
(19) United States
US 20090282046A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0282046A1
IsaacsOn et al. (43) Pub. Date: Nov. 12, 2009

(54) TECHNIQUES FOR ACCESSING REMOTE
FILES

(76) Inventors: Scott Alan Isaacson, Woodland
Hills, UT (US); Nithya
Balachandran, Bangalore (IN); R.
Shyamsundar, Bangalore (IN);
Haripriya Srinivasaraghavan,
Bangalore (IN)

Correspondence Address:
SCHWEGMAN, LUNDBERG & WOESSNER/
NOVELL
PO BOX 2938
MINNEAPOLIS, MN 55402 (US)

(21) Appl. No.: 12/115,652

MANTAIN WITIINTIELFS
MAPPINGS FORTIE JAND OTIER
JS ASSOCIATED WITIOTIER

RFSS WITHINA VOLUME LOOKUP
DATABASF (VLDB) INSTEAD OF
MANTAINING MOUNT POINTS
FOR THE RFS AND THE OTHER

RFSS

SEARCH THE VLDB
WITH AN

IDENTIFIERFOR
THE F. THE

IDENTIFIERIS
SUPPLIED WITH THE

R FROM THE C

RESOLVE A PATH TO THE FACROSSA
NETWORKAS A JUNCTION (J)

(22) Filed: May 6, 2008

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/10; 707/E17.032

(57) ABSTRACT

Techniques for accessing remote files are presented. A local
user, via a local client, requests access to a file. A local file
system determines that the file is associated with a junction.
The junction is resolved and an associated remote file system
is contacted by the local file system to acquire results for the
request. The local file system then delivers the results to the
local user via the local client.

RECEIVE AREQUEST (R) TO ACCESS A OO
FILE (F) FROM A CLIENT (C), WHEREIN 110 A1
THE RIS RECEIVEDATALOCAL FILE
SYSTEM (LFS), WHICH PROCESSES ON A
SERVER (S) AND WHICHSUPPORTS THE C

AND MULTIPLE ADDITIONALCS
ASSOCIATED WITHALOCAL

Oh YY INIf Nai C f YN NIT

120

LOOK UP THE JUNCTION TO FIND AREMOTE 130
FILE SYSTEM (RFS). OVER THE NETWORK
THAT HAS THE FAND THAT IS ACCESSIBLE

VIA THE PATH

CONTACT TIE RFS OVERTIENETWORK 140

PROCESS THELFSASA
FLEXEBLE USER SPACE
FILE SYSTEM TIAT
LOOKS FOR AND
DISCOVERS TIEJ DFLIVER THE RESULTS TO THE C

WITH THER FOR ACCESS TO THEF

ACQUIRE RESULTS ASSOCIATED WITH THE 150
RTO ACCESS THE FFROM THE RFS

160

SUBSEQUENTLY DETECT ACIIANGE IN TIIE 170
PATI FORTIEF AND UPDATE AMAPPING

FOR THE J TO REFLECT THE CHANGE WITHIN

RECOGNIZE THE JASA
DISTRIBUTEDFILE SYSTEM

(DFS) J

TIELFS

USE ADDFFERENT PROTOCOL
FROM THAT WHICH WAS USED BY
THE CTO MAKETHER WHEN

CONTACTING THE RFS

141

Patent Application Publication Nov. 12, 2009 Sheet 1 of 3 US 2009/0282046 A1

MANTAIN WITHIN THE LFS RECEIVE AREQUEST (R) TO ACCESS A 100
MAPPINGS FORTIE JAND OTIER FILE (F) FROM A CLIENT (C), WHEREIN 11.0 A1
JS ASSOCATED WITHOTHER THE RIS RECEIVEDATALOCAL FILE

RFSS WITHINA VOLUME LOOKUP SYSTEM (LFS), WHICH PROCESSES ON A
DATABASE (VLDB) INSTEAD OF SERVER (S) AND WHICHSUPPORTS THE C
MANTAINING MOUNT POINTS AND MULTIPLE ADDITIONAL CS
FOR THE RFS AND THE OTHER ASSOCIATED WITH A LOCAL

RFSS off NT NT is NT NT

120
RESOLVE A PATH TO THE FACROSSA

NETWORKAS A JUNCTION (J)

SEARCH THE VLDB
WITH AN LOOK UP THE UNCTION TO FIND AREMOTE 130

IDENTFER FOR FILE SYSTEM (RFS). OVERTIENETWORK
THE F, THE THAT HAS THE FAND THAT IS ACCESSIBLE

IDENTIFIERIS VIA THE PATH
SUPPLIED WITH THE

R FROM THE C
CONTACT THE RFS OVER THE NETWORK 140

WITH THER FOR ACCESS TO THE F

PROCESS THE LFSASA ACQUIRE RESULTS ASSOCIATED WITH THE 150
FLEXBLE USER SPACE RTO ACCESS THE FFROM THE RFS
FILE SYSTEM THAT
LOOKS FOR AND

160 DISCOVERS THE J DELIVER THE RESULTS TO THE C

SUBSEQUENTLY DETECT A CHANGE IN THE 170
PATH FOR THE FAND UPDATE AMAPPING

FOR THE J TO REFLECT THE CHANGE WITHIN

RECOGNIZE THE JASA THE LFS
DISTRIBUTED FILE SYSTEM

(DFS) J

USEA DIFFERENT PROTOCOL
FROM THAT WHICH WAS USED BY
THE CTO MAKE THER WHEN

CONTACTING THE RFS

141

FIG. 1

Patent Application Publication Nov. 12, 2009 Sheet 2 of 3 US 2009/0282046 A1

221 SERVICE FILE REQUESTS (RS) FROM 200
MULTIPLE CLIENTS (CS) ASSOCIATED 210 1
WITH MULTIPLE USERS FROMA SERVER

IDENTIFIER FOR THE RFSANDA ASSOCATER WITALOCAL
PATH WITHINAREMOTE PROCESSING ENVIRONMENT (LPE)

PROCESSING ENVIRONMENT (RPE) 220
OF TE RFS TO ACCESS TIE DFTECT WHEN A PARTICULAR RIS

PARTICULARF ASSOCATED WITHADISTRIBUTEDFILE
SYSTEM (DFS) JUNCTION (J) FOR A REMOTE

FILE SYSTEM (RFS). THAT MANAGES A
PARTICULAR FILE (PF)

RECOGNIZE THE DFS JASAN

SEARCA VOLUME

LOOKEDATABASE (VLPB) INTERACT WITIITIERFS ON BEILALF OFA
WITHIN THE LPE WITH AN PARTICULAR USER ASSOCIATED WITH 230

IDENTIFIER FOR THE THE PF TO PROCESS THE PARTICULAR R
PARTICULAR F TO
RFSOLVE THF DFSJ

DELIVER RESULTS FROM INTERACTING
WITITIE RFS BACK TO APARTICULARC
ASSOCATED WITITIE PARTICULAR USER 240

UPDATE THE VLDB WHENA
CHANGE TO APARTICULAR
DFS J MAPPING IS NOTED,
AND THE CHANGE IS

IMMEDIATELY AVAILABLE
TO EACH OF THE USERS INTERACT WITIITIERFSVLA
AND EACH OF THE CS COMMUNICATIONS THAT ARE

WITHIN THE LPE TRANSPARENT AND UNKNOWN TO THE
PARTICULAR USER AND A PARTICULARC
ASSOCIATED WITH THE PARTICULAR USER

RECOGNIZE THAT THE RFS
IS NOT LOCALLY MOUNTED

WITHIN THELPE

USEASERVER-TO-SERVER
COMMUNICATION PROTOCOL TO INTERACT

224 WITH THE RFS

FIG 2

Patent Application Publication Nov. 12, 2009 Sheet 3 of 3 US 2009/0282046 A1

300

301 302

LOCAL FILE VOLUME
SYSTEM LOOKUP
SERVICE DATABASE

FIG 3

400

LOCAL FILE SYSTEM
SERVICE

REMOTE FILE SYSTEM
SERVICE

FIG. 4

401

402

US 2009/0282046 A1

TECHNIQUES FOR ACCESSING REMOTE
FILES

BACKGROUND

0001. Many modern day operating systems (OS’s) have
file systems that include the ability to mount a remote file
system at a mount point on the local file system for purposes
of giving the impression of a single file system that spans both
a local partition and a remote file system. The remote file
system might be another partition on the local disk or it might
be a remote file system that is accessed by a protocol such as
Netware Core Protocol (NCP), Server Message Block Proto
col (SMB)/Common Internet File System Protocol (CIFS), or
Network File System Protocol (NFS).
0002 Any remotely mounted file system adds significant
value and works well when there are no changes in disk
hardware or servers that support the remote file systems:
however, when there are changes, the amount and scope of the
reconfiguration management steps are significant and grow
exponentially with the number of nodes and mount points
needed.
0003 For example, consider a server'A' that has a remote
mount point to server “B” The mount point on server A
includes the identity of server Baswell a some sort of location
information for B, called “Loc(B). If Loc(B) ever changes,
then the mount point has to be updated. Take for example, if
Loc(B) is the IPAddress of Band B's address is changed, the
mount point on A must be updated. If Loc(B) is the Domain
Name Service (DNS) name of B, then B can change its
address because the DNS server will then serve up the new
address of Band in this case the mount point on A need not be
updated. If the location of the file system on B moves, then the
mount point on A must be updated. If the file system itself
moves from B to C, then the mount point on A must be
updated. So, in many cases, if the data on or the location of or
even the identity of Bever changes, then the mount points on
A must be updated.
0004. Now consider 100 servers, A1 through A100, which

all have mount points to B. Whenever there is a change to the
data on B or the location of B then every mount point on every
server A1 through A100 must be updated. Obviously, this is
time consuming and inefficient for an enterprise.
0005. Therefore, in most cases, a distributed file system is
a better way to access data from a remote server by using
junctions rather than mount points. A junction is a file, which
includes a globally unique identifier (GUID) that identifies
the location of a storage Volume housing the data associated
with the junction. The GUID's mapping to a specific volume
for the data is referenced as an entry in a database. If the final
location of the data ever changes, no junctions on file systems
need to be updated, only the single entry for that GUID in the
database needs to be updated. One of the benefits and draw
backs of using a distributed file system is that client software
is needed to handle the junction. If the server returns a junc
tion as the result of a request to access a file on the file system,
the client will look up the junction file obtain the GUID and
look in the database and then find out where the file system is
located that hosts the volume of that file and then will “fol
low that link to the server that has the data.
0006 Take the earlier example of servers A and B, but now
there is a junction on A to a file system on B. Client C will ask
for a file on A, but if it reaches the junction. A will return the
junction to the client C. C will then look up the correct
location for the junction in the database (by opening the

Nov. 12, 2009

junction file obtaining the GUID and searching the database
for the location), which in this case is a path to a file on B, and
then will reference the file on B.

0007 Junctions are generally believed to be better than
mount points for several reasons. 1) The data from B never
has to flow through A in order to reach C. If C needs files that
are on A, C talks directly to A. If C finds that files are on B, it
will talk directly to B. 2) The junctions are indirect in that the
actual location of the data for a junction is stored in the
database (via a GUID) rather than on the file system for A. If
changes are made to B or where the data is stored on B, only
the data in the database needs to be changed (the mapping to
the GUID); no changes are needed for any of the junctions on
the file system on A.
0008 Junction resolution will continue to work even if a
Volume is moved between servers. This can be done using a
Volume manager move and split operations. If the entire
server is moved to a different server, the data on the original
target server will need to be moved using the Volume manager
operations to make Sure database will be updated correctly.
(Currently move? split operations require Source and target
Volumes to be within the same processing management con
text.)
0009. Accordingly, a distribute file system adds much
value to conventional remote mounting approaches, but one
potentially limiting drawback of junctions is that there is
client software that is needed on each client to correctly
process the junction and to talk to the database. In other
words, each of the clients in a distribute file system approach
has to be aware of and have software to handlejunctions. This
creates a Support issue for an enterprise, similar to the remote
mount discussion presented above.
0010 Consequently, there is a need for improved tech
niques for accessing remote files.

SUMMARY

0011. In various embodiments, techniques for accessing
remote files are presented. In an embodiment, a method for
accessing a remote file is presented. A request is received for
accessing a file from a client. The request is received at a local
file system, which processes on a server and which Supports
the client and multiple additional clients associated with a
local processing environment. A path is resolved to the file
across a network as a junction. Next, the junction is used for
looking up a remote file system over the network that has the
file and that is accessible via the path. The remote file system
is contacted over the network with the request for access to the
file. Finally, results associated with the request are acquired to
access the file from the remote file system and the results are
delivered to the client.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 is a diagram of a method for accessing a
remote file, according to an example embodiment.
0013 FIG. 2 is a diagram of a method for managing access
to remote files, according to an example embodiment.
0014 FIG. 3 is a diagram of remote file access system,
according to an example embodiment.

US 2009/0282046 A1

0015 FIG. 4 is a diagram of another remote file access
system, according to an example embodiment.

DETAILED DESCRIPTION

0016. A “resource' includes a user, content, a processing
device, a node, a service, an application, a system, a gateway,
a directory, a data store, a World-WideWeb (WWW) site, an
end-user, groups of users, combinations of these things, etc.
The terms “service.” “module.” “software.” and “application'
may be used interchangeably herein and refer to a type of
software resource that includes instructions, which when
executed by a machine performs operations that change the
state of the machine and that may produce output.
0017. A “client’ or “client workstation is machine (com
puter, processing device, etc.) that a user uses to access a
network. The client includes a processing environment. As
used herein the terms "client,” “desktop,” “client machine.”
“client workstation, and “workstation' may be used inter
changeably and synonymously.
0.018. A “server' is a machine that the client interacts with
over a network, such as the Internet. The user, via its client,
attempts to establish a connection with the server or to a
resource of the server.
0.019 Various embodiments of this invention can be
implemented in existing network architectures, file systems,
browsers, proxies, agents, storage systems, security systems,
data centers, and/or communication devices. For example, in
Some embodiments, the techniques presented herein are
implemented in whole or in part in the Novell(R) network,
proxy server products, email products, operating system
products, data center products, and/or directory services
products distributed by Novell(R), Inc., of Provo, Utah.
0020. Of course, the embodiments of the invention can be
implemented in a variety of architectural platforms, file sys
tems, operating and server systems, devices, systems, or
applications. Any particular architectural layout or imple
mentation presented herein is provided for purposes of illus
tration and comprehension only and is not intended to limit
aspects of the invention.
0021. It is within this context, that various embodiments of
the invention are now presented with reference to the FIGS.
1-4.
0022 FIG. 1 is a diagram of a method 100 for accessing a
remote file, according to an example embodiment. The
method 100 (hereinafter “local file system service') is imple
mented as instructions (within a computer-readable storage
medium) that process on a server machine (server) over a
network and is accessed client machines (clients) of the
server. The network may be wired, wireless, or a combination
of wired and wireless.
0023. At 110, the local file system service receives a
request to access a file from a client. A user or automated
application makes the request for access via a client. The
request is received and processed at a local file system. The
local file system processes on the server and Supports multiple
additional clients and their users/applications, which are
associated with a local processing environment.
0024. In other words, clients (via users or automated appli
cations) make requests for files that are processed by the local
file system at the server and in some cases handled by the local
file system service. The local file system service handles
requests when any file being requested is associated with a
remote file system that is remote from the local processing
environment over the network, such as over the Internet.

Nov. 12, 2009

0025. At 120, the local file system service resolves a path
to the file across a network as a junction. That is, the path or
identifier supplied with the request for access to the file is
used to identify that the file being requested is in a remote
processing environment from the local file system service and
is being managed by a remote file system. The junction pro
vides the ability to resolve the path to a network specific
location. The junction is itself a file that includes a GUID for
a specific volume of the file being requested, the GUID is
mapped to a specific path on the remote file system, Such as
via a mapping within a database.
0026. According to an embodiment, at 121, the local file
system service maintains the junction and other junctions,
which are associated with other remote file systems and other
remote processing environments within a Volume lookup
database. That is, the GUID's for remote volumes of remote
files and their corresponding mappings are retained in the
Volume lookup database. This is done instead of maintaining
and managing mount points for the remote file system and any
other remote file systems. Keeping GUID mappings for vol
umes of files associated with junctions within a Volume
lookup database allows for easier maintenance and permits
changes to be made to locations of remote file systems and
files, such that the dependent clients can each effectuate the
changes via a single update to the Volume lookup database
entry. The actual Volume lookup database can reside locally to
the local file system service or can be accessed remotely on a
remote server by the local file system service.
0027. Moreover, unlike conventional Distribute File Ser
Vice (DFS) junction processing, the management and usage
of the junctions with the techniques discussed herein occur in
a centralized location (at the server and with the local file
system service or with the local file system) as opposed to the
decentralized approach used in convention DFS junction pro
cessing. In the conventional approach each client includes
Software to handle and manage DFS junction lookup and
usage, this means any changes in this software has to be
updated to all the clients. With the approaches discussed
herein, there is a centralized and file system approach to
handling and processing DFS junctions.
0028 Continuing with the embodiment discussed at 121,
and at 122, the local file system service is enabled for search
ing the volume database with an identifier for the file being
requested. The file identifier is supplied with the original
request, which was received from the client. In response to the
file identifier, the Volume database returns a mapping for the
DFSjunction (a file that includes a GUID for a remote volume
where the file identifier can be found).
0029. In another variation, at 123, the local file system
service processes the local file system as a flexible user space
file system (FUSE). The FUSE looks for and discovers the
junction when needed. Again, in some cases, at 124, the local
file system service recognizes the junction as a DFS junction.
0030. It is noted that in some cases (although not discussed
above or with reference to FIG. 1), the requests may be for
files that are not associated with a remote file system. In Such
cases, normal local file system processing can be used as there
is no need for any junction resolution in those cases. The local
file system service recognizes and assists in processing in the
manners discussed herein and above when the file access
requests are for files that are remote from the local processing
environment and remote from the local file system.
0031. At 130, the local file system service looks up the
junction (via a junction file to obtain a GUID for the desired

US 2009/0282046 A1

volume of the file the GUID is then mapped to the remote
file system via the path) to find a remote file system over the
network that has the file and that is accessible via the path.
0032. At 140, the local file system service contacts the
remote file system over the network with the request for
access to the file. So, the local file system service rather than
the client directly interacts with the remote file system that
houses the file identified by the junction resolution and the
path.
0033 According to an embodiment, at 141, the local file
system service uses a different protocol from that which was
used by the client to make the request to the local file system.
In other words, the communication protocol used between the
client and the local file system service can be and in some
cases is different from the communication protocol used by
the local file system service to communicate with the remote
file system.
0034. At 150, the local file system service acquires results
associated with the request to access the file from the remote
file system. So, any data or confirmations that are associated
with the request for accessing the file are acquired by the local
file system service from the remote file system.
0035) Next, at 160, the local file system service delivers
the results to the original requesting user or automated appli
cation via its client.
0036. In this manner, junction processing is achieved in a
centralized fashion within the user space of multiple clients
that comprise a local processing environment. Convention
ally, junction processing is handled via each client of the local
processing environment in a decentralized fashion. With the
approaches discussed herein, the junction management and
file delivery are handled via the local file system service or
local file system.
0037. In an embodiment, at 170, the local file system ser
Vice Subsequently detects a change in the path for the file and
updates the junction to reflect the change within the local file
system when a Volume for the path is detected as having been
changed. In other words, as file locations change from
remoter server to new remote server (volume to volume) or
from file path location to new file path structure (different
locations within a same Volume), the corresponding junction
is updated once for all the clients of the local processing
environment in the local file system. Again, this can be
achieved by changing the GUID mappings and not the actual
GUID's included injunction files, it is the mappings that are
updated; so technically the junctions themselves remain
unchanged.
0038 Consider the following illustrating to highlight the
processing of the local file system service.
0039. A client (can be local to the local processing envi
ronment or in some cases remote from the local processing
environment) via Some client-server access protocol makes a
read/write request for some file path, say: “/D1/D2/F2’ or
“/D1/F1. The local file system service on the file system
server resolves the paths supplied to a junction, such as “J1”
but does not return this to the client for further processing
(which would be the case in the conventional situations). The
local file system service is implemented in the user space,
such as FUSE. In this example, the local file system service
looks for J1 in a volume lookup database (VLDB) by opening
J1 and obtaining a GUID that is searched for in the VLDB.
The VLDB then returns the location of the junction, which in
the example case being presented is “B:/D2. The local file
system service then directly talks with B looking for “/D2/

Nov. 12, 2009

F2.” B returns the data or result of the file request back to the
file system service. The local file system service then returns
the data or result of the file request back to the client. So, the
client was totally unaware of and did not have to be concerned
with any junction processing and yet the client still benefits
from the junction processing done by the local file system
service from the server and on behalf of the client.

0040 Again it is appreciated that the local file system
service provides a server-based approach to junction process
ing. So, special client-side processing to handle junctions is
not needed. In this manner, even clients not enabled for junc
tion processing can be integrated and use the local file system
service and realize the full benefits of junctions. This also
provides for an improved remotely mounted file system expe
rience for LINUX and UNIX users than the current kernel
based mount point functionality. Still further the techniques
presented herein continue to leverage the fact that server to
server communication can in fact use different protocols than
the client access protocols to realize access of remote file
systems.
0041 Moreover, the techniques allow for data to be moved
or changed from one remote server to another or to a different
location on a first server without requiring O(NxM) updates
to all of the mount points where N is the number of servers
with M mount points. The number of updates needed with the
techniques presented herein is O(V) where VCN or M and V
is the number of junctions on the VLDB. So, users have the
same file system experience as could be realized with kernel
changes but only use changes occurring to user-space code
(server file system). Also, better interoperability with remote
file systems is permitted along with their various access pro
tocols without requiring client libraries to be implemented
and deployed on the various clients that might be accessing
the file data.

0042 FIG. 2 is a diagram of a method 200 for managing
access to remote files, according to an example embodiment.
The method 200 (herein after “local file system') is imple
mented as instructions (within a computer-readable storage
medium) that process on a server over a network and is
accessed by clients of the network. The network may be
wired, wireless, or a combination of wired and wireless.
0043. The local file system presents another perspective of
the local file system service presented in detail with reference
to the method 100 of the FIG.1. In some cases, the local file
system provides an enhanced perspective to the method 100
of the FIG. 1.

0044. At 210, the local file system services file requests
from multiple clients associated with multiple users from a
server. The server is associated with a local processing envi
ronment. It is noted that clients can be remote and external
from the local processing environment and become logically
associated with and apart of the local processing environment
during a login or authentication process. So, although it is
stated that the clients are within the local processing environ
ment this does not just mean in all cases that the clients are
within any predefined geographic distance to the local file
system and the server. In fact, membership to the local pro
cessing environment can be logical and not tied to any geo
graphic distance or presence.
0045. At 220, the local file system detects when a particu
lar request is associated with a distributed file service (DFS)
junction from a remote file system that manages the particular
file being requested for a particular request.

US 2009/0282046 A1

0046. In an embodiment, at 221, the local file system rec
ognizes the DFS junction as an identifier (GUID) for a vol
ume location (obtained via a mapping in a database) to a
remote file system and a path within a remote processing
environment of the remote file system for purposes of access
ing the particular file.
0047. In another case, at 222, the local file system searches
a volume lookup database (VLDB) within the local process
ing environment with an identifier for the particular file
(GUID) to resolve and identify the DFS junction. In some
cases, the VLDB is remotely accessible to the local process
ing environment and is dynamically consulted over the net
work.

0048 Continuing with the embodiment at 222, and at 223,
the local file system notes that the VLDB is updated when a
change to a particular DFS junction is detected (location with
a GUID associated with a junction is changed). Actually, the
server, which is associated with a changed or moved Volume,
updates and informs the VLDB of the change. The change is
immediately available to each of the users and to each of the
clients within the local processing environment.
0049. In still another embodiment, at 224, the local file
system recognizes that the remote file system is not locally
mounted within the local processing environment. This trig
gers the discovery process for acquiring the junction (to get
the GUID) and identifying the remote file system (locating
the GUID mapping to the remote file system (remote vol
ume)).
0050. It is noted, that in some cases the remote file system

is a completely different file system from that which is asso
ciated with the local file system. In other cases, the type offile
system associated with the remote file system is the same type
as that which is associated with the local file system.
0051. At 230, the local file system interacts with the
remote file system on behalf of a particular user associated
with a particular file to process the particular request.
0052 According to an embodiment, at 231, the local file
system interacts with the remote file system via communica
tions that are transparent and unknown to the particular user
and a particular client, which is associated with the particular
USC.

0053. In some cases, at 232, the local file system uses a
server-to-server communication protocol to interact with the
remote file system. The protocol used to interact with the
clients or the particular client is different.
0054. At 240, the local file system delivers results from
interacting with the remote file system back to a particular
client, which is associated with the particular user that made
the particular request. The particular client may not include
any Software or Support for junction processing and yet the
full benefits of junction processing to access remote files are
realized via the processing associated with the local file sys
tem

0055 FIG.3 is a diagram of remote file access system300,
according to an example embodiment. The remote file access
system 300 is implemented as instructions on or within a
machine-accessible and computer-readable storage medium.
The instructions when executed by machines (computers or
processor-enabled devices) of a network (such as the Internet)
perform, among other things, processing depicted with
respect to the methods 100 and 200 of the FIGS. 1 and 2.
respective. The remote file access system 300 is also opera
tional over a network, and the network may be accessed via a

Nov. 12, 2009

wired connection, a wireless connection, or a combination of
wired and wireless connections.

0056. The remote file access system 300 includes a local
file system service 301 and a volume lookup database 302.
Each of these and their interactions with one another will now
be discussed in turn.

0057 The local file system service 301 is implemented in
a machine-accessible and computer-readable storage
medium and is to process as instructions on a server of the
network. Example processing associated with the local file
system service 301 was discussed in detail above with refer
ence to the methods 100 and 200 of the FIGS. 1 and 2,
respectively.
0058. The local file system service 301 is implemented
within a local file system that processes on the server. Also,
the local file system services multiple users via their clients.
0059. The local file system service 301 resolves file
request to particular remote file systems via searching of the
volume lookup database (VLDB) 302. The VLDB 302 may
be in the same processing environment as the local file system
service 301 or may be in a remote processing environment
that is accessible to the local file system service 301. Also, the
local file system service 301 directly interacts with those
remote file systems to satisfy the file requests on behalf of the
users and their clients.

0060. In an embodiment, the local file system is a flexible
user space (FUSE) file system.
0061 According to an embodiment, the local file system
service 301 uses different communication protocols to com
municate with the remote file systems from that which is
associated with the local file system service 301 when it
communicates with the clients of the users. In other words, a
different communication protocol is used to interact with the
remote file systems from that which is used to interact with
the clients of the local processing environment.
0062. The VLDB302 is implemented in a machine-acces
sible and computer-readable storage medium on the server of
the network and accessible to and managed by the local file
system service 301.
0063. In an embodiment, the VLDB 302 includes map
pings between volume identifiers for files and the remote file
systems. The mappings are represented via DFS junctions
(GUID's) and locations for those DFS junctions.
0064. In a particular situation, when a particular location
for a particular file, which is associated with a particular file
request, is changed, the local file system service 301 updates
a single entry in the VLDB302 to show an updated particular
DFS junction (updated GUID to location mapping within the
VLDB 302).
0065 FIG. 4 is a diagram of another remote file access
system 400, according to an example embodiment. The
remote file access system 400 is implemented as instructions
on or within a machine-accessible and computer-readable
storage medium. The instructions when executed by
machines (computers or processor-enabled devices) of a net
work (Such as the Internet) perform, among other things,
processing depicted with respect to the methods 100 and 200
of the FIGS. 1 and 2, respectively. The remote file access
system 400 is also operational over a network, and the net
work is wired, wireless, or a combination of wired and wire
less. The remote file access system 400 presents another and
in Some cases enhanced perspective of the remote file access
system 300 represented by the FIG.3.

US 2009/0282046 A1

0066. The remote file access system 400 includes a local
file system service 401 and remote file system service 402.
Each of these and their interactions with one another will now
be discussed in turn.

0067. The local file system service 401 is implemented in
a machine-accessible and computer-readable storage
medium and to process on a local server of the network
relative to users and their clients. Although, the users and
clients may be logically a member of the local processing
environment associated with the local server, such as when
they authenticate and log into the local server via a remote
device or site over the network. Example processing associ
ated with the local file system service 401 was presented in
detail above with respect to the methods 100 and 200 and the
system 300 of the FIGS. 1-3, respectively.
0068. The local file system service 401 determines when a

file is requested from a particular client whether that file is
being managed by the remote file system service 402. If this
is the case, then the local file system service 401 directly
communicates with the remote file system service 402 to
acquire results for the requested file. The results are then
delivered by the local file system service 401 to the particular
requesting client. This is done without remote mounting tech
niques and is done via junction control in a centralized and
server based administrative approach.
0069. So, in an embodiment, the local file system service
401 determines an identity for the remote file system service
402 (remove volume) via a DFS junction lookup within a data
store. The data store is being managed locally by the local file
system service 401, although the data store may be remote
from the local file system service 401 the data store itself is
managed locally by the local file system service 401.
0070. In a particular case, the local file system service 401
uses a different communication protocol to communicate
with the remote file system service 402 from that which is
associated with other communications made with the clients
by the local file system service 401.
0071. Thus, the particular client(s) is(are) unaware of the
communication between the local file system service 401 and
the remote file system service 402, which occurs to obtain the
results for the original file access request.
0072 The remote file system service 402 is implemented
in a machine-accessible and computer-readable storage
medium and to process on a remote server of the network
relative to the local server.

0073. In some cases the remote file system service 402 is
of a same type of file system from that which is associated
with the local file system service 401. In other cases, the type
of file system associated with the remote file system service
402 is different from that which is associated with the local
file system service 401.
0074. It is now appreciated how users via their clients can
reap the benefits associated with junctions to access remote
files via remote file systems without having to be configured
or include Software to handle junction processing or to man
age remote mounting. This is done in a centralized fashion
and within the user space of the clients, via a server-based
approach implemented within a local processing environ
ment's file system.
0075. The above description is illustrative, and not restric

tive. Many other embodiments will be apparent to those of
skill in the art upon reviewing the above description. The
scope of embodiments should therefore be determined with

Nov. 12, 2009

reference to the appended claims, along with the full scope of
equivalents to which Such claims are entitled.
(0076. The Abstract is provided to comply with 37 C.F.R.S
1.72(b) and will allow the reader to quickly ascertain the
nature and gist of the technical disclosure. It is submitted with
the understanding that it will not be used to interpret or limit
the scope or meaning of the claims.
0077. In the foregoing description of the embodiments,
various features are grouped together in a single embodiment
for the purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting that the
claimed embodiments have more features than are expressly
recited in each claim. Rather, as the following claims reflect,
inventive Subject matterlies in less than all features of a single
disclosed embodiment. Thus the following claims are hereby
incorporated into the Description of the Embodiments, with
each claim standing on its own as a separate exemplary
embodiment.

1. A machine-implemented method, comprising:
receiving a request to access a file from a client, wherein

the request is received at a local file system, which
processes on a server and which Supports the client and
multiple additional clients associated with a local pro
cessing environment;

resolving a path to the file across a network as a junction;
looking up the junction to find a remote file system over the

network that has the file and that is accessible via the
path;

contacting the remote file system over the network with the
request for access to the file;

acquiring results associated with the request to access the
file from the remote file system; and

delivering the results to the client.
2. The method of claim 1, wherein resolving further

includes maintaining within the local file system a mecha
nism to resolve the junction and other junctions associated
with other remote file systems within a volume lookup data
base instead of maintaining mount points for the remote file
system and the other remote file systems.

3. The method of claim 2, wherein resolving further
includes searching the Volume lookup database with an iden
tifier for the file, wherein the identifier is supplied with the
request from the client.

4. The method of claim 2, wherein resolving further
includes processing the local file system as a flexible user
space file system that looks for and discovers the junction.

5. The method of claim 4, wherein resolving further
includes recognizing the junction as a distributed file service
junction.

6. The method of claim 1, wherein contacting further
includes using a different protocol from that which was used
by the client to make the request when contacting the remote
file system.

7. The method of claim 1 further comprising, subsequently
detecting a change in the path for the file and updating a
mapping associated with the junction to reflect the change
within the local file system.

8. A machine-implemented method, comprising:
servicing file requests from multiple clients associated

with multiple users from a server associated with a local
processing environment;

detecting when a particular request is associated with a
distributed file service (DFS) junction for a remote file
system that manages a particular file;

US 2009/0282046 A1

interacting with the remote file system on behalf of a par
ticular user associated with the particular file to process
the particular request; and

delivering results from interacting with the remote file
system back to a particular client associated with the
particular user.

9. The method of claim 8, wherein detecting further
includes recognizing the DFS junction as an identifier for the
remote file system and a path within a remote processing
environment of the remote file system to access the particular
file.

10. The method of claim 8, wherein detecting further
includes searching a Volume lookup database within the local
processing environment with an identifier for the particular
file to resolve the DFS junction.

11. The method of claim 10 further comprising, updating
the Volume lookup database when a change to a file location
for aparticular DFS junction is noted, and wherein the change
is immediately available to each of the users and each of the
clients within the local processing environment.

12. The method of claim 8, wherein detecting further
includes recognizing that the remote file system is not locally
mounted within the local processing environment.

13. The method of claim 8, wherein interacting further
includes interacting with the remote file system via commu
nications that are transparent and unknown to the particular
user and the particular client associated with the particular
USC.

14. The method of claim 8, wherein interacting further
includes using a server-to-server communication protocol to
interact with the remote file system.

15. A machine-implemented system, comprising:
a local file system service implemented in a machine

accessible and computer-readable storage medium on a
server of a network; and

a Volume lookup database implemented in a machine-ac
cessible and computer-readable storage medium on the
server of the network and accessible to and managed by
the local file system service;

wherein the local file system service is implemented within
a local file system that processes on the server and that
services multiple users via their clients and authenticates
the users, and wherein the local file system service
resolves file requests to particular remote file systems
via searching of the Volume lookup database and
wherein the local file system service further directly
interacts with those remote file systems to satisfy the file
requests on behalf of the users and their clients.

Nov. 12, 2009

16. The system of claim 15, wherein the volume lookup
database includes mappings between Volume identifiers for
files and the remote file systems.

17. The system of claim 16, wherein the mappings are
represented as and used to resolve distributed file service
(DFS) junctions.

18. The system of claim 17, wherein when a particular
location for a particular file associated with a particular file
requests is changed, the local file system service updates a
single entry in the Volume lookup database to show an
updated particular DFS junction via a mapping from a par
ticular volume to the particular file to a new particular loca
tion.

19. The system of claim 15, wherein the local file system is
a flexible user space file system.

20. The system of claim 15, wherein the local file system
service uses different communication protocols to communi
cate with the remote file systems from that which is associated
with the local file system service when it communicates with
the clients of the users.

21. A machine-implemented system, comprising:
a local file system service implemented in a machine

accessible and computer-readable storage medium and
to process on a local server of a network relative to users
and their clients; and

a remote file system service implemented in a machine
accessible and computer-readable storage medium and
to process on a remote server of the network relative to
the local server;

wherein when a file is requested from a particular client,
the local file system service determines that the file is
being managed by the remote file system service and
directly communicates with the remote file system ser
vice to acquire results for the requested file, which the
local file system service delivers to the particular client.

22. The system of claim 21, wherein the local file system
service determines an identity for the remote file system
service via a distributed file service (DFS) junction lookup
within a data store being managed locally by the local file
system service.

23. The system of claim 21, wherein the local file system
service uses a different communication protocol to commu
nicate with the remote file system service from that which is
associated with other communications made with the clients.

24. The system of claim 21, wherein the particular client is
unaware of the communication between the local file system
service and the remote file system service that occurs to
obtain the results.

