(54) 发明名称
 一种环保耐老化 PVC 型材

(57) 摘要
 本发明公开了一种环保耐老化 PVC 型材，所述 PVC 型材由 PVC 树脂、环保稳定剂、轻质碳酸钙、钛白粉、ACR 抗冲改性剂、ACR 加工助剂和硬脂酸组成。本发明所述 PVC 型材具有环保、耐老化、抗冲击性能高等优点，加工性能良好，适合推广应用。
1. 一种环保耐老化 PVC 型材，其特征在于由以下按重量份数计的组分组成：PVC 树脂 100 份，环保稳定剂 3~5 份，轻质碳酸钙 10~15 份，钛白粉 6~8 份，ACR 抗冲改性剂 4~6 份，ACR 加工助剂 1.5~2 份，硬脂酸 0.2~0.4 份。

2. 根据权利要求 1 所述的环保耐老化 PVC 型材，其特征在于所述 PVC 树脂为 SG-5，平均聚合度为 66~68。

3. 根据权利要求 1 所述的环保耐老化 PVC 型材，其特征在于所述环保稳定剂为钙锌稳定剂。

4. 根据权利要求 1 所述的环保耐老化 PVC 型材，其特征在于所述轻质碳酸钙为 BT-3。

5. 根据权利要求 1 所述的环保耐老化 PVC 型材，其特征在于所述 ACR 抗冲改性剂为 KM-355P。

6. 根据权利要求 1 所述的环保耐老化 PVC 型材，其特征在于所述 ACR 加工助剂为 ALP-40。
一种环保耐老化 PVC 型材

技术领域

本发明涉及材料领域，具体涉及一种环保耐老化 PVC 型材。

背景技术

近年来，随着 PVC 塑钢门窗在人们生活中的普及，人们对门窗型材的使用寿命、抗老化性能更加注重。而目前门窗型材的抗老化性能差是常见的质量问题，现行的白色型材国家标准 GB/T8814-2004 对型材的老化性能要求有所提高，部分方法也更加严格。而目前普通白色 PVC 型材的老化性能很难达到新的标准 GB/T8814-2004 要求。PVC 本身会随着时间的推移，发生老化，颜色变黄。这种现象在日光长时间照射下（主要是紫外线的影响）变得明显。

目前许多型材厂家使用的生产配方中常用的抗冲击剂为 CPE（氯化聚乙烯）。许多研究表明，CPE 本身的分子结构是稳定的，但在 CPE 的制造过程中使 CPE 微粒中包裹有反应产物 HCL，而 HCL 又对 PVC 降解起催化作用，使降解老化速度明显加快，呈连锁反应。故用 CPE 作为 PVC 的抗冲改性剂，将大幅度的降低 PVC 异型材基料的热老化性能和光老化性能。而欧美等型材厂家早已用 ACR 取代 CPE 作为 PVC 的抗冲改性剂。ACR 是丙烯酸酯类共聚物，含有酯类官能团，而紫外吸收剂的主要官能团即为酯类官能团，所以 ACR 具有优异的耐候性。这也就是为何国内的 PVC 型材老化性能难以跟欧美等型材相比的主要原因。

为了解决 PVC 型材老化的问题，相继开发了覆盖型材、喷涂型材、PMA 共挤型材、ASA 共挤型材等。它们通过覆盖涂、喷涂、共挤等技术，在 PVC 塑料型材受日光照射的一侧增加一层具有耐候性功能的特殊材质保护层，同时保护层具有鲜艳的色彩。通过这些技术是能够改善型材的老化性能，但同时也存在需要增加设备、修改模具流程、表里颜色不一、废品回收复杂、生产成本较高等缺陷与不足。

发明内容

本发明的目的在于根据现有技术中存在的上述不足，提供一种环保、耐老化、抗冲击性能好、加工性能良好的 PVC 型材。

本发明上述目的通过以下技术方案予以实现：

一种环保耐老化 PVC 型材，以聚氯乙烯为主要原料，由以下按重量份数计的组分组成：PVC 树脂 100 份，环保稳定剂 3~5 份，轻质碳酸钙 10~15 份，钛白粉 6~8 份，ACR 抗冲改性剂 4~6 份，ACR 加工助剂 1.5~2.2 份，硬脂酸 0.2~0.4 份。

所述 PVC 树脂主要成分是聚氯乙烯，它是当今世界上深受喜爱、颇为流行并且也被广泛应用的一种合成材料。也是塑料门窗型材的主要生产原料。常用于生产塑料门窗型材的型号为：SG-5，粘度：107.118，平均聚合度（K 值）：66~68。

作为一种优选方案，所述环保稳定剂为钙锌稳定剂。钙锌稳定剂由钙盐、锌盐、润湿剂、抗氧剂等为主要组分采用特殊工艺而合成。它不但可以取代铅盐类及有毒稳定剂，而且具有相当好的热稳定性、光稳定性和隔离性及着色力。实践证明，在 PVC 树脂制品
中，加工性能好，热稳定作用相当于铅盐类稳定剂，是一种良好的无毒稳定剂。而且钙锌稳定剂比有机锡类稳定剂更能提高 PVC 异型材的光老化性能。

[0009] 作为一种优选方案，所述轻质碳酸钙为 BT-3。轻质碳酸钙是一种通用的填料，广泛应用于塑料橡胶行业，它规则可控的粒度形状和细的粒径加之疏水的表面涂敷性，使他既具有同高分子聚合物良好的结合性又使成品具有良好的物理性能。配方中添加了合成轻质碳酸钙填料的聚氯乙烯具有极佳的色泽稳定性，而且在极端的机械条件下保持了一定的机械性能。

[0010] 作为一种优选方案，所述 ACR 抗冲改性剂为 KM-355P。钛白粉是一种白色无机颜料，具有无毒，最佳的不透明性，最佳白度和光亮度，在白色和彩色橡胶制品中加入钛白粉，在日光照射下，耐日晒，不开裂，不变色，伸展率大及耐酸碱。金红石钛白粉对紫外线的吸收屏蔽作用是其具备最佳化学稳定性和良好的耐老化，抗粉化和抗变色性能的体现。

[0011] 作为一种优选方案，所述钛白粉为 R-105。钛白粉是一种白色无机颜料，具有无毒，最佳的不透明性，最佳白度和光亮度，在白色和彩色橡胶制品中加入钛白粉，在日光照射下，耐日晒，不开裂，不变色，伸展率大及耐酸碱。金红石钛白粉对紫外线的吸收屏蔽作用是其具备最佳化学稳定性和良好的耐老化，抗粉化和抗变色性能的体现。

[0012] 作为一种优选方案，所述 ACR 加工助剂为 ALP-40。ACR 是一种核－壳结构的丙烯酸酯类聚合物，其壳为甲基丙烯酸酯类共聚物，其核为丙烯酸酯类共聚物。与其他的抗冲击改性剂相比，具有加工性能好，抗冲击效果明显，制品表面美观及优良耐老化性能。耐候性方面由于抗冲 ACR 是丙烯酸酯类共聚物，含有酯类官能团，而紫外吸收剂的主要官能团即为酯类官能团。所以，抗冲 ACR 具有优异的耐候性能。用抗冲 ACR 作为 PVC 的抗冲改性剂，可大幅度的提高 PVC 异型材基材的光老化性能。

[0013] 生产所述 PVC 型材时，注意以下几道工序：

配料：称各种配剂时，必须按配剂称量表的顺序配剂材料代号所规定份量称用，要求称量准确，避免称错称表材料；对于称配少量重量材料时，必须放到配剂中间，并用料覆盖好。

[0014] 混料：投料前应确定混料机处于完全停止运转，且热混料机排料口在关闭的状态下，才能打开混料缸盖进行投料，投料过程须严格按照工程技术部所规定的顺序操作。混料机启动后，先低速运转（约 30 秒），待缸内料混合均匀再转为高速混料。在混料过程中，将严格控制混料温度，混料时间等，尽量减少 PVC 大分子出现程度不同的降解，导致型材抗老化能力下降。

[0015] 挤出：确保满足挤出所要求的温度后，启动主机调整螺杆转速在每分钟 5～10 转的速度内运转，同时慢慢地喂料，直到口模出料，喂料量的多少和温度可以控制主机的电流、扭矩的大小，然后调整口模使制品的形状壁厚均匀，接着，同步加速到参数值，当主机电流达到 40A 以上时，物料有一定的塑化，启动真空泵进行排气排湿。适当调整螺杆转速，喂料量和各段区的加热温度直至获得最好的制品质量和最大的产量，最佳的工艺条件为止。注意工艺温度过高，使 PVC 型材降解，结构发生变化，加速老化进程。

[0016] 与现有技术相比，本发明具有如下有益效果：

（1）优异的耐老化性能。钙锌稳定剂本身含有挤氧剂能对日后使用起到耐老化作用，加上 ACR 抗冲剂具有能吸收紫外线的主要官能团酯类官能团。所以完全能够满足国家标准 GB/T8814-2004 的老化要求。
具体实施方式

[0020] 以下结合实施例进一步解释本发明，但实施例并不对本发明做任何形式的限定。

[0021] 主要原料：PVC（SG-5，齐鲁石化），钙锌稳定剂（熊牌），ACR 抗冲改性剂（KM-355P，罗门哈斯），钛白粉（R-105，杜邦），轻质碳酸钙（BT-3，富士山），ACR 加工助剂（ALP-40，山东沂源）。

[0022] 实施例 1

取 PVC100 份，钙锌稳定剂 4 份，ACR 抗冲改性剂 6 份，钛白粉 7 份，轻质碳酸钙 15 份，ACR 加工助剂 1.8 份，首先制备混合料。将原料投入高速混捏机，经高速旋转叶片摩擦、剪切，等温度升至 115℃时排至低速冷混捏机，低速均匀搅拌冷却至 45℃得到混合料。混合料用锥型双螺杆机挤出型材。

[0023] 实施例 2

取 PVC100 份，钙锌稳定剂 4 份，ACR 抗冲改性剂 5 份，钛白粉 6 份，轻质碳酸钙 15 份，ACR 加工助剂 1.5 份。操作同实施例 1。

[0024] 实施例 3

取 PVC100 份，钙锌稳定剂 4 份，ACR 抗冲改性剂 6 份，钛白粉 6 份，轻质碳酸钙 10 份，ACR 加工助剂 1.8 份。操作同实施例 1。

[0025] 根据国标耐人工气候老化的测试结果：

<table>
<thead>
<tr>
<th>序号</th>
<th>检测项目</th>
<th>技术要求</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>简支梁缺口冲击强度，kJ/m²</td>
<td>/</td>
<td>56.4</td>
<td>49.7</td>
<td>60.3</td>
</tr>
<tr>
<td>2</td>
<td>颜色色标</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L*</td>
<td></td>
<td>91.9</td>
<td>90.2</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>a*</td>
<td></td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td>b*</td>
<td></td>
<td>1.8</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>耐人工气候老化（6000h）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>简支梁缺口冲击强度保留率，%</td>
<td>＞60</td>
<td>86.3</td>
<td>80.1</td>
<td>83.7</td>
</tr>
<tr>
<td></td>
<td>色差</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔE*</td>
<td>≤5</td>
<td>2.58</td>
<td>3.42</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>Δb*</td>
<td>≤3</td>
<td>1.28</td>
<td>1.83</td>
<td>1.66</td>
</tr>
</tbody>
</table>