(54) 发明名称
一种安装在防弹玻璃上的射击孔机构

(57) 摘要
本发明公开了一种安装在防弹玻璃上的射击孔机构，其特征在于：盖板，外安装筒，内安装筒，手柄，弹簧，限位块，衬套和橡胶垫。所述盖板包括孔盖和连接杆；所述手柄包括手柄座和手柄杆。本发明的安装在防弹玻璃上的射击孔机构，针对目前大部分装防弹玻璃的装甲车，防弹玻璃上无射击孔的现象。在防弹玻璃上设置了一种射击孔结构；在射击孔上设置限位机构，以保证车辆在遇到地雷袭击时射击孔盖不会自动弹开，保障车内战斗人员的生命安全；使用弹簧压紧结构，整个操作更加便捷；使用橡胶垫，有效避免与防弹玻璃的刚性接触，延长使用寿命。
1. 一种安装在防弹玻璃上的射击孔机构，其特征在于：包括盖板、外安装筒、内安装筒、手柄、弹簧、限位块、衬套和橡胶垫；所述盖板包括孔盖和连接杆；所述孔盖与连接杆垂直固定连接，所述外安装筒由第一中空柱体和第二中空柱体一体成型，所述内安装筒由第三中空柱体和第四中空柱体一体成型，所述内安装筒和外安装筒上设置大通孔和小通孔；所述孔盖盖住大通孔，连接杆安装在小通孔内；所述内安装筒和外安装筒同中心轴可拆卸连接；所述弹簧套在连接杆上且与手柄一端可拆卸连接；所述手柄包括手柄座和手柄杆，所述手柄座和手柄杆垂直固定连接；所述限位块与衬套搭套使用，搭接到弹簧上；所述橡胶垫设置在内安装筒和外安装筒的外表面。

2. 根据权利要求1所述的安装在防弹玻璃上的射击孔机构，其特征在于：所述连接杆安装小通孔内且长度大于小通孔长度。

3. 根据权利要求1所述的安装在防弹玻璃上的射击孔机构，其特征在于：所述孔盖外形契合第一中空柱体凹陷处，盖合紧密，直径为4～8cm，厚度为4.2～8mm，孔盖使用PvO-500防弹钢板。

4. 根据权利要求1所述的安装在防弹玻璃上的射击孔机构，其特征在于：所述弹簧的总圈数8.5～14.5，有效圈数7.5～13.5，螺距3～5mm，弹簧钢丝直径1.6～1.8mm，弹簧中径Φ11～14mm，弹簧使用65Mn。

5. 根据权利要求1所述的安装在防弹玻璃上的射击孔机构，其特征在于：所述第一中空柱体和第四中空柱体的相对面之间的距离为45～65mm，中空柱体的材料使用铝棒2A12。
一种安装在防弹玻璃上的射击孔机构

技术领域
[0001]本发明涉及一种安装在防弹玻璃上的射击孔机构。

背景技术
[0002]目前装甲车用射击孔大部分都是安装在车身装甲板上，射击时观瞄视野小。由于
市场发展需要，客车对车内舒适环境提出了更高的要求，需要车内有良好的采光，所以现代
装甲车车身主体上设置透光性好的防弹玻璃也成了发展主流。用于防弹玻璃的使用，占据
了传统射击孔的安装位置。为了满足客车射击时能够做出快速反应且观瞄视野宽阔，在防
弹玻璃上设置射击孔机构是一种很好的解决方案。

发明内容
[0003]（一）要解决的技术问题
[0004]为解决上述问题，本发明提出了一种安装在防弹玻璃上的射击孔机构。
[0005]（二）技术方案
[0006]本发明的安装在防弹玻璃上的射击孔机构，其特征在于：包括盖板、外安装筒、内
安装筒、手柄、弹簧、限位块、套筒和橡胶垫；所述盖板包括盖板和连接杆；所述孔盖与连接
杆垂直固定连接；所述外安装筒由第一中空柱体和第二中空柱体一体成形；所述内安装筒
由第三中空柱体和第四中空柱体一体成形；所述内安装筒和外安装筒上设置大通孔和小通
孔；所述孔盖盖住大通孔，连接杆安装在小通孔内；所述内安装筒和外安装筒同中心轴可
拆卸连接；所述弹簧套在连接杆上且与手柄一端可拆卸连接；所述手柄包括手柄座和手柄
杆；所述手柄座和手柄杆垂直固定连接；所述限位块与套筒搭配套使用，搭接到弹簧上；所述
橡胶垫设置在内安装筒和外安装筒的外表面。
[0007]进一步地，所述连接杆安装小通孔内且长度大于小通孔长度。
[0008]进一步地，所述孔盖外形合第一中空柱体凹陷处，盖合紧密，直径为 4～8cm，厚
度为 4.2～8mm，孔盖使用 PRO-500 防弹钢板。
[0009]进一步地，所述弹簧的总圈数 8.5～14.5，有效圈数 7.5～13.5，螺距 3～5mm，弹
簧钢丝直径 1.6～1.8mm，弹簧中径 φ11～14mm，弹簧使用 65Mn。
[0010]进一步地，所述第一中空柱体和第四中空柱体的向对面之间的距离为 45～65mm，
中空柱体的材料使用铝棒 2A12。
[0011]（三）有益效果
[0012]本发明的安装在防弹玻璃上的射击孔机构，针对目前大部分装防弹玻璃的装甲
车，防弹玻璃上无射击孔的现象，在防弹玻璃上设置了一种射击孔机构；在射击孔上设置限
位机构，以保证车辆在遇到地雷袭击时射击孔盖不会自动弹开，保障车内战斗人员的生命
安全；使用弹簧压紧结构，整个操作更加便捷；使用橡胶垫，有效避免与防弹玻璃的刚性接
触，延长使用寿命。
附图说明
[0013] 图 1 是本发明的结构示意图。
[0014] 图 2 是外安装筒的纵剖面图和横剖面图。
[0015] 图 3 是内安装筒的纵剖面图和横剖面图。
[0016] 图 4 是盖板的纵剖面图和横剖面图。
80- 橡胶垫；90- 防弹玻璃。

具体实施方式
[0018] 如图 1 所示的一种安装在防弹玻璃上的射击孔机构，包括盖板 10、外安装筒 20、内安装筒 30、手柄 40、弹簧 50、限位块 60、衬套 70 和橡胶垫 80；所述盖板 10 包括孔盖 11 和连接杆 12；所述孔盖 11 与连接杆 12 垂直固定连接；所述外安装筒 20 由第一中空柱体 21 和第二中空柱体 22 一体成型；所述内安装筒 30 由第三中空柱体 31 和第四中空柱体 32 一体成型；所述内安装筒 20 和外安装筒 30 上设置大通孔 11a 和小通孔 12a；所述孔盖 11 盖住大通孔 11a，连接杆 12 安装在小通孔 12a 内；所述内安装筒 30 和外安装筒 20 同中心轴可拆卸连接；所述弹簧 50 套在连接杆 12 上且与手柄 40 一端可拆卸连接；所述手柄 40 包括手柄座 41 和手柄杆 42；所述手柄座 41 和手柄杆 41 垂直固定连接；所述限位块 60 与衬套 70 搭配使用，搭接到弹簧 50 上；所述橡胶垫 80 设置在内安装筒 30 和外安装筒 20 的外表面上。
[0019] 所述连接杆 12 安装小通孔 12a 内且长度大于小通孔 12a 长度。
[0020] 所述孔盖 11 外形契合第一中空柱体凹陷处 23，盖合紧密，直径为 4～8cm，厚度为 4.2～8mm，孔盖 11 使用 PRO-500 防弹钢网。
[0021] 所述弹簧 50 的总圈数 8.5～14.5，有效圈数 7.5～13.5，螺距 3～5mm，弹簧 50 钢丝直径 1.6～1.8mm，弹簧中径 φ11～14mm，弹簧 50 使用 65Mn。
[0022] 所述第一中空柱体 21 和第四中空柱体 32 的向对面之间的距离为 45～65mm，中空柱体的材料使用铝板 2A12。
[0023] 本发明的安装在防弹玻璃上的射击孔机构，针对目前大部分装防弹玻璃的装甲车，防弹玻璃上无射击孔的现象，在防弹玻璃上设置了一种射击孔机构；在射击孔上设置限位机构，以保证车辆在遇到地雷袭击时射击孔盖不会自动弹开，保障车内战斗人员的生命安全；使用弹簧压紧结构，整个操作更加便捷；使用橡胶垫，有效避免与防弹玻璃的刚性接触，延长使用寿命。
[0024] 上面所述的实施例仅仅是对本发明的优选实施方式进行描述，并非对本发明的构思和范围进行限定。在不脱离本发明设计构思的前提下，本领域普通人员对本发明的技术方案做出的各种变型和改进，均应落入到本发明的保护范围，本发明请求保护的技术内容，已经全部记载在权利要求书中。