Moule à lamberde pour la fabrication d'un lamberde

LEDGER MOULD FOR BUILDING A LEDGER
LEDGER MOULD FOR BUILDING A LEDGER

FIELD OF THE INVENTION

The present invention relates generally to the field of construction. More particularly, it concerns a form adapted to receive a flowable material such as concrete so to build a ledger for either supporting a brick wall or the ends of floor or ceiling joists. The ledger form disclosed herein is particularly useful when used in combination with a wall form assembly of the type comprising connectable foam panels for building insulated concrete walls, the foam panels being settable in parallel relationship.

BACKGROUND OF THE INVENTION

A number of different systems and methods currently exists for making insulating forms for casting a concrete wall. Often, these systems comprise pairs of opposed foam panels generally made of rigid foam like polystyrene, which define concrete-receiving cavities therebetween. Those pairs of foam panels are placed one above the other so to form the wall form. Once the concrete is solidified, the form walls remain in place to insulate the wall. Those form walls are typically maintained in spaced and parallel relationship before the pouring of concrete by means of connectors comprising a pair of parallel lateral attachment flanges each inserted in one of the two opposed foam panels, and a connecting web interconnecting the flanges.

The piling up of such panels is performed on the site of construction. One object in this field is to obtain foam panels that would allow, on one hand, an easy and very rapid piling up without loosing time and, on the other hand, would allow construction of a stable and solid stacking that will not likely disassemble prior to the pouring of concrete. As can be easily understood, as soon as the concrete is poured, the chances that the stack collapse or disassemble is greatly reduced.
Examples of such prior art wall form assemblies are given in US patents 3,895,469; 4,229,920; 4,704,429; 4,884,382; 4,885,888 and 4,894,969.

Already known in the prior art, there is also a concrete form for building a brick ledger on which a facing made of brick can be erected. Such concrete form for a brick ledger is adapted to be used in combination with a form wall assembly as described above, which comprises a pair of spaced-apart foam panels including an outside foam panel and an inside foam panel with respect to the outside and the inside of the building. The brick ledger form consists of an elongated foam member having a bottom edge mountable on top of the outside foam panel of the form wall system. The foam member has a substantially straight lower portion, a flared upper portion and space-apart reinforcement bridges along the length of the foam member. In use, the brick ledger form is set on top of the outside foam panel and a planar foam panel is set in front of the brick ledger form on the inside foam panel, thereby forming a flared cavity therebetween. The foam panel and the brick ledger form are tied to each other by means of connecting web members each having one flange inserted in reinforcement bridge of the brick ledger and the other flange inserted in the facing foam panel. The concrete devised to form the brick ledger is poured in the flared cavity so to form a brick ledger on which a brick facing can be erected.

One drawback with such brick ledger form, among others, is that it only allows the construction of a ledger at specific height on the main wall since the form has to be installed on top of a foam panel. Thus, the level at which the brick ledger can be constructed is directly dependent on the level at which the top edge of the foam panel extends.

SUMMARY OF THE INVENTION

An object of the present invention is to provide an improved form for a ledger which is believed to be more flexible or adaptable than the known ledger form.
In accordance with the present invention, that object is achieved with a ledger form assembly for the setting of a flowable material, comprising an elongated ledger foam mould with a flared recess formed in a front face thereof and defining an inlet in a top edge of the mould for receiving the flowable material, the ledger foam being adapted to be fixed transversally against a wall with the top edge up and the front face facing the wall. The assembly further comprises fastening means for fixing the ledger foam assembly against the wall.

According to a preferred feature of the present invention, that object is also achieved with a ledger form assembly for the setting of a flowable material suitable for use with a wall form assembly of the type comprising a pair of spaced-apart parallel foam panels defining therebetween a cavity for receiving a flowable material for building insulated concrete walls. The form wall assembly further comprises a plurality of connectors for interconnecting the foam panels, each connector comprising opposed flange pieces inserted in a respective foam panel and a web member interconnecting the flange pieces.

The ledger form assembly comprises an elongated ledger foam mould adapted to be fixed transversally against a foam panel of the wall form assembly. The ledger foam mould has a front face intended to face the foam panel once fixed thereon, a rear face opposite the front face, a top edge, a bottom edge and two side walls. The ledger foam mould further comprises a sloping surface on the front face sloping inwardly towards the rear face from bottom to the edge top and a plurality of rib members projecting transversally from the sloping surface, the sloping surface with the sidewalls and the rib members outlining a plurality of flared cavities in the front face having an inlet in the top edge for pouring the flowable material once the ledger foam mould is fixed against a foam panel. The ledger form assembly further comprises a first set of fastening means for connecting a bottom edge portion of the ledger foam mould to respective flanges of the connectors inserted in the foam panel and a second set of fastening means for connecting the rib members to respective flanges. In use, the ledger foam mould is fixed transversally against the foam panel with the top edge up,
the foam material of the foam panel then facing the flared cavities of the ledger mould is cut and removed, thereby providing a full fluid communication between the flared cavities and the cavity defined between the foam panels of the form assembly. The assembly is then reinforced with a conventional framework for reinforcing hardening flowable material and the flowable material is poured in the cavities to form a wall with a ledger suitable for supporting a brick wall or the ends of floor or ceiling joists.

As can be appreciated, the ledger form mould according to the invention is very flexible, as it can be mounted anywhere, at any level on the foam panel, depending on where a ledger is required.

Other features and objects of the present invention will become more apparent from the description that follows of a preferred embodiment, having reference to the appended drawings and given as examples only as to how the invention may be put into practice.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a cross-sectional side view of a ledger foam mould according to a preferred embodiment of the present invention shown mounted against a foam panel of a form wall assembly.

Figure 2 is a perspective view of the ledger foam mould of figure 1;

Figure 3 is a top view of the same ledger foam mould;

Figure 4 is a front view of the same ledger foam mould as in the previous figures;

Figure 5 is a side elevation view of the same ledger foam mould as in the previous figures.
DESCRIPTION OF A PREFERRED EMBODIMENT

Referring to figure 1, a ledger form assembly (10) for the setting of a flowable material, such as concrete, is illustrated mounted against a foam panel (1) of a form wall assembly well known in the prior art. Although not completely illustrated, such form wall assembly typically comprises a pair of spaced-apart parallel foam panels (1) (only one is illustrated) defining therebetween a cavity (2) for receiving a flowable material for building insulated concrete walls. The form wall assembly further comprises a plurality of connectors (4) for interconnecting the foam panels (1), each connector (4) comprising opposed flange pieces (6) inserted in a respective foam panel (1) and a web member (not illustrated) interconnecting the flange pieces (6).

The ledger form assembly (10) comprises an elongated ledger foam mould (12) with a flared recess (14) formed in a front face thereof and defining an inlet (16) in a top edge (18) of the mould (12) for receiving the flowable material. As shown, the ledger foam mould (12) is adapted to be fixed transversally against a wall, in this case a foam panel (1), with the top edge (18) up and the front face with the flared recess (14) facing the wall. The assembly further comprises fastening means (20,22) for fixing the ledger foam mould (12) against the wall.

Turning now to figures 2 to 5, the ledger foam mould (12) has a front face (30) intended to face the foam panel (1) once fixed thereon, a rear face (32) opposite the front face (30), a top edge (18), a bottom edge (34) and two side walls (36). The ledger foam mould (12) further comprises a sloping surface (38) on the front face (30) sloping inwardly towards the rear face (32) from bottom to the edge top and a plurality of rib members (40) projecting transversally from the sloping surface (38). The sloping surface (38) with the side walls (36) and the rib members (40) outlining a plurality of flared cavities (14) in the front face (30) having an inlet (16) in the top edge (18) for pouring the flowable material once the ledger foam mould (12) is fixed against a foam panel (1).
Referring now also to figure 1, the ledger form assembly (10) further comprises a first set (20) of fastening means for connecting a bottom edge portion (34) of the ledger foam mould (12) to respective flange pieces (6) of the connectors (4) inserted in the foam panel (1) and a second set (22) of fastening means for connecting the rib members to respective flanges.

The first set (20) of fastening means comprises wedge-shaped brackets (21) adapted to receive and support a wedge bottom edge (34) of the mould (12) and screws (23) for screwing the brackets (21) to the flange piece (6) of a facing connector in the foam panel, as shown in figure 1.

The second set (22) of fastening means comprises a plurality of socket caps (25) in which an upwardly protruding portion (27) of a corresponding rib member (40) is inserted. Each socket cap (25) has a screw receiving flange (27) extending upwardly, thereby allowing the same to be fixed to a flange piece (6) of the foam panel (1).

In use, the ledger foam mould (12) is fixed transversally against the foam panel (1) with the top edge (18) up as in figure 1. The foam material of the foam panel (1) then facing the flared cavities (14) of the ledger mould (12), and identified as numeral reference (3) in figure 1, is cut and removed, thereby providing a full fluid communication between the flared cavities (14) and the cavity (2) defined between the foam panels (1) of the form assembly. The assembly is then reinforced with a conventional framework (not illustrated) for reinforcing hardening flowable material and the flowable material is poured in the cavities (2 and 14) to form a wall with a ledger suitable for supporting a brick wall or the ends of floor or ceiling joists.

As can be appreciated, all the rib members (40) comprise a rod receiving groove (44) in line to each other, allowing the insertion of a reinforcing rod along the mould (12).