发明名称
具有容积流量补偿的静液压驱动机构

摘要
一种静液压驱动机构，包括第一和第二液压泵和双动作液压缸。该双动作液压缸包括第一工作腔和第二工作腔。第一工作腔由工作活塞的第一活塞表面限定，第二工作腔由工作活塞的第二活塞表面限定。第一工作腔与第一液压泵的第一连接和第二液压泵的第二连接相连，第二工作腔与第二液压泵的第二连接相连。第一液压泵的第二连接与液压流体贮存器相连。第一活塞表面与第二活塞表面之比不同于两个液压泵的总输送量与第二液压泵的输送量之比。用于移出液压流体的排液阀被设置用于容积流量补偿。
1. 一种静液压驱动机构，其包括第一液压泵(11)和第二液压泵(12)，以及具有工作活塞(3)的双传动液压缸(2)，所述液压缸包含包括工作活塞(3)的第一活塞表面(4)的第一工作腔(7)和包括第二活塞表面(5)的第二工作腔(8)，所述第一和第二液压泵(11, 12)通过它们各自的连接(13, 14)与所述第一工作腔(7)相连，所述第一液压泵(11)通过其第二连接(15)与液压流体贮存器(18, 63)相连，所述第二液压泵(12)通过其第二连接(16)与所述第二工作腔(8)相连，其特征在于，

该驱动机构包括排液阀(45)，该排液阀用于沿所述液压泵(11, 12)的第一输送方向移出液压流体。

2. 根据权利要求1所述的静液压驱动机构，其特征在于，

所述第一活塞表面(4)与所述第二活塞表面(5)之比不同于所述两个液压泵(11, 12)的总输送量与第二输送量之比。

3. 根据权利要求1或2所述的静液压驱动机构，其特征在于，所述第一液压泵(11)的第二连接(15)与液压流体贮存器(18, 63)相连，所述第一工作腔(7)或者第二工作腔(8)可通过所述排液阀(45)与所述液压流体贮存器(18, 63)相连。

4. 根据权利要求1至3中任何一项所述的静液压驱动机构，其特征在于，

所述排液阀为根据所述第一和第二工作腔(7, 8)中的主导工作压力，将所述第一或者第二工作腔(7, 8)与所述液压流体贮存器(18, 63)相连的冲洗阀(45)。

5. 根据权利要求4所述的静液压驱动机构，其特征在于，

所述冲洗阀(45)将所述第一或者第二工作腔(7, 8)与所述液压流体贮存器(18, 63)经由进给装置(31)与所述液压流体贮存器(18, 63)相连。

6. 根据权利要求1至5中任何一项所述的静液压驱动机构，其特征在
于，

当所述第一和第二液压泵（11，12）的输送方向颠倒时，设置进给泵（32）用于容积流量补偿。

7. 根据权利要求1至6中任何一项所述的静液压驱动机构，其特征在于，

所述第一和第二液压泵（11，12）的输送量均可以设置。

8. 根据权利要求1至7中任何一项所述的静液压驱动机构，其特征在于，

所述第一和第二液压泵（11，12）均形成液压泵单元（30）。

9. 根据权利要求1至8中任何一项所述的静液压驱动机构，其特征在于，

所述排液阀（45）经由第一工作管路（9）与所述第一工作腔（7）相连和/或经由第二工作管路（10）与所述第二工作腔（8）相连，在至少所述第一或者第二工作管路（9，10）中设置载荷保持阀（55，56）。

10. 根据权利要求9所述的静液压驱动机构，其特征在于，

所述第一和第二液压泵（11，12）的输送量可以通过调节装置（20）改变，该调节装置可以受至少一个第一致动压力的作用，所述至少一个载荷保持阀（55，56）可以受所述至少一个致动压力沿打开方向的作用。

11. 根据权利要求9或10所述的静液压驱动机构，其特征在于，

所述至少一个载荷保持阀（55，56）是压力补偿的。

12. 根据权利要求1至11中任何一项所述的静液压驱动机构，其特征在于，

所述液压流体贮存器（18，63）为液压蓄能器（63）。

13. 根据权利要求12所述的静液压驱动机构，其特征在于，

在所述液压蓄能器（63）与所述第一液压泵（11）之间设置有可以受调节装置（20）的致动压力作用的单向阀（64）。

14. 根据权利要求1至13中任何一项所述的静液压驱动机构，其特征
在于，

至少所述排液阀（45）和/或所述至少一个载荷保持阀（55，56）和/或所述单向阀（64）设置在包括所述第一和第二液压泵（11，12）的液压泵单元（30）中。
具有容积流量补偿的静液压驱动机构

技术领域

本发明涉及一种包括双动作液压缸和容积流量补偿的静液压驱动机构。

背景技术

根据DE 103 43 016 A1已知，可通过第一液压泵和第二液压泵驱动双动作液压缸。在这种情况下，两个液压泵中的一个在闭合回路中与双动作液压缸的两个工作腔相连。然而，第二液压泵仅在开放回路中与活塞侧的工作腔相连。所述两个液压泵可分别调节其输送量。通过设置相应的输送量比，需要考虑在活塞侧的工作腔和在活塞杆侧的工作腔中的差值容积流量。

根据DE 103 43 016 A1已知的静液压驱动机构的缺点在于：两个液压泵的输送量之和与闭合回路中的各液压泵的输送量之间的比率必须与工作活塞的活塞表面相互间的比率保持相同。因此，如果使用相同的液压泵，其相应的输送量必须通过适当的调节装置设置，以实现所述条件。相反，当使用两个相同的液压泵时，由于可优选通过使用双连泵实现，所以有必要使用双动作液压缸，其活塞表面具有适当的比率。通常，双连泵单元的两个液压泵设置为相同，以使两个活塞表面的面积比率必须是2:1。然而，传统的双动作液压缸的活塞表面的面积比率通常与其不同，从而当移动工作活塞时有不同的容积流量。

发明内容

本发明的目的在于提供一种允许所要使用的液压缸的充分自由选择的静液压驱动机构，其中第一和第二液压泵有预定的固有输送比率。该目的通过权利要求1的特征实现。从属权利要求包含本发明的优选改进。

根据本发明，该目的通过设置用于容积流量补偿的排液阀实现。该静液
压驱动机构包括第一液压泵、第二液压泵和双动作液压缸。第一和第二液压泵各自的第一连接均连接到液压缸的第一工作腔。相反，仅第二液压泵的第二连接连接到第二工作腔。然而，第一液压泵的第二连接与液压流体贮存器相连。为了令工作活塞运动，两个液压泵共同将液压流体供应到第一工作压力腔。沿相反输送方向，以及沿工作活塞运动的相反方向，液压流体仅通过第二液压泵输送到第二工作腔。两个液压泵的总输送量与第二液压泵的输送量之比可以不同于第一活塞表面与第二活塞表面的面积之比。因此，可以形成油量补偿差值。根据本发明，设置有排液阀，所述油量补偿差值通过所述排液阀得到补偿，液压流体沿第一输送方向移出，从而实现容积流量补偿。排液阀优选将第一工作腔或者第二工作腔与液压流体贮存器相连。

就此而言，尤其优选提供一冲洗阀作为排液阀。该冲洗阀根据第一和/或第二工作腔中的压力设置，以使其将第二或者第一工作腔与液压流体贮存器相连。因此，通过将静液压驱动机构相应侧的冲洗阀与液压泵的当前吸入侧相连并移出液压流体可以实现容积流量补偿。

就此而言，为了将第一或者第二工作腔与液压流体贮存器相连，可以优选使用进给装置。

为了增大不足的容积流量，沿静液压驱动机构的相反输送方向优选设置进给泵。所述进给泵特别在第一和第二液压泵的吸入侧，将所需用于容积流量补偿的一定量液压流体输送到静液压驱动机构的静液压回路中。尤其优选的是，第一和第二液压泵的输送量可以被设置。特别是二者均形成液压泵单元，该液压泵单元尤其优选为双连泵，其两个液压泵具有可设置的相同输送量。

根据优选实施例，排液阀经由第一工作管路和/或第二工作管路与第一和/或第二工作腔相连，并且至少在两个工作管路的一个中设置载荷保持阀，液压缸的工作活塞通过该载荷保持阀可以固定在特定位置。为此，载荷保持阀优选沿至少一个方向阻断工作管路，以防止液压流体从第一工作腔和/或第二工作腔流出。
尤其优选地是，通过使用调节装置的致动压力，至少一个载荷保持阀可以移动到其打开位置。为此，致动压力退出调节装置，以设置第一液压泵和第二液压泵的输送量。因此，载荷保持阀的引导根据输送方向自动形成。

优选使用压力补偿的载荷保持阀，以保持所需的致动力，从而降低致动压力。致动压力通常比可实现的工作压力的数量级低。

根据另一优选实施例，液压流体贮存器设计为液压蓄能器。使用作为液压流体贮存器的液压蓄能器可以在例如致动液压缸时（例如提升载荷，以及随后在其上降低载荷时）恢复使用的能量部分。另外，该液压蓄能器的优点在于，储存在其中的液压流体的压力防止连接在其上的液压泵的吸入侧上可能出现的气穴。为了防止不必要的压力损失，液压蓄能器与第一液压泵之间的连接优选设置为单向阀，该单向阀可以受调节装置的致动压力作用，从而可以在其打开位置与闭合位置之间进行调节。通过使用致动压力并考虑输送方向，致动再次自动发生。

如果至少排液阀和/或至少一个载荷保持阀和/或单向阀设置在包括第一和第二液压泵的泵单元中，就会形成特别紧凑的结构。

附图说明

根据本发明的静液压驱动机构的优选实施例示于附图中，并在后文的说明书中进行更为详细的描述，其中：

图1显示根据本发明的静液压驱动机构的第一实施例；

图2显示根据本发明的包括载荷保持阀的静液压驱动机构的第二实施例；

图3显示根据本发明的包括作为液压流体贮存器的液压蓄能器的静液压驱动机构的第三实施例；

图4显示根据本发明的包括用于减小压力波动的附加液压蓄能器的静液压驱动机构的第四实施例。
具体实施方式

图1所示的静液压驱动机构1包括双动作液压缸2，在该液压缸2中可移动地设置有工作活塞3。工作活塞3包括第一活塞表面4和第二活塞表面5。第一活塞表面4和第二活塞表面5朝向相反方向。在第二活塞表面5侧，活塞杆6与工作活塞3相连。因此，第二活塞表面5小于第一活塞表面4。

第一活塞表面4可以在液压缸2的第一工作腔7中受到在那里作用的第一工作压力的作用。因此，第二活塞表面5可以在液压缸2的第二工作腔8中受到第二工作压力的作用。第一工作腔7与第一工作管路9相连，第二工作腔8与第二工作管路10相连。

为了产生用于致动液压缸2的容积流量，设置有第一液压泵11和第二液压泵12。根据优选实施例，第一液压泵11和第二液压泵12采用双连泵的形式，以使第一液压泵11和第二液压泵12的输出流量的调节共同发生。第一液压泵11和第二液压泵12通过它们各自的第二连接13和/或14经由第一工作管路9与第一工作腔7相连。第一工作管路9沿第一和第二液压泵11、12的方向分为第一工作管路分支9a和第二工作管路分支9b。第一工作管路分支9a与第一液压泵11的第一连接13相连。相应地，第二工作管路分支9b与第二液压泵12的第一连接14相连。

虽然第一液压泵11和第二液压泵12的第一连接13、14平行地与第一工作腔7相连，但第一液压泵11和第二液压泵12各自的第二连接15、16并不与第二工作腔8相连。只有第二液压泵12的第二连接16与第二工作腔8相连。这样，形成经由第二液压泵12将第一工作腔7和第二工作腔8连接的闭合液压回路。

然而，第一工作腔7另外还设置在经由第一工作管路9和第一液压泵11的开放回路中。这样，第一液压泵11的第二连接15能够经由吸入管路17与罐容积18相连。

第一液压泵11和第二液压泵12由驱动机构(未示出)经由共用驱动轴

最大的可用致动压力采用前述方式经由第一连接管路 28 供应给致动压力调节阀 25。另外，对于采用前述方式优选设计为双连泵的第一液压泵 11 和第二液压泵 12，所形成的液压泵单元 30 还包括带有进给泵 32 的进给装置 31。进给装置 31 用于重新供应由于回路的泄漏而漏出的液压流体，并在
驱动机构 1 的工作过程中产生初始压力。进给泵 32 还经由驱动轴 19 与驱动机构相连，并作为只沿一个方向输送的恒定泵。为此，进给泵 32 经由进给泵吸入管路 33 从罐容积 18 吸入液压流体，并将其输送到进给压力管路 34 中。为了限制最大可用进给压力，进给压力管路 34 由进给压力控制阀 35 保护。进给压力控制阀 35 沿其闭合位置方向受压缩弹簧的作用。

在进给压力管路 34 中，压力沿相反方向主要作用在进给压力控制阀 35 的测量区域上。如果在进给压力管路 34 中的进给压力超过由压缩弹簧预定的临界值，进给压力控制阀 35 由于静液压力而沿其打开位置的方向调节。在该打开位置，进给压力管路 34 经由另一释放管路 36 与内部罐容积 18 相连。

而且，进给装置 31 的进给压力管路 34 经由第一进给管路 37 与第一工作管路 9 相连。而且，进给压力管路 34 经由第二进给管路 38 与第二工作管路 10 相连。在第一进给管路 37 和第二进给管路 38 中设置有第一和/或第二单向阀 39、40。两个单向阀 39、40 设置在第一进给管路 37 和/或第二进给管路 38 中，使它们向第一工作管路 9 和/或向第二工作管路 10 的方向打开。如果由进给装置 31 中的进给压力控制阀 35 设置的压力超过第一工作管路 9 和/或第二工作管路 10 中的压力，液压流体就会从进给装置 31 供应到第一工作管路 9 和/或第二工作管路 10 中。

第二连接管路 41 和/或第三连接管路 42 被设置为与第一进给管路 37 和/或第二进给管路 38 平行。第二连接管路 41 将第一工作管路 9 与进给压力管路 34 相连。第一压力控制阀 43 设置在第二连接管路 41 中。第一压力控制阀 43 采用与进给压力控制阀 35 类似的方式，通过压缩弹簧沿其闭合位置的方向预拉。在第一工作管路 9 中的第一工作压力主要沿相反方向作用在第一压力控制阀 43 上。如果第一工作压力超过由压缩弹簧设置的最大压力，那么第一压力控制阀 43 移动到其打开位置。在压力控制阀 43 的打开位置，第一工作管路 9 与进给压力管路 34 相连。因此，当超过第一工作管路 9 中的临界压力时，第一工作管路 9 沿进给装置 31 的方向释放。采用相同方式,
在第三个连接管路 42 中设置有第二压力控制阀 44，当超过第二工作管路 10 中的临界压力时，该第二压力控制阀 44 将第二工作管路 10 释放到进给装置 31 中。

在工作活塞 3 的移动过程中，从/到第一和/或第二工作腔 7、8 的合成容积流量之比通过活塞表面 4、5 之比确定。如果第一和第二液压泵 11、12 的总输送量与第二液压泵 12 的输送量之比不同，那么就需要容积流量补偿。

为了从第一和/或第二工作管路 9 和/或 10 移除液压流体以进行容积流量补偿，在静液压驱动机构 1 中设置有排液阀。在所示的优选实施例中，排液阀设计为冲洗阀 45。该冲洗阀 45 设计为3/3通阀。冲洗阀 45 的出口连接与进给压力管路 34 相连。冲洗阀 45 通过第一对中弹簧 48 和第二对中弹簧 49 保持在其中央位置。冲洗阀 45 的两个入口连接经由第一导出管路 46 和/或第二导出管路 47 与第一工作管路 9 和/或第二工作管路 10 相连。第一管路支路 50 从第一导出管路 46 分叉，该一管路支路 50 将第一工作管路 9 的压力作用在冲洗阀 45 的测量区域上。由测量区域上的第一工作压力产生的静液压压力沿与冲洗阀 45 上的第一对中弹簧相同的方向作用，并沿第一切换位置的方向作用在其上。

在冲洗阀 45 的第一切换位置，第二导出管路 47 与进给压力管路 34 相连。从而形成可以穿过的第二工作管路 10 与进给装置 31 的连接。在所示实施例中，冲洗阀 45 为对称结构。相应地，该管路设置有将第二导出管路 47 与冲洗阀 45 的另一测量区域相连的第二管路分支 51，第二工作压力沿与第二对中弹簧 49 相同的方向作用在冲洗阀 45 上。如果这样产生的合力超过由第一工作压力和第一对中弹簧 48 沿相反方向产生的力，那么冲洗阀 45 移动到其第二切换位置。在该第二切换位置，形成可以穿过的第一导出管路 46 与进给压力管路 34 之间的连接。

对于随后的实施例，已接受的是，第一活塞表面 4 和第二活塞表面 5 之比略小于 2。例如，第一活塞表面 4 与第二活塞表面 5 的面积之比为 1.8~1.9:1。这样的面积比通常用于传统的双动作液压缸，例如用于在掘土机的臂和悬臂
上产生致动力的情况。

如果液压流体通过第一液压泵 11 和第二液压泵 12 输送到第一工作管路 9 中，就会由载荷的作用而在第一工作管路 9 和第二工作管路 10 中产生压力差。由于第一工作压力比第二工作压力管路 10 中的第二工作压力大，冲洗阀 45 移动到其第一切换位置。在第一切换位置，第二工作管路 10 采用前述方式与进给压力管路 34 相连。在所公开的实施例中，产生进入第一工作腔 7 的第一容积流量 \(V_7 \)。同时，容积流量 \(V_8 \) 流出第二工作腔 8。容积流量相互间的比为 \(V_7/V_8 = 1.8 \)。

由于由第一液压泵 11 和第二液压泵 12 产生的两个部分容积流量的大小相同，所以只有部分容积流量 \(0.9V_8 \) 由第一和第二液压泵 11、12 吸入。这产生在输送侧的总容积流量 \(2 \times 0.9V_8 = 1.8V_8 \)，该总容积流量输送到第一工作腔 7 中。然而，由于第二工作管路 10 与进给压力管路 34 通过冲洗阀 45 相连，所以为了补偿油量，所需的容积流量 \((0.1 \times V_8) \) 的差值可以转移到进给装置 31 中。进给装置 31 可以表示的方式与通常用作液压流体储存器的油罐容积 18 相连。为此，第一连接管路 28 经由补偿管路 52 与吸入管路 17 相连。在补偿管路 52 中，设置有沿吸入管路 17 的方向打开的单向阀 53。

液压泵 11、12 的总输送量与第二液压泵 12 的输送量之比不同于第一活塞表面 4 与第二活塞表面 5 的面积比。容积流量的合成差值经由排液阀转移，该排液阀在所示实施例中设置为冲洗阀 45。然而，沿相反方向输送造成由第一液压泵 11 和第二液压泵 12 从第一工作腔 7 吸出的液压流体比流入第二工作腔 8 的容积流量小很多。在该种情况中，利用进给泵 32 和打开的第一单向阀 39，液压流体供应到第一液压泵 11 和第二液压泵 12 的当前吸入侧。

通常冲洗阀设置在闭合液压回路中，以抽出来自回路的特定液压流体。该抽出的液压流体由通过进给装置 31 供应的液压流体所替代。该抽出液压流体在再次供应到回路中之前被冷却。由于冲洗阀 45，传导较低压力的工作管路 9 或 10 与进给装置 31 相连。在所示实施例中，冲洗阀 45 为液压致动的 3/3 通阀。
使用冲洗阀 45 作为排液阀允许任意液压缸 2 的连接。特别由于冲洗阀 45 的对称性，可通过任意液压缸 2 操作液压泵单元 30。这样，第一活塞表面 4 与第二活塞表面 5 之比也可以是例如 2.2:1。在这种情况下，当致动静液压驱动机构 1 时，液压流体的抽出和/或供应反向。因此，如果液压流体通过第一液压泵 11 和第二液压泵 12 输送到第一工作腔 7 中，那么一定量的液压流体另外通过进给泵 32 以面积比 2.2:1 输送到第二工作管路 10 中。然而，在输送方向相反的情况下，液压流体通过冲洗阀 45 从第一工作压力管路 9 传送到进给装置 31 中，并最终传送到罐容积 18 中。因此，通过使用冲洗阀 45 及其与第一工作管路 9 和第二工作管路 10 的对称连接，可以使用任意液压缸 2 可以连接的单一液压泵单元 30。

在图 2 中显示根据本发明的静液压驱动机构 1' 的第二实施例。与第一实施例的元件一致的组件设置为相同的附图编号，从而可以省略进一步的详细描述。与图 1 的第一实施例相比，在第一工作管路 9 和第二工作管路 10 中，各设置一个载荷保持阀 55、56。第一载荷保持阀 55 设置在第一工作管路 9 中。相应地，第二载荷保持阀 56 设置在第二工作管路 10 中。两个载荷保持阀 55、56 结构相同。第一载荷保持阀 55 通过第一预拉弹簧保持在其初始位置。在该第一载荷保持阀 55 的所述初始位置，形成可沿一个方向通过的第一工作管路 9 的连接。这通过在其初始位置的第一载荷保持阀 55 的单向阀功能实现。然而，如果第一载荷保持阀 55 移动到其第二切换位置，可以实现可沿相反方向通过的连接。

所述单向阀在第一载荷保持阀 55 的初始位置向第一工作腔 7 的方向打开，并通过从第一工作腔 7 导出的容积流量关闭。第一载荷保持阀 55 也是压力补偿型的，第二载荷保持阀 56 也是如此，以使载荷保持阀 55、56 相反于第一和/或第二预拉弹簧 57、58 的力进行调节。为此，在第一工作腔 7 和/或第二工作腔 8 上主导的工作压力分别沿与第一和/或第二预拉弹簧 57、58 相同的方向和沿第一和/或第二载荷保持阀 55、56 相反的方向作用。然而，受沿第一载荷保持阀 55 和/或第二载荷保持阀 56 的相反方向的压力作用的
表面不同，从而可将载荷保持阀 55、56 轻微调节到它们各自的第二切换位置。为了供应第一工作管路 9 的工作压力，设置有第一补偿管路 59’、59”。

相应地，在第二载荷保持阀 56 上设置有第二补偿管路 60’、60”。

为了将第一载荷保持阀 55 从其相反于第一预拉弹簧 57 的力的初始位置移动到其第二切换位置，设置有第一控制管路 61。该第一控制管路 61 将第一载荷保持阀 55 与第一致动压力管路 26 相连。采用相同方式，第二致动压力管路 27 经由第二控制管路 62 与第二载荷保持阀 56 相连。

在所示实施例中，两个载荷保持阀 55、56 通过液压致动。然而，也可以在可替换实施例中电子致动载荷保持阀。因此，根据致动压力调节阀 25 的启动，采用适当的控制信号使其启动。

虽然在图 1 的第一实施例中，第一导出管路 46 和第二导出管路 47 相对于朝向液压缸 2 部分上的第一压力控制阀 43 和第二压力控制阀 44 而与第一工作管路 9 和/或第二工作管路 10 相连，但在根据图 2 的实施例中进行相反设置。来自液压缸 2 的第二连接管路 41、第一导出管路 46 和第一进给管路 37 依次与第一工作管路 9 相连。因此，第一载荷保持阀 55 设置在第一导出管路 46 与第二连接管路 41 的连接点之间。第二工作管路 10 的设置与此一致。

由于第二、第三连接管路 41、42 经由进给压力管路部分 34’ 与进给压力管路 34 相连，且第一连接管路 28 与进给压力管路 34 相连，所以还需要考虑改变的结构。

由于在第一工作管路 9 和/或第二工作管路 10 中设置有第一载荷保持阀 55 和第二载荷保持阀 56，可以将工作活塞 3 液压地夹紧在任意位置，从而防止任何不希望的移动。在第一载荷保持阀 55 和第二载荷保持阀 56 的初始位置，由于设置在载荷保持阀 55、56 中的单向阀，液压流体不可能从第一工作管路 7 和/或第二工作管路 8 漏出。一旦致动活塞 22 返回到其初始位置，致动压力管路 23、24 释放，不足的控制压力经由第一控制管路 61 和第二控制管路 62 施加在第一载荷保持阀 55 和第二载荷保持阀 56 上，以使各载荷保持
阀 55 和/或 56 移动到其打开位置。然而，如果调节装置 20 的致动压力腔受到致动压力的作用，则第一载荷保持阀 55 在第一致动压力腔 23 经由第一控制管路 61 作用时移到其第二切换位置，并且液压流体可从第一工作腔 7 中流出。如果调节装置 20 沿相反方向作用，以形成相反的输送方向，第一载荷保持阀 55 在第一预拉弹簧 57 的力的作用下再次返回其初始位置。同时，第二载荷保持阀 56 打开，使液压流体从第二工作腔 8 流出到第二工作管路 10 的流动路径打开。

在仅单侧使用的情况下，例如载荷的液压提升，其中在稳定状态仅预期从两个工作腔 7、8 中的一个流出，还可在适当的工作管路 9、10 中仅设置一个载荷保持阀 55 或 56。

基于图 2 的第二实施例，根据图 3 的实施例被改进为：第一液压泵 11 的吸入管路 17 与作为液压流体贮存器的液压蓄能器 63 相连。在液压蓄能器 63 与第一液压泵 11 之间的吸入管路 17 中，优选设置单向阀 64。单向阀 64 经由第三补偿管路 65’、65”依次是压力补偿的。单向阀 64 的启动经由第二控制管路 62 分出的第三控制管路 66 而发生。在液压流体向第一工作腔 7 的方向输送的过程中，单向阀 64 移动到其打开位置。在可替换实施例中，单向阀 64 也可以电子启动，两个载荷保持阀 55、56 也是如此。

使用设计为例如液压膜蓄能器的液压蓄能器 63 具有的优点是：当液压流体从第一工作腔 7 向第二工作腔 8 的方向输送时，不仅第二液压泵 12 不得不抵抗反向压力运行，而且由于液压蓄能器 63，第一液压泵 11 也不得不向与压力相反的方向输送液压流体。这改善了对于第一液压泵 11 和第二液压泵 12 的载荷的均匀性。另外，随着液压流体从第一工作腔 7 移出，例如当降低载荷时，在第一液压蓄能器 63 中可以以压能形式实现部分被释放能量的储存。随着输送沿相反方向进行，所述压能释放，以使第一液压泵 11 仅须产生减小的压差。

基于图 3 的实施例，在图 4 中设置有第二液压蓄能器 67。第一连接管路 28 与第二液压蓄能器 67 相连。第二液压蓄能器 67 用于减小进给装置 31
中的压力波动，这种压力波动特别是可在驱动机构低速旋转时发生，因为此时由进给泵 32 输出的液压流体的量与驱动机构的旋转速度成正比。

本发明并不限于所示实施例。也可以结合不同实施例中所示的各优选特征。