woO 2009/0887277 A2 |10 00 OO

(19) World Intellectual Property Organization ‘, | [I

) /IO O O OO 00

International Bureau

(43) International Publication Date
16 July 2009 (16.07.2009)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2009/088727 A2

(51)

21

(22)

(25)
(26)
(30)

(1)

(72)

International Patent Classification:

GOG6F 9/00 (2006.01) GOGF 15/00 (2006.01)
GOGF 9/44 (2006.01)
International Application Number:

PCT/US2008/087925

International Filing Date:
22 December 2008 (22.12.2008)

Filing Language: English
Publication Language: English
Priority Data:

11/971,206 8 January 2008 (08.01.2008) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: CUNEO, Andrew R.; c/o Microsoft Corpo-
ration, LCA, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). WORLINE,
Ben; c/o Microsoft Corporation, LLCA, International
Patents, One Microsoft Way, Redmond, Washington

(81)

(34)

98052-6399 (US). ZENZ, Eric M.; c/o Microsoft Corpo-
ration, LCA, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

[Continued on next page]

(54) Title: ASYNCHRONOUS MULTI-LEVEL UNDO SUPPORT IN JAVASCRIPT GRID

100
K_

r 102 r 106
CHANGE WEB
COMPONENT APPLICATION
A A
r 108 r 110
REVERSE
COMPONENT DATA GRID
y
104
v
DATA

(57) Abstract: Architecture for multi-level
undo on a client in grid-based applications.
The architecture is a control driven
cascading changes system where change
tracking works seamlessly in asynchronous
(and synchronous) scenarios. A client
application is associated with a grid object
and, instantiates and configures the grid
object. The application can initiate a change
to data in the grid and/or the user can edit
the data in the grid directly. A result of the
change is a notification to the application,
the notification including an order key. The
application consumes the notification and
can then append new changes based on
synchronous or asynchronous computations
by calling an update function using the order
key. The application uses the key to attach
further updates which are properly collected
together for undo/redo.

WO 2009/088727 A2 | NI DA 00 00RO 00 00 0 0 O

NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, — asto the applicant’s entitlement to claim the priority of the
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). earlier application (Rule 4.17(iii))

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted a — without international search report and to be republished

patent (Rule 4.17(ii)) upon receipt of that report

WO 2009/088727 PCT/US2008/087925

ASYNCHRONOUS MULTI-LEVEL UNDO SUPPORT IN JAVASCRIPT GRID

BACKGROUND
[0001] One of the main differentiators between desktop client applications and
“thin” web applications is the richness of the editing experience. Traditionally, web
applications transact data with the server according to individual post-backs, which
commit data to the server as the user navigates the application. Undoing a user action
is oftentimes not possible once a user navigates away from a webpage. Conversely, a
user can interact with a client application more fluidly, only saving data when the user
is ready to do so. Moreover, if the user makes an editing mistake while working in
the client application, the user can select “undo” one or more times to revert the
changes with no effect to the saved file.
[0002] Many software technologies now require employees to interact with data on
enterprise servers through web-type applications. Consider the editing of structured
task data (e.g., adding/deleting tasks, assigning resources, changing scheduled data,
etc.) commonly found in project servers, for example, but via a webpage. Without
multi-level undo capability, this experience can be perilous as users are not allowed to
undo actions. The user can perform frequent saves, but saving such datasets to the
server is a slow process. Thus, the effective edit performance decreases

proportionately with the user’s comfort for typing complex data into a webpage.

SUMMARY
[0003] The following presents a simplified summary in order to provide a basic
understanding of some novel embodiments described herein. This summary is not an
extensive overview, and it is not intended to identify key/critical elements or to
delineate the scope thereof. Its sole purpose is to present some concepts in a
simplified form as a prelude to the more detailed description that is presented later.
[0004] The disclosed multi-level undo architecture is a control driven cascading
changes system where change tracking works seamlessly in asynchronous (and
synchronous) scenarios. Moreover, the undo transcends save actions, understands the
difference between implicit and explicit changes, and handles these changes

accordingly to provide context for the undo.

S 1-

WO 2009/088727 PCT/US2008/087925

[0005] The client application is associated with a grid object that presents the data
of the application as a tabular representation, thereby supporting editing and
visualization. The application, in part, instantiates and configures the grid object.
The application can programmatically initiate a change to data in the grid and/or the
user can edit the data in the grid directly. A result of the change is a notification to
the application, the notification including an order key. The application consumes the
notification and can then append new changes based on synchronous or asynchronous
computations (e.g., scheduling) by calling an update function using the order key.
The application can use the key at any point in the future to attach further updates to
the change. The updates are properly collected together for undo/redo.

[0006] To the accomplishment of the foregoing and related ends, certain
illustrative aspects are described herein in connection with the following description
and the annexed drawings. These aspects are indicative, however, of but a few of the
various ways in which the principles disclosed herein can be employed and is
intended to include all such aspects and equivalents. Other advantages and novel
features will become apparent from the following detailed description when

considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 illustrates computer-implemented undo system.
[0008] FIG. 2 illustrates an implementation of a client-server system that provides
multi-level data change reverse operations.
[0009] FIG. 3 illustrates an example of asynchronous undo/redo operations on
data.
[0010] FIG. 4 illustrates the final data updates based on the use of change keys to
address asynchronous out-of-order change processing.
[0011] FIG. 5 illustrates a change tracker as part of the change component and an
undo stack as part of the reverse component.
[0012] FIG. 6 illustrates the initial grid state of data in the grid, stack state of the
undo stack, and tracker state of the change tracker.
[0013] FIG. 7 illustrates an implicit change and the effects on the stack state and

tracker state.

WO 2009/088727 PCT/US2008/087925

[0014] FIG. 8 illustrates a change in the task name of the grid data and the effects
on the undo stack and change tracker.

[0015] FIG. 9 illustrates execution of an undo operation.

[0016] FIG. 10 illustrates a computer-implemented method of providing reverse
operations in data.

[0017] FIG. 11 illustrates a method of processing explicit/implicit changes.

[0018] FIG. 12 illustrates

[0019] FIG. 13 illustrates a block diagram of a computing system operable to
execute multi-level undo in accordance with the disclosed architecture.

[0020] FIG. 14 illustrates a schematic block diagram of an exemplary client-server

computing environment for multi-level undo processing.

DETAILED DESCRIPTION
[0021] The disclosed architecture bridges a major gap in the editing experience of
“thin” web applications by supporting multi-level undo on the client in grid-based
applications. This feature is useful to a number of online editing experiences as well.
For example, multi-level undo allows the user to feel more comfortable about editing
more data at once, and increases the user perception of the positive performance of
the application. Moreover, online versions of applications also can benefit such that
multiple changes within a record may be undone and redone so that a user has total
control over editing.
[0022] Reference is now made to the drawings, wherein like reference numerals
are used to refer to like elements throughout. In the following description, for
purposes of explanation, numerous specific details are set forth in order to provide a
thorough understanding thereof. It may be evident, however, that the novel
embodiments can be practiced without these specific details. In other instances,
well-known structures and devices are shown in block diagram form in order to
facilitate a description thereof.
[0023] FIG. 1 illustrates a computer-implemented undo system 100. The system
100 includes a change component 102 for tracking asynchronous changes to data 104
via a web application 106. The system 100 further includes a reverse component 108

for performing reverse operations (e.g., undo, redo) on the data changes to the data

-3-

WO 2009/088727 PCT/US2008/087925

104 to previous states. The changes to the data 104 can be made via a data grid 110.
The changes to the data 104 can be made manually or programmatically via the grid
110.

[0024] The application 106 instantiates and configures the grid 110. The grid 110
is a tabular representation of data that is stored in the application 106, supporting
editing and visualization. A change is the before and after versions of a cell’s data,
plus the action that was required to cause the cell value to change.

[0025] In one embodiment, the web application 106 is a browser application via
which changes are made to a web page hosted by a server. The user can then exercise
multi-level undo/redo reverse operations for changes made to the webpage document.
In another implementation, the web application 106 is a browser that allows a user to
interact with local data, rather than network data, and exercise reverse operations such
as multi-level undo/redo.

[0026] FIG. 2 illustrates an implementation of a client-server system 200 that
provides multi-level data change reverse operations. The system 200 shows the
system 100 of FIG.1, to wit, the change component 102 for tracking asynchronous
changes to the data 104 via the web application 106, and the reverse component 108
for performing reverse operations (¢.g., undo, redo) on the data changes to previous
states. The data changes are made manually and/or programmatically via the data
grid 110. Here, the data changes are applied to a web document (e.g., webpage) 200
of a web server 202. As edits are passed into the grid 110, change notifications are
sent to the server 202 via the application 106 for asynchronous validation. Once
validated, the changes are sent back to the grid 110 via the application 106 as updates
to the data 104.

[0027] FIG. 3 illustrates an example 300 of asynchronous undo/redo operations on
data. An asynchronous change is a change that requires any number of asynchronous
validations or augmentations. When an entity makes changes to the grid data, the
result of this change is a notification to the application 106. Contained within this
notification is an order (or change) key. The application 106 consumes the
notification and then can append new changes based on some synchronous or
asynchronous computations (e.g., scheduling) by calling an update function with that

order key. The application 106 is free to use the order key at any point in the future to

_4.-

WO 2009/088727 PCT/US2008/087925

attach further updates to this change. These updates are properly collected together
for undo/redo.

[0028] Here, two changes, denoted as A and B, are entered into the grid 110 that
require asynchronous validation. When the edits are made, the changes are captured
in order by the grid 110. Each change is tagged with an order key. For example,
change A is tagged with an order key A (also denoted change key A) and the second
change B (later in time than change A) is denoted with a change key B. When a data
change is made, the grid 110 detects this and sends a notification to the application
106 (e.g., a browser), which the application 106 then sends the notification to the
server 202 for validation. The validation process at the server 202 can occur out-of-
order, or once the validation has competed, the server can send the previously ordered
validation out-of-order. Thus, the order keys facilitate ordering the changes at the
grid 110.

[0029] In this example, a first change notification request 302 is sent from the grid
110 to the application 106 to account for the data change A, made in a second row to
a column having a field labeled Duration, and a new value of the duration set to five
days. In a subsequent data edit, the grid 110 sends a second change notification
request 304 to the application 106 to account for the data change B, made in a third
row to a column having a field labeled Duration, and a new value of the duration set
to seven days. The change notification requests (302 and 304) are sent to the
application 106 in order (e.g., change A before change B). The application 106 then
forwards the notification requests (302 and 304) to the server 202, the server 202
validates the change requests (302 and 304) asynchronously, and returns the
validations back to the application 106.

[0030] Here, the server 202 begins a first validation process 306 for the first
change notification request 302. Next, the server 202 receives and begins a second
validation process 308 for the second change notification request 304. The server 202
completes the second validation process 308 before the first validation process 306.
Thus, a second update response 310 is sent from the server 202 through the
application 106 to the grid 110 for updating the associated data. The second update
response 310 includes the order key B that signifies the order in which the data

change was made relative to the first data change A. The second update response 310

-5-

WO 2009/088727 PCT/US2008/087925

also includes that the change was made in the third row, at a field labeled End Date,
and the new value for End Date of 5/27. This corresponds to the new value of seven
days in the second change notification request 304.

[0031] The server 202 then completes the first validation process 306 and sends a
first update response 312 through the application 106 to the grid 110 for updating the
associated data. The first update response 312 includes the order key A that signifies
the order in which the data change was made relative to the second data change B.
The first update response 312 also includes that the change was made in the second
row, at a field labeled End Date, and the new value for End Date of 5/25. This
corresponds to the new value of five days in the first change notification request 302.
Thus, the changes come back from validation out of order (change B before change
A).

[0032] FIG. 4 illustrates the final data updates based on the use of change keys to
address asynchronous out-of-order change processing. The results 400 of the requests
for the data changes which have occurred since the last save operation are shown.
When returned from the server 202, the results are placed and stored in the logical
order that the change (or order) keys dictate (change B after change A), rather than the
order in which the events actually occurred (change A after change B). Thus, the
changes 402 related to change A are stored together and denoted as occurring before
change B. Similarly, the changes 404 related to change B are stored together and
denoted as occurring after change A.

[0033] The undo and redo reverse operations are also handled in this way. Thus, if
a user were to select undo, both changes (Duration and End Date) associated with
change B would be undone, since that is the last change the user made, as indicated by
change key B, even though the update to change A was the last event the grid
encountered.

[0034] An entity (e.g., a user or system) interacts with the grid to make change to
data in the grid, either explicitly or implicitly. An explicit change is a change made to
the grid that directly affects data (e.g., changing a start date on a task). An implicit
change is a change that is made to the grid that has no effect on the data (e.g., resizing

a column).

WO 2009/088727 PCT/US2008/087925

[0035] FIG. 5 illustrates a change tracker 500 as part of the change component 102
and an undo stack 502 as part of the reverse component 108. As an entity makes
changes to grid data, the type of each change is noted, and functions to execute and
undo are placed on the undo stack 502. The undo stack 502 is a data structure that
stores an ordered history of the last set of actions. When an undo event happens,
operations are removed from the undo stack 502 and reverted until the first explicit
change is encountered. The first explicit change is the last action reverted. At this
point, the undo operation concludes. Subsequent undo operations are handled in the
same manner; an undo command will revert all implicit actions before the next
explicit action, and then revert the explicit action.

[0036] The effect of this system is that after an undo operation, the visual state of
the grid is restored before the undone action. All explicit changes are stored in a
separate structure (the change tracker 500) from the undo stack 502. This change
tracker 500 can be exported as a collection of cell-level changes.

[0037] The undo stack 502 and the change tracker 500 are independent structures.
When a change occurs, that change is pushed onto the undo stack 502, and an entry
for that change is made in the change tracker 500 if the change was explicit. If the
change is implicit, the change is not logged in the change tracker 500.

[0038] When an undo event occurs, the change is removed from the undo stack
502 and the change tracker 500, and the new value is noted in the change tracker 500.
If the change existed in the change tracker 500, that change is removed. If the change
does not exist in the change tracker 500, the action to revert the change (which itself
is a change) is added to a change log. When a save operation occurs the changes are
read from the change tracker 500, committed to the datasource, and the change tracker
500 is cleared.

[0039] The effect of this system is that an entity can undo actions that occurred
prior to the save event because the information necessary to undo a change is stored in
the undo stack 502. Similarly, the change tracker 500 can function in the absence of
the undo stack 502.

[0040] Figures 6-9 illustrate a series of diagrams for exemplifying changes that
occur in the state of grid data, the undo stack, and the change tracker. FIG. 6 shows

the initial grid state 600 of data in the grid, stack state 602 of the undo stack, and

-7 -

WO 2009/088727 PCT/US2008/087925

tracker state 604 of the change tracker. The changes will occur in rows two and three
of the grid data.

[0041] The entity then makes an explicit change by deciding that painting the
fence should take two days instead of one day. The change grid state 606 includes a
change in the second row in the Duration column to two days. In the case of a project
as part of a project management application, for example, a change in duration causes
a change in the end date, also called Finish (a cascading change). A cascading
transaction is created encompassing both changes. Thus, the field information in the
second row in the Finish column changes from Mon 5/21/xx to Tue 5/22/xx, as
indicated in changed grid state 606.

[0042] These Duration and Finish changes are pushed onto the undo stack as
indicated in the stack state 608. Additionally, the tracker state 610 reflects the
changes. FIG. 7 shows an implicit change and the effects on the stack state and
tracker state. Here, the entity hides the Finish column thereby changing to the grid
state 612, which pushes the change onto the undo stack changing to the stack state
614, but does not change the tracker state 610 of the change tracker. The entity saves
the project, which causes the tracker state 610 in the change tracker to be cleared to
stack state 616, as the grid’s data is now consistent with the server data.

[0043] FIG. 8 illustrates a change in the task name of the grid data and the effects
on the undo stack and change tracker. The entity changes the grid state 618 based on
a change in the task name in row three from ‘Clean-up tools’ to ‘Clean-up project’.
The stack state 620 reflects the change pushed onto the stack, and the tracker reflects
tracker state 622.

[0044] FIG. 9 illustrates execution of an undo operation. The undo reverts the last
explicit change by popping the change from the undo stack and the change tracker, as
shown in the stack state 622 and tracker state 626 (no change from before). The
entity then executes undo once more, which reverts both the implicit change and the
remaining explicit change. This cascading effect removes the change from the undo
stack to a stack state 628, adds an inverse change to the change tracker to a tracker
state 630, and changes the grid state back to grid state 632, which is the same as grid
state 600 of FIG. 6.

WO 2009/088727 PCT/US2008/087925

[0045] Following is a series of flow charts representative of exemplary
methodologies for performing novel aspects of the disclosed architecture. While, for
purposes of simplicity of explanation, the one or more methodologies shown herein,
for example, in the form of a flow chart or flow diagram, are shown and described as
a series of acts, it is to be understood and appreciated that the methodologies are not
limited by the order of acts, as some acts may, in accordance therewith, occur in a
different order and/or concurrently with other acts from that shown and described
herein. For example, those skilled in the art will understand and appreciate that a
methodology could alternatively be represented as a series of interrelated states or
events, such as in a state diagram. Moreover, not all acts illustrated in a methodology
may be required for a novel implementation.

[0046] FIG. 10 illustrates a computer-implemented method of providing reverse
operations in data. At 1000, data changes in a server document of a server are
detected via a client-based grid. At 1002, order keys are assigned to the changes in a
change notification. At 1004, the change notifications are sent to the server for
validation. At 1006, asynchronous validation information is received from the server
based on the notifications. At 1008, the validation information is ordered in the grid
according to the order keys. At 1010, undo/redo operations in the server document
are managed based on the order keys.

[0047] FIG. 11 illustrates a method of processing explicit/implicit changes. At
1100, a change in data is received via a grid. At 1102, the type of change and a
function to undo/redo the change are stored in an undo stack. At 1104, a reverse
operation (e.g., redo, undo) is received. At 1106, the undo operations are removed
from the stack and reverted until the first explicit change is encountered (which is the
last action reverted).

[0048] FIG. 12 illustrates a computer-implemented method of providing reverse
operations in data. At 1200, data changes are initiated to a web document of a server
via a client web application. At 1202, the changes are stored as an ordered history of
the changes in a client undo stack and change entries in a client change tracker. At
1204, the changes are validated at the server. At 1206, validation information is
received asynchronously from the server into the web application. At 1208,

undo/redo operations in the web document are managed at the client based on the

-9.

WO 2009/088727 PCT/US2008/087925

ordered history of the changes in the undo stack and the change entries in the change
tracker.

[0049] Asused in this application, the terms “component” and “system” are
intended to refer to a computer-related entity, either hardware, a combination of
hardware and software, software, or software in execution. For example, a
component can be, but is not limited to being, a process running on a processor, a
processor, a hard disk drive, multiple storage drives (of optical and/or magnetic
storage medium), an object, an executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application running on a server and the
server can be a component. One or more components can reside within a process
and/or thread of execution, and a component can be localized on one computer and/or
distributed between two or more computers.

[0050] Referring now to FIG. 13, there is illustrated a block diagram of a
computing system 1300 operable to execute multi-level undo in accordance with the
disclosed architecture. In order to provide additional context for various aspects
thereof, FIG. 13 and the following discussion are intended to provide a brief, general
description of a suitable computing system 1300 in which the various aspects can be
implemented. While the description above is in the general context of computer-
executable instructions that may run on one or more computers, those skilled in the art
will recognize that a novel embodiment also can be implemented in combination with
other program modules and/or as a combination of hardware and software.

[0051] Generally, program modules include routines, programs, components, data
structures, etc., that perform particular tasks or implement particular abstract data
types. Moreover, those skilled in the art will appreciate that the inventive methods
can be practiced with other computer system configurations, including single-
processor or multiprocessor computer systems, minicomputers, mainframe computers,
as well as personal computers, hand-held computing devices, microprocessor-based or
programmable consumer electronics, and the like, each of which can be operatively
coupled to one or more associated devices.

[0052] The illustrated aspects can also be practiced in distributed computing

environments where certain tasks are performed by remote processing devices that are

-10 -

WO 2009/088727 PCT/US2008/087925

linked through a communications network. In a distributed computing environment,
program modules can be located in both local and remote memory storage devices.
[0053] A computer typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by the
computer and includes volatile and non-volatile media, removable and non-removable
media. By way of example, and not limitation, computer-readable media can
comprise computer storage media and communication media. Computer storage
media includes volatile and non-volatile, removable and non-removable media
implemented in any method or technology for storage of information such as
computer-readable instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital video disk (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by the computer.

[0054] With reference again to FIG. 13, the exemplary computing system 1300 for
implementing various aspects includes a computer 1302 having a processing unit
1304, a system memory 1306 and a system bus 1308. The system bus 1308 provides
an interface for system components including, but not limited to, the system memory
1306 to the processing unit 1304. The processing unit 1304 can be any of various
commercially available processors. Dual microprocessors and other multi-processor
architectures may also be employed as the processing unit 1304.

[0055] The system bus 1308 can be any of several types of bus structure that may
further interconnect to a memory bus (with or without a memory controller), a
peripheral bus, and a local bus using any of a variety of commercially available bus
architectures. The system memory 1306 can include non-volatile memory (NON-
VOL) 1310 and/or volatile memory 1312 (e.g., random access memory (RAM)). A
basic input/output system (BIOS) can be stored in the non-volatile memory 1310
(e.g., ROM, EPROM, EEPROM, etc.), which BIOS stores the basic routines that help
to transfer information between elements within the computer 1302, such as during
start-up. The volatile memory 1312 can also include a high-speed RAM such as static
RAM for caching data.

-11 -

WO 2009/088727 PCT/US2008/087925

[0056] The computer 1302 further includes an internal hard disk drive (HDD)
1314 (e.g., EIDE, SATA), which internal HDD 1314 may also be configured for
external use in a suitable chassis, a magnetic floppy disk drive (FDD) 1316, (e.g., to
read from or write to a removable diskette 1318) and an optical disk drive 1320, (e.g.,
reading a CD-ROM disk 1322 or, to read from or write to other high capacity optical
media such as a DVD). The HDD 1314, FDD 1316 and optical disk drive 1320 can
be connected to the system bus 1308 by a HDD interface 1324, an FDD interface
1326 and an optical drive interface 1328, respectively. The HDD interface 1324 for
external drive implementations can include at least one or both of Universal Serial
Bus (USB) and IEEE 1394 interface technologies.

[0057] The drives and associated computer-readable media provide nonvolatile
storage of data, data structures, computer-executable instructions, and so forth. For
the computer 1302, the drives and media accommodate the storage of any data in a
suitable digital format. Although the description of computer-readable media above
refers to a HDD, a removable magnetic diskette (e.g., FDD), and a removable optical
media such as a CD or DVD, it should be appreciated by those skilled in the art that
other types of media which are readable by a computer, such as zip drives, magnetic
cassettes, flash memory cards, cartridges, and the like, may also be used in the
exemplary operating environment, and further, that any such media may contain
computer-executable instructions for performing novel methods of the disclosed
architecture.

[0058] A number of program modules can be stored in the drives and volatile
memory 1312, including an operating system 1330, one or more application programs
1332, other program modules 1334, and program data 1336. The one or more
application programs 1332, other program modules 1334, and program data 1336 can
include the change component 102, data 104, web application 106, reverse component
108, data grid 110, change notifications (302 and 304), update responses (310 and
312), change tracker 500, undo stack 502, grid states (600, 606, 612, 618, and 632),
stack state (602, 608, 614, 620, 624 and 628), and tracker state (604, 610, 616, 622,
626 and 630), for example.

[0059] All or portions of the operating system, applications, modules, and/or data

can also be cached in the volatile memory 1312. It is to be appreciated that the

-12-

WO 2009/088727 PCT/US2008/087925

disclosed architecture can be implemented with various commercially available
operating systems or combinations of operating systems.

[0060] A user can enter commands and information into the computer 1302
through one or more wire/wireless input devices, for example, a keyboard 1338 and a
pointing device, such as a mouse 1340. Other input devices (not shown) may include
a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch
screen, or the like. These and other input devices are often connected to the
processing unit 1304 through an input device interface 1342 that is coupled to the
system bus 1308, but can be connected by other interfaces such as a parallel port,
IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.

[0061] A monitor 1344 or other type of display device is also connected to the
system bus 1308 via an interface, such as a video adaptor 1346. In addition to the
monitor 1344, a computer typically includes other peripheral output devices (not
shown), such as speakers, printers, etc.

[0062] The computer 1302 may operate in a networked environment using logical
connections via wire and/or wireless communications to one or more remote
computers, such as a remote computer(s) 1348. The remote computer(s) 1348 can be
a workstation, a server computer, a router, a personal computer, portable computer,
microprocessor-based entertainment appliance, a peer device or other common
network node, and typically includes many or all of the elements described relative to
the computer 1302, although, for purposes of brevity, only a memory/storage device
1350 is illustrated. The logical connections depicted include wire/wireless
connectivity to a local area network (LAN) 1352 and/or larger networks, for example,
a wide area network (WAN) 1354. Such LAN and WAN networking environments
are commonplace in offices and companies, and facilitate enterprise-wide computer
networks, such as intranets, all of which may connect to a global communications
network, for example, the Internet.

[0063] When used in a LAN networking environment, the computer 1302 is
connected to the LAN 1352 through a wire and/or wireless communication network
interface or adaptor 1356. The adaptor 1356 can facilitate wire and/or wireless

communications to the LAN 1352, which may also include a wireless access point

-13 -

WO 2009/088727 PCT/US2008/087925

disposed thereon for communicating with the wireless functionality of the adaptor
1356.

[0064] When used in a WAN networking environment, the computer 1302 can
include a modem 1358, or is connected to a communications server on the WAN
1354, or has other means for establishing communications over the WAN 1354, such
as by way of the Internet. The modem 1358, which can be internal or external and a
wire and/or wireless device, is connected to the system bus 1308 via the input device
interface 1342. In a networked environment, program modules depicted relative to
the computer 1302, or portions thereof, can be stored in the remote memory/storage
device 1350. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the
computers can be used.

[0065] The computer 1302 is operable to communicate with wire and wireless
devices or entities using the IEEE 802 family of standards, such as wireless devices
operatively disposed in wireless communication (e.g., IEEE 802.11 over-the-air
modulation techniques) with, for example, a printer, scanner, desktop and/or portable
computer, personal digital assistant (PDA), communications satellite, any piece of
equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This includes at least Wi-Fi (or Wireless Fidelity),
WiMax, and Bluetooth™ wireless technologies. Thus, the communication can be a
predefined structure as with a conventional network or simply an ad hoc
communication between at least two devices. Wi-Fi networks use radio technologies
called IEEE 802.11x (a, b, g, etc.) to provide secure, reliable, fast wireless
connectivity. A Wi-Fi network can be used to connect computers to each other, to the
Internet, and to wire networks (which use IEEE 802.3-related media and functions).
[0066] Referring now to FIG. 14, there is illustrated a schematic block diagram of
an exemplary client-server computing environment 1400 for multi-level undo
processing. The environment 1400 includes one or more client(s) 1402. The client(s)
1402 can be hardware and/or software (e.g., threads, processes, computing devices).
The client(s) 1402 can house cookie(s) and/or associated contextual information, for

example.

-14 -

WO 2009/088727 PCT/US2008/087925

[0067] The environment 1400 also includes one or more server(s) 1404. The
server(s) 1404 can also be hardware and/or software (e.g., threads, processes,
computing devices). The servers 1404 can house threads to perform transformations
by employing the architecture, for example. One possible communication between a
client 1402 and a server 1404 can be in the form of a data packet adapted to be
transmitted between two or more computer processes. The data packet may include a
cookie and/or associated contextual information, for example. The environment 1400
includes a communication framework 1406 (e.g., a global communication network
such as the Internet) that can be employed to facilitate communications between the
client(s) 1402 and the server(s) 1404.

[0068] Communications can be facilitated via a wire (including optical fiber)
and/or wireless technology. The client(s) 1402 are operatively connected to one or
more client data store(s) 1408 that can be employed to store information local to the
client(s) 1402 (e.g., cookie(s) and/or associated contextual information). Similarly,
the server(s) 1404 are operatively connected to one or more server data store(s) 1410
that can be employed to store information local to the servers 1404.

[0069] The client(s) 1402 can include the web application 106 and client data
store(s) 1408 can include the data 104. The server(s) 1404 can include the server 202
and asynchronous validation processes (306 and 308), and the server data store(s)
1410 can include the document 200.

[0070] What has been described above includes examples of the disclosed
architecture. It is, of course, not possible to describe every conceivable combination
of components and/or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations are possible.
Accordingly, the novel architecture is intended to embrace all such alterations,
modifications and variations that fall within the spirit and scope of the appended
claims. Furthermore, to the extent that the term “includes” is used in either the
detailed description or the claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is interpreted when employed as a

transitional word in a claim.

-15 -

WO 2009/088727 PCT/US2008/087925

CLAIMS

What is claimed is:

1. A computer-implemented undo system (100), comprising:
a change component (102) for tracking asynchronous changes to data
via a web application; and
a reverse component (108) for performing reverse operations on the

data changes to previous states.

2. The system of claim 1, wherein the data changes are associated with a
webpage.

3. The system of claim 1, wherein the web application is a browser
application.

4. The system of claim 1, wherein the data changes are made via a client-
based data grid.

5. The system of claim 4, wherein the data changes are made manually or

programmatically via the grid.

6. The system of claim 1, wherein the reverse operations restore the data

to a state that existed according to at least two previous changes.

7. The system of claim 1, wherein the web application receives a
notification of a change, the notification including an order key that documents the

change relative to other changes.

8. The system of claim 1, wherein the changes are associated with a
server document, input to a client-based undo stack for the reverse operations, and

tracked in a client-based change tracker.

- 16 -

WO 2009/088727 PCT/US2008/087925

9. A computer-implemented method of providing reverse operations in

data , comprising:

detecting data changes in a server document of a server via a client-
based grid (1000);

assigning order keys to the changes in a change notification (1002);

sending the change notifications to the server for validation (1004);

receiving asynchronous validation information from the server based
on the notifications (1006);

ordering the validation information in the grid according to the order
keys (1008); and

managing undo/redo operations in the server document based on the

order keys (1010).

10. The method of claim 9, further comprising cascading changes through

an undo stack and a change tracker based on the changes in the grid.
11. The method of claim 9, further comprising storing changes in an undo
stack and reverting the changes until a first explicit change is reached as part of an

undo/redo operation.

12. The method of claim 9, further comprising storing explicit changes in a

change tracker data structure.

13. The method of claim 9, further comprising reverting all implicit

changes before a next explicit action and then reverting the next explicit action.

-17 -

WO 2009/088727 PCT/US2008/087925

14. A computer-implemented method of providing reverse operations in

data, comprising:

initiating data changes to a web document of a server via a client web
application (1200);

storing the changes as an ordered history of the changes in a client
undo stack and change entries in a client change tracker (1202);

validating the changes at the server (1204);

receiving validation information asynchronously from the server into
the web application (1206); and

managing undo/redo operations in the web document based on the
ordered history of the changes in the undo stack and the change entries in the change

tracker (1208).

15. The method of claim 14, further comprising exposing the data changes

and visualization of the data changes via a client data grid.

16. The method of claim 14, further comprising undoing changes in the
web document that have occurred before a save operation performed in the web

application.

17. The method of claim 14, further comprising, in response to a save
operation, reading changes from the change tracker, committing the changes to a

datasource, and clearing the change tracker.

18. The method of claim 14, wherein the ordered history of the changes is

based on a change key assigned to each change.
19. The method of claim 14, further comprising storing implicit change

information and explicit change information in the undo stack along with functions to

execute to undo implicit and explicit changes.

- 18 -

WO 2009/088727 PCT/US2008/087925

20. The method of claim 14, further comprising exporting explicating

changes as a collection of cell-level changes.

-19 -

WO 2009/088727 PCT/US2008/087925

1714

100
~
102 ~ 106
CHANGE WEB
COMPONENT APPLICATION
l ~ 108 l 110
REVERSE
COMPONENT DATA GRID
104
DATA

FIG. 1

WO 2009/088727 PCT/US2008/087925

2/14
¥ 200
r 202
SERVER
s 200

[102 r 106

CHANGE WEB

COMPONENT APPLICATION
l s 108 l [110
104
DATA

FIG. 2

WO 2009/088727

ASYNCH
VALIDATION
OF CHANGE A

308j v

ASYNCH
VALIDATION
OF CHANGE B

PCT/US2008/087925
300

{-

302
f_
CHANGE NOTIFICATION
ENTITY
CHANGEKEY: A EDITS
ROW: 2

FIELD: DURATION

NEW VALUE: 5 DAYS

l f—110

s 304

CHANGE NOTIFICATION

CHANGEKEY: B

ROW: 3

FIELD: DURATION

NEW VALUE: 7DAYS

310
r
UPDATE
CHANGEKEY: B
ROW: 3

FIELD: END DATE

NEW VALUE: 5/27

312
r
UPDATE
CHANGEKEY: A
ROW: 2

FIELD: END DATE

NEW VALUE: 5/25

h 4

FIG. 3

GRID

WO 2009/088727

PCT/US2008/087925

4/14

CHANGE NOTIFICATION

CHANGE KEY: A

ROW: 2 ROW: 2

FIELD: DURATION FIELD: END DATE

NEW VALUE: 5 DAYS NEW VALUE: 5/25

r 404

CHANGE NOTIFICATION

CHANGE KEY: B

ROW: 3 ROW: 3

FIELD: DURATION FIELD: END DATE

NEW VALUE: 7 DAYS NEW VALUE: 5/27

FIG. 4

WO 2009/088727 PCT/US2008/087925

5/14

[—102
CHANGE
COMPONENT

[—500

CHANGE
TRACKER

I /—108

REVERSE
COMPONENT

r—ﬂn

UNDO
STACK

FIG. 5

PCT/US2008/087925

WO 2009/088727

6/14

9 ‘OIA

{TT/S {HSINIA T} TTHDALYAdN
‘0aNN
{€T/C {HSINIA T} TTIDALYAdN
ALNDAXH
- - AVAT XX/12/$ NOW | XX/17/$ NOWN | STOOL dN-NVATD | ¢
{T{NOILVINA T} F TTADALVAdN
:0dNN SAVAT XX/2t/s ANL | XX/17/6 NOW | ONAL AHL INIVd | ¢
ﬂ {TINOILYINA T} TTEDELY AdN AVA T XX/12/S NOW | Xx/T7/¢ NOW | 30NAd aHL anas | 1
€T/S<-{HSINIAI T} ALNDAXA
7 <-{NOLLVINd't} NOLLVINAa HSINIA IIVIS ANVN JSV.L
YIAOVEL MOVLS OANN A0 ALV.LS ardod 40 4LVLS
HONVHO 40 JLVLS 909 N
809 |\
019 |\
AVAT XX/12/$ NOW | XX/17/$ NOWN | STOOL dN-NVATD | ¢
AVAT XX/17/$ NOW | XX/17/$ NOW | ZONHI JHL INIVd | ¢
AVAT XX/17/$ NOW | XX/17/$ NOW | JDNHA IHL ANAS I
NOILLVINA HSINIA ARSVARS HNVN JISV.L
dIXOVYEL SOVLS OANN 0 ALV.LS 009 drdo 40 dLV1S

HONVHDO 40 HLV.LS
¥09 A

<09 A

PCT/US2008/087925

WO 2009/088727

74

EADVEL ADNVHD 40 LVILS
919 A

019 N

€T/S<-{HSINIAI T}
7 <-{NOLLVINd't}

MO VEL ADNVHD 40 HLVILS

{Cy/S {HSINIA ¢} TTADALYAdN
‘0aNN
{€T/S{HSINIA ¢} TTADALYAdN
ALNDIXH

{T{NOILVINA ¢} TTADELYAdN
‘0aNN
{TINOILVINA ¢} TTADELYAdN
ALNDIXH

{HSINIZ NINNTOOMOHS
‘0aNN
{HSINIZ}NINNTODEAIH
ALNDIXH

AAOVLS OAN(] 40 4LVIS

{Cy/S {HSINIA ¢} TTADALYAdN
‘0aNN
{€T/S{HSINIA ¢} TTADALYAdN
ALNDIXH

{T{NOILVINA ¢} TTADELYAdN
‘0aNN
{TINOILVINA ¢} TTADELYAdN
ALNDIXH

{HSINIZ NINNTOOMOHS
‘0aNN
{HSINIZ}NINNTODEAIH
ALNDIXH

19 A

AAOVLS OAN(] 40 4LVIS

AVAl XX/1?t/¢ NOW | STOOL d1-NVATO €
SAVAT XX/1¢/¢ NOW | 9ONdJd dHL LNIVd | €
AVAl XX/12/¢ NOW | dONdd dHL ANFS I
NOILLVdNd LAVLS HAVN JSV.L
drdd 40 HLVLS
AVAl XX/1?t/¢ NOW | STOOL d1-NVATO €
SAVAT XX/1¢/¢ NOW | 9ONdJd dHL LNIVd | €
AVAl XX/12/¢ NOW | dONdd dHL ANFS I
NOILLVdNd LAVLS HAVN JSV.L

<19 A

drdd 40 HLVLS

PCT/US2008/087925

WO 2009/088727

8/14

8 OIAd

{Cy/S {HSINIA ¢} TTADALYAdN
‘0aNN
{€T/S{HSINIA ¢} TTADALYAdN
ALNDIXH

{T{NOILVINA ¢} TTADELYAdN
‘0aNN
{TINOILVINA ¢} TTADELYAdN
ALNDIXH

{HSINIZ NINNTOOMOHS
‘0aNN
{HSINIZ}NINNTODEAIH
ALNDIXH

JLJAr0¥d dN-NVHTD, <-{HINVN'€}

{STO " . {HNVN ¢ TTIDELYAdN
‘0aNN

{17 HHNVYN € TTIDALYAdN
ALNDIXH

AVAl

XX/1Ts NOW

LIA[0dd d1-NVHTO €

SAVdA T

XX/1Ts NOW

HIONHA HHL INIVd C

AVAl

XX/1Ts NOW

HONHA HHL ANFS I

NOILLVdNd

LAVLS

HAVN JSV.L

MO VEL ADNVHD 40 HLVILS

<9 A

AAOVLS OAN(] 40 4LVIS

079 A

819 A

drdd 40 HLVLS

PCT/US2008/087925

WO 2009/088727

9/14

TU/S<-{HSINIA T}
I <-{NOLLVINA'T}

MO VEL ADNVHD 40 HLVILS
0€9 A

MO VEL ADNVHD 40 HLVILS
979 A

6 OIAd

AVAT XX/1T/S NOW | XX/17/S NOW | STOOLdN-NVATD | ¢

AVAT XX/T1T/S NOW | XX/17/S NON | ONAI AHL INIVd | €

AVAT XX/1T/S NOW | XX/T1T/S NOWN | FIONAA dHL ANS I

NOLLVINa HSINIA NRILARY ANVN JSV.L
SIOVLS OANN 40 dLVLS 7€9 |\ dardo A0 dLV.LS
879 |\

{Tys{HSINIA 23 VT TEDA LY AdN
‘OdNN
{€ys{HSINIA T3 VT TEDA LY AN
HLNDAXA
{T{NOLLVINA' T} TTEDEALYAdN
‘OdNN
{T{NOLLVINA' T} TTEDEALYAdN
HLNDAXA

AVA1 XX/TTUS NOW | STOOL dN-NVAT) ¢
{HSINII}NINNTODMOHS

:0dNN SAVAT XX/17/S NOW | dONHA dHL INIVd 14

{HSINLLNINNTOOHAIH AVAT XX/T7/S NOW | GDNEdgHLaNas | 1
HLNDAXA

NOLLVINd 1IVIS ANVN JSV.L

AADVLS OAN[] 40 LVILS
X4 A

drdd 40 HLVLS

WO 2009/088727 PCT/US2008/087925

10/14

START

DETECT DATA CHANGES IN SERVER
DOCUMENT OF SERVER VIA CLIENT-
BASED GRID

'

ASSIGN ORDER KEYS TO CHANGES IN | _— 1002
CHANGE NOTIFICATION

'

SEND CHANGE NOTIFICATION TO |_— 1004
SERVER FOR VALIDATION

'

RECEIVE ASYNCHRONOUS
VALIDATION INFORMATION FROM
SERVER BASED ON NOTIFICATIONS

'

ORDER VALIDATION INFORMATION IN | — 1008
GRID ACCORDING TO ORDER KEYS

'

MANAGE UNDO/REDO OPERATIONS IN
SERVER DOCUMENT BASED ON ORDER
KEYS

STOP

FIG. 10

_— 1000

_— 1006

WO 2009/088727 PCT/US2008/087925

11/14

START

RECEIVE CHANGE IN DATA VIA | — 1100
GRID

'

STORE TYPE OF CHANGE AND

FUNCTION TO EXECUTE UNDO; | 1102
REDO OPERATION IN STACK
RECEIVE REVERSE OPERATION 1104
REMOVE UNDO OPERATIONS FROM
_— 1106

STACK AND REVERT UNTIL FIRST
EXPLICIT CHANGE ENCOUNTERED

STOP

FIG. 11

WO 2009/088727 PCT/US2008/087925

12/14

START

INITIATE DATA CHANGES TO WEB
DOCUMENT OF SERVER VIA CLIENT
WEB APPLICATION

'

STORE CHANGES AS ORDERED

HISTORY OF CHANGES IN CLIENT | — 1202

UNDO STACK AND CHANGE ENTRIES
IN CHANGE TRACKER

!

VALIDATE CHANGES AT SERVER

'

RECEIVE VALIDATION INFORMATION
ASYNCHRONOUSLY FORM SERVER
INTO WEB APPLICATION

:

MANAGE UNDO/REDO OPERATIONS
IN WEB DOCUMENT BASED ON
ORDERED HISTORY OF CHANGES IN
UNDO SACK AND CHANGE ENTRIES
IN CHANGE TRACKER

STOP

FIG. 12

_— 1200

_— 1204

_— 1206

_— 1208

WO 2009/088727 PCT/US2008/087925
13/14
1300
{—
1302
| /1330
PROCESSING | _— 1304 ! E-OPERATING SYSTEM
UNIT i - 1332
1308 L~ 1306 | i APPLICATIONS |
SYSTEM G 1334
MEMORY A2 f i MODULES |
Lo MODEIES
1336
<> | VOLATILE |4 | jmmmmmm o LT
! DATA
oA
Non-voL 1 1310 '
r-— = T . —_ _+ _
1324 | <Y s B4 TV TN 1314
«—>| INTERFACE [«—Y» INTERNAL HDD | EXTERNAL |
.~ HDD S
1316 S~ _HDD_
1326 FDD _— 1318
«—>»| INTERFACE |[«—> e
5 11320 [~ 1344
a 1328 OPTICAL MONITOR
> INTERFACE } DRIVE |1 1322 1338
Y= 1346 DISK L~
pe—— KEYBOARD
“1 apapTOR [L~ 1340
£~ B9 WiRED/WIRELESS) MOUSE
INPUT [€
1358 1354 1348
«—> DEVICE L L L
INTERFACE |[¢—> MODEM |[e—}>» WAN &> REMOTE
COMPUTER(S)
/1356 1352
1350
<> NAETZXORK » LAN |«
DAPTOR (WIRED/WIRELESS) D
MEMORY/
STORAGE

FIG. 13

WO 2009/088727 PCT/US2008/087925

14/14
i~ 1400
1404
/1402 ~
CLIENT(S) SERVER(S)
COMMUNICATION
FRAMEWORK
1408 1410
1406
CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 14

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

