发明名称
牛流行热病毒间接 ELISA 抗体检测试剂盒及其制备方法
摘要
本发明涉及一种检测牛流行热病毒（bovineephemeralfevervirus，BEFV）血清抗体的间接 ELISA 试剂盒，以及试剂盒中所用的 BEFV 重组抗原的制备方法和这种重组抗原。这种重组蛋白仅与 BEFV 抗体发生反应，而不与其它同属或同科病毒的抗体系发生交叉反应，具有极高的特异性；重组蛋白还具有良好的反应敏感性。另外，试剂盒重复性良好，与病毒中和试验具有较高的符合率，保存期长。试剂盒操作时技术要求比较宽松，可在生产中广泛推广使用，应用于 BEFV 流行病学调查和免疫水平监测。
1. 牛流行热病毒间接 ELISA 抗体检测试剂盒，包括包被抗原的酶标板，其特征在于抗原对应的基因片段位于 BEFV G 基因的 1141bp-1620bp，长度为 480bp。

2. 根据权利要求 1 所述的牛流行热病毒间接 ELISA 抗体检测试剂盒，其特征在于抗原为重组蛋白。

3. 根据权利要求 1 或 2 所述的牛流行热病毒间接 ELISA 抗体检测试剂盒，其特征在于试剂盒中还有标准阳性血清、标准阴性血清、HRP 标记兔抗牛抗体、血清稀释液、酶标抗体稀释液、TMB 显色液、终止液和浓缩洗涤液。

4. 权利要求 2 或 3 的牛流行热病毒间接 ELISA 抗体检测试剂盒包被抗原的酶标板制备方法，其特征在于用 SEQ ID No 1 和 SEQ ID No 2 为上、下游引物，以 BEFV RNA 为模板扩增出 BEFV G 基因的 1141bp-1620bp，长度为 480bp 的片段，将前述扩增片段与 pMD 19-T Simple 载体连接，转化感受态 DH5α 大肠杆菌，筛选阳性菌株，提取重组质粒 pMD-G1，再将质粒 pET30a 和 pMD-G1 分别用内切酶 Nde 1 和 Xho 1 双酶切，分别回收目的 DNA 片段和 pET30a 载体片段，再连接，转化感受态 BL21 (DE3) 大肠杆菌，筛选阳性菌株，用终浓度 0.3mmol/L 的 IPTG 进行诱导表达，表达产物经纯化后得到重组目的蛋白，以重组目的蛋白为包被抗原被酶标板。

5. 权利要求 4 的方法制备的重组目标蛋白。
牛流行热病毒间接 ELISA 抗体检测试剂盒及其制备方法

技术领域

本发明涉及一种用于检测哺乳动物疾病的检测试剂盒，确切讲本发明是一种用于检测牛流行热病毒（bovine ephemeral fever virus, BEFV）试剂盒及这种试剂盒的方法。

背景技术

牛流行热（bovine ephemeral fever, BEF）是由 BEFV 引起的黄牛、奶牛、肉牛以及水牛的一种急性、热性传染病。BEF 由媒介昆虫传播，目前比较明确的媒介是蚊子和ventario。本病的流行具有明显的季节性，常发生在冬末春初，消失于第一次霜冻；在传播扩散方式上不受山川和河流的影响，呈跳跃式蔓延。它能够快速传播，流行面广，有一定的周期性。BEF 发生于非洲、亚洲和澳大利亚，在我国多个省份多次发生，导致奶牛产奶量降低，乳品质下降，役用牛跛行以及瘫痪，对养牛业造成重大经济损失。

对 BEFV 疫苗的免疫效果进行评价，或对 BEF 进行流行病学调查，就需要检测 BEFV 血清抗体的试剂盒。虽然国内外学者对检测 BEFV 抗体的方法进行了许多有意义的研究工作，包括补体结合试验、免疫荧光试验、G1-ELISA、阻断 ELISA 方法和中和试验等，但真正实际应用的只有中和试验。其它方法均来源于文献报道，仅仅初步建立了方法，并没有进一步对所建立的方法进行优化，也没有开展临床试验，验证其实际应用效果。到目前为止，这一工作在国内外都是空白，也没有任何一种实现商品化的检测 BEFV 血清抗体的试剂盒。

现有技术中，中和试验是检测 BEFV 抗体的标准方法，可以定性测定血清，也可以有效的检测 BEFV 抗体效价，但这种方法技术要求比较高，要动用活毒，以细胞病变作为指示指标。因此必须在专业实验室内，由专业人员操作才能完成，局限性非常大，基层兽医单位以及养牛场基本无应用可能。鉴于此种现状，需要研发一种检测 BEFV 抗体的试剂盒，要求这种试剂盒操作相对简单，大多数兽医单位均可用其检测 BEFV 血清抗体。

BEFV 属于弹状病毒科，暂时热病毒属，同属的其它病毒还有 berrimah virus (BRMV), adelaide river virus (ARV), kotonkan virus (KOTV), obodhiang virus (OBOV) 和 malakal virus (MALV)。这些病毒的抗血清之间均有交叉反应。要想特异性的检测 BEFV 血清抗体，必须选择合适的抗原。

发明内容

本发明提供一种可克服现有技术的不足，仅与 BEFV 抗体发生反应，而不与其它同属或同科病毒的抗体发生交叉反应的，用于检测 BEFV 血清抗体的间接 ELISA 试剂盒，同时提供制备这一检测试剂盒的方法和试剂盒中所用的 BEFV 重组抗原的制备方法，以及这种重组抗原。
说明书

【0008】本发明的牛流行热病毒间接 ELISA 抗体检测试剂盒中，包括包被抗原的酶标板，其中的抗原为大肠杆菌表达的蛋白，表达的基因位于 BEFV G 基因的 1141bp-1620bp，长度为 480bp，包含有 BEFV 的特异性 G1 抗原表位。

【0009】本发明的牛流行热病毒间接 ELISA 抗体检测试剂盒中，其抗原为重组蛋白。

【0010】为方便使用，本发明的牛流行热病毒间接 ELISA 抗体检测试剂盒中还有标准阳性血清、标准阴性血清、HRP 标记兔抗牛抗体、血清稀释液、酶标抗体稀释液、TB 显色液、终止液和浓缩洗涤液。

【0011】本发明的牛流行热病毒间接 ELISA 抗体检测试剂盒包被抗原的酶标板制备方法是：用 SEQ ID No 1 和 SEQ ID No 2 为上、下游引物，以 BEFV RNA 为模板扩增出 BEFV G 基因的 1141bp-1620bp，长度为 480bp 的片段，将上述扩增片段与 pMD 19-T Simple 载体连接，转化感受态 DH5a 大肠杆菌，筛选阳性菌株，提取重组质粒 pMD-G1，再将质粒 pET30a 和 pMD-G1 分别用内切酶 Nadl I 和 Xho I 双酶切，分别回收目的 DNA 片段和 pET30a 载体片段，再连接，转化感受态 BL21 (DE3)大肠杆菌，筛选阳性菌株，用终浓度 0.3mmol/L 的 IPTG 进行诱导表达，表达产物经纯化后得到重组目的蛋白，以重组目的蛋白为包被抗原包被酶标板。

【0012】本发明经过相应的试验发现，BEFV 糖蛋白 (G) 基因的部分特异性片段，即 BEFV G 基因中的 1141bp-1620bp，长度为 480bp 片段具有特异性，只与 BEFV 阳性血清发生反应，而与其它同属的阳性血清无交叉反应，经进一步试验表明，这一片段进行检测其结果具有极高的特异性。

【0013】本发明的优越性表现在：

a. 选择 BEFV G 基因的特异性保守片段进行克隆表达，所选择的基因片段与同属其它病毒 G 基因对应的片段的同源性低于 40%，并且含有 BEFV G 基因特异性的 G1 抗原表位。因此，这种纯化的重组蛋白作为包被抗原，只与 BEFV 的阳性血清发生反应，而与同属或同科的其它病毒的阳性血清均不反应，保证了反应的特异性；并且 G1 抗原表位是线性表位，重组蛋白具有良好的反应性，保证了反应的敏感性。

【0014】b. 表达目前基因片段所用的载体为 pET30a，得到的重组蛋白带有组氨酸标签。虽然重组蛋白以包涵体形式存在，但洗涤后可用 Ni-NTA Agarose 柱进行纯化，纯度达 90% 以上，保证了与抗体反应的特异性。

【0015】c. 本发明涉及的试剂盒应用间接 ELISA 技术，开放性操作，与目前用于检测 BEFV 血清抗体的病毒中和试验相比，技术要求比较宽松，具有极大的可操作性。

【0016】d. 本发明中的试剂盒操作步骤简单、方便、快速，相关专业人员均可按照说明书步骤检测血清样品，因此本发明的试剂盒可在兽医机构广泛推广应用。

具体实施方式

【0017】一、抗原制备

根据选定的基因片段设计一对引物，上游引物序列为 5' - catatg aatcattatgsgatggatgac-3'，下游引物序列为 5' - ctcgagtgcctatatcctggcttgg-3'。引物序列中斜体加黑者为内切酶位点，上游引物中为 Nadl I 酶切位点，下游引物中为 Xho I 酶切位点。用病毒 RNA 提取试剂盒，从 BEFV 感染血中提取 BEFV RNA 基因组作模板，用上述引物对，RT-PCR 方法扩增目的 DNA 片段。所扩增到的目的片段长度为 480bp，位于 BEFV G 基因
的1141bp-1620bp,包含有G1抗原表位。将扩增到的目的DNA进行琼脂糖电泳，纯化，回收目的DNA，与克隆载体pMD 19-T Simple连接，转化进大肠杆菌DH5α，挑取阳性单克隆菌株，提取重组质粒pMD-G1；用内切酶Ade I和Alho I对质粒pMD-G1和表达载体pET30a分别进行双酶切，然后分别进行琼脂糖凝胶电泳，纯化，回收酶切后的目的DNA和载体片段。

将回收的目的DNA和载体pET30a片段用T4连接酶进行连接，然后转化进表达菌株BL21（DE3），挑取阳性单克隆菌株，用终浓度0.3 mmol/L的IPTG进行诱导表达。

诱导后的菌液离心沉淀，放7.4 PBS洗涤沉淀，重悬，然后超声波破碎菌体，再离心，表达的目的蛋白为包涵体，处于沉淀中。沉淀用8M尿素溶解，然后过Ni-NTA Agarose柱进行纯化，得到重组目的蛋白。操作按照说明书进行。

二、抗原包被

纯化好的重组蛋白作为抗原包被酶标板。经摇床摇匀，将抗原的最佳包被浓度为1.5 μg/ml，100 μl/孔；血清稀释倍数为1:10；HRP标记抗牛抗体稀释倍数为1:20000，将其先稀释100倍，再用再作200倍稀释。

抗原的包被程序为：将-75℃冻存的抗原融化，加pH9.6碳酸盐缓冲液稀释至1.5 μg/ml，加入酶标板，100 μl/孔，转入4℃过夜。次日甩掉抗原液，洗涤液去2%明胶封闭，100 μl/孔，37℃温育30min，再洗涤。然后加入蛋白稳定剂，100 μl/孔，室温孵育10min，甩干，在超净台内吹1h。最后放入包装袋内，抽成真空。

本发明涉及的试剂盒中的标准阳性血清，用BEFV血清多次静脉攻毒1.5岁黄牛后制备，共攻毒5-7次。血清血清为既没有免疫过BEFV疫苗，又没有感染过BEFV的健康黄牛血清。本发明的检测试剂盒中的200倍HRP标记抗牛抗体购于Sigma公司；血清稀释液、酶标抗体稀释液、TMBl显示液、终止液、50倍浓缩洗涤液均购自于中国农业科学院兰州兽医研究所生物制品诊断中心。

三、组装试剂盒

各种试剂盒组装成本发明检测BEFV血清抗体的间接ELISA试剂盒（以下称试剂盒）。建议试剂盒中包括：已包被抗原、真空包装的酶标板（2块）；标准阳性血清1支（100 μl）；标准阴性血清1支（100 μl）；200倍HRP标记抗牛抗体1支（100 μl）；血清稀释液1瓶（20ml）；酶标抗体稀释液1瓶（20ml）；TMBl显示液1瓶（20ml）；终止液1瓶（20ml）；50倍浓缩洗涤液1瓶（20ml）。试剂盒4℃保存，保存期为6个月。试剂盒可检测180份血清。

四、试剂盒的使用方法举例

1. 将试剂盒从4℃冰箱中取出，平衡至室温。用双蒸水将50倍洗涤液稀释到1倍使用浓度。

2. 取出酶标板，并按检血清的数量确定需要的酶标板条，剩余的板条放入包装袋中，4℃保存。拆封的酶标板最好在7天内用完。

3. 加血清稀释液；将酶标板孔内加入血清稀释液，第一排的第5～6孔（空白对照孔）为100 μl/孔，其余各孔为90 μl/孔。

4. 加血清；酶标板第一排的1～2孔加入标准阳性血清，第3～4孔加入标准阴性血清，第5～6孔为空白对照。其余各孔加入待检血清，每份血清加1孔，不做重复。各血清加入量均为10 μl/孔（血清最终稀释度为1:10），空白对照孔不加血清。轻轻摇动混

5
匀。
[0028] 5. 温育：用封板膜封住酶标板，放入 37℃温箱中孵育 30min。
[0029] 6. 洗涤：小心揭掉封板膜，弃去液体，甩干，每孔加满洗涤液，静置 30秒后弃去。
如此重复 4次，拍干。
[0030] 7. 加酶：用酶标抗体稀释液将 HRP 标记兔抗牛抗体作 200 倍稀释，加入酶标板孔内，100μl/孔。
[0031] 8. 温育：操作同 5。
[0032] 9. 洗涤：操作同 6。
[0033] 10. 显色：加入 TMB 显色液，100μl/孔，37℃避光显色 5min。
[0034] 11. 终止：加入终止液，100μl/孔。
[0035] 12. 测定：立即用酶标仪在 450nm 波长下测量各孔的吸光度 (OD_{450}值)。
[0036] 13. 结果判定：样品 OD_{450}值－标准阴性血清 OD_{450}值 / 标准阳性血清 OD_{450}值－标准
阴性血清 OD_{450} 值 ≥ 0.3 为阳性；样品 OD_{450} 值－标准阴性血清 OD_{450} 值 / 标
准阳性血清 OD_{450}值 ≤ 0.2 为阴性；0.2 < 样品 OD_{450} 值－标准阴性血清 OD_{450} 值 / 标
准阳性血清 OD_{450} 值 < 0.3 为可疑。
[0037] 五、试剂盒的敏感性、特异性、重复性、符合率、保存期测定

经病毒中和实验检测抗体效价为 1:8 和 1:32 的 2份牛流行热阳性血清，分别标记为 1、
2号血清，将其分别作 1:10, 1:20, 1:40, 1:80, 1:160 共 5 个稀释度，用本发明中的试剂盒检
测每个稀释梯度的样品，检验试剂盒能检测出的最低抗体效价。结果表明，效价为 1:8 的 1
号阳性血清稀释至 1:20时检测为阳性；效价为 1:32 的 2 号阳性血清稀释至 1:80时仍可检
测出阳性，说明试剂盒有较高的敏感性。
[0038] 用试剂盒检测 BRMV, ARV, KOTV, OBOV, MALV 以及狂犬病病毒（Rabies virus, RV,
与 BEFV 同属弹状病毒科）的阳性血清，结果均为阴性，说明 BEFV 阳性血清和同属其它病毒
以及 RV 阳性血清之间不存在交叉反应，试剂盒有良好的特异性。
[0039] 取 20 份 BEFV 阳性血清和 20 份阴性血清，用同批次试剂盒在不同时间相同条件下
重复检测三次，判断结果完全相同，说明试剂盒重复性较好。
[0040] 经病毒中和实验鉴定的 54 份阳性血清和 30 份阴性血清，用试剂盒进行检测，验证
该方法与病毒中和试验的符合率。结果表明，试剂盒与病毒中和试验的符合率为 97.6%。
[0041] 用同批制备的试剂盒每隔 2 周检测相同的 54 份阳性血清和 30 份阴性血清。结
果表明，保存 6 个月的试剂盒对同一份血清的检测结果相同，说明试剂盒的保存期至少为 6
个月。
[0042] 六、试剂盒检测田间血清样品

用本发明中的试剂盒检测了采自 7 个省的牛血清共 1301份，包括青海省的牦牛血清
476 份，宁夏自治区的奶牛血清 179 份，甘肃省的黄牛血清 98 份，内蒙古自治区的奶牛血清
175 份，山西省的黄牛血清 109 份，广东省的黄牛血清 34 份，云南省的黄牛血清 230 份。同
时用病毒中和试验检测上述血清。检测结果如表 1。
表 1 本发明的试剂盒与病毒中和试验检测田间血清样品

<table>
<thead>
<tr>
<th></th>
<th>本发明的试剂盒</th>
<th>病毒中和</th>
<th>阳性血清</th>
<th>阴性血清</th>
<th>可疑血清</th>
<th>总样品数</th>
</tr>
</thead>
<tbody>
<tr>
<td>阳性血清</td>
<td>569</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td>584</td>
</tr>
<tr>
<td>病毒中和</td>
<td>8</td>
<td>645</td>
<td>5</td>
<td></td>
<td></td>
<td>658</td>
</tr>
<tr>
<td>试验</td>
<td>4</td>
<td>6</td>
<td>49</td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>总样品数</td>
<td>581</td>
<td>663</td>
<td>57</td>
<td></td>
<td></td>
<td>1301</td>
</tr>
</tbody>
</table>

[0043] 由检测结果可知，用本发明中的试剂盒和病毒中和试验分别检测上述血清，两种方法的符合率在 97.1% (569 + 645 + 49/1301)，说明本发明涉及的试剂盒完全可以代替病毒中和试验检测 BEFV 抗体，在生产中推广应用。
<110> 中国农业科学院兰州兽医研究所
<120> 牛流行热病毒间接 ELISA 抗体检测试剂盒及其制备方法
<160> 2

<210> 1
<211> 26
<212> DNA
<213> 人工序列（上游引物）
<400>
Catatgaatc attatggat cggatc 26

<210> 2
<211> 26
<212> DNA
<213> 人工序列（下游引物）
<400>
ctcaggtgct catettaactg cctttg 26