
US 2008O195682A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0195682 A1

HOt (43) Pub. Date: Aug. 14, 2008

(54) MULTIPLE COMPUTER SYSTEM WITH Publication Classification
ENHANCED MEMORY CLEAN UP (51) Int. Cl.

G06F 7/30 (2006.01)
(76) Inventor: John M. Holt, Essex (GB) G06F 9/44 (2006.01)

G06F 7/00 (2006.01)
(52) U.S. Cl. 707/206: 707/200; 717/133; 707/10;

Correspondence Address: 707/E17.001
PERKINS COE LLP
P.O. BOX 21.68 (57) ABSTRACT

MENLO PARK, CA 94026 The updating of only some memory locations in a multiple
computer environment in which at least one applications pro
gram (50) executes simultaneously on a plurality of comput

(21) Appl. No.: 12/011,199 ers M1, M2 . . . Mn each of which has a local memory, is
disclosed. Memory locations (A, B, D, E, X) in said local

(22) Filed: Jan. 23, 2008 memory are categorized into two groups. The first group of
e Afa 9 memory locations (X1,X2,... Xn, A1, A2 ... An) are each

accessible by other computers. The second group of memory
Related U.S. Application Data locations (B, E) are each accessible only by the computer

having the local memory including the memory location.
(62) Division of application No. 1 1/583,991, filed on Oct. Changes to the contents of memory locations in the first group

18, 2006. only are transmitted to all other computers. A demotion
mechanism is disclosed to demote memory locations in the
first group into the second group in the event that application
program execution means that a memory location in said first

(60) Provisional application No. 60/730,408, filed on Oct. group is no longer referenced by another memory location in
25, 2005. another computer.

50 71/1 71/2 50 71/n

51/1 51/2

51/2
J. V.M. #1 51/1 MODIFIER J. W.M. in

MODIFIER J.V.M. i2. MODIFER

83
51/1 Mf M2 83 Mr. 51An

83

83
53

US 2008/O195682 A1 Aug. 14, 2008 Sheet 1 of 10 Patent Application Publication

V/LV/C] + ECTOO

BWV 1 N/m2] QE 108/2} [SIC] L.)\/LV/C] + ERCIO O

Patent Application Publication Aug. 14, 2008 Sheet 2 of 10 US 2008/O195682 A1

Patent Application Publication Aug. 14, 2008 Sheet 3 of 10 US 2008/O195682 A1

LOCATION

Patent Application Publication Aug. 14, 2008 Sheet 4 of 10 US 2008/O195682 A1

MACHINE TABLE

M1

M2

Mr.

F.G. 5

US 2008/O195682 A1 Aug. 14, 2008 Sheet 5 of 10 Patent Application Publication

2 Q È O O ~]

Patent Application Publication Aug. 14, 2008 Sheet 6 of 10 US 2008/O195682 A1

MACHINE

M1

M2

Mn

Patent Application Publication Aug. 14, 2008 Sheet 7 of 10 US 2008/O195682 A1

FIG. 9

LOCATION MACHINE

Patent Application Publication Aug. 14, 2008 Sheet 8 of 10 US 2008/O195682 A1

MACHINE

M1

M2

Mr.

Patent Application Publication Aug. 14, 2008 Sheet 9 of 10 US 2008/O195682 A1

LOCATION MACHINE

1

Patent Application Publication Aug. 14, 2008 Sheet 10 of 10 US 2008/O195682 A1

MACHINE

M1

M2

Mr.

US 2008/O 195682 A1

MULTIPLE COMPUTER SYSTEM WITH
ENHANCED MEMORY CLEAN UP

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This is a divisional of U.S. application Ser. No.
1 1/583,991 filed Oct. 18, 2006 entitled “Multiple Computer
System With Enhanced Memory Clean Up', and claims ben
efit of priority to U.S. Provisional Application No. 60/730,
408 entitled “Multiple Computer System with Enhanced
Memory Clean Up' filed Oct. 15, 2005; which is hereby
incorporated by reference.

FIELD OF THE INVENTION

0002 The present invention relates to computing and, in
particular, to the simultaneous operation of a plurality of
computers interconnected via a communications network.

BACKGROUND ART

0003 International Patent Application No. PCT/AU2005/
000580 (Attorney Ref 5027F-WO) published under WO
2005/103926 (to which U.S. patent application Ser. No.
11/111.946 and published under No. 2005-0262313 corre
sponds) in the name of the present applicant, discloses how
different portions of an application program written to
execute on only a single computer can be operated Substan
tially simultaneously on a corresponding different one of a
plurality of computers. That simultaneous operation has not
been commercially used as of the priority date of the present
application. International Patent Application Nos. PCT/
AU2005/001641 (Attorney Ref 5027F-D1-WO) to which
U.S. patent application Ser. No. 1 1/259,885 entitled: “Com
puter Architecture Method of Operation for Multi-Computer
Distributed Processing and Co-ordinated Memory and Asset
Handling corresponds and PCT/AU2006/000532 (Attorney
Ref: 5027F-D2-WO) in the name of the present applicant and
unpublished as at the priority date of the present application,
also disclose further details. The contents of each of the
abovementioned prior application(s) are hereby incorporated
into the present application by cross reference for all pur
poses.
0004 Briefly stated, the abovementioned patent specifica
tions disclose that at least one application program written to
be operated on only a single computer can be simultaneously
operated on a number of computers each with independent
local memory. The memory locations required for the opera
tion of that program are replicated in the independent local
memory of each computer. On each occasion on which the
application program writes new data to any replicated
memory location, that new data is transmitted and stored at
each corresponding memory location of each computer. Thus
apart from the possibility of transmission delays, each com
puter has a local memory the contents of which are Substan
tially identical to the local memory of each other computer
and are updated to remain so. Since all application programs,
in general, read data much more frequently than they cause
new data to be written, the abovementioned arrangement
enables very Substantial advantages in computing speed to be
achieved. In particular, the stratagem enables two or more
commodity computers interconnected by a commodity com
munications network to be operated simultaneously running
under the application program written to be executed on only
a single computer.

Aug. 14, 2008

0005. In many situations, the above-mentioned arrange
ments work satisfactorily. This applies particularly where the
programmer is aware that there may be updating delays and
so can adjust the flow of the program to account for this.
However, there are situations in which the use of stale con
tents or values instead of the latest content can create prob
lems.
0006. The abovementioned incorporated by reference
specifications disclose that clean up of all corresponding
memory locations is delayed until all computers have ceased
to access a specific memory location. Once the last computer
no longer requires access to the specific local memory loca
tion, then that local memory location can be cleaned-up (or
reclaimed) and so too can all corresponding memory loca
tions on all other machines.
0007. The genesis of the present invention is a desire to
accelerate clean up or reclamation of local memory locations
in the multiple computer system thereby permitting Such
memory locations to be sooner re-allocated to future tasks.

SUMMARY OF THE INVENTION

0008. In accordance with a first aspect of the present
invention there is disclosed a method of disabling a local
memory clean-up procedure inherently present in each of a
plurality of computers each with their corresponding inde
pendent local memory, each Substantially simultaneously
executing a corresponding different portion of an application
program written to execute on only a single computer, and
each being connected via a communications network to per
mit updating of corresponding memory locations, said
method comprising the steps of
0009 (i) categorizing the memory locations of said local
memories into a first reachability category in which the local
memory locations are replicated on selected ones, or all, of
said computers and therefore require updating via said com
munications network with changes to corresponding memory
locations of the other computers having access to maintain
Substantial memory coherence, and into a second category in
which the local memory locations are present only in the local
computer and therefore no updating is required,
0010 (ii) permitting said inherent local memory clean-up
procedure to operate unfettered in respect of said second
category memory locations,
0011 (iii) disabling said inherent local memory clean-up
procedure in respect of said first category memory locations,
and
0012 (iv) demoting from said first category to said second
category any of said first category memory locations unable
to be referenced by any of said computers other than the local
computer having said demotable first category memory loca
tion.
0013. In accordance with a second aspect of the present
invention there is disclosed a clean-up procedure modified
multiple computer system in which a plurality of computers
each has their corresponding independent local memory, each
has an inherent local memory clean-up procedure, each Sub
stantially simultaneously executes a corresponding different
portion of an application program written to execute on only
a single computer, and each is connected via a communica
tions network to permit updating of corresponding memory
locations, said system including a reachability means to cat
egorize memory locations of said local memories into a first
category in which the local memory locations are replicated
on selected ones, or all, of said computers and therefore

US 2008/O 195682 A1

require updating via said communications network with
changes to corresponding memory locations of other comput
ers to maintain Substantial memory coherence, and into a
second category in which the local memory locations are
present only in the local computer and therefore no updating
is required, and wherein said system includes a disabling
means connected to said reachability means and to each of
said plurality of computers to disable said inherent local
memory clean-up procedure in respect of memory locations
in said first category only, and said reachability means
includes a demoting means to demote from said first category
to said second category any of said first category memory
locations unable to be referenced by any of said computers
other than the local computer having said demotable first
category memory location.
0014. In accordance with a third aspect of the present
invention there is disclosed a single computer adapted to
co-operate with at least one other computer in order to carry
out the above method or form the above system.
0015. In accordance with a fourth aspect of the present
invention there is disclosed a computer program product
comprising a set of program instructions stored in a storage
medium and operable to permit a plurality of computers to
carry out the above method.
0016. In accordance with a fifth aspect of the present
invention there is disclosed a plurality of computers intercon
nected via a communications network and operable to ensure
carrying out of the above method.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1A is a schematic illustration of a prior art
computer arranged to operate JAVA code and thereby consti
tute a single JAVA virtual machine,
0018 FIG. 1B is a drawing similar to FIG. 1A but illus
trating the initial loading of code,
0.019 FIG. 1C illustrates the interconnection of a multi
plicity of computers each being a JAVA virtual machine to
form a multiple computer system,
0020 FIG. 2 schematically illustrates “n” application run
ning computers to which at least one additional server
machine X is connected as a server,
0021 FIG. 3 is a schematic map of the memory locations
in all the multiple machines showing memory locations
including classes and objects,
0022 FIG. 4 is a single reachability table showing the
various memory locations of FIG. 3 and their ability to be
reached,
0023 FIG. 5 shows multiple reachability tables corre
sponding to the single table of FIG. 4,
0024 FIG. 6 is a map similar to FIG. 3 and showing
memory locationX no longer pointing to memory location A,
0025 FIG. 7 is the single reachability table corresponding
to FIG. 6,
0026 FIG. 8 shows the multiple reachability tables corre
sponding to FIG. 7,
0027 FIG. 9 is a memory map similar to FIGS. 3 and 6
showing the reclamation of one memory location,
0028 FIGS. 10 and 11 respectively illustrate the single
and multiple reachability tables corresponding to the memory
changes of FIG. 9.
0029 FIG. 12 illustrates another memory change, and

Aug. 14, 2008

0030 FIGS. 13 and 14 respectively illustrate the single
and multiple reachability tables corresponding to the memory
changes of FIG. 12.

DETAILED DESCRIPTION

0031. The embodiments will be described with reference
to the JAVA language, however, it will be apparent to those
skilled in the art that the invention is not limited to this
language and, in particular can be used with other languages
(including procedural, declarative and object oriented lan
guages) including the MICROSOFT.NET platform and
architecture (Visual Basic, Visual C, and Visual C++, and
Visual C#), FORTRAN, C, C++, COBOL, BASIC and the
like.
0032. It is known in the prior art to provide a single com
puter or machine (produced by any one of various manufac
turers and having an operating system (or equivalent control
Software or other mechanism) operating in any one of various
different languages) utilizing the particular language of the
application by creating a virtual machine as illustrated in FIG.
1A.
0033. The code and data and virtual machine configura
tion or arrangement of FIG. 1A takes the form of the appli
cation code 50 written in the JAVA language and executing
within the JAVA virtual machine 61. Thus where the intended
language of the application is the language JAVA, a JAVA
virtual machine is used which is able to operate code in JAVA
irrespective of the machine manufacturer and internal details
of the computer or machine. For further details, see "The
JAVA Virtual Machine Specification” 2" Edition by T. Lind
holm and F. Yellin of Sun Microsystems Inc of the USA which
is incorporated herein by reference.
0034. This conventional art arrangement of FIG. 1A is
modified in accordance with embodiments of the present
invention by the provision of an additional facility which is
conveniently termed a “distributed run time' or a “distributed
run time system’ DRT 71 and as seen in FIG. 1B.
0035. In FIGS. 1B and 1C, the application code 50 is
loaded onto the Java Virtual Machine(s) M1, M2, ... Mn in
cooperation with the distributed runtime system 71, through
the loading procedure indicated by arrow 75 or 75A or 75B.
As used herein the terms “distributed runtime' and the "dis
tributed run time system” are essentially synonymous, and by
means of illustration but not limitation are generally under
stood to include library code and processes which Support
Software written in a particular language running on a par
ticular platform. Additionally, a distributed runtime system
may also include library code and processes which Support
Software written in a particular language running within a
particular distributed computing environment. A runtime sys
tem (whether a distributed runtime system or not) typically
deals with the details of the interface between the program
and the operating system such as system calls, program start
up and termination, and memory management. For purposes
of background, a conventional Distributed Computing Envi
ronment (DCE) (that does not provide the capabilities of the
inventive distributed run time or distributed run time system
71 used in the preferred embodiments of the present inven
tion) is available from the Open Software Foundation. This
Distributed Computing Environment (DCE) performs a form
of computer-to-computer communication for Software run
ning on the machines, but among its many limitations, it is not
able to implement the desired modification or communication
operations. Among its functions and operations the preferred

US 2008/O 195682 A1

DRT 71 coordinates the particular communications between
the plurality of machines M1, M2, . . . Mn. Moreover, the
preferred distributed runtime 71 comes into operation during
the loading procedure indicated by arrow 75A or 75B of the
JAVA application 50 on each JAVA virtual machine 72 or
machines JVMH1, JVMH2, ... JVMiin of FIG. 1C.. It will be
appreciated in light of the description provided herein that
although many examples and descriptions are provided rela
tive to the JAVA language and JAVA virtual machines so that
the reader may get the benefit of specific examples, the inven
tion is not restricted to either the JAVA language or JAVA
virtual machines, or to any other language, virtual machine,
machine or operating environment.
0036 FIG.1C shows in modified form the arrangement of
the JAVA virtual machines, each as illustrated in FIG. 1B. It
will be apparent that again the same application code 50 is
loaded onto each machine M1, M2 . . . Min. However, the
communications between each machine M1, M2... Min are
as indicated by arrows 83, and although physically routed
through the machine hardware, are advantageously con
trolled by the individual DRT's 71/1. .. 71/n within each
machine. Thus, in practice this may be conceptionalised as
the DRT's 71/1, ... 71/n communicating with each other via
the network or other communications link 53 rather than the
machines M1, M2... Mncommunicating directly themselves
or with each other. Contemplated and included are either this
direct communication between machines M1, M2... Minor
DRT's 71/1, 71/2 ... 71/n or a combination of such commu
nications. The preferred DRT 71 provides communication
that is transport, protocol, and link independent.
0037. The one common application program or applica
tion code 50 and its executable version (with likely modifi
cation) is simultaneously or concurrently executing across
the plurality of computers or machines M1, M2... Mn. The
application program 50 is written to execute on a single
machine or computer (or to operate on the multiple computer
system of the abovementioned patent applications which
emulate single computer operation). Essentially the modified
structure is to replicate an identical memory structure and
contents on each of the individual machines.
0038. The term “common application program' is to be
understood to mean an application program or application
program code written to operate on a single machine, and
loaded and/or executed in whole or in part on each one of the
plurality of computers or machines M1, M2 . . . Mn, or
optionally on each one of some subset of the plurality of
computers or machines M1, M2 . . . Mn. Put somewhat
differently, there is a common application program repre
sented in application code 50. This is either a single copy or a
plurality of identical copies each individually modified to
generate a modified copy or version of the application pro
gram or program code. Each copy or instance is then prepared
for execution on the corresponding machine. At the point
after they are modified they are common in the sense that they
perform similar operations and operate consistently and
coherently with each other. It will be appreciated that a plu
rality of computers, machines, information appliances, or the
like implementing embodiments of the invention may option
ally be connected to or coupled with other computers,
machines, information appliances, or the like that do not
implement embodiments of the invention.
0039. The same application program 50 (such as for
example a parallel merge sort, or a computational fluid
dynamics application or a data mining application) is run on

Aug. 14, 2008

each machine, but the executable code of that application
program is modified on each machine as necessary Such that
each executing instance (copy or replica) on each machine
coordinates its local operations on that particular machine
with the operations of the respective instances (or copies or
replicas) on the other machines Such that they function
togetherina consistent, coherent and coordinated manner and
give the appearance of being one global instance of the appli
cation (i.e. a "meta-application').
0040. The copies or replicas of the same or substantially
the same application codes, are each loaded onto a corre
sponding one of the interoperating and connected machines
or computers. As the characteristics of each machine or com
puter may differ, the application code 50 may be modified
before loading, or during the loading process, or with some
disadvantages after the loading process, to provide a customi
Zation or modification of the application code on each
machine. Some dissimilarity between the programs or appli
cation codes on the different machines may be permitted so
long as the other requirements for interoperability, consis
tency, and coherency as described herein can be maintained.
As it will become apparent hereafter, each of the machines
M1, M2... Min and thus all of the machines M1, M2... Mn
have the same or substantially the same application code 50.
usually with a modification that may be machine specific.
0041. Before the loading of, or during the loading of, or at
any time preceding the execution of the application code 50
(or the relevant portion thereof) on each machine M, M2...
Mn, each application code 50 is modified by a corresponding
modifier 51 according to the same rules (or substantially the
same rules since minor optimizing changes are permitted
within each modifier 51/1, 51/2 ... 51/n).
0042 Each of the machines M1, M2... Min operates with
the same (or substantially the same or similar) modifier 51 (in
Some embodiments implemented as a distributed run time or
DRT71 and in other embodiments implemented as an adjunct
to the application code and data 50, and also able to be
implemented within the JAVA virtual machine itself).Thus all
of the machines M1, M2... Mn have the same (or substan
tially the same or similar) modifier 51 for each modification
required. A different modification, for example, may be
required for memory management and replication, for initial
ization, for finalization, and/or for synchronization (though
not all of these modification types may be required for all
embodiments).
0043. There are alternative implementations of the modi
fier 51 and the distributed run time 71. For example, as indi
cated by broken lines in FIG. 1C, the modifier 51 may be
implemented as a component of or within the distributed run
time 71, and therefore the DRT 71 may implement the func
tions and operations of the modifier 51. Alternatively, the
function and operation of the modifier 51 may be imple
mented outside of the structure, software, firmware, or other
means used to implement the DRT 71 such as within the code
and data 50, or within the JAVA virtual machine itself. In one
embodiment, both the modifier 51 and DRT 71 are imple
mented or written in a single piece of computer program code
that provides the functions of the DRT and modifier. In this
case the modifier function and structure is, in practice, Sub
sumed into the DRT. Independent of how it is implemented,
the modifier function and structure is responsible for modi
fying the executable code of the application code program,
and the distributed run time function and structure is respon
sible for implementing communications between and among

US 2008/O 195682 A1

the computers or machines. The communications functional
ity in one embodiment is implemented via an intermediary
protocol layer within the computer program code of the DRT
on each machine. The DRT can, for example, implement a
communications Stack in the JAVA language and use the
Transmission Control Protocol/Internet Protocol (TCP/IP) to
provide for communications or talking between the
machines. These functions or operations may be imple
mented in a variety of ways, and it will be appreciated in light
of the description provided herein that exactly how these
functions or operations are implemented or divided between
structural and/or procedural elements, or between computer
program code or data structures, is not important or crucial to
the invention.

0044. However, in the arrangement illustrated in FIG. 1C,
a plurality of individual computers or machines M1, M2...
Mn are provided, each of which are interconnected via a
communications network 53 or other communications link.
Each individual computer or machine is provided with a
corresponding modifier 51. Each individual computer is also
provided with a communications port which connects to the
communications network. The communications network 53
or path can be any electronic signalling, data, or digital com
munications network or path and is preferably a slow speed,
and thus low cost, communications path, such as a network
connection over the Internet or any common networking con
figurations including ETHERNET or INFINIBAND and
extensions and improvements, thereto. Preferably, the com
puters are provided with one or more known communications
ports (such as CISCO Power Connect 5224 Switches) which
connect with the communications network 53.

0045. As a consequence of the above described arrange
ment, if each of the machines M1, M2, ..., Minhas, say, an
internal or local memory capability of 10 MB, then the total
memory available to the application code 50 in its entirety is
not, as one might expect, the number of machines (n) times 10
MB. Nor is it the additive combination of the internal memory
capability of all n machines. Instead it is either 10 MB, or
some number greater than 10 MB but less than nx10 MB. In
the situation where the internal memory capacities of the
machines are different, which is permissible, then in the case
where the internal memory in one machine is Smaller than the
internal memory capability of at least one other of the
machines, then the size of the Smallest memory of any of the
machines may be used as the maximum memory capacity of
the machines when such memory (or a portion thereof) is to
be treated as common memory (i.e. similar equivalent
memory on each of the machines M1 ... Mn) or otherwise
used to execute the common application code.
0046) However, even though the manner that the internal
memory of each machine is treated may initially appear to be
a possible constraint on performance, how this results in
improved operation and performance will become apparent
hereafter. Naturally, each machine M1, M2 . . . Mn has a
private (i.e. non-common) internal memory capability. The
private internal memory capability of the machines M1, M2,
. . . . Mn are normally approximately equal but need not be.
For example, when a multiple computer system is imple
mented or organized using existing computers, machines, or
information appliances, owned or operated by different enti
ties, the internal memory capabilities may be quite different.
On the other hand, if a new multiple computer system is being

Aug. 14, 2008

implemented, each machine or computer is preferably
selected to have an identical internal memory capability, but
this need not be so.
0047. It is to be understood that the independent local
memory of each machine represents only that part of the
machine's total memory which is allocated to that portion of
the application program running on that machine. Thus, other
memory will be occupied by the machine's operating system
and other computational tasks unrelated to the application
program 50.
0048. Non-commercial operation of a prototype multiple
computer system indicates that not every machine or com
puter in the system utilises or needs to refer to (e.g. have a
local replica of) every possible memory location. As a con
sequence, it is possible to operate a multiple computer system
without the local memory of each machine being identical to
every other machine, so long as the local memory of each
machine is sufficient for the operation of that machine. That is
to say, provided a particular machine does not need to refer to
(for example have a local replica of) Some specific memory
locations, then it does not matter that those specific memory
locations are not replicated in that particular machine.
0049. It may also be advantageous to select the amounts of
internal memory in each machine to achieve a desired perfor
mance level in each machine and across a constellation or
network of connected or coupled plurality of machines, com
puters, or information appliances M1, M2, ..., Mn. Having
described these internal and common memory consider
ations, it will be apparent in light of the description provided
herein that the amount of memory that can be common
between machines is not a limitation.
0050. In some embodiments, some or all of the plurality of
individual computers or machines can be contained within a
single housing or chassis (such as so-called “blade servers'
manufactured by Hewlett-Packard Development Company,
Intel Corporation, IBM Corporation and others) or the mul
tiple processors (eg Symmetric multiple processors or SMPs)
or multiple core processors (eg dual core processors and chip
multithreading processors) manufactured by Intel, AMD, or
others, or implemented on a single printed circuit board or
even within a single chip or chip set. Similarly, also included
are computers or machines having multiple cores, multiple
CPU's or other processing logic.
0051. When implemented in a non-JAVA language or
application code environment, the generalized platform, and/
or virtual machine and/or machine and/or runtime system is
able to operate application code 50 in the language(s) (pos
sibly including for example, but not limited to any one or
more of Source-code languages, intermediate-code lan
guages, object-code languages, machine-code languages, and
any other code languages) of that platform and/or virtual
machine and/or machine and/or runtime system environment,
and utilize the platform, and/or virtual machine and/or
machine and/or runtime system and/or language architecture
irrespective of the machine or processor manufacturer and the
internal details of the machine. It will also be appreciated that
the platform and/or runtime system can include virtual
machine and non-virtual machine Software and/or firmware
architectures, as well as hardware and direct hardware coded
applications and implementations.
0.052 For a more general set of virtual machine or abstract
machine environments, and for current and future computers
and/or computing machines and/or information appliances or
processing systems, and that may not utilize or require utili

US 2008/O 195682 A1

Zation of either classes and/or objects, the inventive structure,
method and computer program and computer program prod
uct are still applicable. Examples of computers and/or com
puting machines that do not utilize either classes and/or
objects include for example, the x86 computer architecture
manufactured by Intel Corporation and others, the SPARC
computer architecture manufactured by Sun MicroSystems,
Inc and others, the Power PC computer architecture manu
factured by International Business Machines Corporation and
others, and the personal computer products made by Apple
Computer, Inc., and others.
0053 For these types of computers, computing machines,
information appliances, and the virtual machine or virtual
computing environments implemented thereon that do not
utilize the idea of classes or objects, may be generalized for
example to include primitive data types (such as integer data
types, floating point data types, long data types, double data
types, string data types, character data types and Boolean data
types), structured data types (such as arrays and records),
derived types, or other code or data structures of procedural
languages or other languages and environments such as func
tions, pointers, components, modules, structures, reference
and unions. These structures and procedures when applied in
combination when required, maintain a computing environ
ment where memory locations, address ranges, objects,
classes, assets, resources, or any other procedural or struc
tural aspect of a computer or computing environment are
where required created, maintained, operated, and deacti
vated or deleted in a coordinated, coherent, and consistent
manner across the plurality of individual machines M1, M2.
Mn

0054. This analysis or scrutiny of the application code 50
can take place either prior to loading the application program
code 50, or during the application program code 50 loading
procedure, or even after the application program code 50
loading procedure (or some combination of these). It may be
likened to an instrumentation, program transformation, trans
lation, or compilation procedure in that the application code
can be instrumented with additional instructions, and/or oth
erwise modified by meaning-preserving program manipula
tions, and/or optionally translated from an input code lan
guage to a different code language (such as for example from
Source-code language or intermediate-code language to
object-code language or machine-code language). In this
connection it is understood that the term compilation nor
mally or conventionally involves a change in code or lan
guage, for example, from source code to object code or from
one language to another language. However, in the present
instance the term "compilation’ (and its grammatical equiva
lents) is not so restricted and can also include or embrace
modifications within the same code or language. For
example, the compilation and its equivalents are understood
to encompass both ordinary compilation (Such as for example
by way of illustration but not limitation, from source-code to
object code), and compilation from source-code to source
code, as well as compilation from object-code to object code,
and any altered combinations therein. It is also inclusive of
so-called “intermediary-code languages' which are a form of
“pseudo object-code'.
0055. By way of illustration and not limitation, in one
embodiment, the analysis or scrutiny of the application code
50 takes place during the loading of the application program
code such as by the operating system reading the application
code 50 from the hard disk or other storage device, medium or

Aug. 14, 2008

Source and copying it into memory and preparing to begin
execution of the application program code. In another
embodiment, in a JAVA virtual machine, the analysis or scru
tiny may take place during the class loading procedure of the
java.lang. ClassLoader.loadClass method (e.g. java.lang.
ClassLoaderloadClass()').
0056 Alternatively, or additionally, the analysis or scru
tiny of the application code 50 (or of a portion of the appli
cation code) may take place even after the application pro
gram code loading procedure. Such as after the operating
system has loaded the application code into memory, or
optionally even after execution of the relevant corresponding
portion of the application program code has started. Such as
for example after the JAVA virtual machine has loaded the
application code into the virtual machine via the java.lang.
ClassLoaderloadClass() method and optionally com
menced execution.
0057 Persons skilled in the computing arts will be aware
of various possible techniques that may be used in the modi
fication of computer code, including but not limited to instru
mentation, program transformation, translation, or compila
tion means and/or methods.
0058. One such technique is to make the modification(s) to
the application code, without a preceding or consequential
change of the language of the application code. Another Such
technique is to convert the original code (for example, JAVA
language source-code) into an intermediate representation (or
intermediate-code language, or pseudo code). Such as JAVA
byte code. Once this conversion takes place the modification
is made to the byte code and then the conversion may be
reversed. This gives the desired result of modified JAVA code.
0059 A further possible technique is to convert the appli
cation program to machine code, either directly from source
code or via the abovementioned intermediate language or
through some other intermediate means. Then the machine
code is modified before being loaded and executed. A still
further Such technique is to convert the original code to an
intermediate representation, which is thus modified and sub
sequently converted into machine code.
0060. The present invention encompasses all such modi
fication routes and also a combination of two, three or even
more, of Such routes.
0061 The DRT 71 or other code modifying means is
responsible for creating or replicating a memory structure and
contents on each of the individual machines M1, M2 ... Mn
that permits the plurality of machines to interoperate. In some
embodiments this replicated memory structure will be iden
tical. Whilst in other embodiments this memory structure will
have portions that are identical and other portions that are not.
In still other embodiments the memory structures are differ
ent only in format or storage conventions such as Big Endian
or Little Endian formats or conventions.
0062. These structures and procedures when applied in
combination when required, maintain a computing environ
ment where the memory locations, address ranges, objects,
classes, assets, resources, or any other procedural or struc
tural aspect of a computer or computing environment are
where required created, maintained, operated, and deacti
vated or deleted in a coordinated, coherent, and consistent
manner across the plurality of individual machines M1, M2.
... Mn. Therefore the terminology "one”, “single', and “com
mon' application code or program includes the situation
where all machines M1, M2... Mnare operating or executing
the same program or code and not different (and unrelated)

US 2008/O 195682 A1

programs, in other words copies or replicas of same or Sub
stantially the same application code are loaded onto each of
the interoperating and connected machines or computers.
0063. In conventional arrangements utilising distributed
Software, memory access from one machine's Software to
memory physically located on another machine typically
takes place via the network interconnecting the machines.
Thus, the local memory of each machine is able to be accessed
by any other machine and can therefore cannot be said to be
independent. However, because the read and/or write
memory access to memory physically located on another
computer require the use of the slow network interconnecting
the computers, in these configurations such memory accesses
can resultin Substantial delays in memory read/write process
ing operations, potentially of the order of 10°-107 cycles of
the central processing unit of the machine (given contempo
rary processor speeds). Ultimately this delay is dependent
upon numerous factors, such as for example, the speed, band
width, and/or latency of the communication network. This in
large part accounts for the diminished performance of the
multiple interconnected machines in the prior art arrange
ment.

0064. However, in the present arrangement all reading of
memory locations or data is satisfied locally because a current
value of all (or some subset of all) memory locations is stored
on the machine carrying out the processing which generates
the demand to read memory.
0065. Similarly, all writing of memory locations or data is
satisfied locally because a current value of all (or some subset
ofall) memory locations is stored on the machine carrying out
the processing which generates the demand to write to
memory.
0066 Such local memory read and write processing
operation can typically be satisfied within 10°-10 cycles of
the central processing unit. Thus, in practice there is Substan
tially less waiting for memory accesses which involves and/or
writes. Also, the local memory of each machine is notable to
be accessed by any other machine and can therefore be said to
be independent.
0067. The invention is transport, network, and communi
cations path independent, and does not depend on how the
communication between machines or DRTS takes place. In
one embodiment, even electronic mail (email) exchanges
between machines or DRTs may suffice for the communica
tions.
0068. In connection with the above, it will be seen from
FIG. 2 that there are a number of machines M1, M2, ... Mn,
'n' being an integer greater than or equal to two, on which the
application program 50 of FIG. 1 is being run substantially
simultaneously. These machines are allocated a number 1, 2,
3, ... etc. in a hierarchical order. This order is normally looped
or closed so that whilst machines 2 and 3 are hierarchically
adjacent, so too are machines “n” and 1. There is preferably a
further machine X which is provided to enable various house
keeping functions to be carried out, such as acting as a lock
server. In particular, the further machine X can be a low value
machine, and much less expensive than the other machines
which can have desirable attributes Such as processor speed.
Furthermore, an additional low value machine (X+1) is pref
erably available to provide redundancy in case machine X
should fail. Where two such server machines X and X-1 are
provided, they are preferably, for reasons of simplicity, oper
ated as dual machines in a cluster configuration. Machines X
and X--1 could be operated as a multiple computer system in

Aug. 14, 2008

accordance with the present invention, if desired. However
this would result in generally undesirable complexity. If the
machine X is not provided then its functions, such as house
keeping functions, are provided by one, or some, or all of the
other machines.
0069 Turning now to FIG. 3, each of the multiple
machines M1, M2... Mn (other than any server machine X
if present) has its memory locations schematically illustrated.
For machine M1 there is a class X1 and objects A1 and B. For
machine M2 there is a class X2 (which is the same as class X1
in machine M1), and objects A2 and D. Object A2 in machine
M2 is the same as object A1 in machine M1. For machine Mn
there is a class Xn and objects. An and E. Class Xn and object
An are the same as classes X1 and X2 and objects A1 and A2
respectively. Since each of the machines M1, M2 and Mn is
able to both read from, and write to, memory locations X and
A, the boundary of each of these memory locations is indi
cated with a double line.
(0070 Preferably, it is convenient for the server machineX
of FIG. 2, to maintain a table listing each memory location
and the machines which are able to access each memory
location in the table. Such a table is said to be a reachability
table and is illustrated in FIG. 4. The first row in the table of
FIG. 4 deals with memory location A which is able to be
accessed by machines M1, M2 and Mn. The second row in the
table of FIG. 4 deals with memory location B which is only
able to be accessed by machine M1. Similarly, object D is
only able to be accessed by machine M2 and object E is only
able to be accessed by machine Mn. However, the class X is
able to be accessed by all of the machines M1, M2 and Mn.
0071. A single reachability table can be provided which is
located in, and maintained by, the server machine X. How
ever, it is also possible for the computer system to be operated
without a server machine X in which case it is desirable for
each machine to operate its own reachability table. FIG. 5
illustrates individual reachability tables for the individual
machines in the circumstances corresponding to FIG. 4.
0072. In the multi-machine environment described above,
in the event that the content of class X or object A is changed
by being written to by one of the machines, then it is necessary
to transmit that change via the network 53 to all the other
machines. However, as the objects B, D and E are each only
able to be accessed by a single machine, there is little point in
either creating or updating the contents of these memory
locations since they are only able to be accessed by their local
machine.

0073. As the class X needs to refer to the object A, then
class X is said to point to object A. This is indicated in FIG. 3
by an arrow pointing from classes X1, X2 and Xn to objects
A1, A2 and An respectively.
0074 Turning now to FIG. 6, in the execution of the appli
cation program 50, an assignment operation is executed by
machine Mn in which the reference from class Xn to object
An is overwritten with an empty or “null reference. In this
way, class Xn no longer points to object An. Corresponding to
this operation, classes X1 and X2 on machines M1 and M2
are updated to no longer reference objects A1 and A2 respec
tively. This change is carried out by the server machine X in
the case where it is present, or by the DRT 71/n of machine
Mn in the case where server machine X is not present.
(0075. The situation after the changes illustrated in FIG. 6
is shown in the tables of FIGS. 7 and 8 respectively. However,
as the three objects A1, A2 and An continue to exist, and
continue to be accessible by the machines M1, M2 and Mn,

US 2008/O 195682 A1

there is no actual change. Thus the tables of FIGS. 7 and 8 are
the same as the tables of FIGS. 4 and 5. Thus although class
X no longer points to object A, any change to, say object A2,
must be communicated to machines M1 and Mn to update
objects A1 and An.
0076 FIG. 9 illustrates the position after the operating
system of machine Mn, or the DRT 71/n, determines that
object An is no longer needed on machine Mn. At this point
machine Minisfree to reclaim the memory presently occupied
by the local copy (An) of the object A. Such a system of
memory reclamation is inherent in a computer and necessary
to ensure that the local memory does not become cluttered
with unused material. In addition, such a system operates in
the background and thus programmers can rely upon unused
objects, etc being cleaned up in due course. Therefore, no
specific action needs to be taken by the programmer to delete
or finalise unused objects.
0077. When such a change takes place on machine Mn, the
single reachability table of FIG. 10, or the reachability table
for machine Mn in FIG. 11, is updated to indicate the object
A is no longer accessible on machine Mn. Note that at this
stage object A is still regarded as being shared because at least
two machines, M1 and M2 in this example, are still able to
access object A. Thus in FIG. 9 object A is still bounded by
double lines. Thus any changes to A1 must be made to A2, and
visa Versa.

0078 Turning now to FIG. 12, at this time, or at some later
time, machine M2, say, determines that object A2 on machine
M2 is no longer needed or utilised locally by machine M2.
Thus the operating system of machine M2 or DRT 71/2 can
execute an inherent procedure to reclaim the memory pres
ently utilized by the local copy A2 of the global object A.
0079. As a consequence, as illustrated in FIGS. 13 and 14,
the reachability table(s) is/are modified so that object A is no
longer recorded as being accessible by machine M2. As a
result, object A is indicated in FIG. 12 as being bounded only
by a single line. That is, only machine M1 can access object
A (and so it can be referred to in FIG. 12 merely as A rather
than A1—since the A1 terminology would imply that the
copy on machine M1 of an object is also present on at least
one other machine).
0080. As a consequence, the reference to object A in the
reachability table(s) can be deleted entirely, if desired. More
importantly, changes to object A need not be communicated
to any other machine, and if machine M1 no longer needs to
make reference to object A then it can be deleted from
machine M1 to reclaim the memory space previously occu
pied by object A.
0081. The abovementioned detailed description refers to
memory locations, however, it is equally applicable to struc
tures, assets or resources (which in JAVA are termed classes
or objects). These will have already been allocated a (global)
name or tag which can be used globally by all machines (since
it is understood that the local memory structure of different
machines may be different). Thus the local or actual name
allocated to a specific memory location in one machine may
well be different from the local name allocated to the corre
sponding memory location in another machine. This global
name allocation preferably happens during a compilation
process at loading when the classes or objects are originally
initialized. This is most conveniently done via a table main
tained by the server machine X. This table can also include the
reachability data.

Aug. 14, 2008

I0082 It will be apparent to those skilled in the art that the
reachability data enables structures, assets or resources (ie
memory locations) to be divided into two categories or
classes. The first category consists of those locations which
are able to be accessed by all machines. It is necessary that
write actions carried out in respect of such memory locations
be distributed to all machines so that all corresponding
memory locations have the same content (except for delays
due to transmission of updating data). However, in respect of
the second category, since these memory locations are only
accessible by the local machine, write actions to these
memory locations need not be distributed to all the other
machines, nor need there be corresponding memory locations
on the other machines. As a consequence of this categoriza
tion, unused memory locations can be quickly identified and
reclaimed.
I0083. The foregoing describes only some embodiments of
the present invention and modifications, obvious to those
skilled in the art, can be made thereto without departing from
the scope of the present invention. For example, the tables of
FIGS. 4 and 7 each show a row corresponding to each
memory location. In practice, for those memory locations
such as D and E which are only accessible by their local
machine, it is not necessary to have a row in the table at all.
Instead, Such a row is only created if the memory location
becomes accessible by one or more other machines.
I0084. The foregoing describes only some embodiments of
the present invention and modifications, obvious to those
skilled in the art, can be made thereto without departing from
the scope of the present invention. For example, reference to
JAVA includes both the JAVA language and also JAVA plat
form and architecture.
0085. In all described instances of modification, where the
application code 50 is modified before, or during loading, or
even after loading but before execution of the unmodified
application code has commenced, it is to be understood that
the modified application code is loaded in place of, and
executed in place of the unmodified application code Subse
quently to the modifications being performed.
I0086 Alternatively, in the instances where modification
takes place after loading and after execution of the unmodi
fied application code has commenced, it is to be understood
that the unmodified application code may either be replaced
with the modified application code in whole, corresponding
to the modifications being performed, or alternatively, the
unmodified application code may be replaced in part or incre
mentally as the modifications are performed incrementally on
the executing unmodified application code. Regardless of
which such modification routes are used, the modifications
Subsequent to being performed execute in place of the
unmodified application code.
I0087. It is advantageous to use a global identifier is as a
form of meta-name or meta-identity for all the similar
equivalent local objects (or classes, or assets or resources or
the like) on each one of the plurality of machines M1, M2..
. Mn. For example, rather than having to keep track of each
unique local name or identity of each similar equivalent local
object on each machine of the plurality of similar equivalent
objects, one may instead define or use a global name corre
sponding to the plurality of similar equivalent objects on each
machine (e.g. “globalname7787), and with the understand
ing that each machine relates the global name to a specific
local name or object (e.g. “globalname7787 corresponds to
object “localobject456” on machine M1, and “global

US 2008/O 195682 A1

name7787 corresponds to object “localobject885” on
machine M2, and “globalname7787 corresponds to object
“localobject 111 on machine M3, and so forth).
0088. It will also be apparent to those skilled in the art in
light of the detailed description provided herein that in a table
or list or other data structure created by each DRT 71 when
initially recording or creating the list of all, or some Subset of
all objects (e.g. memory locations or fields), for each Such
recorded object on each machine M1, M2 . . . Mn there is a
name or identity which is common or similar on each of the
machines M1, M2 . . . Min. However, in the individual
machines the local object corresponding to a given name or
identity will or may vary over time since each machine may,
and generally will, store memory values or contents at differ
ent memory locations according to its own internal processes.
Thus the table, or list, or other data structure in each of the
DRTs will have, in general, different local memory locations
corresponding to a single memory name or identity, but each
global “memory name' or identity will have the same
“memory value or content” stored in the different local
memory locations. So for each global name there will be a
family of corresponding independent local memory locations
with one family member in each of the computers. Although
the local memory name may differ, the asset, object, location
etc has essentially the same content or value. So the family is
coherent.
0089. The term “table' or “tabulation as used herein is
intended to embrace any list or organised data structure of
whatever format and within which data can be stored and read
out in an ordered fashion.
0090. It will also be apparent to those skilled in the art in
light of the description provided herein that the abovemen
tioned modification of the application program code 50 dur
ing loading can be accomplished in many ways or by a variety
of means. These ways or means include, but are not limited to
at least the following five ways and variations or combina
tions of these five, including by:

0091 (i) re-compilation at loading,
0092 (ii) a pre-compilation procedure prior to loading,
0093 (iii) compilation prior to loading,
0094 (iv) just-in-time” compilation(s), or
0.095 (v) re-compilation after loading (but, for
example, before execution of the relevant or correspond
ing application code in a distributed environment).

0096. Traditionally the term “compilation' implies a
change in code or language, for example, from source to
object code or one language to another. Clearly the use of the
term “compilation' (and its grammatical equivalents) in the
present specification is not so restricted and can also include
or embrace modifications within the same code or language.
0097. Those skilled in the computer and/or programming
arts will be aware that when additional code or instructions
is/are inserted into an existing code or instruction set to
modify same, the existing code or instruction set may well
require further modification (Such as for example, by re
numbering of sequential instructions) so that offsets, branch
ing, attributes, mark up and the like are properly handled or
catered for.
0098. Similarly, in the JAVA language memory locations
include, for example, both fields and array types. The above
description deals with fields and the changes required for
array types are essentially the same mutatis mutandis. Also
the present invention is equally applicable to similar pro
gramming languages (including procedural, declarative and

Aug. 14, 2008

object orientated languages) to JAVA including Microsoft.
NET platform and architecture (Visual Basic, Visual C/C",
and C#) FORTRAN, C/C", COBOL, BASIC etc.
0099. The terms object and class used herein are derived
from the JAVA environment and are intended to embrace
similar terms derived from different environments such as
dynamically linked libraries (DLL), or object code packages,
or function unit or memory locations.
0.100 Various means are described relative to embodi
ments of the invention, including for example but not limited
to lock means, distributed run time means, modifier or modi
fying means, and the like. In at least one embodiment of the
invention, any one or each of these various means may be
implemented by computer program code statements or
instructions (possibly including by a plurality of computer
program code statements or instructions) that execute within
computer logic circuits, processors, ASICs, logic or elec
tronic circuit hardware, microprocessors, microcontrollers or
other logic to modify the operation of such logic or circuits to
accomplish the recited operation or function. In another
embodiment, any one or each of these various means may be
implemented in firmware and in other embodiments such
may be implemented inhardware. Furthermore, in at least one
embodiment of the invention, any one or each of these various
means may be implemented by a combination of computer
program Software, firmware, and/or hardware.
0101 Any and each of the abovedescribed methods, pro
cedures, and/or routines may advantageously be imple
mented as a computer program and/or computer program
product stored on any tangible media or existing in electronic,
signal, or digital form. Such computer program or computer
program products comprising instructions separately and/or
organized as modules, programs, Subroutines, or in any other
way for execution in processing logic Such as in a processor or
microprocessor of a computer, computing machine, or infor
mation appliance; the computer program or computer pro
gram products modifying the operation of the computer in
which it executes or on a computer coupled with, connected
to, or otherwise in signal communications with the computer
on which the computer program or computer program prod
uct is present or executing. Such a computer program or
computer program product modifies the operation and archi
tectural structure of the computer, computing machine, and/
or information appliance to alter the technical operation of the
computer and realize the technical effects described herein.
0102 The invention may therefore include a computer
program product comprising a set of program instructions
stored in a storage medium or existing electronically in any
form and operable to permit a plurality of computers to carry
out any of the methods, procedures, routines, or the like as
described herein including in any of the claims.
0103) Furthermore, the invention includes (but is not lim
ited to) a plurality of computers, or a single computer adapted
to interact with a plurality of computers, interconnected via a
communication network or other communications link or
path and each operable to Substantially simultaneously or
concurrently execute the same or a different portion of an
application code written to operate on only a single computer
on a corresponding different one of computers. The comput
ers are programmed to carry out any of the methods, proce
dures, or routines described in the specification or set forth in
any of the claims, on being loaded with a computer program
product or upon Subsequent instruction. Similarly, the inven
tion also includes within its scope a single computer arranged

US 2008/O 195682 A1

to co-operate with like, or Substantially similar, computers to
form a multiple computer system.
0104. To summarise, there is provided a method of dis
abling a local memory clean-up procedure inherently present
in each of a plurality of computers each with their correspond
ing independent local memory, each Substantially simulta
neously executing a corresponding different portion of an
application program written to execute on only a single com
puter, and each being connected via a communications net
work to permit updating of corresponding memory locations,
the method comprising the steps of
0105 (i) categorizing the memory locations of the local
memories into a first reachability category in which the local
memory locations are replicated on selected ones, or all, of
the computers and therefore require updating via the commu
nications network with changes to corresponding memory
locations of the other computers having access to maintain
Substantial memory coherence, and into a second category in
which the local memory locations are present only in the local
computer and therefore no updating is required,
0106 (ii) permitting the inherent local memory clean-up
procedure to operate unfettered in respect of the second cat
egory memory locations,
0107 (iii) disabling the inherent local memory clean-up
procedure in respect of the first category memory locations,
and
0108 (iv) demoting from the first category to the second
category any of the first category memory locations unable to
be referenced by any of the computers other than the local
computer having the demotable first category memory loca
tion.
0109 Preferably the method includes the further step of:
0110 (v) maintaining data regarding the memory loca
tions categorization in a reachability table.
0111 Preferably the method includes the further step of:
0112 (vi) maintaining a single the reachability table.
0113 Preferably the method includes the step of:
0114 (vii) maintaining the single reachability table on a
server computer not forming one of the multiple computers
and connected thereto via the communications network.
0115 Alternatively the method includes the further step

of:
0116 (viii) maintaining a multiplicity of reachability

tables, each on a corresponding one of the multiple comput
CS.

0117 Preferably the memory locations include an asset,
Structure Or resOurce.

0118. There is also provided a computer program product
comprising a set of program instructions stored in a storage
medium and operable to permit a plurality of computers to
carry out any of the above method(s).
0119 Furthermore there is provided a plurality of comput
ers interconnected via a communications network and oper
able to ensure carrying out of any of the above method(s).
0120 Also, there is provided a clean-up procedure modi
fied multiple computer system in which a plurality of com
puters each has their corresponding independent local
memory, each has an inherent local memory clean-up proce
dure, each Substantially simultaneously executes a corre
sponding different portion of an application program written
to execute on only a single computer, and each is connected
via a communications network to permit updating of corre
sponding memory locations, the system including a reach
ability means to categorize memory locations of the local

Aug. 14, 2008

memories into a first category in which the local memory
locations are replicated on selected ones, or all, of the com
puters and therefore require updating via the communications
network with changes to corresponding memory locations of
other computers to maintain Substantial memory coherence,
and into a second category in which the local memory loca
tions are present only in the local computer and therefore no
updating is required, and wherein the system includes a dis
abling means connected to the reachability means and to each
of the plurality of computers to disable the inherent local
memory clean-up procedure in respect of memory locations
in the first category only, and the reachability means includes
a demoting means to demote from the first category to the
second category any of the first category memory locations
unable to be referenced by any of the computers other than the
local computer having the demotable first category memory
location.
I0121 Preferably the reachability means comprises a
reachability table in which is maintained data regarding the
memory location classification.
0.122 Preferably there is included a server computer con
nected to the communications network, the server computer
including a single reachability table.
I0123 Preferably each of the plurality of computers
includes a corresponding reachability table.
0.124 Preferably the memory locations include an asset,
Structure Or resOurce.

0.125. In addition, there is provided a single computer
adapted to co-operate with at least one other computer in
order to carry out any of the above method(s) or form the
above computer system.
0.126 The term “compromising (and its grammatical
variations) as used herein is used in the inclusive sense of
“having or “including and not in the exclusive sense of
“consisting only of.

1. In a multiple computer system comprising a plurality of
computers, each including a local processor and a local
memory coupled with the local processor, and including a
first computer and a second computer interconnected via a
communications link or network operating in a replicated
shared memory arrangement, a method of classifying said
local memory(ies) and demoting any said first category
memory locations under predetermined conditions compris
ing:

classifying said local memories into a first category of
memory locations each of which is replicated on two or
more computers of said plurality of computers;

classifying said local memories into a second category of
memory locations each of which is present only in the
specific one of said plurality of computers in which each
said second category of memory location is physically
located; and

demoting any said first category memory locations under
predetermined conditions.

2. A method as in claim 1, further including:
a. maintaining a first table listing or recording said first

category memory locations.
3. A method as in claim 2 further including:
a. maintaining a second table listing or recording said

second category memory locations.
4. A method as in claim 1, further including:
a. maintaining a first table listing or recording said first

category memory locations;

US 2008/O 195682 A1

b. maintaining a second table listing or recording said
second category memory locations; and

c. said first table and said second table are the same table or
are different tables.

5. A method as in claim 2, further including:
a. not maintaining a table listing or recording said second

category memory locations.
6. A method as in claim 1, further including:
a. maintaining at least one of a first table listing or record

ing said first category memory locations, and a second
table listing or recording said second category memory
locations, on a further server computer.

7. A method as in claim 1, further including:
a. maintaining multiple ones of a first table listing or

recording said first category memory locations, and a
second table listing or recording said second category
memory locations, at least one in each of said multiple
computers.

8. A method as in claim 1, wherein said first category
memory locations of a said computer do not access or refer to
any second category memory locations of the same computer.

9. A method as in claim 8, wherein said access includes
memory addresses of said second category memory loca
tions.

10. A method as in claim 8, wherein said access includes
pointers, references, handles, or links to or of said second
category memory locations.

11. A method as in claim 1, wherein said memory locations
comprise an object or objects.

12. A method as in claim 1, wherein said memory locations
comprise a class or classes.

13. A method as in claim 1, wherein said memory locations
comprise object field(s) or class field(s).

14. A method as in claim 1, wherein said memory locations
comprise data structure(s).

15. A method as in claim 1, wherein said memory locations
comprise array data structure(s).

16. A method as in claim 1, wherein said memory locations
comprise elements of array data structure(s).

17. A method as in claim 1, wherein said memory locations
comprise libraries, linked libraries, and/or dynamically
linked libraries.

18. A method as in claim 1, further including:
a. maintaining a replication table listing or recording the

ones of said multiple computers on which a said first
category memory location is replicated.

19. A method as in claim 18, further including:
a. maintaining one said replication table for each said first

category memory location.
20. A method as in claim 18, further including:
a. maintaining one said replication table for a plurality of

first category memory locations.
21. A method as in claim 20, further including:
a. maintaining at least one said replication table for each

plurality of first category memory locations of possible
multiple pluralities.

22. A method as in claim 20, wherein said plurality of first
category memory locations are plural memory locations of a
related set of memory locations.

23. A method as in claim 22, wherein said related set of
memory locations are an array of memory locations.

24. A method as in claim 23, wherein said array of memory
locations comprise an array data structure.

10
Aug. 14, 2008

25. A method as in claim 22, wherein said related set of
memory locations are memory locations of an object or class.

26. A method as in claim 25, wherein said memory loca
tions of an object or class are object fields or variables, or
class fields or variables.

27. A method as in claim 18, wherein said replication table
and either or both of said table(s) of said first category
memory locations and said table(s) of said second category
memory locations, are a single or the same table.

28. A method as in claim 18, further including:
a. maintaining multiple said replication tables, one in each

of said multiple computers.
29. A method as in claim 18, further including:
a. maintaining multiple said replication tables, one of each

said multiple tables in each of said multiple computers.
30. A method as in claim 18, further including:
a. maintaining multiple said replication tables in each of

said multiple computers.
31. A method as in claim 18, further including:
a. maintaining one said replication table, for all said mul

tiple computers on a further server computer.
32. A method as in claim 1, further including:
a. Substantially simultaneously updating said first category
memory locations of the other ones of said computers
with any changes made to a first category memory loca
tion of any one of said computers.

33. A method as in claim 32, further including:
a.. utilizing said replication table(s) to determine which

ones of said multiple computers are to be said substan
tially simultaneously updated.

34. A method as in claim 32, further including:
a. not updating said second category memory locations of

the other ones of said computers with any changes made
to a second category memory location of any one of said
computers.

35. A method as in claim 32, wherein said substantially
simultaneous updating includes updating a first category
memory locations of the other ones of said computers on
which said first category memory locations is replicated, with
any changes made to said first category memory locations of
any one of said computers.

36. A method as in claim 32, wherein said substantially
simultaneous updating excludes updating said first category
memory locations of the other ones of said computers on
which said first category memory locations is not replicated.

37. A method as in claim 1, including the further step of:
a. demoting any said first category memory locations,
when said demoted first category memory locations
have been deleted on all except one of said multiple
computers.

38. A method as in claim 1, including the further step of:
a. demoting any said first category memory locations,
when said demoted first category memory locations are
no longer are replicated on two or more of said multiple
computers.

39. A method as in claim 1, including the further step of:
a. demoting any said first category memory locations,
when said demoted first category memory locations are
marked for deletion on all except one of said computers.

40. A method as in claim 1, including the further step of:
a.demoting any said first category memory locations, of a

one of said computers, when said demoted first category
memory locations have been deleted on all other ones of
said computers.

US 2008/O 195682 A1

41. A method as in claim 1, including the further step of:
a.demoting any said first category memory locations, of a

one of said computers, when said demoted first category
memory locations are marked for deletion on all other
ones of said computers.

42. A method as in claim 37, wherein said all other ones of
said computers comprise those computers on which said
demoted first category memory locations are or were repli
cated.

43. A method as in claim37, wherein said deletion includes
reclamation of finalization of garbage collection of erasing
of or freeing or cleaning up of the value(s) or content(s) of
said demoted first category memory locations.

44. A method as in claim37, wherein said deletion includes
removing said demoted first category memory locations from
one or more said table(s) of first category memory locations
of one or more said machines.

45. A method as in claim 37, wherein said demoting
includes assigning said demoted first category memory loca
tions to said second category memory locations.

46. A method as in claim 37, wherein said demoting
includes assigning said demoted first category memory loca
tions to said second category memory locations on the last
one of said computers in which said demoted first category
memory locations reside, or have not been deleted or marked
for deletion, are physically located.

47. A method as in claim 46, wherein said demoting
includes re-classifying said demoted first category memory
locations to become second category memory locations.

48. A method as in claim 37, wherein said demoting
includes updating said table of said second category memory
locations to include said demoted first category memory loca
tions.

49. A method as in claim 37, wherein said demoting
includes updating said table of said first category memory
locations to exclude said demoted first category memory
locations.

50. A method as in claim 37, including the further step of:
a.. updating said table(s) of said first category memory

locations on each one of said computers, to exclude said
demoted first category memory locations.

51. A method as in claim 37, including the further step of:
a.. updating said table(s) of said first category memory

locations on each one of said computers in which said
demoted first category memory locations are or were
replicated, to exclude said demoted first category
memory locations.

52. A method as in claim 51, including the further step of:
a.. updating said table(s) of said second category memory

locations on the last one of said computers in which said
demoted first category memory locations resides, to
include said demoted second category memory loca
tions.

53. A method as in claim 52, wherein said last one of said
computers in which said first category memory locations
resides, includes said last one of said computers in which said
demoted first category memory locations has not been
deleted.

54. A method as in claim 52, wherein said last one of said
computers in which said first category memory locations
resides, includes said last one of said computers in which said
demoted first category memory locations has not been
marked for deletion.

Aug. 14, 2008
11

55. A method as in claim 54, wherein said deletion includes
reclamation of finalization of garbage collection of erasing
of or freeing or cleaning up of the value(s) or content(s) of
said demoted first category memory locations.

56. A method as in claim 55, wherein said demoting
includes updating said replication table(s) to exclude said
demoted first category memory locations.

57. A method as in claim 56, including the further step of:
a.. updating said replication table(s) to exclude the ones of

said multiple computers on which said demoted first
category memory locations are deleted or marked for
deletion.

58. A method as in claim 56, including the further step of:
a.. updating said replication table(s) to exclude the ones of

said multiple computers on which said demoted first
category memory locations are no longer replicated.

59. A method as in claim 57, including the further step of:
a.. updating said replication table(s) on each one of said

computers.
60. A method as in claim 57, including the further step of:
a.. updating said replication table(s) on each one of said

computers in which said demoted first category memory
locations is or was replicated.

61. A method as in claim 57, including the further step of:
a. not updating said replication table(s) on each one of said

computers in which said demoted first category memory
locations is not or was not replicated.

62. A method as in claim 1, including the further steps of:
a. not substantially simultaneously updating, or discon

tinuing the Substantially simultaneous updating of said
demoted first category memory locations of other ones
of said computers with any changes made to said
demoted first category memory location.

63. A method as in claim 1, including the further step of:
a.. upon occasion of a said first category memory location

no longer being replicated by one(s) of said multiple
computers, updating said table(s) of first category
memory locations to exclude or remove said one(s) of
said multiple computers.

64. A method as in claim 1, including the further step of:
a. Upon occasion of a said first category memory location

not being replicated by one(s) of said multiple comput
ers on which said first category memory location was
replicated, updating said table(s) of first category
memory locations to exclude or remove said one(s) of
said multiple computers.

65. A method as in claim 1, including the further step of:
a.. upon occasion of a said first category memory location

being deleted by one(s) of said multiple computers on
which said first category memory location is replicated,
updating said table(s) of first category memory locations
to exclude or remove said one(s) of said multiple com
puters.

66. A method as in claim 1, including the further step of:
a.. upon occasion of a said first category memory location

no longer being replicated by one(s) of said multiple
computers, updating said replication table(s) to exclude
or remove said one(s) of said multiple computers.

67. A method as in claim 1, including the further step of:
a.. upon occasion of a said first category memory location

not being replicated by one(s) of said multiple comput
ers on which said first category memory location was
replicated, updating said replication table(s) to exclude
or remove said one(s) of said multiple computers.

US 2008/O 195682 A1

68. A method as in claim 1, including the further step of:
a.. upon occasion of a said first category memory location

being deleted by one(s) of said multiple computers on
which said first category memory location is replicated,
updating said table(s) of first category memory locations
to exclude or remove said one(s) of said multiple com
puters.

69. A method as in claim 63, wherein said deletion includes
reclamation of finalization of garbage collection of erasing
of clearing of, or freeing or cleaning up of the value(s) or
content(s) of said deleted first category memory locations.

70. A method as in claim 69, wherein said updating of said
table(s) includes updating said tables on each one of said
computers.

71. A method as in claim 69, wherein said updating of said
table(s) includes updating said table(s) on each one of said
computers in which said first category memory location is
replicated.

72. A method as in claim 70, wherein said updating of said
table(s) includes said one(s) of said multiple computers on
which said first category memory location is deleted or no
longer resides.

73. A method as in claim 72, including the further step of:
a. not updating said table(s) of said first category memory

location on each one of said computers in which said first
category memory location is not or was not replicated.

74. A method as in claim 66, wherein said updating of said
replication table(s) includes updating said replication table(s)
on each one of said computers.

75. A method as in claim 66, wherein said updating of said
replication table(s) includes updating said replication table(s)
on each one of said computers in which said existing first
category memory locations is replicated.

76. A method as in claim 74, wherein said updating of said
replication table(s) includes said one(s) of said multiple com
puters on which said first category memory location is deleted
or no longer resides.

77. A method as in claim 74, including the further step of:
a. not updating said replication table(s) of said first cat

egory memory location on each one of said computers in
which said first category memory location is not or was
not replicated.

78. A method as in claim 1, including the further step of:
a. not executing (or performing) clean-up of said demoted

first category memory locations until the last one of said
computers deletes or marks for deletion said demoted
first category memory locations.

79. A method as in claim 1, including the further step of:
a. not executing or performing clean-up of said demoted

first category memory locations until all of said comput
ers mark for deletion or have marked for deletion said
demoted first category memory locations.

80. A method as in claim 78, including the further step of:
a. disabling clean-up prior to said demotion of said first

category memory locations.
81. A method as in claim 78, including the further step of:
a. disabling clean-up prior to said demotion of said first

category memory locations, by all other ones of said
multiple computers.

82. A method as in claim 78, including the further step of:
a. disabling clean-up prior to said demotion of said first

category memory locations, by all other ones of said
multiple computers which are not the last one of said

12
Aug. 14, 2008

computers to delete or mark for deletion said demoted
first category memory locations.

83. A method as in claim 78, including the further step of:
a. disabling clean-up prior to said demotion of said first

category memory locations, by all other ones of said
multiple computers which are not the last one of said
multiple computers on which said demoted first cat
egory memory locations reside.

84. A method as in claim 1, including the further step of:
a. executing or performing clean-up of said demoted first

category memory locations upon the last one of said
computers deleting or marking for deletion said
demoted first category memory locations.

85. A method as in claim 1, including the further step of:
a. executing or performing clean-up of said demoted first

category memory locations upon the last one of said
computers deleting or marking for deletion said
demoted first category memory locations, by said last
one of said computers.

86. A method as in claim 1, including the further step of:
a. not executing or performing clean-up of first category
memory locations whilst said first category memory
locations are replicated on at least two of said multiple
computers.

87. A method as in claim 1, including the further step of:
a. not executing or performing clean-up of first category
memory locations until said first category memory loca
tions are no longer replicated on at least two of said
multiple computers, and are marked for deletion or have
been marked for deletion.

88. A method as in claim 78, including the further step of:
a. disabling clean-up whilst first category memory loca

tions are replicated on at least two of said multiple com
puters.

89. A method as in claim 1, including the further step of:
a. executing or performing clean-up of first category
memory locations when said first category memory
locations are no longer replicated on at least two of said
multiple computers, and are marked for deletion or have
been marked for deletion.

90. A method as in claim 78, wherein said clean-up
includes clean-up routines or operations.

91. A method as in claim 78, wherein said disabling clean
up includes disabling execution or operation of clean-up rou
tines.

92. A method as in claim 91, wherein said clean-up routines
are associated with said demoted first category memory loca
tions or said first category memory location.

93. A method as in claim 92, wherein said associated clean
up routines are object finalization routines or object de-con
structor routines.

94. A method as in claim 93, wherein said demoted first
category memory locations or said first category memory
locations are objects or classes.

95. A method as in claim 78, only cleaning-up memory
locations of said second category memory locations.

96. A method as in claim 95, only executing clean-up
routines of said second category memory locations.

97. A method as in claim 78, including the further step of:
a. modifying said application program before, during, or

after loading by inserting one or more disable clean-up
operations, in order to affect said disabling clean-up.

98. A method as in claim 97, wherein said application
program is modified in accordance with a procedure from a

US 2008/O 195682 A1

group of procedures consisting of re-compilation at loading,
pre-compilation at loading, compilation prior to loading, just
in-time compilation, re-compilation after loading but before
execution of the relevant portion of the application program,
and re-compilation after execution of the relevant portion of
the application program has commenced.

99. A method as in claim 97, wherein said modification
procedures operate on each said computer.

100. A method as in claim 99, wherein said modified appli
cation program is transferred from a first computer to all other
of said multiple computers, and loaded by said other multiple
computers upon receipt or thereafter.

101. A method as in claim 1, wherein said local memory
(ies) of each said computer are independent of said local
memory(ies) of each other computer.

102. A method as in claim 1, wherein said local processors
may only access said local memory(ies) of the same computer
in which the local processor is located.

103. A method as in claim 1, wherein at least a first appli
cation program written to operate on a single one of said
computers, is operating Substantially simultaneously on dif
ferent ones of said multiple computers.

104. A method as in claim 103, wherein said application
program operating Substantially simultaneously on each of
said different ones of said computers, may only access said
local memory(ies) of the same computer.

105. A method as in claim 104, wherein said access is
satisfied by said local memory(ies) of the same computer
independently of (or without the aid of) said local memory
(ies) of any other computer.

106. A method as in claim 104, wherein said access
includes reading and/or writing content or values stored or
resident within said local memory(ies) of the same computer.

107. A method as in claim 105, wherein said access
includes reading and/or writing content or values stored or
resident within said local memory(ies) of the same computer.

108. A method as in claim 104, wherein said access is
restricted to reading and/or writing content or values stored or
resident within said local memory(ies) of the same computer.

109. A method as in claim 105, wherein said access is
restricted to reading and/or writing content or values stored or
resident within said local memory(ies) of the same computer.

110. A method as in claim 104, wherein said access
includes reading and/or writing content or values of real or
virtual memory addresses of or resident within said local
memory(ies) of the same computer.

111. A method as in claim 105, wherein said access
includes reading and/or writing content or values of real or
virtual memory addresses of or resident within said local
memory(ies) of the same computer.

112. A method as in claim 106, wherein said access
includes reading and/or writing content or values of real or
virtual memory addresses of or resident within said local
memory(ies) of the same computer.

113. A method as in claim 104, wherein said access is
restricted to reading and/or writing content or values of real or
virtual memory addresses of or resident within said local
memory(ies) of the same computer.

114. A method as in claim 105, wherein said access is
restricted to reading and/or writing content or values of real or
virtual memory addresses of or resident within said local
memory(ies) of the same computer.

115. A method as in claim 106, wherein said access is
restricted to reading and/or writing content or values of real or

Aug. 14, 2008

virtual memory addresses of or resident within said local
memory(ies) of the same computer.

116. A method as in claim 104, wherein at least one
memory location and/or memory value of said application
program is substantially similarly replicated in said local
memory(ies) of said different ones of said multiple comput
CS.

117. A method as in claim 113, wherein said substantially
similarly replicated memory location(s) and/or value(s) are
stored non-identically in said local memory(ies) of said dif
ferent ones of said multiple computers.

118. A method as in claim 114, wherein said substantially
similarly replicated memory location(s) and/or memory val
ue(s) are updated through in-due-course updating to remain
Substantially similar upon occasion of any one of said plural
ity of computers simultaneously operating said application
program modifying, or causing to be modified, the value(s) or
content(s) of said Substantially similarly replicated memory
location(s) and/or memory value(s).

119. A method as in claim 118, wherein each said substan
tially similarly replicated memory location(s) and/or value(s)
of each one of said multiple computers is identified with a
substantially similar identifier.

120. A method as in claim 118, wherein said in-due-course
updating provides that said replicated memory locations are
updated to remain Substantially similar upon occasion of any
one of said computers simultaneously operating said appli
cation program causing modification of the contents of said
replicated memory location.

121. A method as in claim 1, wherein:
said local memory(ies) of each said computer are indepen

dent of said local memory(ies) of each other computer,
said local processors may only access said local memory

(ies) of the same computer in which the local processor
is located;

at least a first application program written to operate on a
single one of said computers, is operating Substantially
simultaneously on different ones of said multiple com
puters;

said application program operating Substantially simulta
neously on each of said different ones of said computers,
may only access said local memory(ies) of the same
computer;

said access is satisfied by said local memory(ies) of the
same computer independently of (or without the aid of)
said local memory(ies) of any other computer;

said access includes reading and/or writing content or val
ues stored or resident within said local memory(ies) of
the same computer, or said access is restricted to reading
and/or writing content or values stored or resident within
said local memory(ies) of the same computer;

said access includes reading and/or writing content or val
ues of real or virtual memory addresses of or resident
within said local memory(ies) of the same computer, or
said access is restricted to reading and/or writing content
or values of real or virtual memory addresses of or
resident within said local memory(ies) of the same com
puter;

at least one memory location and/or memory value of said
application program is Substantially similarly replicated
in said local memory(ies) of said different ones of said
multiple computers;

US 2008/O 195682 A1
14

said Substantially similarly replicated memory location(s)
and/or value(s) are stored non-identically in said local
memory(ies) of said different ones of said multiple com
puters;

said Substantially similarly replicated memory location(s)
and/or memory value(s) are updated through in-due
course updating to remain Substantially similar upon
occasion of any one of said plurality of computers simul
taneously operating said application program modify
ing, or causing to be modified, the value(s) or content(s)
of said Substantially similarly replicated memory loca
tion(s) and/or memory value(s):

said in-due-course updating provides that said replicated
memory locations are updated to remain Substantially
similar upon occasion of any one of said computers
simultaneously operating said application program
causing modification of the contents of said replicated
memory location; and

wherein each said substantially similarly replicated
memory location(s) and/or value(s) of each one of said
multiple computers is identified with a substantially
similar identifier.

122. A method as in claim 1, further comprising:
maintaining a replication table listing or recording the ones

of said multiple computers on which a said first category
memory location is replicated;

Substantially simultaneously updating said first category
memory locations of the other ones of said computers
with any changes made to a first category memory loca
tion of any one of said computers;

demoting any said first category memory locations, when
said demoted first category memory locations have been
deleted on all except one of said multiple computers;

wherein said demoting includes updating said table of said
second category memory locations to include said
demoted first category memory locations;

wherein said demoting includes updating said replication
table(s) to exclude said demoted first category memory
locations;

not Substantially simultaneously updating, or discontinu
ing the Substantially simultaneous updating of said
demoted first category memory locations of other ones
of said computers with any changes made to said
demoted first category memory location;

upon occasion of a said first category memory location no
longer being replicated by one(s) of said multiple com
puters, updating said table(s) of first category memory
locations to exclude or remove said one(s) of said mul
tiple computers;

wherein said updating of said replication table(s) includes
updating said replication table(s) on each one of said
computers;

not executing (or performing) clean-up of said demoted
first category memory locations until the last one of said
computers deletes or marks for deletion said demoted
first category memory locations; and

modifying said application program before, during, or after
loading by inserting one or more disable clean-up opera
tions, in order to affect said disabling clean-up.

123. A computer program stored on a computer readable
memory device comprising instructions which, when

Aug. 14, 2008

executed on a computer, perform in at least one single com
puter capable of interoperating with at least one other com
puter coupled to at least one said single computer at least
intermittently via a communications network to form a mul
tiple computer system having a plurality of computers
wherein each computer has a local memory and the multiple
computer system operating in a replicated shared memory
arrangement, a method of classifying said local memory(ies)
comprising the steps of

classifying said local memories into a first category of
memory locations each of which is replicated on two or
more computers of said plurality of computers; and

classifying said local memories into a second category of
memory locations each of which is present only in the
specific one of said plurality of computers in which each
said second category of memory location is physically
located; and

demoting any said first category memory locations under
predetermined conditions

124. A computer program as in claim 123, wherein the
method further comprises at least one of the step of:

(i) demoting any said first category memory locations,
when said demoted first category memory locations
have been deleted on all except one of said multiple
computers;

(ii) demoting any said first category memory locations,
when said demoted first category memory locations are
no longer are replicated on two or more of said multiple
computers;

(iii) demoting any said first category memory locations,
when said demoted first category memory locations are
marked for deletion on all except one of said computers;
and

(iv) demoting any said first category memory locations of a
one of said computers, when said demoted first category
memory locations have been deleted on all other ones of
said computers.

125. A multiple computer system comprising:
a plurality of computers, each including a local processor

and a local memory coupled with the local processor,
and including a first computer and a second computer
interconnected via a communications link or network
operating in a replicated shared memory arrangement, a
method of classifying said local memory(ies) compris
ing:

means for classifying said local memories into a first cat
egory of memory locations each of which is replicated
on two or more computers of said plurality of computers;

means for classifying said local memories into a second
category of memory locations each of which is present
only in the specific one of said plurality of computers in
which each said second category of memory location is
physically located; and

means for demoting any said first category memory loca
tions under predetermined conditions.

c c c c c

