(54) 发明名称
基于机顶盒测距防止近距离观看电视的监控系统与方法
(57) 摘要
本发明公开一种基于机顶盒测距防止近距离观看电视的监控系统，该系统包括：机顶盒，整个监控系统的基础，提供物理设备和计算力；红外感应器，采用被动红外，以人体作为红外感应源，用于监控感应范围内是否有观众；触发摄像头的启动；小型摄像头，用于采集图像，并将图像传送给图像处理中心；图像处理中心，应用人脸识别技术和图像测距技术，分析处理摄像头传来的图像；决策中心，根据图像处理中心的分析处理结果和自身计时器，实施相应策略。本发明实施例还公开了一种基于机顶盒测距防止近距离观看电视的方法，能够根据实际情况灵活智能地实施相应的策略，防止观看者近距离长时间观看电视导致视力疲劳甚至视力受损。
1. 一种基于机顶盒测距防止近距离观看电视的监控系统，其特征在于，包括：
 机顶盒，整个监控系统的基础，提供物理设备和计算力；
 红外感应器，采用被动红外，以内热作为红外感应源，用于监控感应范围内是否有观看者，触发摄像头的启动；
 小型摄像头，用于采集图像，并将图像传送给图像处理中心；
 图像处理中心，应用人脸识别技术和图像测距技术，分析处理摄像头传来的图像；
 决策中心，根据图像处理中心的分析处理结果和自身计时器，实施相应策略。

2. 如权利要求1所述的基于机顶盒测距防止近距离观看电视的监控系统，其特征在于，所述红外感应器与小型摄像头均嵌入机顶盒中，不需要在机顶盒或者电视机之外，增加独立的外置设备。

3. 如权利要求1所述的基于机顶盒测距防止近距离观看电视的监控系统，其特征在于，红外感应器是随着机顶盒的启动而启动的，而且一直处于监控状态，而摄像头、图像处理中心和决策中心则是有规律地启动和关闭的。

4. 如权利要求1所述的基于机顶盒测距防止近距离观看电视的监控系统，其特征在于，系统还应用人脸识别技术，对摄像头采集的图像，识别出其中是否有有人存在，并将结果发送给决策中心，作为策略实施的依据。

5. 如权利要求1所述的基于机顶盒测距防止近距离观看电视的监控系统，其特征在于，系统还应用图像测距技术，对摄像头采集的图像进行分析处理，测量图像中的观者与电视机之间的距离，并将结果发送给决策中心，作为策略实施的依据。

6. 如权利要求1所述的基于机顶盒测距防止近距离观看电视的监控系统，其特征在于，系统设计了一个决策中心，作为实施策略的功能模块，根据所述系统的图像处理中心的分析处理结果，结合自身计时器的计时长短，实施相应策略。

7. 一种机顶盒测距防止近距离观看电视的方法，其特征在于，包括：
 红外感应器在监测范围内感应到有观看者的存在，受到触动，触发摄像头；
 监控系统监控到摄像头启动，启动图像处理中心和决策中心，决策中心的计时器开始计时；
 摄像头开始以固定时间频率采集图像；
 图像处理中心接收摄像头图像，进行分析处理；
 决策中心根据图像处理中心的分析处理结果和自身计时器计时结果，实施相应策略。

8. 如权利要求7所述的机顶盒测距防止近距离观看电视的方法，其特征在于，所述方法中当监控系统在设定的时间长度内，没有在电视机周围规定的范围内监测到有观看者时，关闭摄像头、图像处理中心和决策中心。

9. 如权利要求7所述的机顶盒测距防止近距离观看电视的方法，其特征在于，所述方法中图像处理中心应用人脸识别技术和图像测距技术，对于摄像头采集的图像，首先判断是否有观看者存在，如果有，则进一步测量观看者与电视机之间的距离，如果没有，则不使用测距，然后将结果发送给决策中心。

10. 如权利要求7所述的机顶盒测距防止近距离观看电视的方法，其特征在于，所述方法中如果观看者在监控系统的监控范围内，观看电视达到或者超过规定时间，决策中心发出提醒或者强制关闭电视机。
基于机顶盒测距防止近距离观看电视的监控系统与方法

技术领域
[0001] 本发明涉及数字家庭技术领域，具体涉及一种基于机顶盒测距防止近距离观看电视的监控系统与方法。

背景技术
[0002] 随着电视机的普及，看电视已经成为人们日常生活中不可缺少的一部分。然而电视机显像管辐射出的射线，可大量消耗视网膜中的视紫质。如果在光线不好的房间连续看电视时间过长，将很容易导致视力疲劳，使观看电视者视力明显下降。为了减少电视机辐射出的射线对人的眼睛造成的伤害，电视机和人的距离应该是屏幕对角线的 4 ～ 6 倍。
[0003] 绝大部分小孩子都喜欢看电视，但常常会不自觉地把电视机靠近，而且由于缺乏自制力，会长时间近距离观看电视。长时间近距离看电视即小于屏幕对角线 4 倍看电视很容易造成近视，为了保护孩子的视力，家长不得不常常监督自己的孩子，不让他们长时间近距离看电视。
[0004] 机顶盒是一种依托电视终端提供综合信息业务的家电设备。使用户在现有电视与机顶盒上观看数字电视节目，并可通过网络进行交互式数字化娱乐、教育和商业化活动。可以过滤添加好的内容对机顶盒的干扰进行扩展。本发明在机顶盒中嵌入红外感应器与小型摄像头，以应用红外感应技术、人脸识别技术和图像测距技术。
[0005] 正常情况下，人体的体温恒定，并且高于环境温度，会辐射红外线。被动式红外感应器就是以人体作为红外感应源，当有人进入感应范围时，人体辐射出来的红外线会被感应器检测到，红外感应器将接通电路开关，启用负载。
[0006] 人脸识别技术是基于人的脸部特征进行工作的。对输入的图像，采用相关的算法，判断其是否存在人脸。如果存在人脸，则进一步分析人脸位置和面部器官的信息，根据这些信息，可以鉴别人脸的身份。相比较其他生物识别技术而言，人脸识别技术是非接触的，用户不需要和设备直接接触。而且是非强制性的，被识别的人脸图像信息可以自主获取。本发明采用人脸识别判断图像中是否有人脸的存在，以确定触发红外感应器的的确与否，而不是其他红外源。
[0007] 图像的尺寸用像素单位表示，但它与距离的实际尺寸单位毫米之间有线性关系，两者之间的测量比为一个常数，由摄像机镜头等相关物理器件决定。因此应用数字图像处理技术和相关算法分析图像，即可实现测距的目的。图像测距技术是通过分析图像，测量出图像中的对象与摄像头之间距离的技术。本发明应用的一种单图像测距技术——矩不变的离焦测距，仅需要单张图像即可，不需要多个摄像头或多个图像。这种测距技术通过测量图像边缘的模糊半径来实现测距的目的，会有微小的误差，但在本发明中可以忽略。
[0008] 为了防止观看者长时间近距离观看电视，电视机会在开启之后，每隔一定的时间，就在屏幕上显示提示信息；或者在电视机开启一定的时间后，强制关闭电视机，以提醒观看者注意不要长时间近距离观看电视。而电视台则是在每个固定的时间点，发布提示信息提醒观众。
现有技术只是电视机或者电视台单方面机械性静态地执行策略，无法根据观看者的实际情况做出响应，缺乏灵活性和智能性。虽然电视机可以监测观看者看电视的时间长短，却无法监测观察者看电视时距离电视的远近。而且电视机在播放节目时，无法确定观察者是否一定就在电视机前观看。因此必须采用一些技术手段，监测观察者是否在电视机前，以及观察者与电视机之间的距离，再结合观察者持续看电视的时间，对此做出响应，执行相应的策略。

发明内容
针对现有防止近距离观看电视的技术只能机械性静态地执行策略，解决动态监测观察者与电视机之间的距离，灵活智能地执行策略，本发明实施例通过在机顶盒中嵌入红外感应器和小型摄像头，应用红外感应技术、人脸识别技术和图像测距技术，提供一种动态监测系统，来防止观察者近距离观看电视。

为了实现发明目的，本发明实施例公开了一种基于机顶盒测距防止近距离观看电视的监控系统，包括：

机顶盒，整个监控系统的基础，提供物理设备和计算力；

红外感应器，采用被动红外，以人体作为红外感应源，用于监测感应范围内是否有观察者，触发摄像头的启动；

小型摄像头，用于采集图像，并将图像传送给图像处理中心；

图像处理中心，应用人脸识别技术和图像测距技术，分析处理摄像头传来的图像；

决策中心，根据图像处理中心的分析处理结果和自身计时器的计时数据，实施相应策略。

所述红外感应器与小型摄像头均嵌入机顶盒中，不需要在机顶盒或者电视机之外，增加独立的外置设备。

动态感应器是随着机顶盒的启动而启动的，而且一直处于监控状态，而摄像头、图像处理中心和决策中心则是在条件启动和关闭的。

系统还应用人脸识记技术，对摄像头采集的图像，识别出其中是否有人存在，并将结果发送给决策中心，作为策略实施的依据。

系统还应用图像测距技术，对摄像头采集的图象进行分析推理，测量图像中的观察者与电视机之间的距离，并将结果发送给决策中心，作为策略实施的依据。

系统设计了一个决策中心，作为实施策略的功能模块，根据所述系统的图像处理中心的分析处理结果，结合自身计时器的计时长短，实施相应策略。

相应的，本发明实施例还公开了一种机顶盒测距防止近距离观看电视的方法，包括：

红外感应器在监测范围内感应到有观看者的存在，受到触动，触发摄像头；

监控系统检测到摄像头启动，启动图像处理中心和决策中心，决策中心的计时器开始计时；

摄像头开始以固定时间频率采集图像；

图像处理中心接收摄像头的图像，进行分析处理。
决策中心根据图像处理中心的分析处理结果和自身计时器计时结果，实施相应策略。

所述方法中当监控系统在设定的时间长度内，没有在电视机周围规定范围的范围内监测到有观看者时，关闭摄像头、图像处理中心和决策中心。所述方法中图像处理中心应用人脸识别技术和图像测距技术，对于摄像头采集的图像，首先判别是否有观看者存在，如果有，则进一步测量观看者与电视机之间的距离，如果没有则不用测距，然后将结果发送给决策中心。

所述方法中如果观看者在监控系统的监控范围内，观看电视达到或者超过规定时间，决策中心发出提醒或者强制关闭电视机。

本发明具有以下优点：本发明通过在机顶盒中嵌入红外感应器和小型摄像头，应用红外感应技术、人脸识别技术和图像测距技术，提供一种基于机顶盒测距防止近距离观看电视的监控系统。监控观看者与电视机之间的距离，防止观看者长时间近距离看电视，从而保护观看者避免因为长时间近距离观看电视而导致视力疲劳甚至视力受损。此外：

采用小型摄像头，体积小，不会太显眼，工作时不会引起观看者的反感。采用被动红外，不需要观看者干预系统的运行，自动感应；

采用红外感应技术，控制摄像头、图像处理中心和决策中心的启动；而决策中心也会在观看者不在电视机近距离范围时，关闭摄像头、图像处理中心和自身的运行，从而节约电力和计算力；

采用人脸识别技术，可以识别被红外感应器感应到的是人体而不是其他红外源，动态监测观看者与电视机之间的距离，决策中心可以据此灵活地实施响应的策略，具有智能性和自动性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案，下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本发明的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动性的前提下，还可以根据这些附图获得其他的附图。

图 1 为本发明中嵌入红外探头与小型摄像头的机顶盒模型图；

图 2 为本发明中监控系统的架构图；

图 3 为本发明中监控系统的启动顺序；

图 4 为本发明中监控方法的工作流程图；

图 5 为本发明中决策中心的决策过程图。

具体实施方式

下面将结合本发明实施例中的附图，对本发明实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施例，本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例，都属于本发明保护的范围。

本发明的整个监控系统由红外线感应器、摄像头、图像处理中心和决策中心组成。
现有的机顶盒在功能上还有较高的扩展性，考虑到现有的机顶盒在物理空间上还可以嵌入其他硬件设备，本发明将红外感应器与小型摄像头（类似于笔记本摄像头）嵌入到机顶盒中，扩展机顶盒的功能。下面结合图1说明机顶盒的物理模型。

红外感应器的红外探头和小型摄像头都嵌入在机顶盒的前端，前者作为红外感应源，用于探测红外线，而后者则用于采集图像。

现有机顶盒的硬件性能都足够好，可以承担较为复杂的计算任务，所以结合嵌入到机顶盒中的红外感应器和小型摄像头，应用红外感应技术、人脸识别技术和图像测距技术。下面结合图2说明整个监控系统的架构。

红外感应器，随着机顶盒的开启一直处于监测状态，监测观察者是否进入电视机的近距离范围，如果被红外感应器检测到，则会启动摄像机，启动摄像机；

摄像头，受红外感应器的触发，启动后，进一步触发光图像处理中心和决策中心的启动；同时以固定的时间频率采集图像数据，并将采集到的数据传送给图像处理中心，进行分析。

图像处理中心，接收来自摄像头的图像数据，首先应用人脸识别技术，判断图像中是否有观看者的存在，如果有，则将此结果通知决策中心；如果有，则进一步应用图像测距技术，测量出此时观看者与电视机的距离，然后将数据传送给决策中心。

决策中心，本身维护一个计时器，在决策中心启动的同时开始计时，决策中心接收图像处理中心的图像处理结果，结合自身计时器的计时数据，对结果做出响应，实施相应的策略。

虽然机顶盒的性能足够支持整个监控系统的持续运行，但是这样会造成很大电力和数据的浪费，摄像头、图像处理中心和决策中心不需要一直处于工作状态，所以可以通过它们的条件启动和关闭。本发明用红外感应器控制它们的启动，用决策中心控制它们的关闭。

下面结合图3说明监控系统的启动顺序：

1 红外感应器随机机顶盒启动而启动，处于监测状态；
2 观察者进入红外感应器监控范围，触动红外感应器；
3 摄像头启动；
4 监控系统检测到摄像头启动；
5 图像处理中心和决策中心启动，计时器开始计时；

下面结合图4说明监控方法的工作流程：

1 电视机和机顶盒启动，红外感应器启动，处于监控状态；
2 观察者走近电视机，进入红外感应器的监控范围。红外感应器感应到观察者走近电视机，触动触发启动摄像头，摄像头开始以固定的时间频率采集图像数据；
3 监控系统检测到摄像头启动，启动图像处理中心和决策中心，决策中心的计时器开始计时；
4 图像处理中心和决策中心启动，决策中心的计时器开始计时；
5 图像处理中心接收摄像头的图像，用人脸识别技术判断图像中是否存在人脸，以确认观察者在电视机附近；
6 如果人脸识别检测到有人脸，则图像处理中心进一步应用图像测距技术，测量观
看者与电视机之间的距离，并将结果发送给决策中心；
[0063] 如果人脸识别没有识别到有人脸，则直接将此结果发送给决策中心；
[0064] 6 决策中心接收图像处理中心的结果，结合自身的计时器，实施相应的策略。
[0065] 下面结合图 5 说明决策中心的决策过程：
[0066] 任何时候，图像处理中心在一个不太长的时间长度内，如 10 秒，在电视机附近没有监测到有人，决策中心判定观看者远离电视机，停止所有策略的执行。关闭摄像头、图像处理中心和决策中心，而红外感应器仍处于监控状态。
[0067] 从摄像头传来的图像，人脸识别检测到有人脸，说明观看者在电视机近距离范围内。如果计时器计时达到一个不太长的时间长度，如 30 秒，那么决策中心判定观看者有可能会长时间近距离观看电视。决策中心将以字幕提示的方式，将警告信息发送到电视机，显示在电视屏幕的下方，提醒观看者注意不要近距离看电视。
[0068] 在发出字幕提示后，如果监控系统监测到观看者不在电视机近距离范围内，则继续监控。否则如果观看者还在电视机近距离范围内，并且计时器计时达到一个足够长的时间长度，如 5 分钟，那么决策中心判定观看者正在长时间近距离观看电视。决策中心将首先以文字提醒的方式，用文字覆盖整个电视屏幕，提示观看者在一个较短的时间内，如 10 秒，如果不远离电视机，将强制关闭电视机。
[0069] 在发出强制关闭电视机的警告后，监控系统监控到观看者在规定的时间内远离了电视机，那么将恢复电视屏幕，然后继续监控；如果观看者还没有远离电视机，那么决策中心将强制关闭电视机，同时关闭摄像头、图像处理中心和决策中心关闭，而保持红外感应器处于监控状态。
[0070] 以上对本发明实施例所提供的的一种基于机顶盒测距防止近距离观看电视的监控系统进行了详细介绍，本文中应用了具体个例对本发明的原理及实施方式进行了阐述，以上实施例的说明只是用于帮助理解本发明的方法及其核心思想；同时，对于本领域的一般技术人员，依据本发明的思想，在具体实施方式及应用范围上均会有改变之处，综上所述，本说明书内容不应理解为对本发明的限制。
红外感应器处于监控状态

观看者进入红外感应器监控范围，触动红外感应器

摄像头受红外感应器触发而启动

监控系统监测到摄像头启动

图像处理中心和决策中心启动，计时器开始计时

图像处理中心接收摄像头的图像，应用人脸识别技术

应用图像测距技术，计算观看者与电视机之间的距离

观看者在电视附近（红外感应器的监控范围）

是

否

决策中心实施策略

结束