(54) Titre: METHOD FOR PREPARING BENZO[b]NAPHTHYRIDINES

Method for the preparation of benzo[b]naphthyridines having the general formula (I) wherein R is a carboxy, alkylxycarbonyl, cyano, carbamyl, alkylcarbamyl, benzylcarbamyl, hydroxycarbamyl, dialkylaminocarbamyl or dialkylcarbamyl radical whose alkyl parts may optionally form, with the nitrogen atom to which they are attached, a heterocycle with 5 or 6 members containing optionally another heteroatom selected amongst oxygen, sulphur or nitrogen and optionally substituted on the nitrogen by an alkyl radical, R' is H, alkyl, fluoroalkyl, carboxyalkyl, cycloalkyl (3 to 6C), fluoroethyl, difluoroethyl, alkylxoy or alkylaminio, and Hal is halogen, as well as the salts thereof, if any, characterized in that: 1) an amine having the general formula R'-NH-CH₂-CH₂-R'' is condensed, wherein R' is alkoxycarbonyl, cyano, carbamyl, alkylcarbamyl, benzylcarbamyl, hydroxycarbamyl, dialkylaminocarbamyl or dialkylcarbamyl whose alkyl parts may optionally form, with the nitrogen atom to which they are attached, a heterocycle with 5 or 6 members containing optionally another heteroatom selected amongst oxygen, sulphur or nitrogen and optionally substituted on the nitrogen by an alkyl radical, on a chloro fluoro quinoline having the general formula (II) wherein R₁ is an alkyl radical, the alkyl radicals mentioned hereabove having from 1 to 4C and being straight or branched; 2) a cyclisation of the fluoroquinoline of general formula (III) is effected, wherein R₁ is defined as hereabove in 1; 3) an oxidation of tetrahydro-1,2,3,4 benzo[b]naphthyridine-1, 8 having a general formula (IV) is effected, and optionally, the ester obtained is transformed into an acid and optionally into a salt.
(57) Abrégé Procédé de préparation de bêzo[8]naphthyridines de formule générale (I) dans laquelle R est un radical carboxy, acétylcoxyacrylone, cyano, carboxamyle, acétylcarboxamyle, benzylcarboxamyle, hydroxyéthylcarboxamyle, dialcoylaminoéthylcarboxamyle ou dialcoylcarboxamyle dont les parties acolyte peuvent éventuellement former avec l’atome d’azote auquel elles sont rattachées, un hétérocyclé à 5 ou 6 chaîons contenant éventuellement un autre hétéroatome choisi parmi l’oxygène, le soufre ou l’azote et éventuellement substitué sur l’azote par un radical acolyte, R' est H, acolyte, fluoroacolyte, carboxyacolyte, cycloacolyte (3 à 6C), fluorophényle, difluorophényle, acolyoxy ou acolyamino, et Hal est halogène, ainsi que leurs sels lorsqu’ils existent, caractérisé en ce que l’on : 1) condense une amine de formule générale : R'-NH-CH₂-CH₂-R'' dans laquelle R'' est acétylcoxyacrylone, cyano, carboxamyle, acétylcarboxamyle, benzylcarboxamyle, hydroxyéthylcarboxamyle, dialcoylaminoéthylcarboxamyle ou dialcoylcarboxamyle dont les parties acolyte peuvent éventuellement former avec l’atome d’azote auquel elles sont rattachées, un hétérocyclé à 5 ou 6 chaîons contenant éventuellement un autre hétéroatome choisi parmi l’oxygène, le soufre ou l’azote et éventuellement substitué sur l’azote par un radical acolyte, sur une chloro fluoro quinoléine de formule générale (II) dans laquelle R₁ est un radical acolyte, les radicaux acolyte cités ci-dessus ont 1 à 4C et sont droits ou ramifiés, 2) cyclise la fluoroquinoléine de formule générale (III) dans laquelle R₁ est défini comme ci-dessus en 1), 3) oxyde de la tétrahydro-1, 2, 3, 4 bêzo[8]naphthyridine-1, 8 de formule générale (IV) puis éventuellement transforme l’ester obtenu en un acide et éventuellement transforme en un sel.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT Autriche FR France MR Mauritanie
AU Australie GA Guinée MW Malawi
BB Barbade GB Royaume-Uni NL Pays-Bas
BE Belgique GN Guinée NO Norvège
BF Burkina Faso GR Grèce NZ Nouvelle-Zélande
BG Bulgarie HU Hongrie PL Pologne
BJ Bénin IE Irlande PT Portugal
BR Brésil IT Italie RO Roumanie
CA Canada JP Japon RU Fédération de Russie
CF République Centrafricaine KP République populaire démocratique SD Soudan
CG Congo KR République de Corée SE Suède
CH Suisse LI Lichtenstein SK République slovaque
CI Côte d'Ivoire LK Sri Lanka SN Sénégal
CM Cameroun LU Luxembourg SU Union soviétique
CS République tchèque MC Monaco TD Tchad
CZ République tchèque MG Madagascar TG Togo
DE Allemagne ML Mali UA Ukraine
DK Danemark MN Mongolie US États-Unis d'Amérique
ES Espagne MN Mongolie VN Viêt Nam
FI Finlande
PROCEDE DE PREPARATION DE BENZO[b]NAPHTYRIDINES

La présente invention concerne un nouveau procédé de préparation de benzo[b]naphtyridines de formule générale :

\[
\begin{array}{c}
\text{Hal} \\
\text{N} \\
\text{O} \\
\text{R} \\
\text{F}
\end{array}
\]

(I)

dans laquelle R est un radical carboxy, alcoyloxy carbonyle, cyano, carbamoyle, alcoyl carbamoyle, benzyl carbamoyle, hydroxyéthylcarba-
moyle, dialcoylaminéthylcarbamoyle ou dialcoyl carbamoyle dont les parties alcoyle peuvent éventuellement former avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons con-
nant éventuellement un autre hétéroatome choisi parmi l'oxygène, le
soufre ou l'azote et éventuellement substitué sur l'azote par un ra-
dical alcoyle, R' est un atome d'hydrogène ou un radical alcoyle,
fluoroalcoyle, carboxyalcoyle, cycloalcoyle (contenant 3 à 6 atomes
de carbone), fluorophényle, difluorophényle, alcoyloxy ou alcoyla-
mino, et Hal est un atome d'halogène, ainsi que leurs sels lorsqu'ils
existent.

Les benzo[b]naphtyridines de formule générale (I) ainsi que leur pré-
paration et leur utilisation pour la préparation d'agents antibacté-
riens ont été décrites dans les brevets US 4 970 213 et US 4 990 515.

Il a été trouvé que les dérivés de la benzo[b]naphtyridine de formule
générale (I) peuvent être préparés à partir d'un dérivé de la quino-
léine de formule générale :

\[
\begin{array}{c}
\text{Hal} \\
\text{N} \\
\text{Cl} \\
\text{F} \\
\text{COOR_1}
\end{array}
\]

(II)

dans laquelle Hal est défini comme ci-dessus et R_1 est un atome d'hy-
drogène ou un radical alcoyle, en effectuant les opérations sui-
vantes :
1) condensation d'une amine de formule générale :

\[R^' - \text{NH-CH}_2-\text{CH}_2-R^" \]

(III)

dans laquelle \(R^' \) est défini comme précédemment et \(R^" \) est un radical alcoyloxycarbonyle, cyano, carbamoyle, alcoylcarbamoyle, benzylcarba-
moyle, hydroxyéthylcarbamoyle, dialcoylaminéthylcarbamoyle ou dial-
coylcarbamoyle dont les parties alcoyle peuvent éventuellement former
avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons contenant éventuellement un autre hétéroatome choisi
parmi l'oxygène, le soufre ou l'azote et éventuellement substitué sur
l'azote par un radical alcoyle, sur une chloro fluoro quinoléine de
formule générale (II) dans laquelle \(R_1 \) est un radical alcoyle,

2) cyclisation de la fluoroquinoléine, ainsi obtenue, de formule géné-

de

\[
\begin{array}{c}
F \\
\text{Hal} \\
N \\
\text{N} \\
R^{'}, \text{COOR} \\
\text{R}^" \\
\end{array}
\]

(IV)

dans laquelle \(R^' \), \(R^" \) et \(\text{Hal} \) sont définis comme précédemment et \(R_1 \) est
défini comme ci-dessus en 1),

3) oxydation de la tétrahydro-1,2,3,4 benzo[b]napthyridine-1,8 de
formule générale :

\[
\begin{array}{c}
F \\
\text{Hal} \\
N \\
\text{N} \\
R^{'}, \text{R}^" \\
\end{array}
\]

(V)

dans laquelle \(\text{Hal} \), \(R^' \) et \(R^" \) sont définis comme précédemment, puis
eventuellement transformation de l'ester de formule générale (I),
ainsi obtenu, en un acide pour lequel \(R \) est un radical carboxy et
eventuellement transformation de l'acide obtenu en un sel.
Le nouveau procédé selon la présente invention est particulièremen
t intéressant du fait qu'il permet d'obtenir des rendements améliorés
et aussi du fait qu'il évite de passer intermédiairement par des pro-
duits instables.

Dans les formules générales citées ci-dessus ou qui seront citées ci-
après, il est entendu que les radicaux alcoyle sont droits ou rami-
fiés et contiennent 1 à 4 atomes de carbone. Par ailleurs le symbole
Hal est avantageusement choisi parmi le chlore ou le fluor.

La condensation du β-amino ester de formule générale (III) s'effectue
sur le dérivé de la quinoléine de formule générale (II) dont le cas
échant la fonction acide est protégée à l'état d'ester. On opère en
milieu basique dans un solvant organique tel qu'un hydrocarbure aro-
matique (toluène par exemple), un amide (diméthylformamide, N-méthyl
pyrrolidone par exemple), un éther (tétrahydrofuranne par exemple),
un sulfoxide (diméthylsulfoxide par exemple), un solvant chloré
(dichlorométhane, dichloroéthane, chlorobenzène par exemple) ou un
alcool à une température comprise entre -10 et 120°C.

A titre d'exemple les bases utilisées peuvent être choisies parmi les
carbonates alcalins (carbonate de sodium ou de potassium), les alco-
lates ou un hydrure alcalin (hydrure de sodium).

Il est entendu que dans l'alternative où le symbole R' représente un
radical carboxyalcoyle, ce dernier est protégé préalablement à la
réaction. L'élimination du radical protecteur est effectuée de préfé-
rence après l'étape 3) d'oxydation. La protection et la libération de
la fonction acide s'effectuent selon les méthodes habituelles qui
n'altèrent pas le reste de la molécule. Notamment selon les méthodes
qui sont citées dans les références ci-après.

La réaction de cyclisation du produit de formule générale (IV) s'ef-
fectue en milieu basique. On opère avantageusement à une tempéra
ture comprise entre -70 et 120°C de préférence entre -30 et 120°C) en pré-
sence d'une base comme un alcoolate (éthylate de sodium, méthylate de
sodium, t.butylate de potassium par exemple), un hydrure alcalin
(hydrure de sodium par exemple), ou encore un hydroxyde alcalin en
opérant par transfert de phase. On opère avantageusement dans un solvant aprotique polaire (par exemple diméthylformamide, tétrahydrofuranne) ou dans un alcool (éthanol, méthanol par exemple) dans un glyme ou dans un glycol (éthylène glycol par exemple). Lorsque l'on effectue la réaction par transfert de phase, on opère avantageusement dans un solvant chloré comme le chlorure de méthylène, la base étant en solution dans la phase aqueuse.

L'oxygenation s'effectue par l'eau oxygénée, éventuellement en présence d'iode de potassium, dans un solvant organique tel qu'un alcool (éthanol par exemple), à une température comprise entre 0 et 120°C. Il est également possible d'opérer en milieu biphasique dans un mélange eau/solvent chloré (dichlorométhane, dichloroéthane...).

Le dérivé de la quinoléine de formule générale (II) peut être obtenu selon la méthode décrite dans le brevet US 4 970 213 suivie éventuellement de l'estérisation du produit obtenu selon les méthodes habituelles.

Le dérivé de la quinoléine de formule générale (II) peut également être obtenu par chloration d'un dérivé de la quinoléine de formule générale :

![Diagramme de la structure VI](image)

(dans laquelle R₁ et Hal sont définis comme précédemment.

La chloration s'effectue au moyen des agents de chloration connus qui n'altèrent pas le reste de la molécule. Notamment on opère par action du chlorure de phosphore, du chlorure de sulfure ou du pentachlorure de phosphore à une température comprise entre 0 et 150°C. Il est entendu que lorsque l'on opère à partir d'un dérivé de la quinoléine de formule générale (VI) pour lequel R₁ est un atome d'hydrogène, il est nécessaire de protéger préalablement la fonction acide. Lorsque l'on veut obtenir l'acide de formule générale (II) dans laquelle R₁ est un atome d'hydrogène, on effectue l'hydrolyse de l'ester obtenu.

Le dérivé de la quinoléine de formule générale (VI) peut être préparé par cyclisation en milieu acide d'un dérivé nitré de formule générale :

\[\text{Hal} \quad \text{NO}_2 \quad \text{R}_2 \quad \text{COOR}_1' \quad (VII) \]

dans laquelle Hal est défini comme précédemment, R'_1 est défini comme R_1 à l'exception de représenter un atome d'hydrogène, et R_2 est défini comme R'_1 ou représente un radical carbamoyle ou cyano, suivie éventuellement de la libération de la fonction acide si l'on veut obtenir un dérivé de la quinoléine pour lequel R_1 est un atome d'hydrogène.

Le traitement en milieu acide s'effectue en présence de fer, à une température comprise entre 0 et 130°C, au moyen de tout acide organique ou minéral qui n'altère pas le reste de la molécule. A titre d'exemple on opère au moyen de l'acide acétique ou de l'acide formique, il est également possible d'opérer au moyen d'acide chlorhydrique dilué ou d'acide sulfurique dilué en milieu hydro-alcoolique.

Il est bien entendu que le choix de l'acide est fonction du produit attendu. Dans le cas où l'on veut obtenir l'acide de formule générale (VI), il est avantageux d'opérer dans un acide plus fort, dans des conditions où l'hydrolyse de l'ester s'effectue simultanément; il peut également être avantageux d'opérer à partir du produit de formule générale (VII) pour lequel R_2 est cyano. Il est bien entendu que dans les cas où l'on a obtenu l'ester et où l'on veut obtenir l'acide
de formule générale (VI) pour lequel \(R_1 \) est un atome d'hydrogène, l'hydrolyse de l'ester peut être également mise en œuvre après la réaction de cyclisation, par toute méthode connue pour obtenir un acide à partir d'un ester sans toucher au reste de la molécule.

Le cas échéant l'hydrolyse de l'ester s'effectue en milieu acide, par exemple en présence d'acide chlorhydrique, d'acide sulfurique ou méthanesulfonique. Elle peut aussi être effectuée en milieu hydroalcoolique basique (soude, potasse par exemple).

Le dérivé nitré de formule générale (VII) peut être préparé par action d'un dérivé de l'acide malonique de formule générale :

\[
R_2-\text{CH-COOR'}_1 \quad (\text{VIII})
\]

dans laquelle \(R'_1 \) et \(R_2 \) sont définis comme précédemment, sur un dérivé du nitrobenzaldéhyde de formule générale :

\[
\begin{array}{c}
\text{Hal} \\
\text{NO}_2 \\
\text{O} \\
\text{H}
\end{array}
\quad (\text{IX})
\]

15 dans laquelle Hal est défini comme précédemment.

La réaction s'effectue généralement en milieu basique (par exemple en présence d'un bicarbonate alcalin (bicarbonate de sodium), d'un hydrure (hydrure de sodium) ou d'un alcoolate à une température comprise entre 0 et 150°C, dans un solvant organique tel qu'un anhydride (anhydride acétique par exemple) ou tel qu'un amide (diméthyl-formamidine, N-méthylpyrrolidone par exemple) en opérant en présence de tamis moléculaires ou de tout autre agent desséchant ou encore dans un mélange de solvants comme un mélange solvant aprotique polaire/anhydride acétique (diméthylformamidine/anhydride acétique, N-méthyl pyrrolidone/anhydride acétique par exemple). Il est également possible d'opérer en milieu biphasique. Il n'est pas indispensable d'isoler le produit de formule générale (VII) pour le mettre en œuvre dans la réaction suivante.
Le fluoronitrobenzaldéhyde de formule générale (IX) est obtenu par nitratation du fluorobenzaldéhyde de formule générale :

\[
\begin{align*}
\text{F} &\quad \text{Hal} \\
\text{O} &\quad \text{H}
\end{align*}
\]

(X)

dans laquelle Hal est défini comme précédemment.

La réaction s'effectue avantageusement par l'acide nitrique concentré sous forme d'un mélange sulphonitrique, ou d'un mélange acide nitrique/acide acétique, à une température comprise entre 0 et 90°C.

Le chloro-4 fluoro-3 benzaldéhyde peut être préparé selon la méthode décrite dans la demande européenne EP 289 942.

Selon l'invention, les dérivés de benzonaphtyridine de formule générale (I) dans laquelle R est un radical cyano, carbamoyle, alcoylenarcbamoyle, benzylcarbamoyle, hydroxyéthylcarbamoyle, dialcoylaminéthylcarbamoyle ou dialcoylcarbamoyle dont les parties alcoyle peuvent éventuellement former avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons contenant éventuellement un autre hétéroatome choisi parmi l'oxygène, le soufre ou l'azote et éventuellement substitué sur l'azote par un radical alcoyle, sont des produits nouveaux.

Les dérivés de la benzo[b]naphtyridine de formule générale (I) obtenus selon le procédé de la présente invention sont spécialement intéressants du fait qu'ils conduisent à une famille d'agents antibactériens particulièrement actifs, définis par la formule générale :

\[
\begin{align*}
\text{F} &\quad \text{Het} &\quad \text{N} &\quad \text{N} \\
\text{O} &\quad \text{COOH}
\end{align*}
\]

(XI)
dans laquelle soit R' (qui représente un radical alcoyle, fluoroalcoyle, cycloalcoyle contenant 3 à 6 atomes de carbone, alcoxyloxy ou alcoylamino) et Het (qui est un radical hétérocyclique azoté), sont tels que définis pour les substituants en position -1 et -8, dans la demande européenne EP 431 991 et le brevet US 5 004 745, soit R' est défini comme précédemment pour la formule générale (I) et Het est un radical azétidinyle-1 substitué [en position -3 par un radical R2 qui peut être un atome d'hydrogène ou un radical hydroxy, amino, alcoylamino dont la partie alcoyle est éventuellement substituée par un radical amino ou hydroxy ou peut représenter un radical dialcoylamino dont les parties alcoyle peuvent éventuellement former avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons contenant éventuellement un autre hétéroatome choisi parmi l'azote, l'oxygène ou le soufre, ou peut représenter un radical cycloalcoylamino contenant 3 à 6 chaînons, ou un radical alcanoylamino, N-alkoyl N-alkanoyl amino ou aminalcoyl phénylamino, et substitué en positions -2 et -3 par des radicaux R3 et R4 identiques ou différents qui représentent des atomes d'hydrogène, des radicaux alcoyle, alcényle contenant 2 à 4 atomes de carbone, phényle, phényl amino substitué par un atome d'halogène, ou par un radical alcoyle, alcoxyloxy, hydroxy, nitro, amino, alcoylamino, dialcoylamino ou halogénoolcoyle, ou bien substitué en position -2 par des radicaux R3 et R4 qui représentent des radicaux alcoyle), les radicaux alcoyle et alcanoyl étant droits ou ramifiés et contenant 1 à 4 atomes de carbone.

Les dérivés de la benzo(b)naphtyridine-1,8 de formule générale (XI) sont obtenus par condensation de l'hétérocycle Het sur la benzo(b)naphtyridine de formule générale (I) en opérant selon ou par analogie avec les méthodes décrites dans la demande européenne EP 431 991 et le brevet US 5 004 745 puis le cas échéant transformation de l'ester, de l'amide ou du nitrile obtenu en un acide de formule générale (XI). Les activités des dérivés de la benzonaphtyridine de formule générale (XI) ont été décrites dans la demande européenne et le brevet américain cités ci-dessus. Les dérivés de la benzonaphtyridine de formule générale (XI) pour lesquels Het est un radical azétidinyle présentent également des propriétés antibactériennes. Ils
manifestent une activité remarquable in vitro et in vivo sur les germes gram positifs et aussi sur les germes gram négatifs. In vitro, ils sont actifs à une concentration comprise entre 0,06 et 4 µg/cm³ sur staphylococcus aureus IP 8203 et à une concentration comprise entre 0,25 et 20 µg/cm³ sur Escherichia coli souche NIHJ JC2. In vivo, ils sont actifs sur les infections expérimentales de la souris à staphylococcus aureus IP 8203 à des doses comprises entre 10 et 200 mg/kg par voie orale.

Les dérivés de la benzo[b]naphtyridine de formule générale (I) obtenus selon le procédé de la présente invention peuvent être éventuellement purifiés par des méthodes physiques telles que la cristallisation ou la chromatographie.

Lorsque le radical R est un atome d'hydrogène, les dérivés de la benzo[b]naphtyridine de formule générale (I) peuvent être transformés en sels métalliques ou en sels d'addition avec les bases azotées selon les méthodes connues en soi. Ces sels peuvent être obtenus par action d'une base métallique (par exemple alcaline ou alcalino-terreuse), de l'ammoniac ou d'une amine sur un produit selon l'invention dans un solvant approprié tel qu'un alcool, un éther ou l'eau ou par réaction d'échange avec un sel d'un acide organique. Le sel formé précipite après concentration éventuelle de sa solution, il est séparé par filtration, décantation ou lyophilisation.

Comme exemples de sels, peuvent être cités les sels avec les métaux alcalins (sodium, potassium, lithium) ou avec les métaux alcalino-terreux (magnésium, calcium), le sel d'ammonium, les sels de bases azotées (éthanolamine, diéthanolamine, triméthylamine, triméthylamine, méthylamine, propylamine, diisopropylamine, NN-diméthyléthanolamine, benzylamine, dicyclohexylamine, N-benzyl phénéthylamine, NN'-dibenzyléthylendiamine, diéthyléthylendiamine, benzhydrylamine, quinine, choline, arginine, lysine, leucine, dibenzylamine), ainsi que les sels d'addition avec des acides minéraux (chlorhydrates, bromhydrates, sulfates, nitrates, phosphates) ou organiques (succinates, fumarates, maléates, méthanesulfonates, p.toluènesulfonates, iséthionates).
Les exemples suivants donnés à titre non limitatif illustrent la présente invention.

Exemple 1

Préparation de l'éthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β éthoxy-carbonyléthyl) amino-2 quinoléïne :

A une solution de 72 g de chloro-2 éthoxycarbonyl-3 difluoro-6,7 quinoléïne et 45,1 g de N-méthyl, N-β éthoxycarbonyléthyl amine dans 750 cm3 de toluène, on ajoute 56,2 g de carbonate de sodium. La suspension obtenue est chauffée à environ 90°C puis agitée 4 heures à cette température. Le mélange réactionnel est ensuite refroidi à environ 20°C puis lavé par 3 fois 400 cm3 d'eau. La phase organique est concentrée à sec sous pression réduite (20 kPa) à environ 50°C. On obtient 94 g d'éthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β éthoxy-carbonyléthyl amino)-2 quinoléïne sous forme d'une huile utilisée sans autre purification pour les étapes ultérieures.

Préparation de l'éthoxycarbonyl-3 difluoro-7,8 méthyl-1 oxo-4 tétra-hydro-1,2,3,4 benzo[b]naphtyridine-1,8 :

A une solution de 26,6 g d'éthylate de sodium portée à reflux dans 900 cm3 d'éthanol absolu on ajoute en 80 minutes, une solution de 94 g d'éthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β éthoxycar-bonylé-ethyl) amino-2 quinoléïne dans 300 cm3 d'éthanol absolu. La suspension obtenue, toujours à reflux, est agitée 15 minutes supplémentaires. On verse ensuite, en 30 minutes, 38 cm3 d'acide acétique glacial. Le mélange réactionnel est agité 15 minutes supplémentaires puis on verse en 45 minutes, toujours à reflux, 500 cm3 d'eau. La suspension obtenue est refroidie à 20°C environ. Le précipité est essoré à 20°C environ et lavé par 2 fois 300 cm3 d'eau. Le produit humide est séché sous pression réduite (20 kPa) à environ 60°C. On isole 71,5 g d'éthoxycarbonyl-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 sous forme d'un solide jaune fondant à 188°C.
Préparation de l'éthoxycarbonyl-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyrizidine-1,8 :

A une suspension de 71 g d'éthoxycarbonyl-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyrizidine-1,8 dans 1000 cm3 d'éthanol, on ajoute sous agitation à environ 20°C une solution de 3,78 g d'iode de potassium dans 20 cm3 d'eau. La suspension est chauffée à 77°C et on ajoute à cette température, en 60 minutes, 30 cm3 d'eau oxygénée à 33% en poids. Le mélange réactionnel est maintenu à reflux 30 minutes supplémentaires puis est refroidi à environ 20°C. A cette température on verse, en 5 minutes, une solution de 11,4 g de thiosulfate de sodium dans 50 cm3 d'eau. Le précipité obtenu est essoré à 20°C environ et lavé par 2 fois 300 cm3 d'eau. Le produit humide obtenu est séché sous pression réduite (20 kPa) à environ 60°C. On isole 73 g d'éthoxy-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyrizidine-1,8 sous forme d'un solide blanc fondant à une température supérieure à 270°C.

La chloro-2 éthoxycarbonyl-3 difluoro-6,7 quinoléine peut être préparée de la manière suivante :

À 200 cm3 de chlorure de phosphoryle, on ajoute en 10 minutes, sous agitation, à 20°C, 50 g d'éthoxycarbonyl-3 difluoro-6,7 carbostyrile. La suspension est chauffée à une température voisine de 70°C et maintenue à cette température pendant 3 heures. Après refroidissement à environ 10°C, la solution obtenue est versée, sous agitation, dans un mélange de 1 000 cm3 d'eau et 1 000 g de glace pilée. On laisse la température remonter à environ 20°C et extrait par 2 fois 500 cm3 de dichlorométhane. Les extraits organiques réunis sont lavés par 1 000 cm3 d'eau, 1 000 cm3 d'eau additionnés de bicarbonate de sodium jusqu'à pH=7, séchés sur sulfate de sodium, filtrés et concentrés à sec sous pression réduite (20 kPa) à environ 40°C. On obtient 45,6 g de chloro-2 éthoxycarbonyl-3 difluoro-6,7 quinoléine sous forme d'un solide beige fondant à 108°C qui est utilisé sans autre purification pour les étapes ultérieures.
L'éthoxycarbonyl-3 difluoro-6,7 carbostyrile peut être obtenu de la manière suivante :

A une solution de 56,5 g de difluoro-3,4 nitro-6 benzaldéhyde dans 92 cm³ d’anhydride acétique, on ajoute, sous agitation, en dix minutes, 62,8 g de malonate d'éthyle et 51 g de bicarbonate de sodium. La suspension est maintenue 1 heure à environ 20°C puis chauffée 3 heures à une température d'environ 75°C. A cette température on verse, en 30 minutes, 400 cm³ d'acide acétique glacial puis 65 cm³ d'eau. On laisse la température se stabiliser à 50°C environ et l'on agite encore 30 minutes à cette température. On ajoute 39 g de fer en poudre, par fractions, en 2 heures, au mélange réactionnel. La température s'élève à environ 85°C et la suspension est maintenue 1 heure supplémentaire à cette température. Les sels de fer formés sont essorés à 80°C environ, puis lavés par 2 fois 150 cm³ d'acide acétique glacial. Le filtrat et les phases acides de lavage sont réunis et additionnés à 700 cm³ d'eau. Le précipité obtenu est essoré à 20°C environ et lavé par 3 fois 500 cm³ d'eau. Le produit humide obtenu est séché sous pression réduite (20 kPa) à 50°C environ. On obtient 53,5 g d'éthoxycarbonyl-3 difluoro-6,7 carbostyrile sous forme d'un solide crème fondant à 242°C.

Le difluoro-3,4 nitro-6 benzaldéhyde est préparé de la manière suivante :

A 520 cm³ d'acide sulfurique, sous agitation, refroidi, à 0°C, on ajoute, en 30 minutes, 60 cm³ d'acide nitrique fumant. A la solution obtenue, on ajoute, en 30 minutes, à environ 0°C, 100 g de difluoro-3,4 benzaldéhyde. On laisse remonter la température à environ 20°C et agite encore 3 heures à cette température. Après refroidissement à environ 5°C, le mélange réactionnel est versé, en 30 minutes, sous forte agitation, dans 1200 g de glace pilée. On laisse la température remonter à environ 20°C et extrait par 2 fois 600 cm³ de toluène. Les extraits organiques réunis sont lavés par 3 fois 1 000 cm³ d'eau, et concentrées sous pression réduite (20kPa) à 50°C. On obtient 113 g de difluoro-3,4 nitro-6 benzaldéhyde sous forme d'une huile brune qui est utilisée telle quelle dans la synthèse ultérieure.
Exemple 2

Préparation de l'éthoxycarbonyl-3 difluoro-6,7 (N-éthyl N-βéthoxy-carbonyléthyl) amino-2 quinoléïne :

A une solution de 10 g de chloro-2 éthoxycarbonyl-3 difluoro-6,7 quinoléïne et 9,7 g de N-éthyl, N-β éthoxycarbonyléthyl amine dans 120 cm³ de toluène, on ajoute 7,8 g de carbonate de sodium. La suspension obtenue est chauffée à environ 90°C puis agitée 4 heures à cette température. Le mélange réactionnel est ensuite refroidi à environ 20°C puis lavé par 3 fois 100 cm³ d'eau. La phase organique est concentrée à sec sous pression réduite (20 kPa) à environ 50°C. On obtient 13 g d'éthoxycarbonyl-3 difluoro-6,7 (N-éthyl N-βéthoxy-carbonyléthyl) amino-2 quinoléïne sous forme d'une huile qui est utilisée sans autre purification pour l'étape ultérieure.

Préparation de l'éthoxycarbonyl-3 difluoro-7,8 éthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 :

A une solution de 16,1 g d'éthylate de sodium porté à reflux dans 600 cm³ d'éthanol absolu on verse, en 60 minutes, une solution de 68 g d'éthoxycarbonyl-3 difluoro-6,7 (N-éthyl N-βéthoxycarbonyléthyl) amino-2 quinoléïne dans 200 cm³ d'éthanol absolu. La suspension obtenue, toujours, à reflux, est agitée 60 minutes supplémentaires. On verse, ensuite, en 30 minutes, 20 cm³ d'acide acétique glacial. Le mélange réactionnel est agité 15 minutes supplémentaires puis on verse en 45 minutes, toujours à reflux, 400 cm³ d'eau. La suspension obtenue est refroidie à 20°C environ. Le précipité obtenu est essoré à 20°C environ et lavé par deux fois 200 cm³ d'eau. Le produit humide est séché sous pression réduite (20 kPa) à environ 50°C. On isole 52,4 g d'éthoxycarbonyl-3 difluoro-7,8 éthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 sous forme d'un solide jaune d'or fondant à 152°C.

Préparation de l'éthoxycarbonyl-3 difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 :
A une suspension de 33 g d'éthoxycarbonyl-3 difluoro-7,8 éthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 dans 1000 cm\(^3\) d'éthanol, on ajoute sous agitation à environ 20°C une solution de 1,7 g d'iodure de potassium dans 10 cm\(^3\) d'eau. La suspension est chauffée à 77°C et on verse à cette température, en 30 minutes, 12,7 cm\(^3\) d'eau oxygénée à 33 % en poids. Le mélange réactionnel est maintenu à reflux 30 minutes supplémentaires puis est refroidi à environ 20°C. À cette température on verse en 5 minutes une solution de 6 g de thiosulfate de sodium dans 20 cm\(^3\) d'eau. Le précipité obtenu est essoré à 20°C environ et lavé par deux fois 150 cm\(^3\) d'eau. Le produit humide obtenu est séché sous pression réduite (20 kPa) à environ 50°C. On isole 28,7 g d'éthoxycarbonyl-3 difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 sous forme d'une solide jaune clair fondant à 270°C.

Exemple 2

Préparation de l'éthoxycarbonyl-3 difluoro-6,7 (N-cyclopropyl N-βéthoxycarbonyléthyl) amino-2 quinoléïne :

A une solution de 3,48 g de chloro-2 éthoxycarbonyl-3 difluoro-6,7 quinoléïne et 3 g de N-cyclopropyl N-β éthoxycarbonyléthyl amine dans 10 cm\(^3\) de toluène, on ajoute 3 g de carbonate de sodium. La suspension obtenue est chauffée à reflux puis agitée 15 heures à cette température. Le mélange réactionnel est ensuite refroidi à environ 20°C puis on ajoute 30 cm\(^3\) d'eau et 4,5 cm\(^3\) d'acide acétique. Après décan- tation, le mélange réactionnel est lavé par 2 fois 10 cm\(^3\) d'eau. La phase organique est concentrée à sec sous pression réduite (20 kPa) à environ 50°C. On obtient 3,3 g d'éthoxycarbonyl-3 difluoro-6,7 (N- cyclopropyl N-βéthoxycarbonyléthyl) amino-2 quinoléïne brute sous forme d'une huile qui est utilisée sans autre purification pour l'étape ultérieure.

Préparation de l'éthoxycarbonyl-3 difluoro-7,8 cyclopropyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 :

A une solution de 1,6 g d'éthylate de sodium porté à reflux dans 40 cm\(^3\) d'éthanol absolu on ajoute, en 60 minutes, une solution
d'céthoxycarbonyl-3 difluoro-6,7 (N-cyclopropyl N-β-céthoxycarbonyl-éthyl) amino-2 quinoléine dans 20 cm3 d'éthanol absolu. La solution obtenue est agitée 60 minutes supplémentaires, à reflux. On verse ensuite, en 10 minutes, 2,6 cm3 d'acide acétique glacial. Le mélange réactionnel est agité 15 minutes supplémentaires puis on verse en 5 minutes, toujours à reflux, 26 cm3 d'eau. La suspension obtenue est refroidie à 20°C environ. Le précipité est essoré à 20°C environ et lavé par deux fois 10 cm3 d'eau. Le produit humide est séché sous pression réduite (20 kPa) à environ 60°C. on isole 1,25 g d'céthoxycarbonyl-3 difluoro-7,8 cyclopropyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 brute sous forme d'un solide jaune fondant à 172°C.

Préparation de l'céthoxycarbonyl-3 difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 :

À une suspension de 1 g d'céthoxycarbonyl-3 difluoro-7,8 cyclopropyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 dans 14 cm3 d'éthanol, on ajoute sous agitation à environ 20°C une solution de 0,053 g d'iodure de potassium dans 0,5 cm3 d'eau. La suspension est chauffée à 77°C et on verse à cette température, en 5 minutes, 0,5 cm3 d'eau oxygénée à 33% en poids. Le mélange réactionnel est maintenu à reflux 60 minutes supplémentaires puis refroidi à environ 20°C. A cette température on verse en 5 minutes, 1,06 cm3 d'une solution 1N de thiosulfate de sodium. Le précipité obtenu est essoré à 20°C environ et lavé par 2 fois 10 cm3 d'eau. Le produit humide obtenu est séché sous pression réduite (20 kPa) à environ 60°C. On isole 0,7 g d'céthoxycarbonyl-3 difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 brute sous forme d'un solide blanc ocre fondant à 210°C.

Exemple 4

L'céthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β-cyanoéthyl amino)-2 quinoléine est préparée de la manière suivante :

À une solution de 16,3 g de chloro-2 éthoxycarbonyl-3 difluoro-6,7 quinoléine et 10 g de N-méthyl N-β-cyanoéthyl amine dans 160 cm3 de
toluène, on ajoute 19,08 g de carbonate de sodium. La suspension obtenue est chauffée à reflux puis agitée 4 heures à cette température. Le mélange réactionnel est ensuite refroidi à environ 20°C puis lavé par 3 fois 50 cm³ d'eau. La phase organique est concentrée à sec sous pression réduite (20 kPa) à environ 50°C. On obtient 19,17 g d'éthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β-cyanoéthyl amino)-2 quinoléine sous forme d'une huile qui est utilisée sans autre purification pour les étapes ultérieures.

La cyano-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphthyridine-1,8 est préparée de la manière suivante :

A une solution de 8,74 g de terbutylate de potassium dans 200 cm³ de tétrahydrofuranne refroidi à -10°C on verse, en 60 minutes, une solution de 19,17 g d'éthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β-cyanoéthyl amino)-2 quinoléine dans 50 cm³ de tétrahydrofuranne. La suspension obtenue est agitée toujours à -10°C durant 30 minutes supplémentaires. On verse ensuite 4 cm³ d'acide acétique glacial. Le tétrahydrofuranne est évaporé sous pression réduite (20 kPa). Le mélange brut réactionnel est repris par 200 cm³ d'un mélange hydroalcoolique éthanol/eau (70/30 vol/vol). Le précipité obtenu est filtré, lavé 2 fois par 50 cm³ d'eau, puis séché sous pression réduite (20 kPa). On isole 16,1 g de cyano-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphthyridine-1,8 sous forme d'un solide jaune d'or fondant à 144°C.

La cyano-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphthyridine-1,8 est préparée de la manière suivante :

A une suspension de 8,6 g de cyano-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphthyridine-1,8 dans 350 cm³ d'éthanol, on ajoute sous agitation à environ 20°C une solution de 0,47 g d'iodyure de potassium dans 5 cm³ d'eau. La suspension est chauffée à 77°C et additionnée à cette température, en 10 minutes, de 4 cm³ d'eau oxygénée à 33 % en poids. Le mélange réactionnel est maintenu à reflux 30 minutes supplémentaires puis est refroidi à environ 20°C. A cette température on ajoute, en 5 minutes, 10 cm³ d'une solution de
thiosulfate de sodium 1N. Le précipité obtenu est essoré à 20°C en-
viron et lavé par deux fois 20 cm³ d'eau. Le produit humide obtenu
est séché sous pression réduite (20 kPa) à environ 50°C. On isole 8 g
de cyano-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphty-
dine-1,8 sous forme d'un solide jaune clair fondant à 380°C.

Exemple 5

L'éthoxycarbonyl-3 difluoro-6,7 [N-méthyl N-β (N',N'-diméthylamino-
carbonyléthyl) amino]-2 quinoléine est préparée de la manière sui-
vante :

À une solution de 26 g de chloro-2 éthoxycarbonyl-3 difluoro-6,7 qui-
holéine et 25 g de N-méthyl N-β (N',N'-diméthylaminocarbonyléthyl)
amine dans 300 cm³ de toluène, on ajoute 31 g de carbonate de sodium.
La suspension obtenue est chauffée à reflux puis agitée 2 heures
30 minutes à cette température. Le mélange réactionnel est ensuite
refroidi à environ 20°C puis lavé par 3 fois 100 cm³ d'eau. La phase
organique est concentrée à sec sous pression réduite (20 kPa) à
environ 50°C. On obtient 35 g d'éthoxycarbonyl-3 difluoro-6,7 [N-
méthyl N-β (N',N'-diméthylaminocarbonyl éthyl) amino]-2 quinoléine
sous forme d'une huile qui est utilisée sans autre purification pour
les étapes ultérieures.

La N,N-diméthyl difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 ben-
zo[b]naphtyridine-1,8 carboxamide-3 est préparée de la manière sui-
vante :

À une solution de 15,7 g de terbutylate de potassium dans 150 cm³ de
tétrahydrofuranne refroidi à 0°C on ajoute, en 75 minutes, une solu-
tion de 35 g d'éthoxycarbonyl-3 difluoro-6,7 N-méthyl N-β (N',N'-
diméthylaminocarbonyl éthyl) amino-2 quinoléine dans 150 cm³ de té-
trahydrofuranne. La suspension obtenue est ensuite agitée à 0°C du-
rant 30 minutes supplémentaires puis on ajoute 8 cm³ d'acide acétique
glacial. Le tétrahydrofuranne est évaporé sous pression réduite (20
kPa). Le mélange brut réactionnel est repris par 200 cm³ d'un mélange
hydroalcoolique éthanol/eau (70/30 vol/vol). Le précipité obtenu est
filtré, lavé 3 fois par 100 cm³ d'eau, puis séché sous vide (20 kPa).
On isole 25 g de N,N-diméthyl difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 carboxamide-3 sous forme d’un solide jaune fondant à 206°C.

La N,N-diméthyl difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 est préparée de la manière suivante :

A une suspension de 25 g de N,N-diméthyl difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 carboxamide-3 dans 1000 cm³ d’éthanol, on ajoute sous agitation à environ 20°C une solution de 1,35 g d’iodure de potassium dans 10 cm³ d’eau. La suspension est chauffée à 77°C et on verse à cette température, en 20 minutes, 25 cm³ d’eau oxygénée à 33 % en poids. Le mélange réactionnel est maintenu à reflux 1 heure 30 minutes supplémentaire puis est refroidi à environ 20°C. À cette température on coule, en 5 minutes, 30 cm³ d’une solution de thiosulfate de sodium 1N. Le précipité obtenu est essoré à 20°C environ et lavé par deux fois 60 cm³ d’eau. Le produit humide obtenu est séché sous pression réduite (20 kPa) à environ 50°C. On isole 19,5 g de N,N-diméthyl difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 sous forme d’un solide jaune clair fondant à 324°C.

Exemple 6

L’éthoxy carbonyl-3 difluoro-6,7 (N-méthyl N-β aminocarbonyléthyl amino)-2 quinoléine est préparée de la manière suivante :

À une solution de 4 g de chloro-2 éthoxy carbonyl-3 difluoro-6,7 quinoléine et 3 g de N-méthyl N-β-aminocarbonyléthyl amine dans 40 cm³ de toluène, on ajoute 4,4 g de carbonate de sodium. La suspension obtenue est chauffée à reflux puis agitée 2 heures 30 minutes à cette température. Le mélange réactionnel est ensuite refroidi à environ 20°C puis lavé par 3 fois 25 cm³ d’eau. La phase organique est concentrée à sec sous pression réduite (20 kPa) à environ 50°C. On obtient 4,7 g d’éthoxy carbonyl-3 difluoro-6,7 (N-méthyl N-β-aminocarbonyléthyl amino)-2 quinoléine sous forme d’une huile qui est utilisée sans autre purification pour les étapes ultérieures.
La carboxamide-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 est préparée de la manière suivante :

A une solution de 1,8 g de terbutylate de potassium dans 50 cm³ de tétrahydrofuranne refroidi à 0°C on ajoute, en 30 minutes, une solution de 4,23 g d'éthoxycarbonyl-3 difluoro-6,7 (N-méthyl N-β- carbonylatedhyl amino)-2 quinoléine dans 20 cm³ de tétrahydrofuranne. La suspension obtenue est ensuite agitée à 0°C durant 30 minutes supplémentaires puis on verse 2 cm³ d'acide acétique glacial. Le tétrahydrofuranne est évaporé sous pression réduite (20 kPa). Le brut réactionnel est repris par 10 cm³ d'un mélange hydroalcoolique éthanol/eau (70/30 vol/vol). Le précipité obtenu est filtré, lavé 3 fois par 10 cm³ d'eau, puis séché sous pression réduite (20 kPa). On isole 1,6 g de carboxamide-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 sous forme d'un solide jaune fondant à 182°C.

La carboxamide-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 est préparée de la manière suivante :

A une suspension de 1,3 g de carboxamide-3 difluoro-7,8 méthyl-1 oxo-4 tétrahydro-1,2,3,4 benzo[b]naphtyridine-1,8 dans 25 cm³ d'éthanol, on ajoute sous agitation à environ 20°C une solution de 0,1 g d'iode de potassium dans 1 cm³ d'eau. La suspension est chauffée à 77°C et additionnée à cette température, en 5 minutes, de 1,5 cm³ d'eau oxygénée à 33 % en poids. Le mélange réactionnel est maintenu à reflux 1 heure 30 minutes supplémentaire puis est refroidi à environ 20°C. A cette température on ajoute 1 cm³ d'une solution de thiosulfate de sodium 1N. Le précipité obtenu est essoré à 20°C environ et lavé par deux fois 5 cm³ d'eau. Le produit humide obtenu est séché sous pression réduite (20 kPa) à environ 50°C. On isole 1,1 g de carboxamide-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 sous forme d'un solide orangé fondant à 318°C.

Exemple 7

En opérant comme décrit précédemment à l'exemple 5, on prépare les produits suivants :
- N,N-dimethyl difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 ;

- N,N-diméthyl difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 ;

- N,N-diéthyl difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 ;

- N,N-diéthyl difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 ;

- N,N-diéthyl difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 ;

- (difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 pyrrolidine ;

- (difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 pyrrolidine ;

- (difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 pyrrolidine ;

- (difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 pipéridine ;

- (difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 pipéridine ;

- (difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 pipéridine ;

- (difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 morpholine ;

- (difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 morpholine ;
- (difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 morpholine ;
- (difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 thiomorpholine ;
- (difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 thiomorpholine ;
- (difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 thiomorpholine ;
- (difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 méthyl-4 pipérazine ;
- (difluoro-7,8 éthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 méthyl-4 pipérazine ;
- (difluoro-7,8 cyclopropyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carbonyl-3)-1 méthyl-4 pipérazine.

Les produits de formule générale (I) obtenus aux exemples précédents peuvent être utilisés comme décrit ci-après :

Exemple d'utilisation

La cyano-3 fluoro-7 méthyl-1 (méthyl-4 pipérazinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 est préparée de la manière suivante :

Une suspension de 2,1 g de cyano-3 difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 dans 100 cm3 de diméthylsulfoxyde est chauffée à 80°C en présence de 2 cm3 de N-méthyl pipérazine. Le mélange réactionnel est maintenu à cette température durant 8 heures. La solution obtenue est refroidie à température ambiante et agitée à cette température durant 15 heures. Le précipité formé est filtré, lavé par 3 fois 20 cm3 d'eau, et séché sous vide (20 kPa) à 50°C. On obtient 2,6 g de cyano-3 fluoro-7 méthyl-1 (méthyl-4 pipérazinyl-1)-8
oxo-4 benzo[b]naphtyridine-1,8 sous forme d’un précipité jaune fon-
dant à 335°C.

L’acide fluoro-7 méthyl-1 (méthyl-4 pipérazinyl-1)-8 oxo-4 dihydro-
1,4 benzo[b]naphtyridine-1,8 carboxylique-3 est préparé de la manière
suivante :

Une suspension de 2 g de cyano-3 fluoro-7 méthyl-1 (méthyl-4 pipéra-
zinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 est chauffé à
reflux dans 40 cm³ d’acide chlorhydrique 12N. Le mélange réactionnel
est maintenu à cette température durant 15 heures. La solution obte-
nuite est refroidie à température ambiante. Le produit qui cristallise
est filtré, lavé à l’eau jusqu’à neutralité, et séché sous pression réduite
(20 kPa) à 50°C. On obtient 1,5 g d’acide fluoro-7 méthyl-1
(méthyl-4 pipérazinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8
carboxylique-3 monochlorhydrate sous forme de cristaux jaunes fondant
à 290°C (décomposition).

Exemple d’utilisation 2

Une suspension de 2,96 g de difluoro-7,8 N,N-diméthyl oxo-4 méthyl-1
dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3, de 1,12 g de mé-
thyl-1 pipérazine et de 1,55 g de carbonate de potassium dans 100 cm³
de diméthylsulfoxyde est chauffée 5 heures, sous agitation, à environ
80°C. Après refroidissement à environ 20°C, le mélange réactionnel
est additionné de 100 cm³ d’eau ; l’insoluble est essoré, lavé par
2 fois 30 cm³ d’eau et 2 fois 30 cm³ d’éthanol.

On obtient 2,3 g de N,N diméthyl fluoro-7 méthyl-1 (méthyl-4 pipéra-
zinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3
sous forme d’un solide jaune se décomposant à 275°C.

Une solution de 0,5 g de N,N-diméthyl fluoro-7 méthyl-1 (méthyl-4
pipérazinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxa-
mide-3 dans 10 cm³ d’acide chlorhydrique aqueux 6N est chauffée, sous
agitation à environ 95°C, pendant 5 heures. Après refroidissement à
environ 20°C, l’insoluble est essoré, lavé par 3 fois 20 cm³ d’eau et
2 fois 10 cm³ d’éthanol.
Le produit obtenu est mis en suspension dans 30 cm3 d'eau ; on ajoute 0,6 cm3 de potasse aqueuse N et agite 1 heure à environ 20°C. L'insoluble est essoré, lavé par 2 fois 20 cm3 d'eau et 2 fois 10 cm3 d'éthanol. Après recristallisation dans 15 cm3 diméthyformamide, on obtient 0,15 g d'acide fluoro-7 méthyl-1 (méthyl-4 pipérazinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxylique-3 sous forme d'un solide jaune se décomposant à 354°C.

Exemple d'utilisation 3

Une suspension de 1,3 g de difluoro-7,8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3, de 0,54 g de méthyl-1 pipérazine et de 0,75 g de carbonate de potassium dans 25 cm3 de diméthylsulfoxide est chauffée à environ 80°C pendant 6 heures. Après refroidissement à une température voisine de 20°C, le mélange réactionnel est additionné de 100 cm3 d'eau. L'insoluble est essoré, lavé par 2 fois 20 cm3 d'eau et 2 fois 20 cm3 d'éthanol.

Le produit obtenu est chromatographié sur 20 g de gel de silice (0,063-0,200 mm) en suspension dans un mélange de dichlorométhane à 10 % de méthanol. On élimine de impuretés réactionnelles par élution avec 500 cm3 de ce mélange de solvants. Le produit attendu est ensuite élué par 500 cm3 du même mélange de solvants. Après concentration à sec, sous pression réduite (20 kPa) à environ 40°C, le résidu solide est recristallisé dans 25 cm3 de diméthylformamide, essoré et lavé par 2 fois 30 cm3 d'éthanol à environ 70°C.

On obtient 0,6 g de fluoro-7 méthyl-1 (méthyl-4 pipérazine-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3 sous forme d'un solide jaune se décomposant à 265°C.

L'acide fluoro-7 (méthyl-4 pipérazinyl-1)-8 méthyl-1 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxylique-3 est préparé dans les conditions de l'exemple d'utilisation 2, mais à partir de 0,3 g de fluoro-7 méthyl-1 (méthyl-4 pipérazinyl-1)-8 oxo-4 dihydro-1,4 benzo[b]naphtyridine-1,8 carboxamide-3. Après refroidissement à environ 20°C, le mélange réactionnel est additionné de 50 cm3 d'eau ; l'insoluble est essoré et lavé par 2 fois 10 cm3 d'eau.
Le produit obtenu est mis en suspension dans 20 cm3 d'eau, additionné de 0,4 cm3 d'une solution de potasse aqueuse N et agité pendant 1 heure à environ 20°C. L'insoluble est essoré, lavé par 3 fois 10 cm3 d'eau, 2 fois 10 cm3 d'éthanol et recristallisé dans 20 cm3 de diméthylformamide.

On obtient 0,17 g d'acide fluoro-7 méthyl-1 (méthyl-4 pipérazinyl-1)-8 oxo-4 dihydro-1,4 benzol[b]naphtyridine-1,8 carboxylique-3, sous forme d'un solide jaune se décomposant à 354°C.
REVENDICATIONS

1- Un nouveau procédé de préparation de benzo[b]naphtyridines de formule générale :

\[
\begin{array}{c}
\text{F} \\
\text{Hal} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{R} \\
\end{array}
\]

5 dans laquelle R est un radical carboxy, alcoyloxy carbonyle, cyano, carbamoyle, acroylcarbamoyle, benzylcarbamoyle, hydroxyéthylcarbamoyle, dialcoylaminoéthylcarbamoyle ou dialcoylcarbamoyle dont les parties alcoyle peuvent éventuellement former avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons contenant éventuellement un autre hétéroatome choisi parmi l'oxygène, le soufre ou l'azote et éventuellement substitué sur l'azote par un radical alcoyle, R' est un atome d'hydrogène ou un radical alcoyle, fluoroalcoyle, carboxyalcoyle, cycloalcoyle (contenant 3 à 6 atomes de carbone), fluorophényle, difluorophényle, alcoyloxy ou alcoylaminoc, et Hal est un atome d'halogène, ainsi que leurs sels lorsqu'ils existent, caractérisé en ce que l'on effectue les opérations suivantes :

1) condensation d'une amine de formule générale :

\[
R' - \text{NH-CH}_2-\text{CH}_2-R''
\]

20 dans laquelle R' est défini comme précédemment et R'' est un radical alcoyloxy carbonyle, cyano, carbamoyle, acroylcarbamoyle, benzylcarbamoyle, hydroxyéthylcarbamoyle, dialcoylaminoéthylcarbamoyle ou dialcoylcarbamoyle dont les parties alcoyle peuvent éventuellement former avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons contenant éventuellement un autre hétéroatome choisi parmi l'oxygène, le soufre ou l'azote et éventuellement substitué sur l'azote par un radical alcoyle, sur une chloro fluoro quinoléine de formule générale :
26

dans laquelle Hal est défini comme ci-dessus et R_1 est un atome d'hydrogène ou un radical acylique, étant entendu que les radicaux acylique cités ci-dessus sont droits ou ramifiés et contiennent 1 à 4 atomes de carbone,

2) cyclisation de la fluoroquinoléine, ainsi obtenue, de formule générale :

\[
\begin{array}{c}
\text{Hal} \\
\text{N} \\
\text{COOR}_1 \\
\text{Hal} \\
\text{N} \\
\text{R''}
\end{array}
\]

dans laquelle R', R'' et Hal sont définis comme précédemment et R_1 est défini comme ci-dessus en 1),

3) oxydation de la tétrahydro-1,2,3,4 benzo(b)naphtyridine-1,8 de formule générale :

\[
\begin{array}{c}
\text{Hal} \\
\text{N} \\
\text{O} \\
\text{R''}
\end{array}
\]

dans laquelle Hal, R' et R'' sont définis comme précédemment, puis éventuellement transformation de l'ester obtenu pour lequel R est acylique, en un acide pour lequel R est un atome d'hydrogène et éventuellement transformation de l'acide obtenu en un sel.

2-Un nouveau dérivé de benzonaphtyridine de formule générale :
dans laquelle \(R' \) et \(\text{Hal} \) sont définis comme dans la revendication 1 et \(R \) est un radical cyano, carbamoyle, alcoylcarbamoyle, benzylcarbamoyle, hydroxyethylcarbamoyle, dialcoylaminooéthylcarbamoyle ou dialcoylcarbamoyle dont les parties alcoyle peuvent éventuellement former avec l'atome d'azote auquel elles sont rattachées, un hétérocycle à 5 ou 6 chaînons contenant éventuellement un autre hétéroatome choisi parmi l'oxygène, le soufre ou l'azote et éventuellement substitué sur l'azote par un radical alcoyle.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl.: 5 C07D471/04; //C07D471/04,221:00,221:00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl.: 5 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X JOURNAL OF MEDICINAL CHEMISTRY.
Vol. 18, No. 10, 1975, WASHINGTON US
pages 1038 - 1041
A. A. SANTILLI "Synthesis and antibacterial evaluation
of 1,2,3,4-tetrahydro-4-oxo-1,8-naphthyridine-3-
carboxylic acid esters, carbonitriles and carboxamides"
* page 1039, fig. I *

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 11 January 1993 (11.01.93)

Date of mailing of the international search report 21 January 1993 (21.01.93)

Name and mailing address of the ISA/

EUROPEAN PATENT OFFICE

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous 7)

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

CIB 5 C07D471/04; //C07D471/04,221:00,221:00)

II. DOMAINES SUR LESQUELS LA RECHERCHE A ETÉ REALISÉE

<table>
<thead>
<tr>
<th>Système de classification</th>
<th>Symboles de classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB 5</td>
<td>C07D</td>
</tr>
</tbody>
</table>

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté 8

III. DOCUMENTS CONSIDERÉS COMME PERTINENTS 10

<table>
<thead>
<tr>
<th>Catégorie *</th>
<th>Identification des documents cités, avec indication, si nécessaire 12 des passages pertinents 13</th>
<th>No. des revendications visées 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JOURNAL OF MEDICINAL CHEMISTRY. vol. 18, no. 10, 1975, WASHINGTON US pages 1038 - 1041 A. A. SANTILLI 'Synthesis and antibacterial evaluation of 1,2,3,4-tetrah ydro-4-oxo-1,8-naphthyridine-3-carboxylic acid esters, carbonitriles and carboxamides' * page 1039, schema I *</td>
<td>1</td>
</tr>
</tbody>
</table>

* Catégories spéciales de documents cités 11

"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent

"B" document antérieur, mais publié à la date de dépôt international ou après cette date

"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)

"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

"P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"V" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive

"L" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaton étant évidente pour une personne du métier.

"A" document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée 11 JANVIER 1993

Date d'expédition du présent rapport de recherche internationale 21. 01. 93

Administration chargée de la recherche internationale OFFICE EUROPEEN DES BREVETS

Signature du fonctionnaire autorisé ALFARO FAUS I.