry.

Apparatus and methods embodied herein may be employed during any one or more of the 10 stages of the production and service method 201. For example, components or subassemblies corresponding to production process 209 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 203 is in service. Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during the production stages 209 and 211, for example, by substantially expediting 15 assembly of or reducing the cost of an aircraft 203. Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof may be utilized while the aircraft 203 is in service, for example and without limitation, to maintenance and service 217.

It should be understood, of course, that the foregoing relates to exemplary embodiments 20 of the disclosure and that modifications may be made without departing from the spirit and scope of the disclosure as set forth in the following claims.

CLAIMS

1. An apparatus for attaching to a composite tape lamination machine in order to remove composite scrap tape material from a backing paper comprising:
 - 5 at least one attachment member for attaching the apparatus to a composite tape lamination machine;
 - at least one removing member for removing composite scrap tape material from a backing paper;
 - 10 at least one moveable member, wherein when the moveable member is in one position composite non-scrap tape material on a backing paper is directed along a path to avoid the at least one removing member and keep composite non-scrap tape material on a backing paper, and when the moveable member is in another position composite scrap tape material on a backing paper is directed along a different path to contact the at least one removing member and remove composite scrap tape material from a backing paper;
 - 15 a scrap disposal member for disposing of composite scrap tape material which has been removed from a backing paper; and
 - a spool roller for spooling up backing paper having attached composite non-scrap tape material and not having attached composite scrap tape material.
2. The apparatus of claim 1 wherein the apparatus is retro-fitted to a composite tape lamination machine.
- 20 3. The apparatus of claim 1 wherein the at least one attachment member comprises at least one of a clamping member and a bolt.
4. The apparatus of claim 1 wherein the apparatus is for attaching to a composite tape lamination machine comprising a supply spool for supplying tape material on backing paper and at least one cutting member for cutting tape material on backing paper.
- 25 5. The apparatus of claim 1 wherein said at least one removing member comprises at

least one high tack roller.

6. The apparatus of claim 5 wherein said at least one high tack roller is at least partially covered by at least one of adhesive and tape.

7. The apparatus of claim 6 wherein said at least one high tack roller is at least 5 partially covered by a plurality of at least one of adhesive and tape which are rolled around a plurality of spaced apart portions of said at least one high tack roller.

8. The apparatus of claim 6 wherein said at least one of adhesive and tape is removable from said at least one high tack roller.

9. The apparatus of claim 1 wherein the apparatus further comprises a comb member 10 comprising a curved surface and a plurality of spaced apart fingers.

10. The apparatus of claim 9 wherein said at least one removing member comprises at least one high tack roller, and said plurality of spaced apart fingers are disposed over said at least one high track roller with a plurality of at least one of adhesive, a high tack surface, and tape disposed between said plurality of spaced apart fingers.

15 11. The apparatus of claim 9 wherein at least one nip roller is disposed near said curved surface of said comb member.

12. The apparatus of claim 1 wherein said at least one moveable member comprises at least one finger member.

13. The apparatus of claim 12 wherein said at least one removing member comprises 20 at least one high tack roller, wherein when said at least one finger member is disposed away from said at least one high tack roller composite non-scrap tape material on a backing paper is directed along the path to avoid the at least one high tack roller and keep composite non-scrap tape material on a backing paper, and wherein when said at least one finger member is disposed near said at least one high tack roller composite scrap tape material on a backing paper is directed 25 along the different path to contact the at least one high tack roller and remove composite scrap

tape material from a backing paper.

14. The apparatus of claim 1 wherein the scrap disposal member comprises at least one of a scrap disposal bag and a scrap disposal receptacle.

15. The apparatus of claim 1 wherein the apparatus further comprises at least one gear member which is adapted to drive the spool roller.

16. The apparatus of claim 15 wherein the apparatus further comprises two gear members, wherein one of the gear members is adapted to be attached to a second spool roller of a composite tape lamination machine in order for the spool roller of the apparatus to be reversibly driven by a drive member driving a second spool roller of a composite tape lamination machine.

10 17. The apparatus of claim 1 further comprising a detection system for detecting at least one of a leading edge and a cut line of tape material on backing paper.

18. The apparatus of claim 17 wherein the detection system comprises at least one of a sensor array and a computer.

19. A method of removing composite scrap tape material from a backing paper 15 comprising:

providing an apparatus comprising at least one attachment member, at least one removing member, at least one moveable member, a scrap disposal member, and a spool roller;

attaching the apparatus to a composite tape lamination machine using said at least one attachment member;

20 cutting composite tape material on the backing paper using the composite tape lamination machine;

moving composite non-scrap tape material on the backing paper along one path to avoid contact with the at least one removing member with the at least one moveable member in one position;

25 spooling the composite non-scrap tape material on the backing paper with the spool

roller;

moving the at least one moveable member into another position so that the composite scrap tape material contacts the at least one removing member;

removing the composite scrap tape material from the backing paper using the at least one

5 removing member;

disposing of the composite scrap tape material which has been removed from the backing paper into the scrap disposal member; and

spooling the backing paper without the composite scrap tape material with the spool roller.

10 20. The method of claim 19 wherein the attaching step comprises retrofitting the apparatus to the composite tape lamination machine using said at least one attachment member.

21. The method of claim 19 wherein the at least one attachment member comprises at least one of a clamping member and a bolt.

15 22. The method of claim 19 wherein the composite tape lamination machine comprises a supply spool which supplies the composite tape material on the backing paper and at least one cutting member which cuts the composite tape material on the backing paper.

23. The method of claim 19 wherein said at least one removing member comprises at least one high tack roller.

24. The method of claim 23 wherein said at least one high tack roller is at least 20 partially covered by at least one of adhesive and tape.

25. The method of claim 24 wherein said at least one high tack roller is at least partially covered by a plurality of at least one of adhesive and tape which are rolled around a plurality of spaced apart portions of said at least one high tack roller.

26. The method of claim 24 wherein said at least one of adhesive and tape is 25 removable from said at least one high tack roller.

27. The method of claim 19 wherein the apparatus further comprises a comb member comprising a curved surface and a plurality of spaced apart fingers.

28. The method of claim 27 wherein said at least one removing member comprises at least one high tack roller, and said plurality of spaced apart fingers are disposed over said at least 5 one high track roller with a plurality of at least one of adhesive and tape disposed between said plurality of spaced apart fingers.

29. The method of claim 27 wherein at least one nip roller is disposed near said curved surface of said comb member.

30. The method of claim 19 wherein said at least one moveable member comprises at 10 least one finger member.

31. The method of claim 30 wherein said at least one removing member comprises at least one high tack roller, wherein when the moveable member is in the one position said at least one finger is disposed away from said at least one high tack roller.

32. The method of claim 30 wherein said at least one removing member comprises at 15 least one high tack roller, wherein when the moveable member is in the another position said at least one finger is disposed near said at least one high tack roller.

33. The method of claim 19 wherein the scrap disposal member comprises at least one of a scrap disposal bag and a scrap disposal receptacle.

34. The method of claim 19 wherein the apparatus further comprises at least one gear 20 member driving the spool roller.

35. The method of claim 34 wherein the apparatus further comprises two gear members, one of the gear members is attached to a second spool roller of the composite tape lamination machine, and the spool roller of the apparatus is reversibly driven by a drive member driving the second spool roller of the composite tape lamination machine.

25 36. The method of claim 19 wherein the apparatus further comprises a detection

system which detects at least one of a leading edge and a cut line of the composite tape material on the backing paper.

37. The method of claim 36 wherein the detection system comprises at least one of a sensor array and a computer.

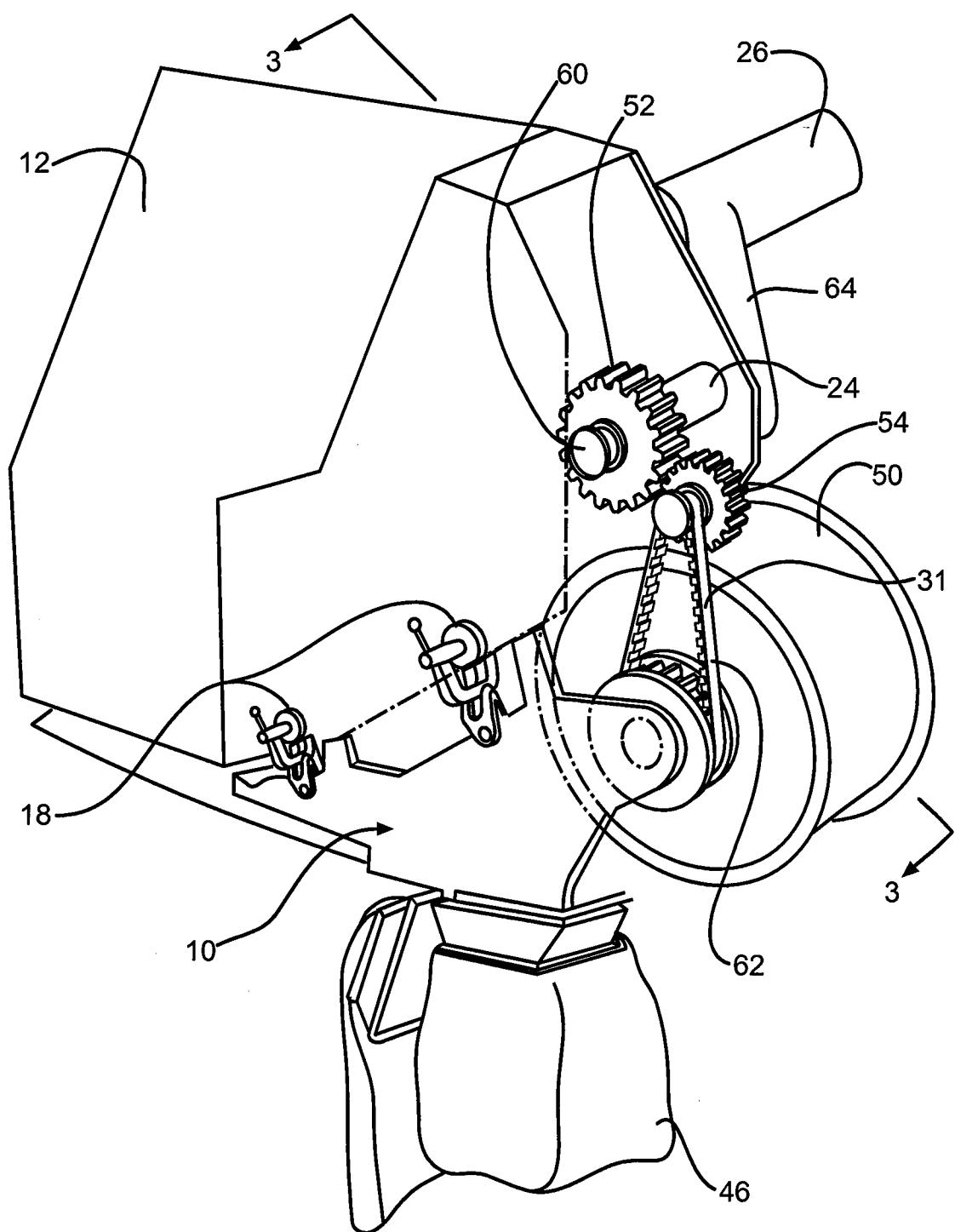


FIG. 1

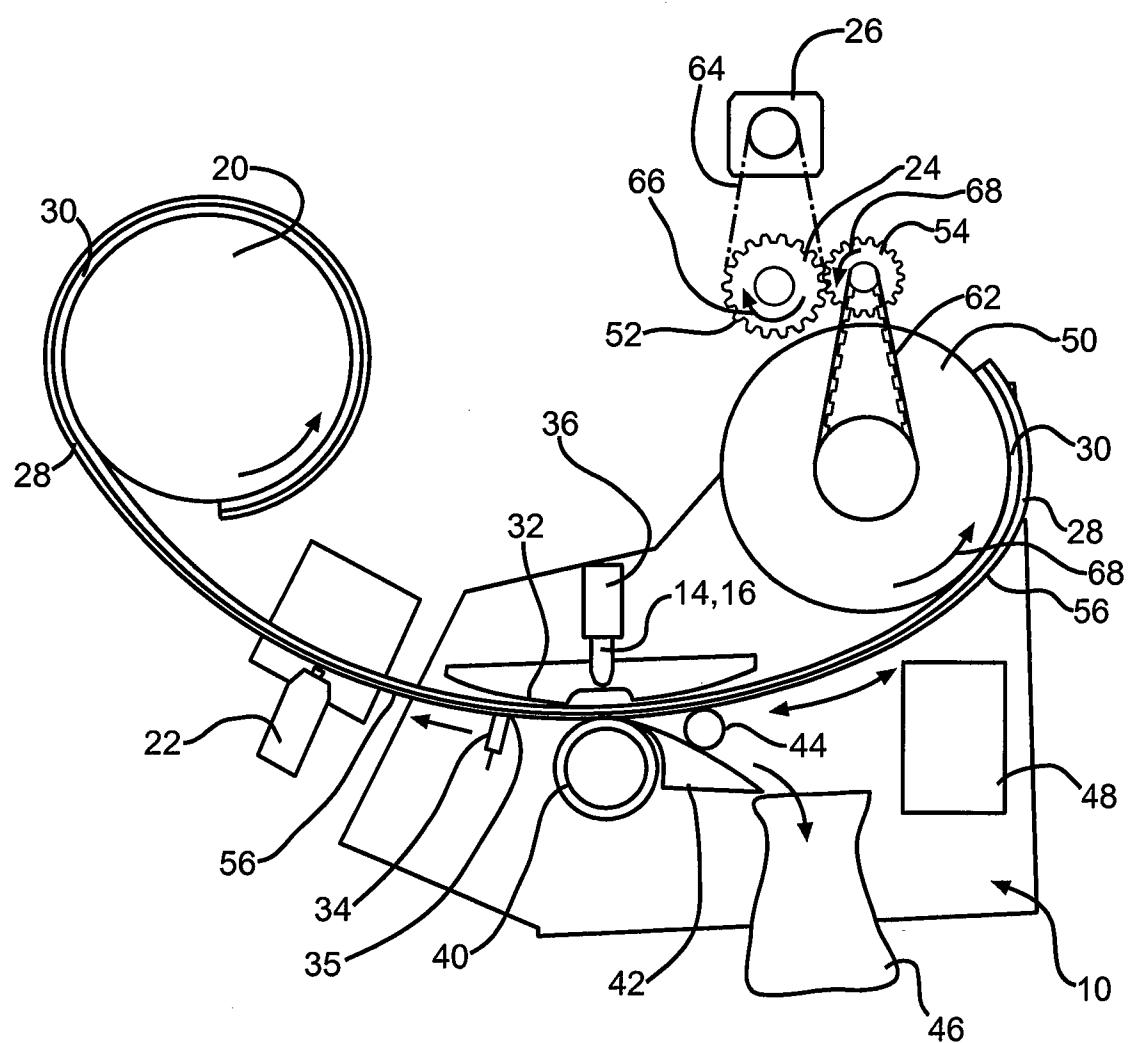


FIG. 2

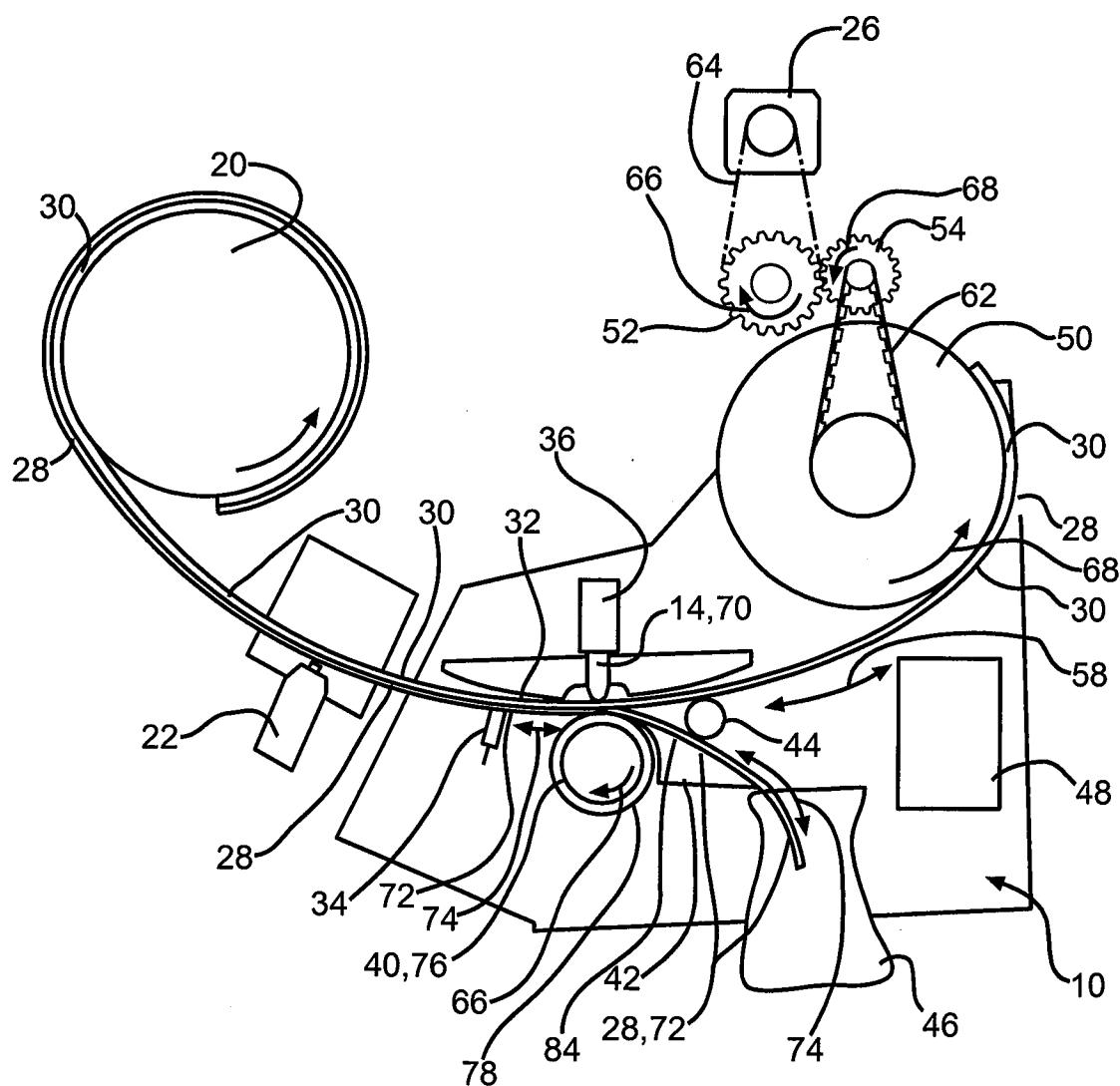


FIG. 3

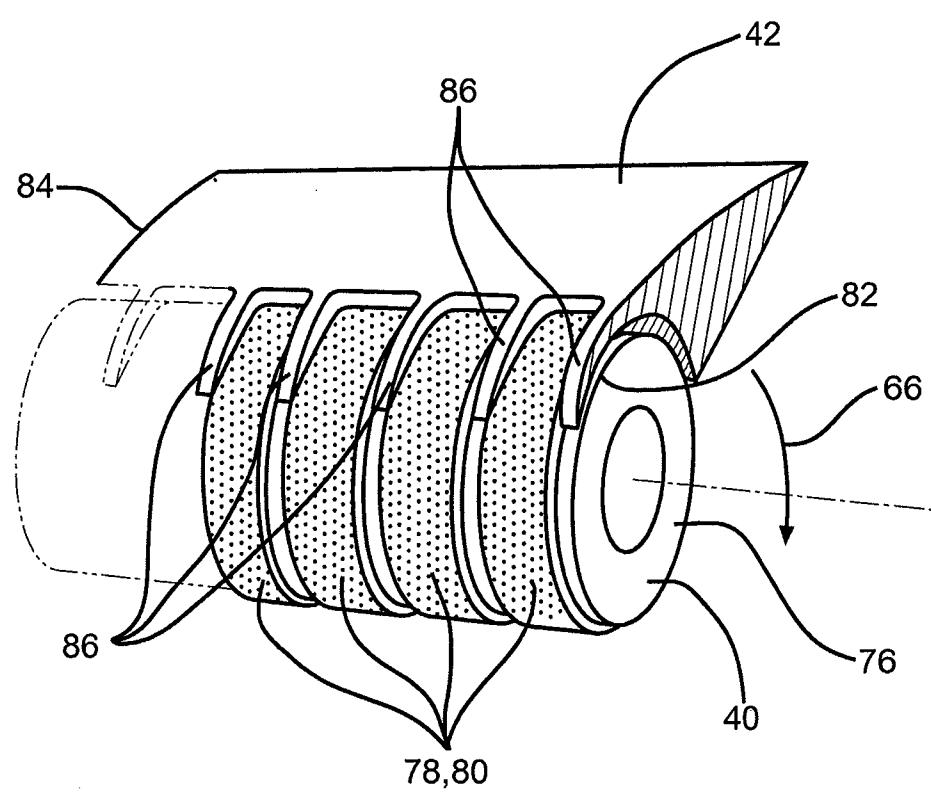


FIG. 4

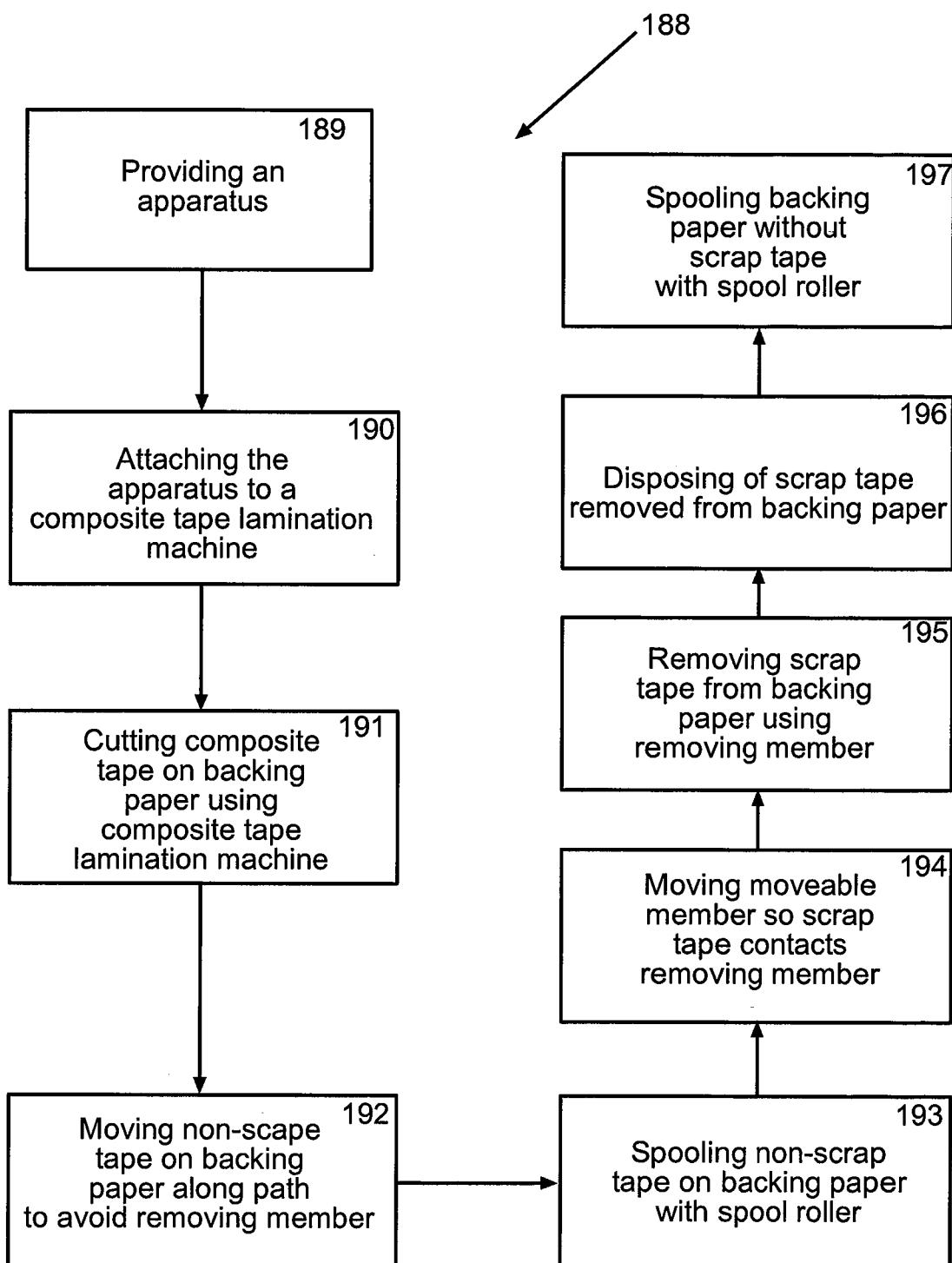


FIG. 5

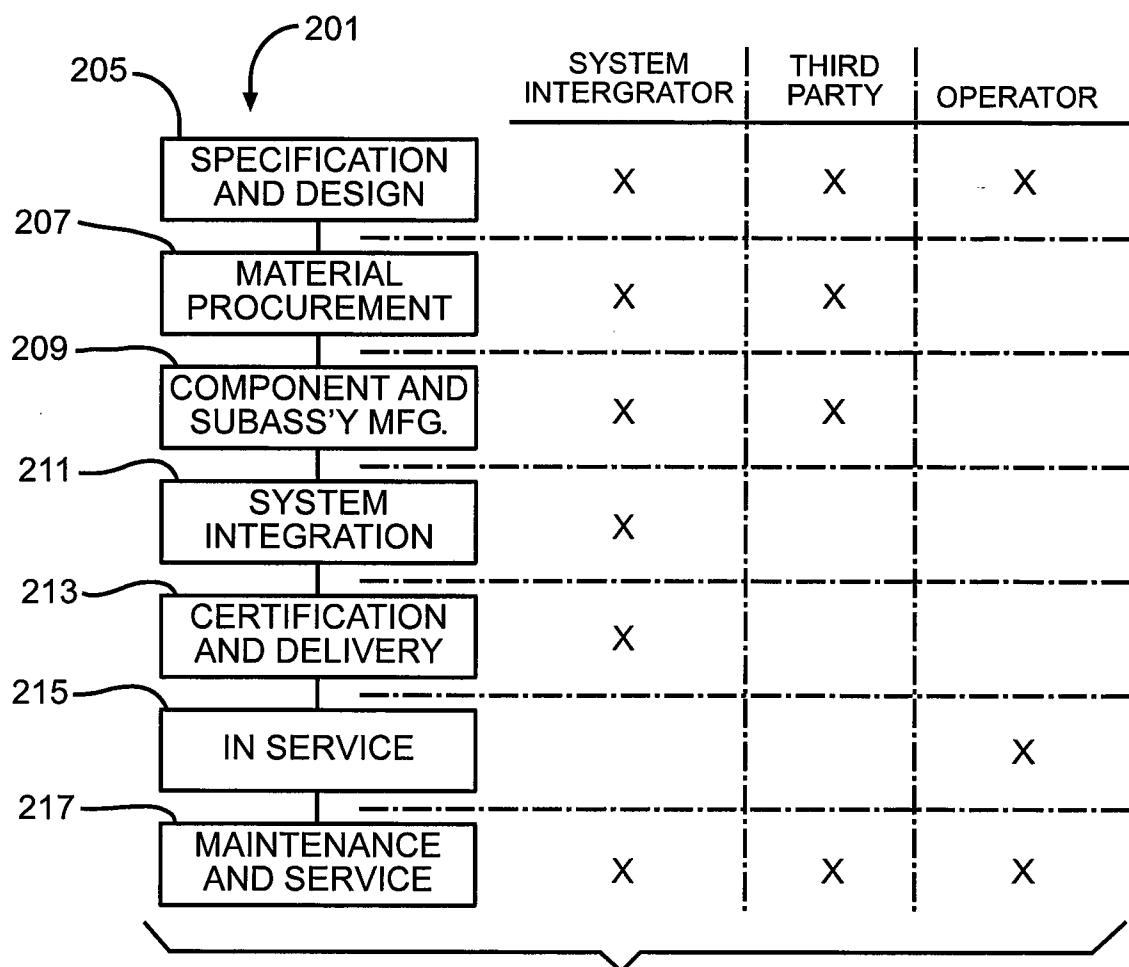


FIG. 6

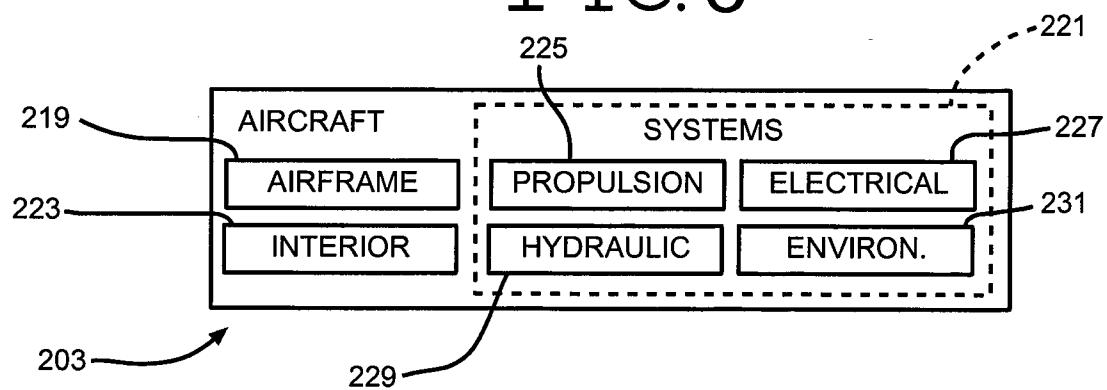


FIG. 7

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2008/072505

A. CLASSIFICATION OF SUBJECT MATTER
INV. B29C70/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>US 4 978 417 A (GRIMSHAW MICHAEL N [US] ET AL) 18 December 1990 (1990-12-18)</p> <p>claim 1 column 2, line 5 – column 3, line 13 column 5, line 10 – line 45 column 7, line 12 – line 39 column 10, line 64 – line 67 column 16, line 65 – column 17, line 6 column 18, line 15 – line 26</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-8, 12-26, 30-37

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *I* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

20 October 2008

Date of mailing of the international search report

27/10/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2.
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer

Jouannon, Fabien

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2008/072505

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 480 508 A (MANABE TAKAO [JP] ET AL) 2 January 1996 (1996-01-02) column 3, line 1 - line 38 column 4, line 51 - line 56 column 5, line 1 - line 12 column 6, line 6 - line 31 column 7, line 16 - line 55 column 8, line 66 - column 9, line 7 column 9, line 62 - column 10, line 49 -----	1-8, 12-26, 30-37
A	EP 0 593 410 A (GFM FERTIGUNGSTECHNIK [AT]) 20 April 1994 (1994-04-20) column 3, line 29 - line 57 -----	1-37
P, A	US 7 326 312 B1 (RUST RALPH JOHN [US] ET AL) 5 February 2008 (2008-02-05) column 4, line 32 - line 34 column 5, line 64 - line 68 -----	1-37

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2008/072505

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 4978417	A 18-12-1990	NONE		
US 5480508	A 02-01-1996	NONE		
EP 0593410	A 20-04-1994	AT 399328 B 25-04-1995	AT 155395 T 15-08-1997	
		DE 59306923 D1 21-08-1997	ES 2104117 T3 01-10-1997	
		US 5402962 A 04-04-1995		
US 7326312	B1 05-02-2008	NONE		