Title: METHOD AND DEVICE FOR TRANSMITTING RECEPTION CONFIRMATION IN WIRELESS COMMUNICATION SYSTEM

Abstract: Provided are a method for transmitting an acknowledgement/not-acknowledgement (ACK/NACK) of a terminal in a wireless communication system, and a terminal using the method. The method comprises the steps of: receiving uplink-downlink (UL-DL) setting information in a plurality of subframes; receiving data from at least one subframe from the plurality of subframes; composing the ACK/NACK on the received data; and transmitting the ACK/NACK through the uplink subframe.

Keywords: wireless communication system, terminal, method, acknowledgement, not-acknowledgement, uplink-downlink, setting information, subframe, data, composition, transmission.

공개:

— 국제조사보고서 없이 공개하며 보고서 접수 후 이를 별도 공개함 (규칙 48.2(g))
명세서
발명의 명칭: 무선통신 시스템에서 수신확인 전송 방법 및 장치
기술분야
[0001] 본 발명은 무선통신에 관한 것으로, 더욱 상세하게는 반송과 접성을 지원하는 무선통신 시스템에서 수신확인을 나타내는 ACK/NACK 전송 방법 및 장치에 관한 것이다.
배경기술
[0002] 차세대 무선통신 시스템의 요구조건 중 가장 중요한 조건 중 하나는 높은 데이터 전송율을 지원할 수 있는 것이다. 이를 위해 다중 입력 다중 출력(Multiple Input Multiple Output, MIMO), CoMP(Cooperative Multiple Point transmission), 릴레이(relay) 등 다양한 기술들이 연구되고 있으나 가장 기본적이고 핵심적인 해결 방안은 대역폭을 늘리는 것이다.
[0003] 그러나 주파수 자원은 현재를 기준으로 포화상태이며 다양한 기술들이 광범위한 주파수 대역에서 부분부분 사용되고 있는 실정이다. 이러한 이유로 보다 높은 데이터 전송을 요구받는 측측시기 위하여 광대역 대역폭을 확보하기 위한 방안으로 산재해 있는 대역들을 각각 인접적인 시스템을 동작할 수 있는 기본적인 구성사항을 만족하도록 설계하고, 다수의 대역들을 하나의 시스템으로 묶는 개념인 반송과 접성(carrier aggregation, CA)를 도입하고 있다. 이 때 각각의 인접적인 운용이 가능한 대역 또는 반송과 요소 반송과(component carrier, CC)라고 정의한다.
[0004] 중기화하는 송신 용량을 지원하기 위해, 최근의 통신 규격(standard) 예컨대, 3GPP LTE-A 또는 802.16m 등의 규격에서는 20MHz 또는 그 이상까지 계속 그 대역폭을 확장하는 것을 고려하고 있다. 이 경우 하나 또는 그 이상의 요소 반송과를 접성하여 광대역을 지원한다. 예를 들어, 하나의 요소 반송과가 5MHz의 대역폭에 대응한다면, 4개의 반송과를 접성함으로써 최대 20MHz의 대역폭을 지원하는 것이다. 이처럼 반송과 접성을 지원하는 시스템을 반송과 접성 시스템이라 정한다.
[0005] 중래 반송과 접성 시스템은 모든 반송과가 동일한 타임의 프레임을 사용하였다. 즉, 모든 반송과가 FDD(frequency division duplex) 프레임을 사용하거나 TDD(time division duplex) 프레임을 사용하였다. 그러나, 미래의 반송과 접성 시스템에서는 각 반송과 별로 서로 다른 타임의 프레임을 사용하는 것도 고려되고 있다. 또한, 반송과 접성 시스템을 구성하는 반송과들 중 일부 반송과 그룹은 TDD 프레임을 사용하되 서로 다른 상향링크-하향링크(UL-DL) 설정을 사용하는 것도 고려되고 있다.
[0006] 한편, 무선통신 시스템에서는 전송된 데이터에 대한 수신 확인 정보 즉, ACK/NACK(acknowledgement/not-acknowledgement)를 수신하여 전송된
데이터 오류가 발생한 경우 제전송 데이터를 전송하는 HARQ(hybrid automatic repeat request)가 적용될 수 있다. HARQ 프로세스에서 수신측에서는 전송측에서 원래 전송한 데이터와 제전송되는 데이터를 결합하여 디코딩을 수행할 수 있다. 반송측 접점 시스템에서 반송과 별로 서로 다른 타입의 프레임을 사용하거나, 일부 반송과 그룹에서 TDD 프레임을 사용하되 서로 다른 UL-DL 설정을 사용하는 경우, HARQ는 어떤 방식으로 수행할 것인지가 문제된다. 보다 구체적으로는 단말이 어떠한 방식으로 ACK/NACK을 전송할 것인지가 문제된다.

발명의 요약

기술적 과제

반송과 접점 시스템에서 ACK/NACK을 전송하는 방법 및 장치를 제공하고자 한다.

과제 해결 수단

본 발명의 일측면에 따르면, 무선통신 시스템에서 단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법은 복수의 서브프레임들에 대한 상성행크-하행행크(UL-DL) 설정 정보를 수신하는 단계; 상기 복수의 서브프레임들을 중 적어도 하나의 서브프레임에서 데이터를 수신하는 단계; 상기 수신한 데이터에 대한 ACK/NACK를 구성하는 단계; 및 상기 ACK/NACK을 상행행크 서브프레임을 통해 전송하는 단계를 포함하되, 상기 복수의 서브프레임들은 상기 상행행크 서브프레임에 대응되고, 상기 복수의 서브프레임들은 각각 하행행크 서브프레임으로 고정된 디폴트 하행행크 서브프레임 및 유동적 서브프레임 중 어느 하나의 서브프레임이자, 상기 유동적 서브프레임은 상기 상행행크-하행행크(UL-DL) 설정 정보에 의해 상행행크 서브프레임 또는 하행행크 서브프레임으로 설정 가능한 서브프레임이며, 상기 ACK/NACK의 정보 비트 사이즈를 나타내는 ACK/NACK 페이지로(payload) 사이즈는 상기 복수의 서브프레임들 중에서 디폴트(default) 하행행크 서브프레임의 개수, 유동적 서브프레임의 개수 및 상기 복수의 서브프레임들의 전송 모드에 기반하여 결정되는 것을 특징으로 한다.

상기 ACK/NACK 페이지의 사이즈는 상기 복수의 서브프레임들에 포함된 유동적 서브프레임들의 종 개수와 디폴트 하행행크 서브프레임의 개수를 더한 값에 각 서브프레임에서 최대 전송 가능한 코드워드의 개수를 곱한 값과 같은 비트 수일 수 있다.

상기 ACK/NACK 페이지의 사이즈는 상기 복수의 서브프레임들에 포함된 유동적 서브프레임들 중에서 상기 단말이 하행행크 서브프레임으로 인식하는 서브프레임의 개수와 디폴트 하행행크 서브프레임의 개수를 더한 값에 각 서브프레임에서 최대 전송 가능한 코드워드의 개수를 곱한 값과 같은 비트 수일 수 있다.
상기 ACK/NACK 페이로드 사이즈는 상기 복수의 서브프레임들에 포함된 유동적 서브프레임들의 총 개수와 상기 유동적 서브프레임에서의 최대 전송 가능한 코드워드의 개수를 곱한 값과 상기 복수의 서브프레임들에 포함된 디폴트 하향링크 서브프레임의 개수와 상기 디폴트 하향링크 서브프레임에서의 최대 전송 가능한 코드워드의 개수를 곱한 값을 더한 값과 같은 비트 수일 수 있다.

상기 복수의 서브프레임들 및 상기 상향링크 서브프레임은 프라이머리 셀의 서브프레임들일 수 있다.

상기 복수의 서브프레임들은 세컨더리 셀의 서브프레임들이고, 상기 상향링크 서브프레임은 프라이머리 셀의 서브프레임일 수 있다.

상기 복수의 서브프레임들 중 적어도 하나의 서브프레임은 프라이머리 셀의 서브프레임이고, 나머지 서브프레임은 세컨더리 셀의 서브프레임일 수 있다.

상기 복수의 서브프레임들에 대한 상향링크-하향링크(UL-DL) 설정 정보는 프라이머리 셀을 통해 전송될 수 있다.

상기 복수의 서브프레임들 중에서 하나의 디폴트 하향링크 서브프레임에서만 반정적으로 스케줄링된 데이터를 수신하는 경우, PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 사용하여 상기 ACK/NACK를 전송할 수 있다.

상기 복수의 서브프레임들 중에서 하나의 디폴트 하향링크 서브프레임에서만 PDCCH(physical downlink control channel)를 통해 스케줄링된 데이터를 수신하고 상기 PDCCH에 포함된 DAI(downlink assignment index)가 1인 경우, PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 사용하여 상기 ACK/NACK를 전송할 수 있다.

상기 복수의 서브프레임들 중에서 하나의 디폴트 하향링크 서브프레임에서 반응하는 PDCCH 없이 반정적으로 스케줄링된 데이터를 더 수신하는 경우, PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 이용하는 채널 선택을 사용하여 상기 ACK/NACK를 전송할 수 있다.

상기 프라이머리 셀은 하향링크 전송과 상향링크 전송이 서로 다른 주파수 대역에서 수행되는 FDD(frequency division duplex) 프레임을 사용할 수 있다.

상기 세컨더리 셀들은 하향링크 전송과 상향링크 전송이 동일한 주파수 대역 및 서로 다른 시간에 수행되는 TDD 프레임을 사용할 수 있다.

상기 상향링크-하향링크(UL-DL) 설정 정보는 상기 제1 서브프레임들을 스케줄하는 PDCCH를 통해 전송될 수 있다.

상기 제1 서브프레임들과 상기 제2 서브프레임은 4 서브프레임만큼 이격되어 위치할 수 있다.
본 발명의 다른 측면에 따른 단말은 무선 신호를 송신 및 수신하는 RF (radio frequency) 부; 및 상기 RF 부와 연결되는 프로세서를 포함하게, 상기 프로세서는 복수의 서브프레임들에 대한 상향 링크-하향 링크 (UL-DL) 설정 정보를 수신하고, 상기 복수의 서브프레임들 중 적어도 하나의 서브프레임에서 데이터를 수신하고, 상기 수신한 데이터에 대한 ACK/NACK을 구성하고, 상기 ACK/NACK을 상향 링크 서브프레임을 통해 전송하게, 상기 복수의 서브프레임들은 상기 상향 링크 서브프레임에 대응하고, 상기 복수의 서브프레임들은 각각 하향 링크 서브프레임으로 고정된 디플트 하향 링크 서브프레임 및 유동적 서브프레임 중 어느 하나의 서브프레임이 되, 상기 유동적 서브프레임은 상기 상향 링크-하향 링크 (UL-DL) 설정 정보에 의해 상향 링크 서브프레임 또는 하향 링크 서브프레임으로 설정 가능한 서브프레임이며, 상기 ACK/NACK의 정보 비트 사이즈를 나타내는 ACK/NACK 헤이드 사이즈는 상기 복수의 서브프레임들 중에서 디플트 하향 링크 서브프레임의 개수, 유동적 서브프레임의 개수 및 상기 복수의 서브프레임들의 전송 모드에 기반하여 결정되는 것을 특징으로 한다.

발명의 효과

하향 링크와 상향 링크에 대한 자원할당을 유연하게 가변할 수 있는 반송파 접성을 시스템에서 PDCCH 수신 오류에 강인하게 ACK/NACK을 전송할 수 있다.

도면의 간단한 설명

도 1은 무선 통신 시스템 (wireless communication system)을 나타낸다.

도 2는 FDD에 사용되는 무선 프레임 구조를 나타낸다.

도 3은 TDD에 사용되는 무선 프레임의 구조를 나타낸다.

도 4는 하나의 하향 링크 슬롯에 대한 자원 그리드 (resource grid)의 일 예를 나타낸다.

도 5는 하향 링크 서브프레임 구조에 대한 예를 나타낸다.

도 6은 상향 링크 서브프레임의 구조를 나타낸다.

도 7은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 1b를 나타낸다.

도 8은 기존의 단일 반송파 시스템과 반송파 접성 시스템의 비교 예이다.

도 9는 반송파 접성 시스템에서 교차 반송파 스케줄링을 위한 서브프레임 구조를 시각화한다.

도 10은 본 발명의 일 실시예에 따른 기지국과 단말 간의 스케줄링 방법을 나타낸다.

도 11은 비사용 서브프레임의 일 예를 나타낸다.

도 12는 서브프레임 단위로 세컨더리 샘의 UL-DL 설정을 수행하는 예를 나타낸다.

도 13은 본 발명의 일 실시예에 따른 ACK/NACK 전송 방법을 나타낸다.

도 14는 상기 제1 실시예에 따른 ACK/NACK 전송 방법을 나타낸다.
도 15는 상기 제2 실시예에 따른 ACK/NACK 전송 방법을 나타낸다.
도 16은 상기 제3 실시예에 따른 ACK/NACK 전송 방법을 나타낸다.
도 17은 단말에게 하나의 서브 셀만이 설정된 경우에 제1 실시예 또는 제2 실시예를 적용하는 예를 나타낸다.
도 18은 본 발명의 실시예에 따른 기지국 및 단말의 구성도를 나타낸다.
발명의 실시를 위한 형태

3GPP(3rd Generation Partnership Project) 표준화 기구에 의한 LTE(Long Term Evolution)는 E-UTRAN(Evolved-Universal Terrestrial Radio Access Network)을 사용하는 E-UMTS(Evolved-UMTS)의 일부로서, 하향형에서 OFDMA(Orthogonal Frequency Division Multiple Access)을 채용하고 상향형에서 SC-FDMA(Single Carrier-Frequency Division Multiple Access)를 채용한다. LTE-A(Advanced)는 LTE의 진화이다. 이하에서 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.

도 1은 무선통신 시스템(wireless communication system)을 나타낸다.
도 1을 참조하면, 무선통신 시스템(10)은 각도도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역에 대해 통신 서비스를 제공한다. 지리적 영역은 다시 다수의 서브영역(15a, 15b, 15c)으로 나누어질 수 있는데 각각의 서브영역은 섹터(sector)라고 정한다. 기지국(11)은 일반적으로 단말(13)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point, AN(Access Network) 등 다른 용어로 불릴 수 있다.

단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device), PDA(Personal Digital Assistant), 무선 모뎀(Wireless Modem), 휴대기기(Handheld Device), AT(Access Terminal) 등 다른 용어로 불릴 수 있다.

이하에서 하향형(downlink, DL)은 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향형(uplink, UL)은 단말(12)에서 기지국(11)으로의 통신을 의미한다.
무선통신 시스템(10)은 양방향 통신을 지원하는 시스템일 수 있다. 양방향 통신은 TDD(Time Division Duplex) 모드, FDD(Frequency Division Duplex) 모드 등을 이용하여 수행될 수 있다. TDD 모드는 상향형 전송과 하향형 전송에서 서로 다른 시간 자원을 사용한다. FDD 모드는 상향형 전송과 하향형 전송에서 서로 다른 주파수 자원을 사용한다. 기지국(11)과 단말(12)은 무선 프레임(radio frame)이라 불리는 무선 자원을 이용하여 서로 통신할 수 있다.

도 2는 FDD에 사용되는 무선 프레임(radio frame) 구조를 나타낸다.
도 2를 참조하면, FDD에 사용되는 무선 프레임(이하 FDD 프레임)은 시간
영역에서 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은
시간 영역에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임의 길이는
1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 서브프레임이
전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. TTI는
스케줄링의 최소 단위일 수 있다.

[0053] 하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division
multiplexing) 십별을 포함할 수 있다. 3GPP LTE가 하향성에서 OFDMA를
사용하므로 하나의 십별 구간(symbol period)을 OFDM 십별로 표현한다. OFDM
십별은 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어,
상향성 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 십별이라고
할 수 있다. 하나의 슬롯에 7 OFDM 십별을 포함하는 것을 예시적으로 기술하나,
CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 십별의 수는
바뀔 수 있다. 3GPP TS 36.211 V8.5.0(2008-12)에 의하면, 노멀(normal) CP에서 1
서브프레임은 7 OFDM 십별을 포함하고, 확장(extended) CP에서 1 서브프레임은
6 OFDM 십별을 포함한다. 무선 프레임의 구조는 예시에 물과하고, 무선
프레임에 포함되는 서브프레임의 수 및 서브프레임에 포함되는 슬롯의 수는
다양하게 변경될 수 있다.

[0054] 도 3은 TDD에 사용되는 무선 프레임의 구조를 나타낸다.
[0055] 도 3을 참조하면, TDD에 사용되는 무선 프레임(이하 TDD 프레임)은 0~9의
인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의
서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 예를 들어 하나의
서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.

[0056] 하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division
multiplexing) 십별을 포함할 수 있다. 하나의 슬롯은 7 OFDM 십별을 포함하는
것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에
포함되는 OFDM 십별의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면,
정규 CP에서 1 슬롯은 7 OFDM 십별을 포함하고, 확장(extended) CP에서 1
슬롯은 6 OFDM 십별을 포함한다.

[0057] 인덱스 #1과 인덱스 #6을 갖는 서브프레임은 특수(special) 서브프레임일 수
있으며, 특수 서브프레임은 DwPTS(Downlink Pilot Time Slot: DwPTS), GP(Guard
Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 단말에서의 초기
설 탐색, 동기화 또는 체널 추정에 사용된다. UpPTS는 기지국에서의 체널 추정과
단말의 상향 전송 동기를 맞추는 데 사용된다. GP는 상향성과 하향성
사이에 하향성 신호의 다중경로 영향으로 인해 상향성에서 생기는 간섭을
제거하기 위한 구간이다.

[0058] 다음 표는 특수 서브프레임의 설정을 나타내는 일 예이다.
[0059] [표 1]
[0060]
<table>
<thead>
<tr>
<th>설정</th>
<th>하향링크에서 노멀 CP (Normal cyclic prefix in downlink) DwPTS</th>
<th>상향링크에서 노멀 CP (Normal cyclic prefix in uplink) UpPTS</th>
<th>하향링크에서 확장 CP (Extended cyclic prefix in downlink) DwPTS</th>
<th>상향링크에서 확장 CP (Extended cyclic prefix in uplink) UpPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$6592 \cdot T_s$</td>
<td>$2192 \cdot T_s$</td>
<td>$7680 \cdot T_s$</td>
<td>$2192 \cdot T_s$</td>
</tr>
<tr>
<td>1</td>
<td>$19760 \cdot T_s$</td>
<td>$2560 \cdot T_s$</td>
<td>$20480 \cdot T_s$</td>
<td>$2560 \cdot T_s$</td>
</tr>
<tr>
<td>2</td>
<td>$21952 \cdot T_s$</td>
<td>$7680 \cdot T_s$</td>
<td>$20480 \cdot T_s$</td>
<td>$4384 \cdot T_s$</td>
</tr>
<tr>
<td>3</td>
<td>$24144 \cdot T_s$</td>
<td>$5120 \cdot T_s$</td>
<td>$23040 \cdot T_s$</td>
<td>$5120 \cdot T_s$</td>
</tr>
<tr>
<td>4</td>
<td>$26336 \cdot T_s$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>$6592 \cdot T_s$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>$19760 \cdot T_s$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>$21952 \cdot T_s$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>$24144 \cdot T_s$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[0061] 상기 표 1에서 $T_s = 1/(30720) \text{ ms}$이다.

[0062] TDD에서는 하나의 무선 프레임에 하향링크(downlink : DL) 서브프레임과 상향링크(Uplink : UL) 서브프레임이 공존한다. 표 2는 무선 프레임의 UL-DL 설정(configuration)의 일 예를 나타낸다.

[0063] [표 2]

<table>
<thead>
<tr>
<th>UL-DL 설정 (Uplink-downlink configuration)</th>
<th>하향링크-상향링크 스위칭 주기 (Downlink-to-Uplink Switch-point periodicity)</th>
<th>서브프레임 넘버 (Subframe number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 ms</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>1</td>
<td>5 ms</td>
<td>D S U U U D S U U U</td>
</tr>
<tr>
<td>2</td>
<td>5 ms</td>
<td>D S U U D S U U U D</td>
</tr>
<tr>
<td>3</td>
<td>10 ms</td>
<td>D S U U D D S D D D D</td>
</tr>
<tr>
<td>4</td>
<td>10 ms</td>
<td>D S U U D D D D D D D</td>
</tr>
<tr>
<td>5</td>
<td>10 ms</td>
<td>D S U U D D D D D D D</td>
</tr>
<tr>
<td>6</td>
<td>5 ms</td>
<td>D S U U D D D D D D D</td>
</tr>
</tbody>
</table>

[0065] 상기 표 2에서 'D'는 하향링크 서브프레임, 'U'는 상향링크 서브프레임, 'S'는 특수(special) 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, 단말은 TDD 프레임의 UL-DL 설정에 따라 어느 서브프레임이 DL 서브프레임, UL 서브프레임 또는 특수 서브프레임인지 알 수 있다.

[0066] 도 4는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.

[0067] 도 4를 참조하면, 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을
포함하고, 주파수 영역에서 N_{RB}개의 자원블록(RB; Resource Block)을 포함한다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파(subcarrier)를 포함한다. 하향형 링크 슬롯에 포함되는 자원블록의 수 N_{RB}은 셀에서 설정되는 하향형 링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 N_{RB}는 6 내지 110 중 어느 하나일 수 있다. 상향형 링크 슬롯의 구조도 상기 하향형 링크 슬롯의 구조와 동일할 수 있다.

[0068] 자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, $k(=0,...,N_{RB}×12-1)$는 주파수 영역 내 부반송파 인덱스이고, $l(=0,...,6)$은 시간 영역 내 OFDM 심별 인덱스이다.

[0069] 도 4에서는 하나의 자원블록이 시간 영역에서 7 OFDM 심별, 주파수 영역에서 12 부반송파로 구성되어 7x12 자원 요소를 포함하는 것을 예시적으로 기술한다. 자원블록 내 OFDM 심별의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심별의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.

[0070] 도 5는 하향형 링크 서브프레임 구조의 예를 나타낸다.

[0071] 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 하향형 링크 서브프레임 내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어 채널이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 테이터 채널이 할당되는 데이터 영역(data region)이다. 여기서, 제어영역이 3 OFDM 심벌을 포함하는 것은 예시에 불과하다.

[0072] 제어영역에는 PDCCH(physical downlink control channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid ARQ Indicator Channel) 등의 제어채널이 할당될 수 있다. 단말은 PDCCH를 통해 전송되는 제어정보를 디코딩하여 테이터 채널을 통해 전송되는 데이터를 읽을 수 있다. PDCCH에 대해서는 상세히 후술한다. 서브프레임 내 제어영역이 포함하는 OFDM 심벌의 수는 PCFICH를 통해 알 수 있다. PHICH는 상향형 링크 전송의 응답으로 HARQ(Hybrid Automatic Repeat Request) ACK(Acknowledgement)/NACK(NOT-Acknowledgement) 신호를 나른다. 데이터 영역에는 PDSCH(physical downlink shared channel)가 할당될 수 있다.

[0073]

[0074] [PDCCH의 구조]

[0075] 제어영역은 복수의 CCE(control channel elements)인 논리적인 CCE 열로 구성된다. CCE는 복수의 자원요소 그룹(resource element group: REG)에 대응된다. 예를 들어, CCE는 9 자원요소 그룹에 대응될 수 있다. 자원요소 그룹은 자원요소로 제어채널을 맵핑하는 것을 정의하기 위해 사용된다. 예를 들어, 하나의 자원요소 그룹은 4개의 자원요소로 구성될 수 있다. CCE 열은 하나의
서브프레임 내에서 제이영역을 구성하는 전체 CCE들의 집합이다.

[0076] 제이영역 내에서는 복수의 PDCCH가 전송될 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집단(aggregate) 상으로 전송된다. CCE 집단을 구성하는 CCE의 수(Number of CCEs)에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. 이하, PDCCH 전송을 위해 사용되는 CCE의 수를 CCE 집단 레벨(aggregate level, L)이라 한다. 또한, CCE 집단 레벨은 PDCCH를 감싸기 위한 CCE 단위이다. CCE 집단 레벨의 크기는 연속하는 CCE들의 수로 정의된다. 예를 들어, CCE 집단 레벨은 {1, 2, 4, 8}중 어느 하나의 개수와 같은 CCE들로 정의될 수 있다.

[0077] 다음 표는 CCE 집단 레벨에 따른 PDCCH의 포맷, 가능한 PDCCH의 비트 수의 예를 나타낸다.

<table>
<thead>
<tr>
<th>PDCCH 포맷(format)</th>
<th>CCE 집단 레벨(CCE aggregation level)</th>
<th>REG의 개수 (Number of REGs)</th>
<th>PDCCH 비트의 개수(Number of PDCCH bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>18</td>
<td>144</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>36</td>
<td>288</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>72</td>
<td>576</td>
</tr>
</tbody>
</table>

[0080] PDCCH를 통해 전송되는 제이정보를 하향링크 제이정보(downlink control information: DCI)라고 한다. DCI는 상향링크 스케줄링 정보(이를 상향링크 그레프트(UL 그레프트)라 정한다) 또는 하향링크 스케줄링 정보(이를 하향링크 그레프트(DL 그레프트)라 정한다) 또는, 상향링크 퍼워 제어 명령(power control command), 제이정보를 위한 제이정보, 랜덤 액세스 응답(RACH response)을 지시하기 위한 제이정보 등을 전송한다.

[0081] DCI는 일정한 포맷을 가지고 전송될 수 있으며, 각 DCI 포맷에 따라 용도가 정해질 수 있다. 예컨데, DCI 포맷의 용도는 다음 표와 같이 구분될 수 있다.

[0082] [표 4]

[0083]
<table>
<thead>
<tr>
<th>DCI 포맷</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCI 포맷 0</td>
<td>PUSCH 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 1</td>
<td>하나의 PDSCH 코드워드(codeword)의 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 1A</td>
<td>하나의 PDSCH 코드워드의 간단(compact) 스케줄링 및 랜덤 액세스 과정에 사용</td>
</tr>
<tr>
<td>DCI 포맷 1B</td>
<td>프리코딩 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 1C</td>
<td>하나의 PDSCH 코드워드(codeword)의 매우 간단(very compact) 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 1D</td>
<td>프리코딩 및 파워 오프셋(power offset) 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 2</td>
<td>페루프 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 2A</td>
<td>개루프(open-loop) 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용</td>
</tr>
<tr>
<td>DCI 포맷 3</td>
<td>2비트 파워 조정(power adjustments)을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용</td>
</tr>
<tr>
<td>DCI 포맷 3A</td>
<td>1비트 파워 조정을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용</td>
</tr>
<tr>
<td>DCI 포맷 4</td>
<td>다중 안테나 전송 모드에서 하나의 UL 셀에서의 PUSCH 스케줄링을 위해 사용</td>
</tr>
</tbody>
</table>

[0084] PDCCH는 다음과 같은 과정을 거쳐 생성될 수 있다. 기지국은 단말에게 보내려는 DCI에 에러 검출(error detection)을 위한 CRC(Cyclic Redundancy Check)를 부가한다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 식별자(이름 RNTI(Radio Network Temporary Identifier)라고 한다)가 마스킹(masking)된다. 특정 단말을 위한 PDCCH라면 기지국으로부터 할당되는 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, PCH(paging channel)를 통해 전송되는 페이지딩(paging) 메시지를 위한 PDCCH라면 페이지딩 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. DL-SCH(downlink shared channel)를 통해 전송되는 시스템 정보(system information)를 위한 PDCCH라면 시스템 정보 식별자, 예를 들어, SI-RNTI(System Information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블(random access preamble)의 전송에 대한 응답인 랜덤 액세스 응답(random access response)을 지시하기 위한 PDCCH라면 RA-RNTI(Random Access-RNTI)가 CRC에 마스킹될 수 있다. C-RNTI가 사용되며 PDCCH는 해당하는 특정 단말을 위한 제어정보를 나르고, 다른 RNTI가 사용되면 PDCCH는 센 배 포트드 단말이 수신하는 공용 제어정보를 나난다.

[0085] 그 후, CRC가 부가된 제어정보에 채널 코딩을 수행하여 부호화된 데이터(coded data)를 생성한다. 그리고, PDCCH 포맷에 할당된 CCE 집단 레벨에 따른 전송률 매칭(rate matching)을 수행한다. 그 후, 부호화된 데이터를 변조하여 변조
심볼들을 생성한다. 하나의 CCE를 구성하는 변조심볼들의 개수는 CCE 집단 레벨(1, 2, 4, 8 중 하나)에 따라 달라질 수 있다. 변조심볼들은 물리적인 자원요소에 랜덤(CCE to RE mapping)된다.

[0086] 3GPP LTE에서 단말은 PDCCH의 검출을 위해 블라인드(blind) 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidtae) PDCCH라 함)의 CRC(cyclic redundancy check)에 있는 식별자를 디마스킹(demasking)하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어체널인지 아닌지를 확인하는 방식이다. 블라인드 디코딩을 수행하는 이유는 단말이 자신의 PDCCH가 제어영역 내에서 어느 위치에서 어떤 CCE 집단 레벨이나 DCI 포맷을 사용하여 전송되지는 미리 알지 못하기 때문이다.

[0087] 상술한 바와 같이 하나의 서브프레임내에서 복수의 PDCCH가 전송될 수 있으며, 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링(monitoring)한다. 여기서, 모니터링이란 단말이 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.

[0088] 3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space : SS)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간내에서 PDCCH를 모니터링한다.

[0089] 검색 공간은 공용 검색 공간(common search space: CSS)과 단말 특정 검색 공간(UE-specific search space: USS)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개 CCE로 구성될 수 있고, [4, 8]의 CCE 집단 레벨(CCE aggregation level)을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 { 1, 2, 4, 8 } 의 CCE 집단 레벨을 갖는 PDCCH를 지원한다.

[0090] 검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집단 레벨 및/또는 무선프레임의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlapping) 수 있다.

[0091] CCE 집단 레벨 Le{1,2,3,4}에서 검색 공간 S^{uk}는 후보 PDCCH의 집합으로 정의될 수 있다. 검색 공간 S^{uk}의 후보 PDCCH m에 대응하는 CCE는 다음과 같이 주어진다.

[0092] [식 1]

\[L \cdot \{(Y_k+m) \mod \lfloor N_{\text{CCE},k}/L \rfloor \} + i \]

[0093] 여기서, i=0,1,...,L-1, m=0,...,M^{uk}-1, N_{\text{CCE},k}는 서브프레임 k의 제어영역내에서
PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어영역은 \(0\)부터 \(N_{CCE,k} - 1\)로 넘버링된 CCE들의 집합을 포함한다. \(M^{o}\)은 주어진 검색 공간에서의 CCE 검단 레벨 L에서 후보 PDCCH의 개수이다. 공용 검색 공간에서, \(Y_k\)는 2개의 집합 레벨, \(L=4\) 및 \(L=8\)에 대해 0으로 설정된다. CCE 검단 레벨 L의 단말 특정 검색 공간에서, 변수 \(Y_k\)는 다음과 같이 정의된다.

\[
Y_k = (A \cdot Y_{k-1}) \mod D
\]

이여서, \(Y_1=n_{RNTI}\neq 0, A=39827, D=65537, k=\text{floor}(n/2), n\)는 무선 프레임내의 슬롯 번호(slot number)이다.

다음 표는 검색 공간에서 후보 PDCCH의 개수를 나타낸다.

<table>
<thead>
<tr>
<th>프맷</th>
<th>CCE의 개수</th>
<th>공용 검색 공간에서 후보 PDCCH의 개수</th>
<th>단말 특정 검색 공간에서 후보 PDCCH의 개수</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

한편, 기지국과 단말 간에 하향링크 전송 모드(transmission mode)는 다음 9가지로 구분될 수 있다. 하향링크 전송 모드에 따라 각 서브프레임 내의 PDSCH에 포함되는 코드워드(codeword) 또는 전송 블록의 개수는 달라질 수 있다.

전송 모드 1: 프리코딩을 하지 않는 모드(단일 안테나 포트 전송 모드).
전송 모드 2: SFBC(space-frequency block coding)를 사용하는 2개 또는 4개의 안테나 포트에 사용될 수 있는 전송 모드(전송 다이버시티).
전송 모드 3: RI(rank indication) 피드백에 기반한 랭크 작용이 가능한 개방 루프 모드(개방 루프 공간 다중화). 랭크가 1인 경우 전송 다이버시티가 작동될 수 있고 랭크가 1보다 큰 경우 큰 지역 CDD(large delay cyclic delay diversity)가 사용될 수 있다.
전송 모드 4: 동적 랭크 작용을 지원하는 프리 코딩 피드백(preceding feedback)이 작동되는 모드이다(폐루프 공간 다중화).
전송 모드 5: 벌터 유저 MIMO
전송 모드 6: 족루프 랭크 1 프리코딩(closed-loop rank 1 precoding)
전송 모드 7: 단말 특정적 참조신호가 사용되는 전송 모드이다.
전송 모드 8: 안테나 포트 7 및 8을 이용한 듀얼 레이어(dual layer) 전송. 또는 안테나 포트 7 또는 안테나 포트 8을 이용한 단일 안테나 포트 전송(두얼(dual) 레이어 전송).
전송 모드 9: 안테나 포트 7 및 14를 이용한 최대 8 레이어 전송.
도 6은 상향링크 서브프레임의 구조를 나타낸다.
[0112] 도 6을 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 제어(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다. 설정에 따라 단말은 PUCCH와 PUSCH를 동시에 전송할 수도 있고, PUCCH와 PUSCH 중 어느 하나만 전송할 수도 있다.

[0113] 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 무반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수를 휴행(frequency-hopped)하였다고 한다. 상향링크 제어 정보를 시간에 따라 서로 다른 무반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다.

[0114] PUCCH 상으로는 HARQ(Hybrid Automatic Repeat reQuest) ACK(Acknowledgement)/NACK(Non-acknowledgement), 하향링크 채널 상태를 나타내는 채널 상태 정보(channel status information, CSI) 예컨대, CQI(Channel Quality Indicator), PMI(precoding matrix index), PTI(precoding type indicator), RI(rank indication) 등이 전송될 수 있다. 주기적인 채널 상태 정보는 PUCCH를 통해 전송될 수 있다.

[0115] PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 데이터를 포함할 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH(ulink shared channel)를 위한 전송 블록과 채널 상태 정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 채널 상태 정보에는 CQI, PMI, RI 등이 있을 수 있다. 또는 상향링크 데이터는 채널 상태 정보만으로 구성될 수도 있다. 주기적 또는 비주기적 채널 상태 정보는 PUSCH를 통해 전송될 수 있다.

[0116] 한편, PUCCH는 포맷(format)에 따라서 다양한 종류의 제어 정보를 나른다. PUCCH 포맷 1은 스케줄링 요청(SR; Scheduling Request)을 나른다. 이때 OOK(On-Off Keying) 방식이 적용될 수 있다. PUCCH 포맷 1a는 하나의 코드워드(codeword)에 대하여 BPSK(Binary Phase Shift Keying) 방식으로 변조된 ACK/NACK(Acknowledgement/Non-Acknowledgement)을 나른다. PUCCH 포맷 1b는 2개의 코드워드에 대하여 QPSK(Quadrature Phase Shift Keying) 방식으로 변조된 ACK/NACK를 나른다. PUCCH 포맷 2는 QPSK 방식으로 변조된 CQI(Channel Quality Indicator)를 나른다. PUCCH 포맷 2a와 2b는 CQI와
ACK/NACK를 나른다. PUCCH 포맷 3은 QPSK 방식으로 변조되며, 복수의 ACK/NACK, SR을 나를 수 있다.

표 6은 PUCCH 포맷에 따른 변조 방식과 서브프레임 내의 비트의 개수를 나타낸다.

<table>
<thead>
<tr>
<th>PUCCH format</th>
<th>Modulation scheme</th>
<th>Number of bits per subframe, M_{bit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1a</td>
<td>BPSK</td>
<td>1</td>
</tr>
<tr>
<td>1b</td>
<td>QPSK</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>20</td>
</tr>
<tr>
<td>2a</td>
<td>QPSK+BPSK</td>
<td>21</td>
</tr>
<tr>
<td>2b</td>
<td>QPSK+QPSK</td>
<td>22</td>
</tr>
</tbody>
</table>

모든 PUCCH 포맷은 각 OFDM 심벌에서 시퀀스의 순환 셔프트(cyclic shift, CS)를 사용한다. 순환 셔프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 셔프트(cyclic shift)시켜 생성된다. 특정 CS 양은 순환 셔프트 인덱스(CS index)에 의해 지정된다.

기본 시퀀스 r_{n}(n)를 정의한 일 예에는 다음 식과 같다.

\[r_{u}(n) = e^{j b(n) \pi / 4} \]

여기서, u는 원시 인덱스(root index), n은 요소 인덱스로 \(0 \leq n \leq N-1\), N은 기본 시퀀스의 길이이다. b(n)은 3GPP TS 36.211 V8.7.0의 5.5절에서 정의되고 있다.

시퀀스의 길이는 시퀀스에 포함되는 요소(element)의 수와 같다. u는 일 ID(identifier), 무선 프레임 내 슬롯 번호 등에 의해 정해질 수 있다. 기본 시퀀스가 주파수 영역에서 하나의 자원 블록에 매핑(mapping)된다고 할 때, 하나의 자원 블록이 12 부호를 해당하므로 기본 시퀀스의 길이 N은 12가 된다. 다른 원시 인덱스에 따라 다른 기본 시퀀스가 정의된다.

기본 시퀀스 r(n)를 다음 식 4와 같이 순환 셔프트시켜 순환 셔프트된 시퀀스 r(n, I_{cs})를 생성할 수 있다.

\[r(n, I_{cs}) = r(n) \cdot \exp\left(\frac{j2\pi I_{cs}n}{N}\right), 0 \leq I_{cs} \leq N-1 \]

여기서, I_{cs}는 CS 양을 나타내는 순환 셔프트 인덱스이다(\(0 \leq I_{cs} \leq N-1\)).

기본 시퀀스의 가용(available) 순환 셔프트 인덱스는 CS 간격(CS interval)에 따라 기본 시퀀스로부터 얻을 수(derive) 있는 순환 셔프트 인덱스를 말한다. 예를 들어, 기본 시퀀스의 길이가 12이고, CS 간격이 1이라면, 기본 시퀀스의 가용 순환 셔프트 인덱스의 총 개수는 12가 된다. 또는, 기본 시퀀스의 길이가 12이고,
CS 간격이 2이라면, 기본 시퀀스의 경우 순환 스프트 인덱스의 총 수는 6이 된다.

[0132] 이제, PUCCH 포맷 1a/1b에서의 HARQ ACK/NACK 신호의 전송에 대해 기술한다.

[0133] 도 7은 3GPP LTE에서 노말 CP에서 PUCCH 포맷 1b를 나타낸다.

[0134] 하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 3개의 OFDM 심벌은 기준신호를 위한 RS(Reference Signal) 심벌이 되고, 4개의 OFDM 심벌은 ACK/NACK 신호를 위한 데이터 심벌이 된다.

[0135] PUCCH 포맷 1b에서는 인코딩된 2비트 ACK/NACK 신호를 QPSK(Quadrature Phase Shift Keying) 변조하여 변조 심벌 d(0)가 생성된다. PUCCH 포맷 1a에서는 전송되는 HARQ ACK/NACK이 1비트라는 차이가 있다.

[0136] 순환 스프트 인덱스 I_n는 무선 프레임 내 슬롯 번호 (n) 및/또는 슬롯 내 심벌 인덱스 (i)에 따라 달라질 수 있다.

[0137] 노말 CP에서 하나의 슬롯에 ACK/NACK 신호의 전송을 위해 4개의 데이터 심벌이 있으므로, 각 데이터 심벌에서 대응하는 순환 스프트 인덱스를 $I_{cs1}, I_{cs2}, I_{cs3}$로 하자.

[0138] 변조 심벌 d(0)는 순환 스프트된 시퀀스 r(n,I_{cs})로 확산된다. 슬롯에서 (i+1)번째 OFDM 심벌에 대응하는 일차원 확산된 시퀀스를 m(i)라 할 때,

[0139] $\{m(0), m(1), m(2), m(3)\} = \{d(0)r(n,I_{cs0}), d(0)r(n,I_{cs1}), d(0)r(n,I_{cs2}), d(0)r(n,I_{cs3})\}$로 나타낼 수 있다.

[0140] 단말 용량을 증가시키기 위해, 일차원 확산된 시퀀스는 직교 시퀀스를 이용하여 확산될 수 있다. 확산 계수(spreading factor) K=4인 직교 시퀀스 $w_i(k)$ (i는 시퀀스 인덱스, 0≤k≤K-1)로 다음과 같은 시퀀스를 사용한다.

[0141] [표 7]

<table>
<thead>
<tr>
<th>Index (i)</th>
<th>[$w_i(0), w_i(1), w_i(2), w_i(3)$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[+1, +1, +1, +1]</td>
</tr>
<tr>
<td>1</td>
<td>[+1, -1, +1, -1]</td>
</tr>
<tr>
<td>2</td>
<td>[+1, -1, -1, +1]</td>
</tr>
</tbody>
</table>

[0142] 확산 계수 K=3인 직교 시퀀스 $w_i(k)$ (i는 시퀀스 인덱스, 0≤k≤K-1)로 다음과 같은 시퀀스를 사용한다.

[0143] [표 8]

<table>
<thead>
<tr>
<th>Index (i)</th>
<th>[$w_i(0), w_i(1), w_i(2)$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[+1, +1, +1]</td>
</tr>
<tr>
<td>1</td>
<td>[+1, $e^{j2\pi/3}$, $e^{j4\pi/3}$]</td>
</tr>
<tr>
<td>2</td>
<td>[+1, $e^{j4\pi/3}$, $e^{j2\pi/3}$]</td>
</tr>
</tbody>
</table>

[0144] 슬롯마다 다른 확산 계수를 사용할 수 있다.

[0145] 따라서, 임의의 직교 시퀀스 인덱스 i가 주어질 때, 2차원 확산된 시퀀스 $\{s(0), s(1), s(2), s(3)\}$는 다음과 같이 나타낼 수 있다.

[0146] $\{s(0), s(1), s(2), s(3)\} = \{w_i(0)m(0), w_i(1)m(1), w_i(2)m(2), w_i(3)m(3)\}$
2차원 확산된 시퀀스들 \(\{s(0), s(1), s(2), s(3)\} \)는 IFFT가 수행된 후, 대응하는 OFDM 심벌에서 전송된다. 이로써, ACK/NACK 신호가 PUCCH 상으로 전송되는 것이다.

PUCCH 포맷 1b의 기준신호도 기본 시퀀스 \(r(n) \)을 순환 쉐프트시키고 후 직교 시퀀스로 확산시켜 전송된다. 3개의 RS 심벌에 대응하는 순환 쉐프트 인덱스를 \(I_{\text{oct}}, l_{\text{oct}}, l_{\text{cs}} \)이라 할 때, 3개의 순환 쉐프트된 시퀀스 \(r(n, l_{\text{oct}}), r(n,l_{\text{cs}}), r(n,l_{\text{cs}}) \)를 얻을 수 있다. 이 3개의 순환 쉐프트된 시퀀스는 \(K=3 \)인 직교 시퀀스 \(w_{\text{RS}}(k) \)로 확산된다.

직교 시퀀스 인덱스 \(i \), 순환 쉐프트 인덱스 \(l_{\text{cs}} \) 및 자원 블록 인덱스 \(m \)은 PUCCH를 구성하기 위해 필요한 파라미터이다. PUCCH(또는 단말)을 구분하는 데 사용되는 자원이다. 가용 순환 쉐프트의 개수가 12이고, 가용한 직교 시퀀스 인덱스의 개수가 3이라면, 총 36개의 단말에 대한 PUCCH가 하나의 자원블록에 다중화될 수 있다.

3GPP LTE에서는 단말이 PUCCH를 구성하기 위한 상기 3개의 파라미터를 획득하기 위해, 자원 인덱스 \(n^{(i)}_{\text{PUCCH}} \)를 정의된다. \(n^{(i)}_{\text{PUCCH}} \)를 PUCCH 인덱스라 칭하기도 한다. 자원 인덱스 \(n^{(i)}_{\text{PUCCH}} = n_{\text{CCE}} + N^{(i)}_{\text{PUCCH}} \)로 주어질 수 있는데, \(n_{\text{CCE}} \)는 대응하는 PDCCH(즉, ACK/NACK 신호에 대응하는 하향링크 테이터의 수신에 사용된 하향링크 자원 할당을 포함하는 PDCCH)의 전송에 사용되는 전계계 CCE의 번호이고, \(N^{(i)}_{\text{PUCCH}} \)는 기지국이 단말에게 상황에계 ESI 지로 알려주는 파라미터이다.

ACK/NACK 신호의 전송에 사용되는 시간, 주파수, 코드 자원은 ACK/NACK 자원 또는 PUCCH 자원이라 한다. 전송한 바와 같이, ACK/NACK 신호를 PUCCH 상으로 전송하기 위해 필요한 ACK/NACK 자원 또는 PUCCH 자원은 직교 시퀀스 인덱스 \(i \), 순환 쉐프트 인덱스 \(l_{\text{cs}} \) 및 자원 블록 인덱스 \(m \)에 의해 표현되거나, 상기 3개의 인덱스들 구하기 위한 PUCCH 인덱스 \(n^{(i)}_{\text{PUCCH}} \)로 표현될 수 있다.

ACK/NACK를 전송하기 위한 다른 방법으로 채널 선택(channel selection)이 있다. 채널 선택은 ACK/NACK 다중화(multiplexing)라고도 한다. 단말은 복수의 PUCCH 자원들 중 하나의 PUCCH 자원을 선택하여 ACK/NACK를 전송한다. 이 때, 선택된 PUCCH 자원을 통해 PUCCH 포맷 1a/1b를 이용하여 ACK/NACK를 전송하는 경우, PUCCH 포맷 1a/1b를 이용한 채널 선택이라고 한다.

예를 들어, UL 서브프레임 \(n \)에 \(M \)개의 DL 서브프레임들이 연결되어 있다고 하고, \(M=3 \)이라고 가정하자. 3개의 DL 서브프레임들로부터 3개의 PDCCH를 수신할 수 있으므로, 단말은 3개의 PUCCH 자원 \(n^{(i)}_{\text{PUCCH},0}, n^{(i)}_{\text{PUCCH},1}, n^{(i)}_{\text{PUCCH},2} \)을 획득할 수 있다. 기존 PUCCH 포맷 1b는 2비트의 ACK/NACK 만을 전송할 수 있다. 하지만, 채널 선택은 할당된 PUCCH 자원들과 실제 ACK/NACK 신호를 맵크하여, 보다 많은 ACK/NACK 상태를 나타낼 수 있다.

한편, UL 서브프레임 \(n \)에 \(M \)개의 DL 서브프레임들이 연결되어 있다고 할 때, DL 서브프레임(또는 PDCCH)의 손실(missing)으로 인한 기지국과 단말간의
ACK/NACK 불일치(mismatch)가 발생할 수 있다.

[0158] 이러한 오류를 해결하기 위해서 DAI(Downlink Assignment Index)가 PDCCH 상의 DL 그렌트에 포함된다. DAI는 할당된 PDSCH 전송을 갖는 PDCCH의 총적된(accumulative) 수를 지시한다. 2비트의 DAI의 값은 1 부터 순차적으로 증가하며, DAI=4부터는 다시 모듈로-4 연산이 적용될 수 있다. M=5 이고, 다섯개의 DL 서브프레임이 모두 스키줄러되면, DAI=1, 2, 3, 4, 1 의 순으로 대응하는 PDCCH에 포함될 수 있다.

[0159] 이제 반정적스케줄링(semi-persistent scheduling : SPS 스케줄링이라 정함)에 대해 설명한다.

[0160] LTE에서는 기지국이 RRC(radio resource control)와 같은 상위 계층 신호를 통해 단말에게 어느 서브프레임들에서 반정적(semi-persistent)인 전송/수신을 수행하는지를 알려줄 수 있다. 상위 계층 신호로 주어지는 파라미터들에 예를 들면, 서브프레임의 주기와 오프셋 값들 수 있다.

[0161] 단말은 RRC 시그널링을 통해 반정적 전송을 인지한 후, PDCCH를 통해 SPS 진송의 활성화(activation), 해제(release) 신호를 수신하면 SPS PDSCH 수신 또는 SPS PUSCH 진송을 수행 또는 해제한다. 즉, 단말은 RRC 시그널링을 통해 SPS 스케줄링을 할당 받더라도 바로 SPS 송신을 수행하는 것이 아니라 활성화 또는 해제 신호를 PDCCH를 통해 수신하는 경우 그 PDCCH에서 지정한 자원 블록 할당에 따른 주파수 자원(자원 불록), MCS 정보에 따른 변경, 코딩율을 적용하여 RRC 시그널링을 통해 할당받은 서브프레임 주기, 오프셋 값에 해당하는 서브프레임에서 SPS 송신을 수행한다.

[0162] 만약, PDCCH를 통해 SPS 해제 신호를 수신하면 SPS 송신을 중단한다. 이렇게 중단된 SPS 송신은 다시 SPS 활성화 신호를 포함하는 PDCCH를 수신하면 해당 PDCCH에서 지정하는 주파수 자원, MCS(modulation and coding scheme) 등을 이용하여 재개된다.

[0163] SPS 설정/해제를 위한 PDCCH를 SPS 할당 PDCCH라 하고, 일반적인 PUSCH를 위한 PDCCH를 동적 PDCCH라 정할 수 있다. 단말은 PDCCH가 SPS 할당 PDCCH인지 여부를 다음 조건을 모두 만족하는 경우에 인증(validation)할 수 있다. 1. PDCCH 페이로드(payload)로부터 얻어지는 CRC 페러티(parity) 비트들이 SPS C-RNTI로 스트램블(scramble)되어 있고, 2. 새로운 데이터 지시 필드(new data indicator field)의 값이 0‘이어야 한다. 또한, 각 DCI 포맷에 대해 PDCCH의 각 필드 값이 다음 표의 필드 값처럼 설정되면 단말은 해당 PDCCH의 DCI 정보를 SPS 활성화 또는 해제로 받아들인다.
<table>
<thead>
<tr>
<th></th>
<th>DCI format 0</th>
<th>DCI format 1/1A</th>
<th>DCI format 2/2A/2B/2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC command for</td>
<td>set to '00'</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>scheduled PUSCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic shift DM RS</td>
<td>set to '000'</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Modulation and coding</td>
<td>MSB is set</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>scheme and redundancy</td>
<td>to '0'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARQ process number</td>
<td>N/A</td>
<td>FDD: set to '000'</td>
<td>FDD: set to '000'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDD: set to</td>
<td>TDD: set to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0000'</td>
<td>'0000'</td>
</tr>
<tr>
<td>Modulation and coding</td>
<td>N/A</td>
<td>MSB is set to</td>
<td>For the enabled</td>
</tr>
<tr>
<td>scheme</td>
<td></td>
<td>'0'</td>
<td>transport block:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSB is set to '0'</td>
</tr>
<tr>
<td>Redundancy version</td>
<td>N/A</td>
<td>set to '00'</td>
<td>For the enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>transport block:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set to '00'</td>
</tr>
</tbody>
</table>

[0166] 상기 표 9는 SPS 활성화(activation)를 인증하기 위한 SPS 할당 PDCCH의 필드 값은 나타내는 일 예이다.

[0167] [표 10]

<table>
<thead>
<tr>
<th></th>
<th>DCI format 0</th>
<th>DCI format 1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC command for</td>
<td>set to '00'</td>
<td>N/A</td>
</tr>
<tr>
<td>scheduled PUSCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic shift DM RS</td>
<td>set to '000'</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation and coding</td>
<td>set to '11111'</td>
<td>N/A</td>
</tr>
<tr>
<td>scheme and redundancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource block</td>
<td>Set to all</td>
<td>N/A</td>
</tr>
<tr>
<td>assignment and hopping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>resource allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARQ process number</td>
<td>N/A</td>
<td>FDD: set to '000'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDD: set to '0000'</td>
</tr>
<tr>
<td>Modulation and coding</td>
<td>N/A</td>
<td>set to '11111'</td>
</tr>
<tr>
<td>scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundancy version</td>
<td>N/A</td>
<td>set to '00'</td>
</tr>
<tr>
<td>Resource block</td>
<td>N/A</td>
<td>Set to all 1's</td>
</tr>
<tr>
<td>assignment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0169] 상기 표 10은 SPS 해제(release)를 인증하기 위한 SPS 해제 PDCCH의 필드 값을 나타내는 일 예이다.
[0170] 이제 반송과 집성 시스템에 대해 설명한다.
[0171] [반송과 집성 시스템]
[0172] 도 8은 기존의 단일 반송과 시스템과 반송과 집성 시스템의 비교 예이다.
[0173] 도 8을 참조하면, 단일 반송과 시스템에서는 상향링크와 하향링크에 하나의 반송과만을 단발하게 지원한다. 반송과의 대역폭은 다양할 수 있으나, 단발하게 할당되는 반송과는 하나이다. 반면, 반송과 집성(carrier aggregation, CA) 시스템에서는 단발에 복수의 요소 반송과(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 요소 반송과(component carrier : CC)는 반송과 집성 시스템에서 사용되는 반송과를 의미하며 반송과로 약정할 수 있다. 예를 들어, 단발에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송과가 할당될 수 있다.
[0174] 반송과 집성 시스템은 집성되는 반송과들이 연속(contiguous) 반송과 집성 시스템과 집성되는 반송과들이 서로 멀어져 있는 불연속(non-contiguous) 반송과 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송과 집성 시스템이라 할 때, 이는 요소 반송과가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
[0175] 1개 이상의 요소 반송과를 집성할 때 대상이 되는 요소 반송과는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
[0176] 무선 통신 시스템의 시스템 주파수 대역은 복수의 반송과 주파수(Carrier-frequency)로 구분된다. 여기서, 반송과 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자연과 상향링크 주파수 자연을 의미할 수 있다. 또는 셀은 하향링크 주파수 자연과 선택적인(optional) 상향링크 주파수 자연의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송과 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자연이 항상 쌍으로 존재할 수 있다.
[0177] 특정 셀을 통해 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, 단발은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공동 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능하게 하는 상태이다.
[0178] 설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등)을 사용할 수 있도록 활성화된 셀의 제어체널(PDCCH) 및 데이터 체널(PDSCH)을 모니터링 혹은 수신할 수 있다.

[0179] 비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등)을 사용할 수 없음을 확인하기 위하여 비활성화된 셀의 제어체널(PDCCH) 및 데이터 체널(PDSCH)을 모니터링 혹은 수신하지 않는다.

[0180] 셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.

[0181] 프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, 단말이 기본국과의 초초 연결 확립 과정(initial connection establishment procedure) 또는 연결 제외 과정을 수행하는 셀 또는 핸드오버 과정에서 프라이머리 셀로 지정된 셀을 의미한다.

[0182] 세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 해제되며 설정되며 추가적인 부수 자원을 제공하는데 사용된다.

[0183] 서빙 셀은 반송과 접속이 설정되지 않거나 반송과 접속을 제공할 수 없는 단말인 경우에는 프라이머리 셀로 구성된다. 반송과 접속이 설정된 경우 서빙 셀이라는 용어는 단말에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 하나의 서빙 셀은 하나의 하향링크 요소 및 반송과 또는 [향상링크 요소 반송과, 상향링크 요소 반송과]의 쌍으로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 접합으로 구성될 수 있다.

[0184] PCC(primary component carrier)는 프라이머리 셀에 대한 요소 및 반송과(component carrier: CC)를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기본국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 단말의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. 프라이머리 셀에 대응하는 하향링크 요소 반송과를 하향링크 주요 요소 반송과(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송과를 상향링크 주요 요소 반송과(UL PCC)라 한다.

[0185] SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원을 위해 할당되는 반송과(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나눌 수 있다. 세컨더리 셀에 대응하는 하향링크 요소
반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 세컨더리 셀에 대응하는 상향링크 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.

[0186] 프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.

[0187] 첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 제언결이 트리거링(triggering)된다. 넷째, 프라이머리 셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, FDD 시스템의 경우 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 프라이머리 셀은 핸드오버, 셀 선택/셀 재선택 과정을 통해서만 교체될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.

[0188] 서빙 셀을 구성하는 요소 반송파는, 하향링크 요소 반송파가 하나의 서빙 셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙 셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙 셀이 구성되지 않는다.

[0189] 요소 반송파의 활성화/비활성화는 케서버 셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙 셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 DL CC1의 활성화를 의미한다. 반면, 서빙 셀2가 DL CC2와 UL CC2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 서빙 셀(cell)에 대응될 수 있다.

[0190] 하향링크와 상향링크 간에 접합되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적인(symmetric) 접합이라고 하고, 그 수가 다른 경우를 비대칭적인(asymmetric) 접합이라고 한다. 또한, CC들의 크기(즉, 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성은 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)가 같이 구성될 수도 있다.

[0191] 상술한 바와 같이 반송파 접합 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(component carrier, CC), 즉, 복수의 서빙 셀을 지원할 수 있다.

[0192] 이러한 반송파 접합 시스템은 교차 반송파 스케줄링을 지원할 수 있다. 교차 반송파 스케줄링(cross-carrier scheduling)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는
상기 특정 요소 반송과 같은 기본적으로 링크되어 있는 요소 반송과 이외의 다른 요소 반송과를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향협의 CC를 통해 전송될 수 있고, UL 그랜드를 포함하는 PDCCH가 전송된 하향협의 CC와 링크된 상향협의 CC가 아닌 다른 상향협의 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송과 스케줄링을 지원하는 시스템에서는 PDCCH가 지시 정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송과 지시자가 필요하다. 이러한 반송과 지시자에 포함하는 필드를 이하에서 반송과 지시 필드(carrier indication field, CIF)라 정한다.

[0193] 교차 반송과 스케줄링을 지원하는 반송과 접속 시스템은 종래의 DCI(downlink control information) 포맷에 반송과 지시 필드(CIF)를 포함할 수 있다. 교차 반송과 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.

[0194] 도 9는 반송과 접속 시스템에서 교차 반송과 스케줄링을 위한 서브프레임 구조를 예시한다.

[0197] 이제, 본 발명의 일 실시예에 따른 반송과 접속을 지원하는 무선통신 시스템에서 스케줄링 방법에 대해 설명한다.

[0198] LTE 시스템에서는 FDD 프레임(타입 1)과 TDD 프레임(타입 2)이 존재한다. LTE-A Rel-10 시스템에서는 하나의 단말에게 복수의 서브 셀을 할당하고, 복수의 서브 셀을 통해 송수신을 할 수 있도록 하지만, 단말은 복수의 서브 셀에서 동일한 타입의 프레임만을 사용할 수 있다. 다시 말해, 동일한 타입의 프레임을 사용하는 서브 셀들간 동일한 단말에게 할당될 수 있다. 그러나, 미래의 통신 시스템에서는 다양한 유휴 주파수 대역의 접속 필요성에 의해 서로
다른 타입의 프레임을 사용하는 서병 셀 간의 접속도 고려되고 있다. 이러한 전체 하루 반응과 접속 시스템에서 스케줄링 방법이 필요하다.

도 10은 본 발명의 일부로서에 따라 기지국과 탄력 간의 스케줄링 방법을 나타낸다.

도 10을 참조하면, 기지국은 프라이머리 셀의 RRC 메시지를 통해 세컨더리 셀들의 UL-DL 설정을 전송한다(S110). 이는 단말이 프라이너리 셀에 연결된 상태에서 기지국이 세컨더리 셀을 추가적으로 접속하게 되는 경우를 가정한다. 만약, 기지국이 프라이머리 셀과 세컨더리 셀을 접속하고 있는 상태에서 추가적인 세컨더리 셀을 접속하게 될 경우에는, 추가적인 세컨더리 셀의 UL-DL 설정에 대한 RRC 메시지는 기 접속된 셀들에 전송될 수 있다.

프라이머리 셀은 FDD 프레임을 사용하는 서병 셀일 수 있고, 세컨더리 셀들은 TDD 프레임을 사용하는 적도 하나의 서병 셀들일 수 있다. 또는 모든 셀중 TDD로 설정되어 있고, 이 때, 프라이머리 셀과 세컨더리 셀의 UL-DL 설정이 서로 다른 경우일 수 있다. RRC 메시지의 UL-DL 설정은 상기 표 2에서 서식한 바와 같이 하나의 TDD 프레임 내에서 각 서브프레임이 하향링크 서브프레임(D), 상향링크 서브프레임(U), 특수 서브프레임(S) 중 어떤 종류의 서브프레임인지 나타내는 설정정보이다. RRC 메시지의 UL-DL 설정은 각 세컨더리 셀별로 또는 세컨더리 셀 그룹 별로 또는 단말에게 할당된 전체 세컨더리 셀들에 주어질 수 있다. 즉, RRC메시지의 UL-DL 설정은 세컨더리 셀 별로 다르게 설정될 수도 있고 적어도 2개의 세컨더리 셀에 대해 동일하게 설정될 수도 있다.

기지국은 프라이머리 셀을 통해 세컨더리 셀의 셀 특정 UL-DL 설정 변경을 지시하는 정보를 전송한다(S120). 예를 들어, 세컨더리 셀의 셀 특정 UL-DL 설정 변경을 지시하는 정보는 단말 특정 UL-DL 설정일 수 있다. 단말 특정 UL-DL 설정은 특정 단말에게만 적용되는 TDD 프레임 내의 UL-DL 설정을 의미한다. 특히 시스템 정보를 다른 서병 셀로부터 수신해야 하는 서병 셀에 대한 단말 특정 UL-DL 설정은 셀 특정 UL-DL 설정과 함께 전송되는 것이 바람직하다. 단말 특정 UL-DL 설정은 단말에게 할당된 모든 서병 셀들에게 공통적으로 적용될 수 있다.
단말은 셀 특정적 UL-DL 설정과 상기 셀 특정적 UL-DL 설정 변경을 지시하는 정보를 기반으로 세컨더리 셀들의 각 서브프레임에 대한 ‘UDSX’ 설정을 수행한다. 여기서, UDSX 설정은 보안 세컨더리 셀들의 각 서브프레임들의 상호링크 서브프레임(U), 하향링크 서브프레임(D), 특수 서브프레임(S), 비사용 서브프레임(X)으로 설정하는 것을 의미한다. 단말은 각 서브프레임의 UDSX 설정을 수행함으로써, 기저국과 송수신을 수행할 수 있다.

도 11은 비사용 서브프레임의 일 예를 나타낸다.

도 11을 참조하면, 단말에 FDD 프레임을 사용하는 제1 서빙 셀, TDD 프레임을 사용하는 제2 서빙 셀 및 제3 서빙 셀이 할당될 수 있다. 여기서, 제1 서빙 셀은 프라이머리 셀이고 제2 서빙 셀 및 제3 서빙 셀은 세컨더리 셀일 수 있다. 이 때, 세컨더리 셀들(제2 서빙 셀, 제3 서빙 셀)에 대한 셀 특정적 UL-DL 설정에 의해, 제2 서빙 셀의 서브프레임 #N은 U로 설정되고, 제3 서빙 셀의 서브프레임 #N은 D로 설정될 수 있다. 이 경우, 서브프레임 #N은 비사용 서브프레임(801)이 된다. 단말은 비사용 서브프레임을 사용하지 않을 수 있으며 이처럼 사용하지 않는 비사용 서브프레임의 상태를 기존의 D, U, S와 구분하기 위해 X로 표시한다.

도 11에서는 서로 다른 서빙 셀들의 셀 특정적 UL-DL 설정이 달라서 비사용 서브프레임이 발생하는 경우를 예시하였지만, 비사용 서브프레임은 하나의 서빙 셀에 대해 설정되는 셀 특정적 UL-DL 설정과 상기 하나의 서빙 셀에 대한 단말 특정적 UL-DL 설정이 서로 다른 경우에도 발생할 수 있다. 즉, 세컨더리 셀의 특정 서브프레임에 대해 셀 특정적 UL-DL 설정에 따른 전송 방향과 단말 특정적 UL-DL 설정에 따른 전송 방향이 일치하지 않는 비사용 서브프레임이 발생할 수 있다.

TDD 프레임을 사용하는 세컨더리 셀들의 UL-DL 설정은 상술한 바와 같이 하나의 프레임 내의 서브프레임 집합 단위의 UL-DL 설정(예를 들면 표 2와 같은 UL-DL 설정)을 통해 지시할 수도 있지만, 서브프레임 단위로 설정할 수도 있다.

TDD 프레임을 사용하는 세컨더리 셀들의 UL-DL 설정은 상술한 바와 같이 하나의 프레임 내의 서브프레임 집합 단위의 UL-DL 설정(예를 들면 표 2와 같은 UL-DL 설정)을 통해 지시할 수도 있지만, 서브프레임 단위로 설정할 수도 있다.

도 12는 서브프레임 단위로 세컨더리 셀의 UL-DL 설정을 수행하는 예를 나타낸다.

도 12를 참조하면, 단말에 프라이머리 셀과 세컨더리 셀이 할당될 수 있다. 이 때, 프라이머리 셀은 FDD 프레임을 사용하며 세컨더리 셀은 TDD 프레임을 사용할 수 있다.

프라이머리 셀은 초기 셀 동기화 및 최초 접근을 위해 역호환(backward compatibility)을 유지하는 것이 바람직하다. 반면, 세컨더리 셀은 역호환성을 유지하지 않아도 무방하다. 따라서, 프라이머리 셀은 주파수 대역 측면에서 기존 무선 통신 시스템의 허가 대역 중에서 선택될 수 있고, 세컨더리 셀은 비허가
대역(unlicensed band)을 사용할 수 있다.

[0213] 세컨더리 셀의 각 서브프레임은 UDSX 중 어느 서브프레임인지가 결정되지 않은 유동적 서브프레임일 수 있다. 이러한 경우, 기지국은 프라이머리 셀의 임의의 서브프레임(901)을 통해 단말에게 PDCCH(이를 단말 특정적 L1 시그널링이라 칭함)를 전송할 수 있다. 단말 특정적 L1 시그널링을 사용하는 경우, 단말은 유동적 서브프레임(902)에 연결된 PDCCH를 통해 검출된 DCI 포맷이 상향링크를 스케줄링하는지 하향링크를 스케줄링하는지에 따라서 유동적 서브프레임(902)의 UDSX 설정을 판단할 수 있다.

[0214] 즉, DCI 포맷이 상향링크 서브프레임 사용을 유발하는 UL 그랜드 또는 PHICH NACK 응답에 의한 PUSCH 전송인 경우 유동적 서브프레임(902)이 상향링크 서브프레임으로 사용되는 것으로 인식한다. 반면, DCI 포맷이 하향링크 서브프레임 사용을 유발하는 DL 그랜트인 경우 하향링크 서브프레임으로 사용되는 것으로 인식한다. 유동적 서브프레임과 이에 관련된 UL 그랜트 타이밍과 DL 그랜트 타이밍은 서로 독립적으로 설정될 수 있다.

[0215] 그리고, 도 12에서는 프라이머리 셀에 그랜트를 포함하는 제어 체널이 존재하고, 세컨더리 셀에 데이터 체널이 존재하는 경우를 예시하였다. 즉, 제어 체널과 데이터 체널은 서로 다른 주파수 대역 또는 서빙 셀에 존재하는 경우를 예시하였다. 그러나, 이는 제한이 아니며 유동적 서브프레임과 이에 관련된 UL 그랜트/DL 그랜트가 동일 서빙셀에 존재하는 경우에도 적용될 수 있다.

[0216] 단말이 UDSX 설정을 지시하는 정보(예를 들어, UL 그랜트, DL 그랜트 또는 직접적으로 UDSX 설정을 지시하는 지시자 등)를 프라이머리 셀의 서브프레임 #n에서 수신한 경우, 상기 UDSX 설정을 지시하는 정보가 적용되는 세컨더리 셀의 서브프레임은 서브프레임 #n+k로 할 수 있다. 즉, 오프셋 값 k를 주어 UDSX 설정을 지시하는 정보를 수신한 서브프레임(프라이머리 셀의)과 상기 정보가 적용되는 서브프레임(세컨더리 셀의)을 달리할 수 있다. 이러한 오프셋 값을 통해 세컨더리 셀의 서브프레임의 UL/DL 전환을 원활하게 할 수 있다. 상기 k 값은 미리 고정된 값 또는 시그널링되는 값일 수 있다. 또한, D, U, S에 공통적으로 적용되거나 D, U, S에 따라 다르게 적용될 수 있다.

[0218] 이처럼 세컨더리 셀의 일부 서브프레임이 기본값으로 D(또는 U)로 지정되는 경우, 나머지 서브프레임들에 대해서는 프라이머리 셀을 통해 UDSX 설정하는 것이 가능하다.

[0219] 또는 유동적인 서브프레임은 기본값으로 D(또는 U)로 지정되고, 프라이머리
셀을 통해 UDSX 설정이 변경될 수도 있다. 예를 들어, 단말은 특정 시그널링을 받지 못한 경우에는 기본값으로 D로 설정된 서브프레임으로 인식하고 단말이 특정 시그널링을 수신한 경우, 상기 서브프레임을 U 서브프레임인 것으로 인식할 수 있다. 이 때, N개의 서브프레임 구간 동안만 기본값 D 인 서브프레임을 U로 변경하고, 상기 N개의 서브프레임 구간이 경과하면 다시 기본값 D로 복귀하도록 설정할 수도 있다. 상기 N값은 미리 고정되거나 RRC로 시그널링할 수 있다.

[0220] 도 12에서는 프라이머리 셀이 FDD 프레임을 사용하는 경우를 가정하였으나, 이는 제한이 아니다. 즉, 프라이머리 셀은 UL-DL 설정이 반점적으로 고정된 TDD 프레임을 사용할 수도 있다. 이 경우, 제어신호 전송을 위한 새로운 타이밍 관계를 설정하여야 할 수 있다. 상기 타이밍 관계는 미리 약속되거나 RRC로 시그널링할 수 있다. 또한 프라이머리 셀의 전체 서브프레임은 역호환(backward compatibility)이 유지되지 않거나 일부 서브프레임에서만 역호환성을 유지하여 프라이머리 셀의 서브프레임을 유동적으로 설정할 수도 있다. 본 발명은 이러한 경우에도 적용될 수 있다.

[0221] 또한 기본값으로 D 또는 U가 설정되는 서브프레임(디폴트 서브프레임)과 유동적 서브프레임에서 전송할 수 있는 코드워스수가 각각 다르게 설정될 수도 있다.

[0222] 이제 본 발명의 일시에 따른 반송과 집성 시스템에서 ACK/NACK 전송 방법에 대해 설명한다.

[0223] 반송과 집성 시스템의 모든 서브 셀들이 FDD 방식을 이용하는 경우, 하나의 프레임 내에서 상향링크 서브프레임과 하향링크 서브프레임이 동일 시간에 항상 1:1로 존재한다. 반면, TDD 방식을 이용하는 경우, 상향링크 서브프레임과 하향링크 서브프레임의 비가 UL-DL 설정에 따라 달라진다.

[0224] TDD 방식을 사용하면, 상향링크와 하향링크의 트래픽(traffic) 비율에 따라서 주파수 자원을 효율적으로 활용할 수 있는 장점이 있다. 그러나, 중래 TDD 방식은 UL-DL 설정, UL-DL 제설정에 시간이 소요되며, 기존에 진행되었던 HARQ 프로세스가 있는 경우 종료를 따로 처리하거나 중단 시켜야 하는 문제점이 있다. 따라서, 상향링크와 하향링크의 트래픽 비율이 균형하는 경우 적용적으로 동작시키는데 한계가 있다. 따라서, TDD 프레임 내의 서브프레임의 UL-DL 설정을 동적으로 설정할 수 있는 방법이 고려되며, 세컨더리 셀에서 사용되는 TDD 프레임의 UL-DL 설정을 동작하는 하는 방법에 대해서는 도 12를 참조하여 설명하였다.

[0225] 한편, 중래 하향링크 HARQ 또는 상향링크 HARQ가 동작하기 위해서는 PDSCH/PUSCH 자원을 스케줄링하는 하향링크 그레날/상향링크 그레날트가 필요하다. 또한, 상기 PDSCH/PUSCH의 수신 성공 여부를 나타내는 응답인 ACK/NACK을 전송하기 위한 PHICH, PUCCH가 필요하다. 스케줄링된 PDSCH/PUSCH에 대해서는 약속된 타이밍에 DL/UL 그레날트와 PHICH는
하향링크 서브프레임을 통해 전송되고, PUCCH는 UL 서브프레임에서 전송되므로 이를 전송할 수 있는 DL/UL 서브프레임은 약속되어야 한다.

PUSCH에 대한 응답인 PHICH의 경우 이를 전송하는 기지국이 PUSCH 스케줄링을 수행하므로 PUSCH 스케줄링 여부 및 그 개수에 대해 알 수 있다. 따라서, 실제 스케줄링한 PUSCH에 대한 ACK/NACK 페이지드를 구성하여 PHICH를 전송하면 된다.

반면, PDSCH에 대한 UL ACK/NACK 응답은 PDSCH를 스케줄링한 기지국과 UL ACK/NACK를 전송하는 단말 간에 PDSCH 스케줄링 여부 및 그 개수에 대한 불일치가 발생할 수 있다. 예를 들어, 단말이 PDSCH를 스케줄링하는 PDCCH를 아예 수신하지 못하는 경우가 있을 수 있기 때문이다.

이러한 문제는 세컨더리 셀의 UL-DL 설정을 유연하게 설정할 수 있는 무선 통신 시스템 예를 들면, 모 12를 참조하여 설명한 무선 통신 시스템에서도 발생할 수 있으므로 어떠한 방법으로 ACK/NACK을 전송할 것인지가 문제된다.

도 13은 본 발명의 일 실시에 따른 ACK/NACK 전송 방법을 나타낸다.

기지국은 적어도 하나의 세컨더리 셀을 통해 데이터를 전송한다(S220). 이 때, 물론 기지국은 프라이머리 셀을 통해서도 데이터를 전송할 수 있다. 상기 예를 이용한다면, 기지국은 프라이머리 셀 및 세컨더리 셀들의 서브프레임 \#N에서 적어도 하나의 PDSCH를 전송한다.

단말은 수신한 데이터에 대한 ACK/NACK 페이지드(payload)를 구성한다(S230). 단말이 ACK/NACK 페이지드를 구성하는 방법에 대해서는 상세히 후술한다. ACK/NACK 페이지드 사이즈는 ACK/NACK의 정보 비트 사이즈를 나타낸다.

단말은 구성한 ACK/NACK 페이지드를 기지국으로 피드백한다(S240). 단말이 ACK/NACK 페이지드를 전송하는 서브프레임은 프라이머리 셀의 서브프레임 \#M일 수 있다. 여기서, 서브프레임 \#M은 상기 서브프레임 \#N에 대해 미리 지정된 오프셋 값(예를 들어 4)만큼 이격된 서브프레임 또는 기지국에 의해 지정된 서브프레임일 수 있다. 그리고, 서브프레임 \#M은 UL 서브프레임이다.

이제 단말이 ACK/NACK 페이지드를 구성하는 방법에 대해 설명한다. 단말은 UL 서브프레임에서 ACK/NACK 페이지드를 다음과 같은 방법 중 어느 하나를 이용하여 구성할 수 있다.
[0236] 단말은 ACK/NACK를 전송하도록 지정된 프라미터 셀의 UL 서브프레임에 대응되는 각 서빙 셀들의 디폴트 DL 서브프레임의 개수, 유동적 서브프레임의 개수 및 각 서빙 셀의 전송 모드에 따라 ACK/NACK 페이지드를 구성할 수 있다. 여기서, 디폴트 DL 서브프레임은 DL 서브프레임으로 고정적 또는 반정적으로 설정된 서브프레임을 의미한다. 예를 들어, 세컨더리 셀에서 반정적으로 DL 서브프레임으로 설정된 서브프레임은 디폴트 DL 서브프레임이다.

[0237] 그리고 유동적 서브프레임은 동적으로 UL 서브프레임 또는 DL 서브프레임으로 설정될 수 있는 서브프레임을 의미한다. 예컨대, 프라미터 셀에서 전송되는 PDCCH에 UL 그레프트가 포함된지 또는 DL 그레프트가 포함되는지에 의해 상기 PDCCH에 의해 스케줄링되는 세컨더리 셀의 서브프레임은 UL 서브프레임 또는 DL 서브프레임으로 결정되는데, 이러한 세컨더리 셀의 서브프레임은 유동적 서브프레임이다.

[0238] 단말은 상기 UL 서브프레임에 대응되는 각 서빙 셀들의 서브프레임들 중에서 유동적 서브프레임은 DL 서브프레임인지 UL 서브프레임인지에 관계없이 모두 DL 서브프레임으로 가정하고 ACK/NACK 페이지드 사이즈를 결정한다. 단말은 유동적 서브프레임을 스케줄링하는 DL 그레프트 또는 UL 그레프트를 수신하지 못하는 경우가 발생할 수 있으므로, 유동적 서브프레임은 모두 DL 서브프레임으로 가정하고 ACK/NACK 페이지드 사이즈를 결정하는 것이다.

[0239] 예를 들어, 기지국은 유동적 서브프레임을 스케줄링하는 PDCCH에서 DL 그레프트를 전송하였는데, 단말의 디코딩 오류로 UL 그레프트로 잘못 인식하는 경우가 발생할 수 있는데, 이러한 경우를 대비하여 유동적 서브프레임을 항상 DL 서브프레임으로 가정하는 것이다. 단말 입장에서는 유동적 서브프레임에 대한 UL 그레프트를 수신하여 상기 유동적 서브프레임을 UL 서브프레임으로 인식하더라도 항상 DL 서브프레임으로 가정하고 ACK/NACK 페이지드 사이즈를 결정한다.

[0242] 이러한 방법에 의하면 단말의 PDCCH 수신 오류가 발생하더라도 ACK/NACK
레이드 사이즈는 변할 없으며 따라서, 수신 오류에 강안하다.

도 14는 상기 제 1 실시예에 따른 ACK/NACK 전송 방법을 나타낸다.

도 14를 참조하면, 단말에게 4개의 서브 섹이 달장될 수 있다. 즉, 제 1 서브 섹, 제 2 서브 섹, 제 3 서브 섹, 제 4 서브 섹이 단말에게 달장될 수 있다. 제 1 서브 섹은 프라이머리 섹이고 제 2 서브 섹 내지 제 4 서브 섹들은 세컨더리 섹이다.

프라이머리 섹은 FDD 프레임을 이용하고, 세컨더리 섹들은 TDD 프레임을 이용한다.

단말은 프라이머리 섹의 DL 서브프레임 #N에서 PDSCH를 수신한 경우, 서브프레임 #N+4에서 ACK/NACK를 전송한다. 제 2 서브 섹 내지 제 4 서브 섹의 서브프레임 #N이 프라이머리 섹의 UL 서브프레임 #N+4에 링크되어 있다고 가정하자. 이 때, 제 2 서브 섹의 서브프레임 #N은 디폴트 DL 서브프레임이며, 단말은 제 3 서브 섹의 서브프레임 #N은 유동적 UL 서브프레임으로 인식하고, 제 4 서브 섹의 서브프레임 #N은 유동적 DL 서브프레임으로 인식하고 있다고 가정하자.

이러한 경우, 제 1 실시예에 의하면 단말은 제 1 서브 섹의 UL 서브프레임 #N+4에서 제 1 서브 섹의 DL 서브프레임 #N, 제 2 서브 섹 내지 제 4 서브 섹의 서브프레임 #N 모두에 대한 ACK/NACK 페이지드를 구성한다. 이 때, 물론 각 서브 섹의 전송 모드를 고려하여 ACK/NACK 페이지드 사이즈를 결정한다.

하나의 서브프레임(PDSCH)에서 2개의 코드워드가 전송되는 전송 모드라면 각 서브프레임에 대하여 2비트의 ACK/NACK 페이지드가 필요하다.

[제 2 실시예]

이 방법은 제 1 실시예와 달리 ACK/NACK을 전송하는 프라이머리 섹의 UL 서브프레임에 링크된 각 서브 섹들의 유동적 서브프레임들 중에서 UL 서브프레임으로 인식되는 서브프레임은 제외하고 ACK/NACK 페이지드 사이즈를 결정하는 방법이다. 즉, 단말은 각 서브 섹의 디폴트 DL 서브프레임, 유동적 서브프레임들 중 UL 서브프레임으로 인식되지 않는 서브프레임(또는 DL 서브프레임으로 인식되는 서브프레임)에 대한 ACK/NACK 페이지드를 구성한다. 이 때, 물론 각 서브 섹의 전송 모드를 고려하여 ACK/NACK 페이지드 사이즈를 결정한다. 다시 말해, ACK/NACK 페이지드 사이즈는 ACK/NACK을 전송하는 UL 서브프레임에 연결된 유동적 서브프레임들을 중에서 단말에 의해 UL 서브프레임으로 인식되지 않는 서브프레임(또는 DL 서브프레임으로 인식되는 서브프레임의 개수)과 디폴트 하향링크 서브프레임의 개수를 더한 값에 각 서브프레임에서 최대 전송 가능한 코드워드의 개수를 곱한 값과 같은 비트 수가 된다. 단, 디폴트 DL 서브프레임과 유동적으로 선택된 DL 서브프레임에서 전송할 수 있는 코드워드 개수가 각각 다르게 설정될 경우, (N_디폴트 DL 서브프레임) + (N_유동 X 유동적 서브프레임들 중 UL 서브프레임으로 인식되지 않는 서브프레임) 이 ACK/NACK 페이지드 사이즈가 된다. 이 방법은
단말이 UL 그레이트를 수신하지 못하여 PUSCH를 전송하지 못하는 것을 기지국이 신뢰성이 있게 검출할 수 있음을 전제한다.

[0250] 도 15는 상기 제2 설시에 따른 ACK/NACK 전송 방법을 나타낸다.

[0251] 도 15를 참조하면, 도 13과 동일한 상황에서 단말은 프라이머리 샘의 UL 서브프레임 #N+4에서 제1 서빙 샘의 DL 서브프레임 #N, 제4 서빙 샘의 서브프레임 #N에 대한 ACK/NACK 페이로드만을 구성한다. 제3 서빙 샘의 서브프레임 #N은 UL 서브프레임으로 단말이 인식하고 있고, 제2 서빙 샘의 서브프레임 #N은 디폴트 UL 서브프레임이므로 ACK/NACK 페이로드 구성 시 제외된다.

[0252]

[0253] [제3 설시에]

[0254] 이 방법은 단말이 DAI(downlink assignment information)와 같은 정보를 통해 실제 스케줄링된 PDSCH의 개수를 정확히 알 수 있는 경우, 실제 스케줄링된 PDSCH에 대한 ACK/NACK 페이로드만을 구성하는 방법이다. 즉, 각 서빙 샘의 디폴트 DL 서브프레임과 유동적 서브프레임들 중에서 PDSCH를 실제로 스케줄링 받은 서브프레임에 대한 ACK/NACK 페이로드만 구성한다.

[0255] 도 16은 상기 제3 설시에 따른 ACK/NACK 전송 방법을 나타낸다.

[0256] 도 16을 참조하면, 단말은 제1 서빙 샘의 DL 서브프레임 #N, 제2 서빙 샘의 서브프레임 #N, 제3 서빙 샘의 서브프레임 #N에 실제로 PDSCH를 수신한다. 따라서, 제1 서빙 샘 내지 제3 서빙 샘의 서브프레임 #N에 대한 ACK/NACK 페이로드만을 구성한다. 제4 서빙 샘의 서브프레임 #N에서는 PDSCH를 수신하지 아니하였으므로 제외된다.

[0257] 상기 제1 설시에 내지 제3 설시에서, ACK/NACK 페이로드 구성 후 단말은 체널 상태나 제어체널 구성에 따라서 일부 또는 전체 ACK/NACK 페이로드를 변별링 또는 ACK 카운팅을 통해 양측한 후 전송할 수 있다.

[0258] 또한, ACK/NACK 페이로드 사이즈에 따라서 ACK/NACK이 전송되는 PUCCH 자원과 PUCCH 포맷은 다르게 설정될 수 있다. 즉, i)특정 서빙 샘의 디폴트 DL 서브프레임 하나에서만 PDSCH를 스케줄링하는 PDCCH를 수신하거나 ACK/NACK 응답을 요구하는 PDCCH(예를 들어, DL SPS 해제(SPS release) PDCCH)를 수신한 경우와 ii) 그 이외의 경우 ACK/NACK이 전송되는 PUCCH 자원과 PUCCH 포맷은 다르게 설정된다.

[0259] 예를 들어, 프라이머리 샘의 디폴트 DL 서브프레임 하나에서만 PDSCH를 스케줄링 받거나 ACK/NACK 응답을 요구하는 PDCCH를 수신한 경우 PDCCH가 전송되는 첫번째 CCE에 대응되는 동적 PUCCH 포맷 1a/1b를 이용하여 ACK/NACK을 전송할 수 있다. 그 이외의 경우에는 명시적으로 할당되는 복수의 샘과 복수의 서브프레임에 대한 ACK/NACK을 전송할 수 있는 ACK/NACK 전송자원(예를 들어 PUCCH 포맷 3)을 통해 ACK/NACK을 전송할 수 있다.

[0260] 또한, PDCCH 없이 SPS로 스케줄링 받는 PDSCH가 존재하는 경우 SPS
PDSCH에 대한 ACK/NACK 응답, PDCCH로 스케줄링 받는 PDSCH, ACK/NACK 응답을 요구하는 PDCCH에 대한 ACK/NACK 응답은 PDCCH의 첫번째 CCE에 대응되는 동적 PUCCH 포맷 1a/1b 자원과 SPS 용 명시적 PUCCH 포맷 1a/1b 자원을 선택적으로 사용하는 채널 선택 방식을 사용할 수 있다.

[0261] 프라이머리 셀이 TDD로 설정되었을 경우는, 구체적으로 다음과 같은 방법으로 ACK/NACK을 전송할 수 있다.

[0262] ACK/NACK을 전송하는 UL 서브프레임(예를 들어, 서브프레임 n)에 대응되는 복수의 DL 서브프레임들 중 디폴트 DL 서브프레임에만 (A) PDCCH가 없이 (SPS로) 스케줄된, PDSCH가 프라이머리 셀(PCC)에만 하나 존재하고 ACK/NACK 응답을 요구하는 PDCCH가 없을 때, 또는

[0263] (B) PDCCH로 스케줄된 PDSCH가 프라이머리 셀(PCC)에만 하나 존재하고 해당 PDCCH의 DAI=1인 때, 또는

[0264] (C) ACK/NACK 응답을 요구하는 DAI=1인 PDCCH(ex, DL SPS 해제 PDCCH)가 하나 존재하고 PDSCH는 없을 때는 PUCCH 포맷 1a/1b를 사용하여 ACK/NACK을 전송하고

[0265] (D) “ACK/NACK 응답을 요구하는 DAI=1인 PDCCH(ex, DL SPS 해제 PDCCH)가 존재” 또는 “PDCCH로 스케줄된 PDSCH가 프라이머리 셀(PCC)에만 하나 존재하고 해당 PDCCH의 DAI=1”인 동시에 “PDCCH 없이 (SPS로) 스케줄된 PDSCH가 하나 있을 때”는 PUCCH 포맷 1a/1b 채널 선택(channel selection)을 사용한다. 즉, 첫번째 HARQ-ACK은 PDCCH 없이 전송된 PDSCH가 대응되고 두번째 HARQ-ACK은 PDCCH DAI=1인 PDSCH의 첫번째 코드워드(codeword) 또는 DL SPS 해제 PDCCH가 대응되고 세번째 HARQ-ACK은 DAI=1인 PDCCH가 스케줄되는 PDSCH의 두번째 코드워드가 대응된다. 그리고,

[0267] 이러한 ACK/NACK 자원 할당 방식은 세컨더리 셀 없이 프라이머리 셀만 단말이 할당 받고 디폴트 서브프레임과 유동적 서브프레임이 존재하는
경우에도 마찬가지로 적용된다.

[0268] 한편, PDSCH를 프리미지 셀에서 하나 스케줄링 받았을 때, PDCCH가 전송되는 첫번째 CCE에 대응되는 동적 PUCCH 포맷 1a/1b를 사용할 수 없다면, 미리 할당받은 명시적 PUCCH 포맷 1a/1b 자원을 사용하여 ACK/NACK를 전송할 수 있다. 여기서, 명시적 PUCCH 포맷 1a/1b 자원은 SPS를 위해 할당받은 명시적 PUCCH 포맷 1a/1b 자원과 동일한 자원일 수 있다.

[0269] 또는 PDSCH를 프리미지 셀에서 하나 스케줄링 받았을 때, PDCCH가 전송되는 첫번째 CCE에 대응되는 동적 PUCCH 포맷 1a/1b를 사용할 수 없다면, PUCCH 포맷 3을 이용하여 ACK/NACK를 전송할 수 있다. 이 때, PDCCH의 TPC 필드는 미리 설정된 PUCCH 포맷 3의 자원 중에서 하나를 지정하는 ARI(ACK/NACK resource indicator)로 사용될 수 있다.

[0270] 상술한 제1 실시에 내지 제3 실시에는 하나의 서빙 셀 내에서도 적용될 수 있다. 예를 들어, 단말에게 TDD 프레임을 사용하는 하나의 서빙 셀이 할당되고, 상기 서빙 셀의 각 서브프레임을 동적으로 UL-DL 설정할 수 있다면 상기 제1 실시에 내지 제3 실시에가 적용될 수 있다.

[0271] 도 17은 단말에게 하나의 서빙 셀만이 설정된 경우에 제1 실시에 또는 제2 실시에를 적용하는 예를 나타낸다.

[0272] 도 17을 참조하면, 프리미지 셀은 TDD 프레임을 사용할 수 있다. ACK/NACK은 디플트 UL 서브프레임(171)에서만 전송될 수 있다. 디플트 UL 서브프레임(171)에 링크된 서브프레임이 4개라고 가정하자. 이 경우, 제1 실시에에 따르면, 단말은 디플트 DL 서브프레임 및 유동적 서브프레임 모두에 대해 ACK/NACK 페이로드를 구성한다.

[0273] 반면, 제2 실시에에 따르면, 단말은 디플트 DL 서브프레임 및 실제 UL 서브프레임으로 사용되는 것으로 인식된 유동적 서브프레임을 제외한 서브프레임들(즉, 유동적 서브프레임들 중 DL 서브프레임으로 인식된 서브프레임들)에 대하여서만 ACK/NACK 페이로드를 구성한다. ACK/NACK 페이로드는 디플트 UL 서브프레임(172)에서 전송된다.

[0274] 도 17에 도시하는 않았지만, 제3 실시에에 의하면 단말은 디플트 DL 서브프레임 및 유동적 서브프레임들 중에서 실제 PDSCH가 스케줄링된 서브프레임에 대한 ACK/NACK 페이로드를 구성할 수 있다.

[0275] 도 14 내지 도 16이 주파수 채널에서 복수의 서브프레임들이 하나의 UL 서브프레임에 링크된 경우를 나타낸다면, 도 16은 시간 채널에서 복수의 서브프레임들이 하나의 UL 서브프레임에 링크된 경우를 나타낸다. 그러므로, 도 14 내지 도 16에서 설명한 방법과 도 17에서 설명한 방법은 결합되어 사용될 수도 있다.

[0276] 상기 제1 실시에 내지 제3 실시에에서 ACK/NACK 페이로드는 다음과 같은 순서로 결정될 수 있다. 1) 서브프레임이 속한 서빙 셀의 셀 ID가 작은 순서대로 ACK/NACK을 우선적으로 배치하고, 동일 서빙 셀에서는 디플트 DL
서브프레임에 대한 ACK/NACK을 먼저 배치한 후, 유동적 서브프레임에 대한 ACK/NACK을 배치할 수 있다. 또는 2) 디폴트 DL 서브프레임에 대한 ACK/NACK을 우선 배치하고, 유동적 서브프레임에 대한 ACK/NACK을 배치한다. 디폴트 DL 서브프레임 간에는 셀 ID에 따라 배치하고 유동적 서브프레임 간에서도 셀 ID를 따라 배치할 수 있다. 또는 3) 우선 서브프레임이 속한 서빙 셀의 셀 ID가 작은 순서대로 ACK/NACK을 배치한 후, 동일 서빙 셀에서는 DAI 등에 의해 스케줄링 순서를 알 수 있는 경우 해당 순서값을 따라 배치할 수 있다. 단 PDCCH 없이 스케줄링된 SPS PDSCH의 경우 순서값을 알 수 없으므로, 동일 셀에 대해서는 고정된 위치 (가장 뒤 또는 앞)에 배치할 수 있다.

도 18은 본 발명의 실시예에 따른 기지국 및 단말의 구성을 나타낸다.

기지국 (100)은 프로세서 (processor, 110), 메모리 (memory, 120) 및 RF부 (RF (radio frequency) unit, 130)를 포함한다. 프로세서 (110)는 제어된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서 (110)는 프라이머리 셀을 통해 세컨더리 셀들에서 사용하는 TDD (time division duplex) 프레임의 각 서브프레임에 대한 상향링크-하향링크 (UL-DL) 설정 정보를 전송한다. 그리고, 프라이머리 셀 및 세컨더리 셀을 통해 하향링크 데이터를 전송한다. 그리고, 프라이머리 셀을 통해 상기 하향링크 데이터에 대한 ACK/NACK을 수신한다. NACK을 수신한 경우 재전송 데이터를 전송할 수 있다. 메모리 (120)는 프로세서 (110)와 연결되어, 프로세서 (110)를 구성하기 위한 다양한 정보를 저장한다. RF부 (130)는 프로세서 (110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.

단말 (200)은 프로세서 (210), 메모리 (220) 및 RF부 (230)를 포함한다. 프로세서 (210)는 제어된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서 (210)는 프라이머리 셀을 통해 세컨더리 셀들의 제1 서브프레임들에 대한 상향링크-하향링크 (UL-DL) 설정 정보를 수신하고, 프라이머리 셀 및 세컨더리 셀들 중 적어도 하나의 서빙 셀의 제1 서브프레임에서 데이터를 수신한다. 그 후, 수신한 데이터에 대한 ACK/NACK을 구성하고, ACK/NACK을 프라이머리 셀의 제2 서브프레임을 통해 전송한다. 이 때, 제1 서브프레임들은 제2 서브프레임에 대응된다. 또한, 프로세서 (210)는 ACK/NACK의 페이로드 사이즈를 결정하는데, ACK/NACK 페이로드 사이즈는 제1 서브프레임들 중에서 디폴트 하향링크 서브프레임의 개수, 유동적 서브프레임의 개수 및 제1 서브프레임들이 포함되는 각 서빙 셀들의 전송 모드에 기반하여 결정된다. 메모리 (220)는 프로세서 (210)와 연결되어, 프로세서 (210)를 구동하기 위한 다양한 정보를 저장한다. RF부 (230)는 프로세서 (210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.

프로세서 (110, 210)는 ASIC (application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 메이스센터 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리 (120, 220)는 ROM (read-only memory), RAM (random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는
다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.

[0281] 이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.
청구범위

[청구항 1] 무선통신 시스템에서 단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법에 있어서,
복수의 서브프레임들에 대한 상향링크-하향링크(UL-DL) 설정 정보를 수신하는 단계;
상기 복수의 서브프레임들 중 적어도 하나의 서브프레임에서 데이터를 수신하는 단계;
상기 수신한 데이터에 대한 ACK/NACK를 구성하는 단계; 및
상기 ACK/NACK을 상향링크 서브프레임을 통해 전송하는 단계를 포함하되,
상기 복수의 서브프레임들은 상기 상향링크 서브프레임에 대응되고,
상기 복수의 서브프레임들은 각각 하향링크 서브프레임으로 고정된 디폴트 하향링크 서브프레임 및 유동적 서브프레임 중 어느 하나의 서브프레임이 되, 상기 유동적 서브프레임은 상기 상향링크-하향링크(UL-DL) 설정 정보에 의해 상향링크 서브프레임 또는 하향링크 서브프레임으로 설정 가능한 서브프레임이며,

상기 ACK/NACK의 정보 비트 사이즈를 나타내는 ACK/NACK 페이로드(payload) 사이즈(size)는 상기 복수의 서브프레임들 중에서 디폴트(default) 하향링크 서브프레임의 개수, 유동적 서브프레임의 개수 및 상기 복수의 서브프레임들의 전송 모드에 기반하여 결정되는 것을 특정으로 하는 방법.

[청구항 2] 제 1 항에 있어서, 상기 ACK/NACK 페이로드 사이즈는 상기 복수의 서브프레임들에 포함된 유동적 서브프레임들의 총 개수와 디폴트 하향링크 서브프레임의 개수를 더한 값에 각 서브프레임에서 최대 전송 가능한 코드위드의 개수를 곱한 값과 같은 비트 수인 것을 특정으로 하는 방법.

[청구항 3] 제 1 항에 있어서, 상기 ACK/NACK 페이로드 사이즈는 상기 복수의 서브프레임들에 포함된 유동적 서브프레임들 중에서 상기 단말이 하향링크 서브프레임으로 인식하는 서브프레임의 개수와 디폴트 하향링크 서브프레임의 개수를 더한 값에 각 서브프레임에서 최대 전송 가능한 코드위드의 개수를 곱한 값과 같은 비트 수인 것을 특정으로 하는 방법.

[청구항 4] 제 1 항에 있어서, 상기 ACK/NACK 페이로드 사이즈는 상기 복수의 서브프레임들에 포함된 유동적 서브프레임들의 총 개수와
상기 유동적 서비스프레임에서의 최대 전송 가능한 코드워드의 개수를 ECS의 값과 상기 계수의 서비스프레임들에 포함된 디폴트 하향링크 서비스프레임의 개수와 상기 디폴트 하향링크 서비스프레임에서의 최대 전송 가능한 코드워드의 개수를 ECS의 값과 같은 비트 수인 것을 특징으로 하는 방법.

[청구항 5]
제 1 항에 있어서, 상기 복수의 서비스프레임들 및 상기 상향링크 서비스프레임은 상기 단말이 상기 기지국과의 최초 연결 환경(Initial connection establishment procedure) 또는 연결 재환경

[청구항 6]
제 1 항에 있어서, 상기 복수의 서비스프레임들은 상기 단말에게 프라이머리 셀 이외에 추가로 할당되는 세컨더리 셀(secondary cell)의 서비스프레임들은 상기 상향링크 서비스프레임은 프라이머리 셀의 서비스프레임인 것을 특징으로 하는 방법.

[청구항 7]
제 1 항에 있어서, 상기 복수의 서비스프레임들 중 적어도 하나의 서비스프레임은 프라이머리 셀의 서비스프레임이고, 나머지 서비스프레임은 세컨더리 셀의 서비스프레임인 것을 특징으로 하는 방법.

[청구항 8]
제 1 항에 있어서, 상기 복수의 서비스프레임들에 대한 상향링크-하향링크(UL-DL) 설정 정보는 프라이머리 셀을 통해 수신되는 것을 특징으로 하는 방법.

[청구항 9]
제 1 항에 있어서, 상기 복수의 서비스프레임들 중에서 하나의 디폴트 하향링크 서비스프레임에서만 반경적으로 스케줄링된 데이터를 수신하는 경우, PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 사용하여 상기 ACK/NACK을 전송하는 것을 특징으로 하는 방법.

[청구항 10]
제 1 항에 있어서, 상기 복수의 서비스프레임들 중에서 하나의 디폴트 하향링크 서비스프레임에서만 PDCCH(physical downlink control channel)을 통해 스케줄링된 데이터를 수신하고 상기 PDCCH에 포함된 DAI(downlink assignment index)가 1인 경우, PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 사용하여 상기 ACK/NACK를 전송하는 것을 특징으로 하는 방법.

[청구항 11]
제 1 항에 있어서, 상기 복수의 서비스프레임들 중에서 하나의 디폴트 하향링크 서비스프레임에서만 ACK/NACK 응답을 요구하는 PDCCH만을 수신하고 상기 PDCCH에 포함된 DAI(downlink assignment index)가 1인 경우, PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 사용하여 상기 ACK/NACK을 전송하는
것을 특별히 하는 방법.

[청구항 12]
제 10항 또는 제 11 항에 있어서, 상기 복수의 서브프레임들 중에서 하나의 디폴트 하향링크 서브프레임에서 대응하는 PDCCH 없이 반정적으로 스케줄링된 데이터를 더 수신하는 경우,
PUCCH(physical uplink control channel) 포맷 1a 또는 1b를 이용하는
제널 선택을 사용하여 상기 ACK/NACK을 전송하는 것을
특정으로 하는 방법.

[청구항 13]
제 1 항에 있어서, 상기 프라이머리 셀은 하향링크 전송과
상향링크 전송이 서로 다른 주파수 대역에서 수행되는
FDD(frequency division duplex) 프레임을 사용하는 것을 특정으로
하는 방법.

[청구항 14]
제 13 항에 있어서, 상기 세컨더리 셀들은 하향링크 전송과
상향링크 전송이 동일한 주파수 대역 및 서로 다른 시간에
수행되는 TDD 프레임을 사용하는 것을 특정으로 하는 방법.

[청구항 15]
제 1 항에 있어서, 상기 상향링크-하향링크(UL-DL) 설정 정보는
상기 제 1 서브프레임들을 스케줄링하는 PDCCH를 통해 전송되는
것을 특정으로 하는 방법.

[청구항 16]
제 1 항에 있어서, 상기 제 1 서브프레임들과 상기 제 2
서브프레임은 4 서브프레임만큼 이격되는 것을 특정으로 하는
방법.

[청구항 17]
무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
상기 RF부와 연결되는 프로세서를 포함하되,
상기 프로세서는 복수의 서브프레임들에 대한
상향링크-하향링크(UL-DL) 설정 정보를 수신하고, 상기 복수의
서브프레임들 중 적어도 하나의 서브프레임에서 데이터를 수신하고,
상기 수신한 데이터에 대한 ACK/NACK을 구성하고, 상기
ACK/NACK를 상향링크 서브프레임을 통해 전송하되,
상기 복수의 서브프레임들은 상기 상향링크 서브프레임에
대응되고,
상기 복수의 서브프레임들은 각각 하향링크 서브프레임으로
고정된 디폴트 하향링크 서브프레임 및 유동적 서브프레임 중
어느 하나의 서브프레임이되, 상기 유동적 서브프레임은 상기
상향링크-하향링크(UL-DL) 설정 정보에 의해 상향링크
서브프레임 또는 하향링크 서브프레임으로 설정 가능한
서브프레임이며,
상기 ACK/NACK의 정보 비트 사이즈를 나타내는 ACK/NACK
페이로드 사이즈는 상기 복수의 서브프레임들 중에서 디폴트
하향링크 서브프레임의 개수, 유동적 서브프레임의 개수 및 상기
복수의 서브프레임들의 전송 모드에 기반하여 결정되는 것을 특징으로 하는 단말.
[Fig. 4]

하나의 하향링크 슬롯
(One downlink slot)

7 OFDM 심별들(symbols)

자원블록(Resource block)
12×7 자원요소
(resource elements)

자원요소(Resource element)
단말을 위한 모니터링 CC
(Monitoring CC for a UE)

[Fig. 10]
프라이머리 셀의 RRC 메시지를 통해 세컨더리 셀들의
셀 특정적 UL-DL 설정을 전송

프라이머리 셀을 통해 상기 셀 특정적 UL-DL 설정 변경을
지시하는 정보 전송

셀 특정적 UL-DL 설정과 상기 설정
변경을 지시하는 정보를 기반으로
각 서브프레임에 대한 UDSX 설정
기지국

세컨더리 셀들에 대한 UL-DL 설정을 알려주는 정보 전송 S210

착륙도 하나의 세컨더리 셀을 통해 데이터 전송 S220

수신한 데이터에 대한 ACK/NACK 싱크로 구성을 S230

ACK/NACK 전송 S240
[Fig. 14]

제1 서빙 셀 (FDD)
UL
DL

제2 서빙 셀 (TDD)

제3 서빙 셀 (TDD)

제4 서빙 셀 (TDD)

UL A/N

... N ...

[Grid colors and symbols]

- Diagonal UL
- Dynamic Subframe
- Diagonal DL
- DL or S (Dynamic DL or S)
- S (PDCCH region)

UL Subframe Indication
DL Subframe Indication
[Fig. 15]

제1 서방 셀 (FDD)

UL

DL

제2 서방 셀 (TDD)

S

S

제3 서방 셀 (TDD)

제4 서방 셀 (TDD)

... N ... N+4 ... 서브프레임

디폴트 UL

유동적 서브프레임

디폴트 DL

DL or S (디폴트 PDCCH region)

S (PDCCH 영역, 겹)

UL 서브프레임 인식

DL 서브프레임 인식
[Fig. 16]

서버링 셀 (FDD)

서버링 셀 (TDD)

서버링 셀 (TDD)

서버링 셀 (TDD)

디폴트 UL
유동적 서브프레임

디폴트 DL
DL or S (디폴트 PDCCH region)

S (PDCCH 영역, 갭)

UL 서브프레임 인식

DL 서브프레임 인식
[Fig. 18]