PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/16023
HO4N 7/173 Al

(43) International Publication Date: 1 May 1997 (01.05.97)

(21) International Application Number: PCT/US96/17156 | (81) Designated States: AL, AM, AT, AU, BA, BB, BG, CA, CH,

(22) International Filing Date: 28 October 1996 (28.10.96)

(30) Priority Data:
60/005,988
08/661,053

UsS
uUs

27 October 1995 (27.10.95)
10 June 1996 (10.06.96)

(71) Applicant: EMC CORPORATION [US/US]J; 171 South Street,
Hopkinton, MA 01748 (US).

(72) Inventors: VAHALIA, Uresh, K.; 50 Roslyn Road, Newton,
MA 02168 (US). FORECAST, John; 11 Charlotte Road,
Newton, MA 02159 (US). TZELNIC, Percy; 156 Upland
Road, Concord, MA 01742 (US).

(74) Agent: AUCHTERLONIE, Richard, C.; Amold, White &
Durkee, P.O. Box 4433, Houston, TX 77210 (US).

CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, TJ, T™M, TR, TT, UA, UG, UZ, VN,
ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, [E, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: STAGGERED STREAM SUPPORT FOR VIDEO ON DEMAND

(57) Abstract NETWORK
CLIENTS
A video file server (20) includes an integrated FET.CH il
cached disk array storage subsystem (ICDA, 23) and CLIENT #1
a plurality of stream server computers (21) linking the
ICDA to a data network (25) for the transfer of video L CLIENT #2
data streams. The video file server further includes a T
server controller (28, 29) for applying an admission con- / —g'mgm—\ CLIENT #3
trol policy to client requests and assigning stream servers PREFETCH SERVER #1 CLIENT #4
to service the client requests. The stream servers include 30% | __RAM | a2
a real-time scheduler (63) for scheduling isochronous MOVIE)
tasks (83), and supports at least one industry standard CLIENT #5
network file access protocol and one file access protocol
for continuous media file access. The ICDA is respon- —> CLIENT #6
sive to video prefetch commands, and data specified for / > CLIENT #7
a prefetch command for a process are retained in an al- DISK 30%
located portion of the cache memory from the time that | ARRAY MOVIE WSERVER v T~ CLIENT #8
the ICDA has responded to the prefetch command to | RAM
the time that the ICDA responds to a fetch command 93
specifiying the data for the process. The time between a7 30% CLIENT #9
prefetching and fetching is selected based on available OVIE e
disk (47) and cache (41) resources. The video file server ICDA \ ——— CLIENT #10
provides video-on-demand service by maintaining and CACHE CLIENT #11
dynamically allocating sliding windows of video data k <
in the random access memories (91, 92, 93, 94) of the 41 STREAM CLIENT #12
stream server computers. SERBVEB lR! #3
‘ 84
CLIENT #13
30%. - CLIENT #14
MOVIE\ ———— CLIENT #15
CLIENT #16
SERVER #4
__BAM |

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Amenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE

IT

5EES

ERERE

LT
Lu
LV
MC

MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG
SI
SK
SN
Sz
TD
TG
T)

UA
UG
us
uzZ

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

1

STAGGERED STREAM SUPPORT FOR VIDEO ON DEMAND
TECHNICAL FIELD

The present invention relates generally to data storage

subsystems, and more particularly to video servers.
BACKGROUND ART

Mainframe data processing, and more recently
distributed computing, have required increasing large
amounts of data storage. This data storage is most
economically provided by arrays of low-cost disk drives
integrated with a large semiconductor cache memory. More
recently, however, rapid advances in processor, high-speed
network and switching technologies have enabled various
multi-media applications having storage requirements that
exceed the capabilities of conventional integrated cached
disk arrays. Multi-media material is typically composed of
a large amount of audio, video, graphics, text, and data,
requiring a large storage capacity. More importantly,
limitations on the amount of buffer capacity of user
terminals may set stringent demands on the required
availability of data access.

Real-time video, such as "video on demand" or
interactive television, are particularly demanding multi-
media applications. Real-time video is "isochronous"; i.e.,
it must be delivered at a constant data rate. Interactive
video has the additional requirement that data access must
appear nearly instantaneous to the user.

Storage systems under development for interactive
television are known as "video servers." It is desired for
a video server to provide real-time video at a fixed data
rate to a large number of concurrent users, to store a large
number of movie titles on-line with a larger number of
titles off-line in tape archives, and to respond in less
than a second to a user’s request for a movie catalog search
or a movie order.

Current video server architectures are described in
Krishan Natarajan, "Video Servers Take Root," IEEE Spectrum,
April 1995, pp. 66-69. Video server architectures generally
include disk and dynamic RAM, memory controllers, output
data bases, and output interfaces. The video server is

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

2

designed to ensure that video data are delivered at a
constant rate. Encoded audio and video data from disk or
RAM are combined into single isochronous streams. A number
of such streams are switched to appropriate output
interfaces and transmitted to the users. The video server
also provides a transaction-processing system for user-
initiated functions.

Current designs for video servers are based on PC
(personal computer) technology, multiprocessing Unix
computers, massively parallel computer architectures, or
specialized hardware for real-time video delivery.

PC-based video servers use specialized software running
on one machine or on networks of them. On multiple PCs,
specialized software for the transaction processing and
real-time video and audio delivery functions can be split
among different platforms.

Video servers based on multiprocessor minicomputers
also use specialized software running on standard computer
hardware, but can typically cope with larger number of
concurrent streams than PCs. As with multiple~PC platforms,
the real-time delivery function can be separated from the
transaction-processing function.

A massively parallel computer architecture
interconnects hundreds of processors, each with its own
random-access memory and disk storage. Compressed audio and
video data are distributed across the disk storage
processors. Control software reads the compressed data and
formats the data into output video streams.

A video server based on specialized hardware delivers
compressed video and audio directly from disk storage. The
hardware is designed to pull the video data out of the disk
storage and transmit the data downstream at the required
data rate.

A video file server also needs a scheduler and an
admission-control policy to maintain performance guarantees
for real-time streams in the presence of unpredictably
varying non-real-time traffic while ensuring system
stability during overloads. A suitable scheduler and
admission control policy is described in K.K. Ramakrishnan

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

3

et al., "Operating System Support for a Video-On-Demand File
Service," Multimedia Systems, Vol. 3, Springer-vVerlag, 1995,
PpP. 53-65. The scheduler supports multiple classes of tasks
with diverse performance requirements and allows for the co-
existence of guaranteed real-time requests with sporadic and
unsolicited requests.
CLOS OF I N

In accordance with a basic aspect of the invention, a
video file server provides a video on demand service to
clients in a data network. The video file server includes a
storage subsystem storing a video data set such as a data
set encoding a movie, and a plurality of stream server
computers linking the data storage subsystem to the data
network. Each stream server computer has random access
memory for storing a portion of the data set so that as
large a portion of the data set as possible is replicated in
the random access memory of the stream server computers.
Moreover, the portion of the data set in the random access
memory of each computer is a sliding window into the data
set. New data are loaded into each portion of the data set
in the random access memory at approximately the rate at
which data are delivered to the clients for viewing. The
new data, for example, are fetched from the storage
subsystem, or the new data are transferred between the
portions of the data sets in the random access memories of
the stream server computers. To service a request by a
client for viewing of the data set beginning at a specified
location in the data set, a data link is established between
a selected one of the stream server computers currently
having in its random access memory a portion of the data set
including the specified location in the data set, and video
data are transferred over the data link from the random
access memory of the selected one of the stream server
computers to the client. 1In this fashion, video data for an
entire data set can be transferred from the random access
memory of the selected stream server computer to the client,
without reassigning the client to another stream server
computer, and without the entire data set being stored in
the random access memory of the selected stream server

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

4

computer. Each of the stream server computers can
simultaneously service multiple clients in this fashion.

There could be a relatively high number of client
requests concentrated on only one sliding window. Moreover,
if the video file server provides on-demand service to
multiple data sets, there could be a relatively high number
of client requests for one of the data sets. If the
frequency of client requests is known in advance, then the
size and allocation of the windows in the stream server
computers should be selected to balance the loading on each
of the stream servers. However, the frequency of client
request may be highly variable and somewhat unpredictable.

In this case, it would be desirable to have an
additional or reserve amount of random access memory of the
stream server computers in excess of the amount needed for
storing the entire data set in the random access memory of
the stream server computers. When a stream server computer
becomes overloaded or nearly overloaded by client requests,
the reserve memory in another stream server computer is
allocated to store a duplicate of the original portion of
the data set in the stream server that is overloaded. Thus,
the available memory is allocated in accordance with
unexpected client demand. 1In such a system, it is also
desirable to have a mechanism for de-allocating the random
access memory windows. For example, a client request is
serviced from a duplicate RAM window only when the stream
server computer having the original RAM window is
overloaded. Therefore, when client demand for the RAM
window falls toward zero, there will come a time when no
requests are being serviced from the duplicate RAM window.
The duplicate RAM window can be de-allocated when it is no
longer being used to service a client and the stream server
computer of its original RAM window is no longer overloaded
or nearly overloaded.

BRIEF DESCRIPTION OF DRAWINGS
Other objects and advantages of the invention will

become apparent upon reading the following detailed
description with reference to the accompanying drawings
wherein:

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

5

FIG. 1 is a perspective view of a video file server
that incorporates the present invention;

FIG. 2 is a block diagram of the video file server of
FIG. 1 and its connections to a network;

FIG. 3 is a block diagram of an integrated cached disk
storage system used in the video file server of FIG. 1;

FIG. 4 is a block diagram showing software structure in
the video file server of FIG. 1;

FIG. 5 is a more detailed block diagram showing various
medules of the software structure of FIG. 4;

FIG. 6 is a specific example of software modules of
FIG. 4 that can be used in an interactive video application
to provide transaction processing and continuous media file
access;

FIG. 7 is a schematic diagram illustrating scheduling
operations by a kernel software module of the video file
server of FIG. 1;

FIG. 8 is a timing diagram showing the accommodation of
non real-time request by the kernel software module of the
video file server of FIG. 1;

FIG. 9 is a schematic diagram illustrating data flow in
the video file server of FIG. 1 from the disk array to a
network client;

FIG. 10 is a flowchart of a prefetch task of a stream
server in the video file server of FIG. 1;

FIG. 11 is a flowchart of a video prefetch procedure of
an integrated cached disk array in the video file server of
FIG. 1;

FIG. 12 is a flowchart of a video fetch procedure of
the integrated cached disk array in the video file server of
FIG. 1;

FIG. 13 is a schematic diagram similar to FIG. 9 but
showing how a second stream server in the video file server
can access data having been prefetched from the disk array
for a first stream server of the video file server;

FIG. 14 is a first part of a flowchart of a subroutine
for determining whether sufficient cache or disk resources
are presently available in the integrated cache disk array
for supporting a requested video stream, and if so,

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

6

determining whether more than a minimum amount of cache
memory should be allocated to support the requested video
stream;

FIG. 15 is a second part of the flowchart begun in
FIG. 14;

FIG. 16 is a schematic diagram showing "movie-on-
demand" service to numerous network clients simultaneously
viewing different portions of a movie;

FIG. 17 is a flowchart of a routine for servicing
requests from network clients for "movie-on-demand" service
in accordance with the schematic diagram in FIG. 16;

FIG. 18 is a flowchart of steps that could be added to
the routine of FIG. 17 to dynamically allocate RAM windows
of the stream servers of FIG. 2 in anticipation of client
requests for "movie-on-demand" service;

FIG. 19 is a schematic diagram illustrating data flow
in the video file server of FIG. 1 during "on-line" tape
backup operations; and

FIG. 20 is a block diagram showing a distribution of
software used in the video file server of FIG. 1 for the
"on-line" tape backup operations of FIG. 19.

While the invention is susceptible to various
modifications and alternative forms, specific embodiments
thereof have been shown in the drawings and will be
described in detail. It should be understood, however, that
it is not intended to limit the invention to the particular
forms shown, but on the contrary, the intention is to cover
all modifications, equivalents, and alternatives falling
within the scope of the invention as defined by the appended
claims.

MODES FOR CARRYING OUT THE TNVENTION
I. The Architecture of the Video File Server

Turning now to FIG. 1 of the drawings, there is shown a
video file server generally designated 20 incorporating the
present invention. The video file server 20 includes an
array of stream servers 21, at least one control server 28,
29, an integrated cached disk array storage subsystem 23,
and an optional tape silo 24. The video file server 20 is a
high performance, high capacity, and high-availability

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

7

network-attached data server. It provides the ability for
multiple file systems to exist concurrently over multiple
communication stacks, with shared data access. It also
allows multiple physical file systems to co-exist, each
optimized to the needs of a particular data service.

The video file server 20 is managed as a dedicated
network appliance, integrated with popular network operating
systems in a way, which, other than its superior
performance, is transparent to the end user. It provides
specialized support for isochronous data streams used in
live, as well as store-and forward, audio-visual
applications. Therefore, the video file server 20 is
suitable for a wide variety of applications such as image
repositories, video on demand, and networked video
applications, in addition to high-end file server
applications such as the Network File System (NFS, version 2
and version 3) (and/or other access protocols), network or
on-line backup, fast download, etc. NFS is a well-known
IETF file access protocol standard (RFC 1094, Sun
Microsystems, Inc., "NFS: Network File System Protocol
Specification," March 1, 1989). NFS acts as a network
server for network communications by providing basic file
access operations for network clients. Such basic file
access operations include opening a file, reading a file,
writing to a file, and closing a file.

The clustering of the stream servers 21 as a front end
to the integrated cached disk array 23 provides parallelism
and scalability. The clustering of random-access memory in
the stream servers 21 provides a large capacity cache memory
for video applications.

Each of the stream servers 21 is a high-end commodity
computer, providing the highest performance appropriate for
a stream server at the lowest cost. The stream servers 21
are mounted in a standard 19" wide rack. Each of the stream
servers 21, for example, includes and Intel processor
connected to a EISA or PCI bus and at least 64 MB of random-
access memory. The number of the stream servers 21, their
processor class (i486, Pentium, etc.) and the amount of
random-access memory in each of the stream servers, are

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

8

selected for desired performance and capacity
characteristics, such as the number of concurrent users to
be serviced, the number of independent multi-media programs
to be accessed concurrently, and the desired latency of
access to the multi-media programs, as will be further
described below.

Each of the stream servers 21 contains one or more
high-performance FWD (fast, wide, differential) scsI
connections to the back-end storage array. Each of the
stream servers 21 may also contain one or more SCSI
connections to the optional tape silo 24. Each of the
stream servers 21 also contains one or more outbound network
attachments configured on the stream server’s EISA or PCI
bus. The outbound network attachments, for example, are
Ethernet, FDDI, ATM, DS1, DS3, or channelized T3 attachments
to data links to a network (25 in FIG. 2). Each of the
stream servers 21 also includes an additional Ethernet
connection to an internal Ethernet link (26 in FIG. 2) for
coordination of the stream servers with each other and with
one or more controller servers 28, 29.

The controller servers 28, 29 shown in FIG. 2 are dual
redundant computers 28, 29, each of which is similar to each
of the stream servers 21. Each of the dual redundant
controller servers 28, 29 has a network attachment to a
bidirectional link (30 in FIG. 2) in the network (25 in FIG.
2), through which each of the controller servers 28, 29 can
conduct service protocols. The service protocols include
one or more standard management and control protocols such
as SNMP (RFC 1157, M. Schoffstall, M. Fedor, J. Davin, J.
Case, "A Simple Network Management Protocol (SNMP) ," May 10,
1990), and at least one Continuous Media File Access
Protocol supporting isochronous real-time multi-media data
transmission from the stream servers 21 to the network (25
in FIG. 2).

Each of the dual redundant controller servers 28, 29
has an Ethernet connection to the local Ethernet link 26.
Each of the controller servers 28, 29 also has a connection
to a serial link 31 to a media server display and keyboard
32. The controller servers 28, 29 run a conventional

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

9

operating system (such as Windows NT or UNIX) to provide a
hot-failover redundant configuration. An active one of the
dual redundant controller servers 28, 29 functions as a
media server controller for the video file server 20. The
active one of the controller servers 28, 29 also allows
management and control of the server resources from the
network using standard protocols, such as the Simple Network
Management Protocol (SNMP). SNMP is an internet protocol
that permits inspection and modification of system variables
such as the network address (IP) and the number of buffers
for network communication. The active one of the controller
servers 28, 29 may also provide lock management if lock
management is not provided by the integrated cached disk
array 23.

For multi-media data transfer, the active one of the
controller servers 28, 29 assigns one of the stream servers
21 to the network client 54 requesting multi-media service.
The network 25, for example, has conventional switching
mechanisms, such as an ATM switch 53 or arrays of cross-bar
switches, that permit any one of the clients 54 to
communicate with any one of the stream servers 21. The
active one of the controller servers 28, 29 could assign a
stream server to a network client by a protocol sending to
the client the network address of the stream server assigned
to send or receive data to or from the client.
Alternatively, the active one of the controller servers 28,
29 could communicate with a switching mechanism such as the
ATM switch 53 to establish a data link between the client
and the stream server assigned to the client.

The integrated cached disk array (ICDA) 23 is
configured for an open systems network environment.
Preferably the integrated cached disk array 23 is a
Symmetrix 5500 (Trademark) ICDA manufactured by EMC
Corporation, 171 South Street, Hopkinton, Mass., 01748-9103.

Turning now to FIG. 2, there is shown a block diagram
of the video file server 20 including the SCSI connections
40 among the integrated cached disk array 23, the optional
tape silo 24, the controller servers 28, 29, and the stream
servers 21. The integrated cached disk array 23 includes a

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

10

large capacity semiconductor cache memory 41 and SCSI
adapters 45 providing one or more FWD SCSI links to each of
the stream servers 21 and to each of the dual redundant
controller servers 28, 29.

The tape silo 24 includes an array of SCSI adapters 50
and an array of read/write stations 51. Each of the
read/write stations 51 is connected via a respective one of
the SCSI adapters 50 and a FWD SCSI link to a respective one
of the stream servers 21 or each of the redundant controller
servers 28, 29. The read/write stations 51 are controlled
robotically in response to commands from the active one of
the controller servers 28, 29 for tape transport functions,
and preferably also for mounting and unmounting of tape
cartridges into the read/write stations from storage bins.

In a preferred mode of operation, to archive data from
a file from the network to tape, one of the stream servers
21 receives the file from the network 25 and prestages the
file to the integrated cached disk array 23 at a high rate
limited by the network transmission rate (about 150
GB/hour). Then one of the stream servers 21 destages the
file from the integrated cached disk array 23 to an
associated one of the read/write stations 51 at a tape
device speed (about 7 GB/hour). For most applications,
prestaging to disk can be done immediately, and staging from
disk to tape including sorting of files onto respective tape
cassettes can be done as a background operation or at night,
when the load on the video server is at a minimum. In this
fashion, the integrated cached disk array 23 can absorb a
high data inflow aggregation from tens or hundreds of
network links streaming from multiple sites, and balance
this load on the read/write stations 41. Prestaging to the
integrated cached disk array allows better use of the
read/write stations 51, matching of server flow to tape
streaming flow, and reduction of tape and read/write station
wear. Prestaging to the back-end also allows multiple
classes of backup and restore services, including instant
backup for files maintained on disk in the integrated cached
disk array, and temporary batch backup pending a success or
failure acknowledgment. Prestaging to the integrated cached

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

11

disk array 23 also makes economical an on-line archive
service performing the staging from the integrated cached
disk array to tape as a background process.

Turning now to FIG. 3, there is shown a more detailed
block diagram of the integrated cached disk array 23. The
cache memory 41 is composed of dynamic RAM cards mating with
a dual redundant back-plane system bus 42. The integrated
cached disk array 23 also includes micro-processor cards
that mate with the back-plane system bus 42 and are
programmed to function as channel directors 43 or disk
directors 44. Each of the channel directors 43 is
interfaced through one of a number of SCSI adapters 45 to
the SCSI interface of one of the stream servers 21. Each of
the disk directors 44 is interfaced through at least one of
a number of disk adapters 46 connected to a string of
commodity FBA (fixed-block architecture) disk drives 47.

The channel directors 43 access data in the cache memory 41
in response to a request from its associated stream server.
If data to be read by a channel director are not found in
cache memory, one of the disk directors 44 and disk adapters
46 transfers or "stages" the data from the disk array 47 to
the cache memory 41. 1In a background process, the disk
directors 44 and disk adapters 46 also write-back data from
the cache memory 41 to the disk array 47, after the channel
directors write data to the cache memory 41. In addition to
providing intermediate storage for the data transferred
between the channel directors 43 and the disk directors 44,
the cache memory 41 also provides intermediate storage for
control information transferred among the channel directors
and disk directors.

The bus 42 is preferably the back-plane of a printed-
circuit card-cage or main-frame in the integrated cached
disk array 23, and each of the channel directors 43 and disk
directors 44 is constructed on a printed circuit board that
is mounted in the card-cage or main-frame. The channel
director and disk director boards are further described in
Yanai et al. U.S. Patent No. 5,335,352, issued Aug. 2, 1994,
and entitled Reconfiqurable, Multi-Function Disc Controller,
incorporated herein by reference. The cache memory 41 is

1¢

15

20

25

30

35

WO 97/16023 PCT/US96/17156

12

constructed on a number of additional printed circuit boards
that are mounted in the card-cage or main-frame. Further
details regarding the construction and operation of the
integrated cached disk array 23 are disclosed in Yanai et
al., U.s. Patent 5,206,939, issued April 27, 1993; and Yanai
et al. U.S. patent 5,381,539, issued Jan. 10, 1995; all
incorporated herein by reference.
II. The Video File Server Software

Turning now to FIG. 4, there is shown a block diagram
of software 80 providing a real-time processing environment
in the video file server (20 of FIGS. 1 and 2). The
software 60 is executed by the processors of the stream
servers 21. The software 60 also provides an environment
for managing files services and multiple high-performance
data streams as well as a standard set of service-level
application program interfaces (APIs) for developing and
porting file service protocols (such as NFS).

In the procéssors of controller servers 28, 29, a
software application is run by a general purpose operating
system such as Microsoft NT, and a network client
communicates service requests to the video file server only
through the software application executing on an active one
of the controller servers 28, 29. This software application
executes as a central control to prevent the video file
server from performing conflicting operations in response to
concurrent requests from various network clients. For
example, the video file server should not erase a file for
one client while data from the file is being streamed to
another client.

The software 60 includes a file system 61 for
controlling transfer of data between the network 25 and the
disk array (47 in FIG. 2) or tape silo (24 in FIGS. 1 and
2). A buffer cache 62 composed of part of the random-access
memory of the stream servers 21 is used as a buffer for this
data transfer.

The software 60 also includes a kernel program 63 for
providing a real-time scheduler and an access control
Program for arbitrating among conflicting service requests.
The kernel program 63 separates control information (file

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

13

access and synchronization protocols) from the underlying
data stream. The application software running on a active
one of the controller servers 28, 29 includes an admission
control program. The kernel program 63 includes a real-time
scheduler. The admission control program running on the
active one of the controller servers 28, 29 applies an
admission control policy to determine whether a service
request can be satisfied, and if so, sends the stream
servers 21 appropriate control messages that invoke their
real-time schedulers tc schedule operations to satisfy the
service request. The admission control policy considers the
global resources available to satisfy the request, including
the current loading of the stream servers 21, the integrated
cached disk array 23, and the optional tape silo 24. If the
request requires an operation of a stream server 21, one of
the stream servers is selected to perform the required
operation, and the active one of the controller servers 28,
29 transmits an associated operational command over the
local Ethernet (26 in FIG. 2) to the selected stream server.
Each of the stream servers 26 includes a real-time scheduler
to schedule the local operations required to satisfy an
operational command from the active one of the controller
servers 28, 29. Preferably, one or more of the stream
servers 21 are Kept in a standby mode, to be used as "hot
spares" or replacements for any one of the other stream
servers that fails to acknowledge commands from the active
one of the controller servers 28, 29 or is otherwise found
to experience a failure.

The software 60 further includes an SNMP management
agent 64 supporting a Simple Network Management Protocol.
SNMP is a standard internet protocol for inspecting and
changing system variables. For example, the SNMP management
agent is used when an operator at the media server display
and keyboard (32 in FIG. 1) sets the network IP address of
the video server (20 in FIG. 1).

Turning now to FIG. 5, there is shown a more detailed
block diagram of the software structure 60. The file system
61 in FIG. 4 has been expanded into its components. These
components are a common file system 71, a group of software

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

14

modules providing communication between the common file
system and the network, and a group of software modules
providing communication between the common file system and
the integrated cached disk array 23 or tape silo 24. The
common file system 71 uses the Virtual File System (VFS),
which is an industry-standard back-end file system switch,
to interface with the physical file systems 79. VFS
translates NFS Common File System requests, and permits NFS
access to CMFS movie files for editing. (The NFS Common
File System Requests in themselves are translations of NFS
requests to the intended physical file storage devices. NFsS
is one of the file access protocols 75.) The common file
system 71 accesses the buffer cache 62 during data transfers
between the network (25) and disk or tape storage (23, 24).

The group of software modules providing communication
between the common file system and the network includes file
access protocols 75 and a network server interface 73 using
communication stacks 74 and network link drivers 72. The
file access protocols 75 include a set of industry standard
network server protocols such as NFS, as well as protocols
for audio/video services, such as CMFAP. CMFAP is a
continuous media file access protocol which provides
functions such as opening a movie, playing a movie, stop
play of a movie, and "fast forward" and "fast reverse"
functions. Other file access protocols compatible with the
network 25 could also be used, such as Novell NCP,
LanManager, SMB, etc.

The file access protocols 75 are layered between the
communication stacks 74 and the common file system 71. The
communication stacks 74 provide the network access and
connectivity for the data transmitted to the file access
protocol layer 75 from the network link drivers 72. The
communication stacks include TCP/IP, IPX/SPX, NETbeui, or
others. The network server framework 73 allows porting of
the network software and file access protocols 72, 74, 75.
This framework 73 is System V Streams. There could be
multiple concurrent instances of the file access protocols
75, communication stacks 74, and drivers 72.

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

15

The group of software modules providing communication
between the common file system and the integrated cached
disk array 23 or tape silo 24 includes physical file systems
79 and SCSI CAM 76 which provides a standard framework (SscsI1
Common Access Method) to the SCSI bus drivers 77. The
physical file systems 79 include a continuous media file
system (CMFS) and at least one conventional industry
standard-based file system such as the Unix ufs file system.
Other industry standards-based file systems could also be
used, such as VxFS, IS09660, etc. The buffer cache 62
buffers data passed between the SCSI drivers 77 and the
physical file system 79. There could be multiple concurrent
instances of the network drivers 72, communication stacks
74, file access protocols 75, SCSI drivers 77, and physical
file systems 79.

FIG. 6 is a specific example of software modules of
FIG. 5. Two physical file systems are exported onto the
network: a conventional UNIX File System (UFS) and a
Continuous Media File System (CMFS). CMFS is a component of
a software package available from EMC Corporation, 171 South
Street, Hopkinton, Mass., 01748-9103. CMFS may be mounted
on a directory within the UFS hierarchy, or it may be
mounted on the root directory '/’ as a stand-alone root file
system. Both UFS and CMFS are exported onto the network
using NFS. The file system switch that directs client NFS
requests to the intended physical file system is implemented
using a standard virtual file-system (Vnode/VFS) interface.

In addition to NFS, the file server supports a real-
time Continuous Media File Access Protocol (CMFAP) for
accessing CMFS. CMFAP provides a VCR-like functionality
that includes commands to Play, Record, Pause, Restart, and
Rewind. CMFAP also supports a set of management commands
for opening and closing streans, listing all active streams,
and redirecting an active playback stream to an alternate
display destination. CMFAP may not be used for accessing
UFS, but only for accessing CMFS.

The design of CMFS is guided by the following
assumptions: (1) the majority of files in a video-on-demand

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

16

system are large, on the order of a few hundred megabytes to
a few tens of gigabytes; (2) access patterns are
predominantly read-only; that is most files are accessed for
real-time playback; and (3) most files are complete in that
they contain interleaved audio and video, as opposed to
having related audio and video data stored in two separate
files. These assumptions suggested an extent-based approach
to the design of CMFS on-disk structures. An extent-based
file system allocates file space in large contiguous disk
chunks called extents; the size of an extent is a systenm
parameter. Extents of an appropriately chosen size promote
file contiguity, simplify disk space management, and are
well suited for large files. File contiguity benefits
performance in the environment where most files are accessed
for read-only, which is a design assumption. Assuming that
most files contain interleaved audio and video, there is no
need to leave gaps between blocks in anticipation of filling
the gaps with frames of a related stream.

CMFS may span several disks. All disks that comprise
CMFS are collectively called the CMFS volume set 80. When a
new CMFS file is created, it is written to the disk that
contains more free blocks than any other disk within the
volume set. The reason for multi-disk volume sets is to
increase capacity rather than provide load balancing. Load
balancing may be accomplished by exporting multiple file
systems.

Each disk in the CMFS volume set is divided into two
areas: the data area and the inode area. The data area is
used to store file data, while the inode area is used to
store inodes that hold file metadata. In addition to the
standard file metadata information, the inode contains an
array of extent descriptors that locate each extent
comprising the corresponding file. An extent descriptor may
also point to an inode located on another disk. Such a
descriptor is used to point to a continuation inode when a
CMFS file spans multiple disks.

The file server software runs as an embedded system
that includes a real-time kernel (63 in FIGS. 4 and 5). The
main components of the kernel are a task scheduler,

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

17

frameworks for writing device drivers, and a number of
system services that are commonly found in similar real-time
kernels. The system services include kernel interfaces to
memory management, timers, synchronization, and task
creation.

All kernel tasks run in a single unprotected address
space. As a result of this, no copy operations are required
to move data from disk to the network. Copying is
eliminated by passing references to common buffers across
all subsystems. Considerable efficiency is obtained for the
video-on-demand service because of the elimination of copy
operations by the processor. The only "incremental' work
involved in transmitting a frame is due to cycle stealing by
the DMA devices for moving data to and from memory. As a
result, the predominant component of the service time for
transmission of a frame is fixed, even though the size of
the frame may vary, depending on the compression algorithm.
The kernel exploits the fixed service time per frame in the
scheduling and admissions control policy that is described
below.

Even a simple video file server that provides playback
only needs to receive data from the network and store it on
disk. This happens when loading movies from the network.
When data are received from the network, a single copy
operation is used to move data from the network to the disk.
Although the service time for receiving a frame varies
according to the frame size, the service time for a network
fragment of the frame is fixed (because of a fixed MTU
packet size). The fixed per packet service time is used in
the scheduling and admissions control policy for real-time
tasks that receive network data.

III. The Kernel Scheduler

The kernel 63 uses the scheduler and admission control
policy described in K.K. Ramakrishnan et al., "Operating
System Support for a Video-On-Demand File Service,"
Multimedia Systems, Vol. 3, Springer-vVerlag, 1995, pp. 53-
65.

Three classes of schedulable tasks are supported:
general-purpose, real-time, and isochronous tasks. These

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

18

classes correspond to different kinds of requests that are
likely to exist in a video-on-demand system. Real-time and
isochronous tasks are known in the real-time literature as
aperiodic and periodic tasks, respectively.

The design of the CPU scheduler is based on a
combination of weighted round-robin and rate monotonic
scheduling procedures. Tasks within the isochronous class
are scheduled using a rate-monotonic procedure, while the
real-time and general-purpose tasks are scheduled using the
weighted round-robin scheme. The isochronous class is given
the highest priority:; that is, any task within the
isochronous class always pre-empts a real-time or a general-
purpose task.

Turning now to FIG. 7, there is shown a high level view
of the three classes of schedulable tasks; namely, the
general-purpose tasks 81, the real-time tasks 82, and the
isochronous tasks 83.

The general-purpose class supports pre-emptible tasks
that are suitable for low-priority background processing.

In order to ensure that general-purpose tasks can always
make progress, this class is granted a minimum CPU
processing quantum.

The general-purpose class is implemented as a standard
threads package, with a thread corresponding directly to a
general-purpose task as described herein. A suitable
threads package is described in A.D. Birrell, "An
Introduction to Programming with Threads," Systems Research
Center Technical Report, No. 35, Digital Equipment
Corporation, Maynard, Mass., (1989).

The real-time class is suitable for tasks that require
guaranteed throughput and bounded delay. Real-time tasks
are not pre-emptible; however, a software provision is made
to allow for the existence of safe "preemption windows" in
which all isochronous tasks can be executed. A weight and a
scheduling flag is assigned to every real-time task. The
weight is used as the means to limit the amount of
processing time taken by the real-time task at each
invocation. The scheduling flag is used to indicate that
the task has pending work and to signal the scheduler that

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

19

the task needs to be invoked. The scheduling flag may be
set by an interrupt service routine or a task of any class.

In the video file server, real-time tasks are used to
implement "polling" device drivers and communication stacks.
The method of polling for pending work, as opposed to
interrupt-driven processing, contributes to system stability
and alleviates most of the problems that arise during
overloads. It also provides isolation between multiple
real-time tasks that have differing performance
requirements. Polling regulates the flow of traffic into
the video file server. Just as flow control mechanisms,
such as a leaky bucket scheme, protect network resources
from large bursts, polling protects the end-system resources
by regulating the frequency at which work queues are scanned
and limiting the amount of work that may be performed during
each scan of the round-robin schedule.

The real-time tasks are implemented as callable
routines. 1Invoking a real-time task amounts simply to a
procedure call.

The isochronous class supports real-time periodic tasks
that require performance guarantees for throughout, bounded
latency, and lower jitter. Low jitter reduces the amount of
buffering needed at the client, which in turn improves the
response time of interactive video applications. The
isochronous tasks that support streams of different periods
are assigned priorities (wl, w2, w3, etc.) on a rate-
monotonic basis (i.e., a task with a higher frequency has a
higher priority). Isochronous tasks also allow for a safe
"preemption window" in which all higher priority isochronous
tasks can be executed. Isochronous tasks are used to
schedule periodic network transmission of audio and video
frames. An isochronous task executes exactly once per
period. In the preferred implementation, a single
isochronous task services all client streams that have the
same frame rate.

The scheduler executes isochronous tasks from a "Ready"
queue 84 in which all isochronous tasks that are ready to
run are arranged in order of decreasing priority (a task
with the lowest period has the highest priority and resides

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

20

at the head of the queue). An isochronous task is inserted
in its appropriate place on the "Ready" queue 84 upon
arrival. The arrival of isochronous tasks is generated by
period timers. A unique periodic timer exists in the system
for each distinct period among all the admitted isochronous
tasks.

Whenever an isochronous task arrives, the scheduler
determines whether a currently running task needs to be
pre-empted. If the currently running task is a general-
purpose task, it is pre-empted by the newly arrived
isochronous task. 1If the currently running task is a real-
time task, it will be pre-empted by the newly arrived
isochronous task in the next "preemption window". If the
currently running task is of the isochronous class, the
scheduler compares its priority to that of the task
currently at the head of the "Ready" queue 84. If the
priority of the current task is lower, it is pre-empted at
the next "preemption window" by the isochronous task from
the head of the queue. The scheduler continues to execute
isochronous tasks until the isochronous "Ready" queue 84
becomes empty. Whenever the queue is empty, the scheduler
alternates between the real-time and general-purpose classes
using a weighted round-robin scheme.

Selecting a real-time task involves scanning the set of
scheduling flags 85; for each flag that is set, the
scheduler invokes the corresponding task with the assigned
weight as a parameter. The real-time task is expected to
process at most the number of work units equal to the task’s
weight that was passed to it as a parameter. At the
completion of each unit of work, the real-time task opens up
the "preemption window" which is used by the scheduler to
run all the isochronous tasks that may have arrived in the
time it took the real-time task to process one unit of work.
Upon exhausting the allowed number of work units (the
weight) or less, the task voluntarily returns to the
scheduler. After having completed one round of scanning the
flags, the scheduler switches to the general purpose class.

General purpose tasks that are ready for execution are
Placed on a "GP ready" queue 86, which in our current

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

21

implementation is served in a round-robin fashion. If the
"GP ready" queue 86 is empty, the scheduler initiates a new
round of servicing the real-time tasks. Otherwise, the
scheduler starts the general-purpose quantum timer, and
activates the first task from the "GP ready" queue 86. The
task runs until it blocks or the quantum timer expires. If
the task blocks, its context is saved on a wait queue 87 and
the next task from the "GP ready" queue 86 is restored for
execution. If the quantum timer expires, the scheduler
saves the context of the currently running task at the end
of the "GP ready" queue 86 and switches to a new round of
servicing the real-time tasks. The execution of the
general-purpose tasks may be preempted one or more times by
the isochronous tasks. The execution of the general-purpose
class continues after each preemption until the total time
spent in processing general-purpose tasks reaches the
guaranteed quantum.

In the absence of isochronous tasks, the scheduler can
provide guarantees on throughput and delay bounds for real-
time tasks (this assumes that all requests destined for a
real-time task generate a constant amount of work). A
maximum service delay is the time it takes to complete one
round of real-time tasks scheduling plus the general purpose
time quantum. Let R denote this maximum service delay in
steady state. Weights may be assigned to real-time tasks to
allocate and guarantee bandwidth averaged over the maximum
service delay, R. If W denotes the weight given to a real-
time task (the number of units of this task, or requests,
processed in one round), then the task’s steady state
throughput is (W/R) requests per unit time.

An admission control policy is employed in order to
ensure that a feasible schedule exists for all the admitted
tasks; that is, all the admitted tasks can be scheduled
using the combination of rate monotonic and weighted round-
robin scheduling procedure described above without violating
any performance guarantees. The admission control policy
for access to processor resources balances the needs of the
three classes of tasks: throughput and maximum delay
requirements of the real-time tasks, a minimum guaranteed

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

22

CPU quantum for the general-purpose tasks, and the periodic
deadline-sensitive nature of the isochronous tasks. The
admission control policy uses a time-based admission test
for rate monotonic (isochronous) tasks with an adjustment to
account for tolerable delay constraints imposed by the real-
time tasks, with an adjustment to account for tolerable
delay constraints imposed by the real-time tasks. Let L,
denote the maximum delay that can be tolerated by any of the
real-time tasks. Then a feasible schedule exists for a set
of n isochronous tasks and m real-time tasks if the
following two conditions hold true:

() . .
ij[if] + Y WyxI;+ 0sL

i=1 TI J=1 I 7 '
where
C; run-time requirement of isochronous task i
T, the period of isochronous task i
w; weight assigned to real-time task j
r; run-time required by the real-time task j to process

one request

©

time quantum assigned to the general-purpose class,

i.e., GP class runs Q units of time every time interval
of length L_

As noted above, C; is a fixed time per execution of
isochronous task i. In the second step a test must be
applied to each isochronous task i to ensure that its
execution requirements can be fulfilled in the presence of
all higher priority isochronous tasks. The test is as

follows

FOR i=1 TO n

(2))
Y ¢ x[—i] < Ty, /Ty < Ty

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

23

In order to admit an isochronous task, both conditions need
to be verified. However, in order to admit a real-time
task, only the first condition needs to be verified.

It is convenient to describe the disk scheduling and
admission control for access to storage devices by viewing
the video file server operating in steady state. The steady
state operation the video file server consists of servicing
n streams at the rate of R; bytes/second for each stream
(i.e., R, is the ith stream’s playback rate). For each
stream the video file server maintains two buffers: a disk
buffer and a network buffer. In steady state, a network
task empties the network buffer and a disk task fills up the
disk buffer. The two operations are performed in parallel.
The rate at which the network buffer is emptied needs to be
equal to the rate at which the disk buffer is filled up; the
goal is that both rates are the same as the stream’s
playback rate. When the network buffer is empty, the disk
buffer is full. At that moment the buffers interchange
their roles. The disk buffers are filled up for all the
streams in a round-robin fashion. One round of filling up
the disk buffers of all streams is known as the disk round-
robin service time. We assume that disk transfers are not
pre-emptible.

The admission control policy needs to ensure that the
steady state operation of the video file server, as
described above, is feasible. A new stream can be admitted
if the following three conditions are satisfied. First, the
rate at which the disk buffers are filled is greater or
equal to the rate at which the network buffers are emptied.
Second, sufficient buffer space exists for allocating disk
and network buffers to all admitted streams, including the
newly admitted stream. And third, the disk service time for
all the streams does not exceed the minimum tolerable
request latency. Request latency is the amount of time that
elapses from the moment the server receives a request for
the first frame of a stream until the moment the first frame
is placed on the network. This is required in order to
support interactive video applications, such as games.

10

15

20

25

30

WO 97/16023 PCT/US96/17156

24

The first condition is expressed by the following
constraint:

(1) n
Y, RisDy,

1=1

where R; bytes/second is the playback rate of stream i and
D, bytes/second is the minimal disk rate, including seek
times, at which n disk buffers can be filled. It may be
computed as follows

(2)
D Rd

min~
1 +nxS8,,

where R, bytes is the amount of contiguous data that the disk
can transfer in 1 second, (without any seeks involved), and
8., is the maximum disk seek time. It is assumed that in
between servicing each stream, the disk has to perform a
maximum seek.

The second condition is expressed by the following

constraint:

(3) n
Y B, <M

i=1

where B; is the size of the disk buffer allocated to stream
i, and M is the total amount of system memory from which the
disk buffers are allocated. An equivalent amount of memory
is available from which network buffers are allocated. B,
bytes is the amount of data transferred from disk for
session i during one round of the round-robin service for
the admitted streams. Strategies for choosing an

appropriate size for disk buffers are discussed below.

The third condition is expressed as follows:

10

15

20

25

30

WO 97/16023 PCT/US96/17156

25

(4) n
231‘

o

min

where T denotes the maximum time taken by one round of
filling up the disk buffers of all the streams (i.e., T is
the sum of the disk service times for all streams in one
round), B; and D, are given by equations (2) and (3), and L
is the smallest among the maximum request latencies
tolerated by any of the streams.

While describing conditions 2 and 3 for the admission
control, we referred to B,, the size of a disk buffer
allocated to stream i, without specifying how this size is
chosen. 1In this section we discuss two strategies for
choosing the disk buffer sizes, which is equivalent to
determining the amount of data that should be transferred
from the disk for each session during one round.

The "optimal strategy" is the one in which the amount
of data transferred from disk for each stream is
proportional to the stream’s playback rate. The constant of
proportionality is the disk service time for one round. The
strategy is described as follows. Let M bytes denote the
total amount of system memory from which the disk buffers
are allocated for all streams. Then the maximum time taken
by one round of filling up the disk buffers of all the

streams is

(5)

where D_, is the same as in equation (2). T is used as the
constant of proportionality for sizing the disk buffers.
The rate at which buffers are filled is (£B;) /T . The rate
at which network buffers are drained is ZRi: The simple
constraint therefore is (£B;) /T 2 ZR;. Thié is
simplistically satisfied for each stream if B; = T R;, where

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

26

B; is the size of the disk buffer and the size of the disk
read block for stream i, and R; is the stream’s playback
rate. i

Thus, each stream consumes its network buffer in time T
which is the exact amount of time needed by the round-robin
service to fill up the disk buffers for all the streams. If
any stream i reads more than its computed buffer size B,,
then the round-robin time will take longer than T, causing
some streams to starve. Similarly, if a stream i reads less
than its computed buffer size B,, then additional seeks are
introduced, causing unnecessary overhead for that stream and
reducing D_,,. Thus, the chosen disk buffer size B; must be
optimal for each stream.

Unfortunately, the optimal strategy suffers from two
practical limitations. First, the disk round-robin service
time T needed to compute each B;, depends on the number of
currently active streams (that is, D, depends on m in (2)).
Thus, T varies each time a new stream is admitted, or a
previously active stream terminates. In order to comply
with the optimal strategy during such transitions, it is
necessary to re-size the disk buffers and readjust the
amount of data that is read from the disk for each stream.
Dynamically re-sizing the disk buffers may not be practical
from an implementation point of view.

The second limitation of the optimal strategy is that a
large amount of buffer space M may lead to an unreasonably
large size of some disk buffer B,. It is unreasonable in the
sense that it could greatly exce;d the practical size for a
disk read request. In this case, the disk buffer B; would
need to be filled up by several disk reads, possibly
resulting in an unpredictable number of disk seeks, if the
file is not entirely contiguous.

The second strategy is designed to overcome the
practical limitations inherent in the ‘optimal strategy’ .

In this "practical strategy" we impose a constraint that B,
does not exceed B+ Where B_, is chosen to be a reasonablé
size for a disk read request. The disk buffer sizes are
still allocated in proportion to the playback rate as
follows:

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

27

R;

B;=B,,. X

where R_, is the maximum playback rate, assumed to be known
a priori.

This strategy, although practical for the purposes of
implementation, is suboptimal in the theoretical sense that
it will admit fewer streams than the "optimal strategy".

The disk scheduling and admission control procedures
described above ensure that the playback rates of "real
time" streams are satisfied. "Real-time" streams are those
streams that require guaranteed response (served both by
isochronous and real-time tasks). However, the real-time
streams may not consume the entire disk bandwidth. In this
case, it is desirable to specify a procedure by which non
real-time disk requests (such as NFS) can receive the unused
disk bandwidth without interfering with the real-time disk
access requests.

A simple case is the one in which the playback of each
stream occurs at a constant bit-rate. This situation arises
when the video is recorded in its original uncompressed form
(frame sizes are constant) or when the video is compressed
at a constant bit-rate (MPEG I, for example). In the case
of a constant playback rate, all real-time disk requests may
be issued to the disk exactly at the beginning of every
interval of length T (T is the worst case round-robin
service time as computed in the previous section). Let k
denote the number of active real-time streams. Then the
number of real-time requests that may be issued to the disk
every T period is n-k, where n is the maximum number of
streams supported by the system, as was described in the ,
previous section. The non real-time requests may be issued
at any time within the interval T, as long as the round time
to service k real-time streams plus the data transfer time
of the non real-time requests does not exceed T.

A more complicated case arises when the playback of
each stream occurs at a variable bit-rate (such as in motion

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

28

JPEG, for example). In this case the admission control
policy makes a conservative admission decision based on the
assumption that the playback rate for each stream proceeds
at a constant frame rate using the stream’s maximum frame
size. Variations from the maximum frame size, however, are
used to accommodate non real-time requests, as described
below. Since the network buffer empties at a variable rate,
it is not possible to issue all the real-time disk requests
at the beginning of every period of length T, as was the
case with the constant playback rate. Each stream issues a
disk read request as and when its network buffer becomes
empty. Thus disk requests arrive at various times. For
each real-time stream we maintain a sorted queue of the
estimated time of arrival (ETA) of the next read request.

As shown in the timing diagram of FIG. 8, the queue is
sorted in increasing time order. Notice from FIG. 8 that a
non real-time disk read may be issued in the slack time - an
interval whose end points are now and the first ETA on the
queue (ETA for session i).

Initially, the ETAs are computed based on draining the
network buffer at the maximum rate. However, as each
variable-sized frame is transmitted, its deviation from the
maximum frame size is used to adjust the ETA of the
corresponding stream. The adjustment involves moving the
ETA forward in time, since the network buffer will hold data
longer than the original worst case estimate based on the
maximum frame size. The adjustment potentially increases
the interval (slack time) in which the non-real time disk
requests may be issued.

A drawback of the procedure described above is that its
implementation may become computationally expensive since it
involves sorting a potentially long gqueue of ETA entries.
Therefore, an alternative procedure is considered for
accommodating non real-time requests. The alternative
procedure retains the ability of the previous procedure to
accommodate non real-time requests during "slack" periods,
while substantially reducing its computational complexity.

In the alternative procedure, some portion of the disk
bandwidth is permanently allocated to non real-time

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

29

requests. Let us denote this bandwidth in terms of the
number of non real-time requests m that may be issued to the
disk during each interval T (T is the worst case round-robin
service time as computed in the previous section). Thus
each interval of length T is allocated m credits for issuing
non real-time requests. The procedure considers two cases:
one in which a non real-time request arrives when credits
are still available (m>0), and the other in which a request
arrives when no credits are left (m=0).

in the first case (m»0), a request is issued to the
disk and the number of credits for this interval is
decremented by one. If the request completes in the same
interval in which it was issued and the number of credits
reaches zero, then the number of credits for this interval
is incremented by one. If the request completes in the
interval following the one in which it was issued, then the
number of credits in this new interval is decremented by
one.

In the second case (m=0), a credit is borrowed from the
next interval, provided that the number of credits available
for the next interval is greater than zero. A request
issued on a borrowed credit always completes in the interval
following the one in which it was issued, otherwise credits
would have been available in the current interval. If the
request completes before any of the real-time requests need
to be issued in the new interval, then the borrowed credit
is returned to the current interval (this is the interval
from which the credit was borrowed previously).

The basic difference between the two procedures is that
in the alternative procedure it is required to reserve a
portion of the disk bandwidth for non real-time requests.
While the previous procedure accommodates non real-time
requests during the "slack" periods only, the alternative
procedure accommodates these requests both during "slack"
times and "reserved" times. The alternative procedure is
more compatible with our CPU scheduling policy which
guarantees progress to non real-time requests.

It may also be possible to accommodate non real-time
requests simply by using two priority queues: a low

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

30

priority for non real-time requests and a high priority for
real-time requests. In order for such a scheme to work
correctly, it is necessary to implement the priority queues
at all levels including the lowest level that maintains
queued disk requests, such as the disk adapter or the driver
level. This scheme also requires that some portion of the
disk bandwidth be reserved for non real-time requests.

IVv. Prefetching to Service Multiple Video Streams

One advantage to the video server architecture of
FIG. 2 is that multiple video streams requested by multiple
network clients can sometimes be serviced from the cache
memory 41 of the ICDA 23 without always fetching the video
data from the disk array 47. This situation is illustrated
in FIGs. 9 and 10.

In FIG. 9, video data are transmitted isochronously to
a first network client from a buffer 91 in random access
memory (RAM) in a first one of the stream servers (21 in
FIG. 2). The buffer 91 is filled by data fetched from the
cache 41 of the integrated cached disk array (23 in FIG. 2).
The cache 41 is filled by data prefetched from the disk
array 47.

Turning now to FIG. 10, there is shown a flowchart of a
prefetch task including steps for scheduling the
transmission of video prefetch commands from one of the
stream servers (21 in FIG. 2) to the integrated cache disk
array (23 in FIG. 2). As indicated for a first step 101,
the video prefetch commands are used when the object being
accessed by the stream server is a movie. If so, then in
step 102 the stream server finds the next segment for the
movie. The media server controller, for example, accesses a
movie directory to obtain a list of the addresses of the
movie segments in the integrated cached disk array and the
size or length of each segment, and transmits this list to
the stream server as the object to be accessed. 1In step
102, the stream server obtains from this list the next
segment address and the size of the next segment. Then in
step 103 the stream server compares the size of this segment
to a predetermined number N which is a limit on the amount
of data to be prefetched in response to a single video

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

31

prefetch command. If the segment size is greater than the
number N, then in step 104 only a beginning portion of size
N of this segment is prefetched by issuing a video prefetch
command to the ICDA (23 in FIG. 2); the rest of this segment
is prefetched in one or more subsequent iterations beginning
again in step 103. Otherwise, in step 105, the entire
segment is prefetched by issuing a video prefetch command to
the ICDA (23 in FIG. 2). After steps 104 or 105, in step
106 execution branches to step 107 if the end portion of the
segmnent has not been prefetched. In step 107 the segment
size is reduced by N, in effect truncating the prefetched
portion of the segment. After step 107, the prefetch task
is suspended until it is time for the next video prefetch
command (issued in steps 104 or 105), and then execution
loops back to step 103 to continue prefetching the remaining
portion of the segment. Otherwise, at the end of the
segment, in step 109 the prefetching task is ended if there
are no more segments of the movie to prefetch. If there are
more segments of the movie to prefetch, in step 110, the
prefetch task is suspended until it is time to prefetch the
next segment.

There is a fetch task that is similar to the prefetch
task shown in FIG. 10, except that a video fetch command
instead of a video prefetch command is issued in the fetch
task steps corresponding to steps 104 and 105. The time for
the next fetch command is established by the requirement of
isochronous video data delivery to the network client having
requested the video data. Data are fetched sufficiently in
advance of the required time for isochronous video delivery
to the network client. The time for the next prefetch
operation is established by synchronization between the
prefetching of the movie with the fetching of the movie.
Data are prefetched sufficiently in advance of its fetch
time to guarantee that the data are in the ICDA cache when
the ICDA receives the fetch command.

Turning now to FIG. 11, there is shown a flowchart of a
video prefetch routine performed by the ICDA in response to
a video prefetch command from a stream server. The video
prefetch routine ensures that data specified by the video

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

32

prefetch command will be in the ICDA cache at the time that
the ICDA receives a subsequent fetch command from the stream
server. The execution of a video prefetch routine differs
from a conventional ICDA synchronous prefetch operation by
ensuring that the video prefetch routine is executed on a
high priority basis, and by ensuring that the prefetched
video data are retained in the ICDA cache until the
subsequent prefetch command is serviced.

In a first step 121, the ICDA channel director (43 in
FIG. 3) having received the prefetch command identifies the
next track in the video segment being prefetched. Next, in
step 122, a cache directory in the cache memory (41 in
FIG. 3) is inspected to determine whether the track is in
the cache memory. If not, then in step 123, a cache slot is
allocated to receive the track by removing the cache slot
from the head of a "replacement queue" that keeps track of
the "least recently used" cache slot or otherwise implements
a replacement algorithm for the ICDA cache. After step 123,
in step 124, the track is staged from the disk array 47 and
loaded into the cache slot.

If the track is found to be in the cache in step 122,
or after the track is staged into the cache from disk in
step 124, then in step 125 the requesting process is placed
on a wait list for the track. 1In this fashion, the track
can be retained in the cache until it is fetched by the
process. In step 126 a time stamp for the track could also
be reset to the current time, and used by a background
process in the ICDA to determine whether any track has been
retained in the cache for any inordinate amount of time due
to a failure of the process to fetch the video data from the
cache. Upon finding that a track has been retained in the
cache for an inordinate amount of time, the background
process would return the cache slot to the head of the
replacement queue and report to the video server manager
that the process or processes on the wait list have
experienced an error.

In a final step 126, execution loops back to step 121
if there are any more tracks in the video segment that need
to be fetched. 1If not, execution returns.

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

33

Turning now to FIG. 12, there is shown a flowchart of a
video fetch routine executed by a channel director (43 in
FIG. 3) of the ICDA in response to a video fetch command
from a stream server. 1In a first step 131, the channel
director identifies the next track in the video segment to
be fetched. Then in step 132, the channel director accesses
the directory in the ICDA cache memory (41 in FIG. 3) to
determine whether data of the track is in the cache and to
determine the cache slot containing the data of the track.
If the track is not in the cache, then presumably an error
has occurred, because each video fetch command specifying a
video segment should have been preceded by a video prefetch
command specifying the same video segment, and the video
prefetch command should have been executed prior to receipt
of the video fetch command. Otherwise, in step 133, the
data of the track are transferred from the cache slot to a
channel director buffer. Next, in step 134, the data are
transferred from the channel director buffer to the stream
server having issued the fetch command, and in step 135, the
process of the stream server having issued the fetch command
is removed from the wait list for the cache slot.

In step 136, execution branches depending on whether
the wait list is empty. If so, then in step 137, the cache
slot is inserted at the head of the replacement queue, so
that the cache slot can be used for receiving data staged
from another track. After step 137, or when the wait list
is not empty, execution continues to step 138. 1In step 138,
execution loops back to step 131 if there are any more
tracks in the segment to be fetched. If not, the video
fetch routine is done, and execution returns.

If data prefetched from the disk array (47 in FIG. 3)
is to be used only by a single network client, then it is
desirable to minimize the amount of memory space allocated
in the ICDA cache 41 and in the stream server buffer 91 for
storing the data. This is done by scheduling the fetch
operation no more in advance of the delivery of the data to
the network client than is necessary to guarantee that the
fetched data will be available in the stream server buffer
91 at the scheduled time for delivery of the data to the

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

34

network client, and scheduling the prefetch operation no
more in advance of the delivery of the data from the ICDA
cache 41 than is necessary to guarantee that prefetched data
will be available in the ICDA cache when the fetch operation
attempts to fetch the data from the ICDA cache.

If data prefetched from the disk array (47 in FIG. 3)
will be used by multiple network clients, then it may be
desirable to allocate more than the minimum amount of memory
in the ICDA cache or stream server buffer for storing the
data. For example, the amount of memory to allocate for a
movie-on-demand request could be an increasing function of
the popularity of the movie.

FIG. 13 shows a situation where data prefetched from
the disk array 47 and stored in the ICDA cache 41 is used by
more than one network client. 1In this situation, the same
data previously fetched for the first network client is
fetched from the ICDA cache 41 and transferred to a buffer
92 in RAM of a second one of the stream servers (21 in
FIG. 2) and transmitted to a second network client. The
loading on the disk array 47 is reduced because data are not
prefetched from the disk array 47 separately and
independently for each video stream. Instead, the data
prefetched from the disk array 47 and stored in the ICDA
cache are shared between the two video streams through the
two stream server buffers 91, 92 to the two network clients.
This is a consequence of the fact that in the video prefetch
routine of FIG. 11, if the data are already in the cache,
then the data need not be staged from the disk array.

In the situation of FIG. 13, it may be desirable to
schedule the prefetch operation further in advance of the
delivery of the data from the ICDA cache 41 than is
necessary to guarantee that prefetched data will be
available in the ICDA cache when the fetch operation
attempts to fetch the data from the ICDA cache. It may be
desirable to perform such advanced scheduling if the
advanced scheduling would reduce the load on the disk array.
The load on the disk array would be reduced if at the time
of the advanced prefetch for the second network client, the
data would reside in the ICDA cache from a prefetch for a

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

35

first network client. However, by scheduling prefetch far
in advance, more cache memory resources would be allocated
to servicing the second network client.

In general the desirability of advanced prefetch
scheduling is function of the loading on the disk array 47,
the loading or free memory capacity of the ICDA cache 41,
the occurrence or probability of multiple fetch operations
being needed to access the same movie, and the relative
position or time difference of the different fetch
operations on the same movie. 1In particular, advanced
prefetching will not help unless there will be more than one
prefetch operation on the same movie. The relative position
or time difference between two prefetch operations on the
same stream determines the amount of cache memory needed to
eliminate additional disk accesses to support an additional
one of the streams. Therefore, if the video file server
would receive a request for supporting a new stream on a
movie, it could decide whether or not to perform advanced
prefetching, and to determine how far in advance to
prefetch, in dependence on whether the video file server is
already providing another network client with a video stream
from the same movie, and the relative position or time
difference in the movie between the newly requested stream
and the closest existing stream. This time difference would
set the ICDA cache memory requirements to support the new
stream without requiring additional disk accesses. If the
cache memory is available and it is less costly overall in
system resources to support the new stream with cache memory
instead of disk accesses, then advanced prefetching by an
amount related to the time difference should be performed.

Turning now to FIG. 14, there is shown a first portion
of a flowchart of a routine for computing the prefetch
advance time (T,) for supporting a video stream of a new
request for an "on demand" movie. Such a routine could be
part of the admission policy of the kernel (63 in FIG. 5) of
the video server manager. 1In a first step 141, execution
branches depending on whether the new request is for the
same movie as an existing stream.

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

36

If the new request is not for the same movie as an
existing stream, then there is no need for advanced
prefetching. 1In step 142, the prefetch advance time (T,) is
set to the minimum time T,,. Then in step 143, the kernel
checks whether the minimum cache resources are available to
support a new stream. If not, then the new request is
rejected. Otherwise, in step 144, the kernel checks whether
disk resources are available to support a new stream. If
not, then the new request is rejected. Otherwise, execution
continues in step 145 in FIG. 15. 1In step 145, the prefetch
advance of the new request is set to T, and the new request
is accepted.

If the new request is for the same movie as an existing
stream, then execution continues in FIG. 14 from step 141 to
step 146. 1In step 146, the kernel finds the existing stream
having a fetch or pre-fetch time closest in the movie to the
fetch time for the new request. 1In step 147, execution
branches depending on whether or not the new request is
behind this stream in the movie. If the new request is not
behind this existing stream, then in step 148 the kernel
computes the time difference (T,) between the fetch time for
the new request and the prefetch time for the existing
stream. TIf the new request is behind this existing stream,
then in step 149 the kernel computes the time difference (T,)
between the fetch time of the existing stream and the fetch
time of the new request. After step 148 or 149, execution
continues in step 150 of FIG. 15.

In step 150 of FIG. 15, the kernel checks whether cache
resources are available to support the caching of the movie
for the computed time difference (T,) - If not, then in step
151 the kernel checks whether disk resources are available
to support a new stream. If not, then the request is
rejected. If disk resources are available, then execution
continues from step 151 to step 152. In step 152, the time
difference (T,) is set to the minimum value (Ty;y) - Then in
step 153, the kernel checks whether cache resources are
available to support the caching of the movie for this
minimum time. If not, then the new request is rejected.
Otherwise, execution continues to step 145, where the

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

37

prefetch advance of the new request is set to T,, and the
request is accepted.

If in step 150, there are sufficient cache resources
available, then execution continues to step 154, where
execution branches depending on whether or not disk
resources are available to support the new stream. If disk
resources are available, then execution continues from step
154 to step 155, where the relative cost of the disk
resources for supporting the requested video stream without
advanced prefetching is compared to the relative cost of the
cache resources for supporting the requested stream with
advanced prefetching. For example, the relative cost of the
disk resources for supporting the requested video stream
without advanced prefetching could be expressed as the
percentage of the required disk resources out of presently
unused amount of disk resources, and the relative cost of
the cache resources for supporting the requested stream with
advanced prefetching could be expressed as a percentage of
the required cache resources out of the presently unused
amount of cache resources. If the relative cost of disk
resources does not exceed the relative cost of cache
resources, then execution continues from step 155 to step
152. Otherwise, execution branches from step 155 to step
156. Execution also branches to step 156 from step 154 when
disk resources are not available to support the new request.

In step 156 execution branches to step 157 if the new
request is behind the existing stream in the movie. In this
case, in step 157, there is scheduled temporary prefetching
for the new request, advanced by Tyiy¢ to terminate at a time
T, in the future. This temporary prefetching is scheduled to
support the new stream until the time that the new stream
caches up to the data having been staged into the ICDA cache
for the existing stream. After step 157, execution
continues to step 145, where the prefetch advance of the new
request is set to T,, and the new request is accepted.

When the new request is ahead of the existing stream in
the movie, exécution continues from step 156 to step 158,
where the prefetch advance of the new request is set to the

minimum value Twiy+ Then in step 159, the existing

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

38

prefetching for the existing stream is scheduled to
terminate in the future at a time of T, from the present
time, and more advanced prefetching for the existing stream
(advanced by an additional time of T,) is begun for the
existing stream. In this fashion, the new request is
accepted.

v. tagge Stre t _for Video On Demand

The method of sharing prefetched data in the ICDA cache
to support more than one video stream as illustrated in FIG.
13 can be further adapted to permit sharing of fetched data
in the RAM of a stream server to support more than one video
stream from the RAM of the stream server. For video "on
demand" service for popular movies, however, it is
advantageous to initially allocate large amounts of random
access memory of the stream servers to the popular movies,
in order to reduce loading on the ICDA cache and disk array.
Such allocation of the server RAM to the popular movies
ensures that each popular movie needs a minimum amount of
ICDA cache and disk array resources.

Turning now to FIG. 16, there is shown a schematic
diagram illustrating the preferred method of allocating
server RAM to a popular movie. In the example in FIG. 16, a
block of data for a third of a movie is stored in the RAM of
each of four stream servers 91, 92, 93, and 94. 1In this
example, there is a significant amount of overlap between
the video data stored in the RAM of the four stream servers
in order to simplify scheduling.

Preferably the block of data in the RAM of each of the
four stream servers 91, 92, 93 and 94 is a sliding "window"
into the movie. New data are added to each window, and old
data are removed from each window, at the rate at which data
are delivered to the network clients viewing the movie. The
block of data providing such a sliding window, for example,
is maintained as a simple circular queue. 1In this fashion,
there is no need to re-allocate the network clients to
different stream server PCs while a client is viewing a
movie in an uninterrupted fashion. However, if a client
would request a stop, fast-forward, or fast-reverse
operation, it may be necessary to re-allocate a network

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

39

client to a different stream server PC. In these cases,
however, some delay would be acceptable before the client
could resume the viewing of the movie. If a stop, fast-
forward or fast-reverse operation takes the client’s viewing
out of the window, then the client’s continued viewing of
the movie can be treated similar to a new request.

The minimum number of stream server PCs required for
supporting each movie according to the method of FIG. 16 is
determined as follows. First, each movie needs a certain
amount of RAM memory for storing the entire movie, plus a
certain minimum amount of window overlap. The amount of RAM
memory for storing a movie depends on the length of the
movie (such as 90 minutes to 120 minutes) and the bit-rate
(megabits per second) at which the encoded movie has been
delivered; this rate is typically a function of the method
by which the video data are encoded (such as MPEG I or MPEG
I1).

Second, each stream server PC can be configured with a
maximum amount of RAM available as a buffer memory. This
maximum amount of memory may limit the size of the window on
a single stream server PC. The number of stream server PCs
required for storing an entire movie in RAM is computed by
dividing the total amount of RAM buffer memory needed for an
entire movie (plus required overlap) by the amount of
maximum RAM buffer memory of a single stream server PC, and
rounding up to a whole number.

Third, each stream server PC can service only a limited
number of video streams to the network clients. Given a
certain maximum number of anticipated video streams, the
minimum number of stream server PCs required for servicing
this given number video streams is computed by dividing this
given number by the number of video streams that can be
serviced by each stream server PC, and rounding up to a
whole number.

Finally, the minimum number of stream server PCs
required in the system to support a single movie is the
greater of the minimum number required to provide the needed
buffer memory and the minimum number required to support the
maximum number of anticipated video streams. The window

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

40

size can then be computed by dividing the size of the movie
in bytes (plus the required overlap) by the number of stream
server PCs in the systemn.

Turning now to FIG. 17, there is shown a flowchart of a
procedure used in the admission control program for
servicing client requests from the network and implementing
an admission policy for client requests for a popular movie.
In a first step 171, the admission control program checks
whether the client request is for something other than a
popular movie that has been fetched from the ICDA and loaded
into stream server RAM as described above with reference to
FIG. 16. If not, execution branches to step 172 to do other
processes to service the client request. For example, if
the request is for an unpopular movie that is stored in the
disk array 47, then the request could be serviced as
described above with reference to FIGS. 9 and 13. If the
client request is for a popular movie, then execution
continues from step 171 to step 173.

In step 173, the admission control program sets an
index to point to a first valid or operable one of the
stream server PCs. Then in step 174, the admission control
program checks whether the desired starting time or position
in the movie of the new request falls in the RAM window of
the requested movie in the indexed stream server PC. If so,
then in step 175 the admission control program checks
whether the indexed stream server PC has sufficient
resources to handle the client request. The indexed stream
server PC, for example, may not have a free network link
that would be needed for satisfying the request. 1In
general, a stream server PC has a total buffer memory
capacity limitation and a number of bandwidth limitations.
The bandwidth limitations include a network bandwidth
limitation, a throughput or buffer bandwidth limitation, and
a bus bandwidth limitation for communication with the ICDA
23 and the tape silo 34. The throughput or buffer bandwidth
limitation is dependent on the type of bus used in the
stream server PC. An advantage of the method used in FIG.
17 is that the throughput is used efficiently. Very little
of the throughput is used for maintaining the sliding window

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

41

in RAM, so that most of the throughput can be used for
transmitting data from the sliding window to network
clients.

If the indexed stream server PC has sufficient
resources to handle the client request, then in step 176 the
request is accepted by assigning the request to the indexed
stream server PC.

If in step 174 the new request does not fall in a RAM
window of the requested movie in the indexed stream server
PC, or in step 175 the indexed stream server PC does not
have sufficient resources to handle the request, then
execution branches to step 177. 1In step 177, the admission
control program checks whether all of the valid or operable
stream server PCs have been inspected in the process of
searching for a stream server PC than can satisfy the client
request. This would occur when the next valid stream server
PC is the one that was selected in step 173 and first
inspected 'in step 174. If all of the valid PCs have not
been inspected, then execution branches to step 178 to
advance the index to the next valid PC, and after step 178,
execution continues to step 174 to inspect this next valid
PC.

If all of the valid PCs have been inspected, then
execution continues from step 177 to step 179. 1In step 179,
the admission control program checks whether there is any
unassigned window RAM of the stream servers that could be
allocated to open another window for the popular movie.

This is done, for example, by indexing the valid stream
servers again, searching for unallocated RAM windows. If an
unallocated RAM window is not found, then execution branches
to step 180 to reject the client request. Otherwise, in
step 181, a server window RAM is assigned to the movie, and
a task is initiated to load this server window RAM with
duplicate movie data fetched from the ICDA. If more than
one stream server PC has an unallocated window, then one of
these stream servers should be selected in an attempt to
balance the loading on all of the stream servers. For
example, the stream server having the most resources for
servicing additional client requests is selected. Then in

i0

15

20

25

30

35

WO 97/16023 PCT/US96/17156

42

step 176, the client request is accepted by assigning it to
the indexed stream server PC, which has the server window
RAM assigned in step 181.

As described above with reference to FIGS. 16 and 17, a
set of RAM windows in the RAM 91, 92, 93, 94 of the stream
server PCs (21 in FIG. 2) are allocated and loaded with the
data for each popular movie before the client requests for
the movie are received, so that when a client request for
the movie is received, the client can be immediately
supplied with a video stream starting at any desired time or
position in the movie. 1In step 181, a new RAM window is
allocated and loaded with data when a new client request
cannot be serviced from an existing RAM window because the
resources of the stream server PC having the existing RAM
window are used up in the servicing of prior client
requests. However, for a very popular movie, the time for
loading of a new RAM window with data might require some
delay in the supplying of video data to new client requests
because multiple new client requests might be received when
data are being loaded from the ICDA to the new RAM window.
Therefore, when the resources of a stream server PC having a
RAM window for a very popular movie become used up or nearly
used up, it could be desirable to allocate a RAM window in
another stream server PC at that time and immediately begin
loading data into the newly allocated RAM window in
anticipation of additional client requests for the very
popular movie.

Turning now to FIG. 18, there is shown a flowchart of
steps that could be substituted for step 176 of FIG. 17 in
order to allocate a RAM window in another stream server PC
when the resources of a stream server PC having a RAM window
for a very popular movie become used up or nearly used up.
The first step 176’ in FIG. 18 is similar to step 176 of
FIG. 17. After a client request is assigned to the indexed
stream server PC in step 176’, the admission control program
checks in step 191 whether the movie is designated as a very
popular movie. For example, a movie should be designated as
a very popular movie if more than one client request for the

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

43

same RAM window of the movie is likely to be received in the
time that it takes to load the RAM window.

If the movie is not very popular, then a RAM window of
duplicate movie data is not allocated until it is actually
needed to service a client request. Otherwise, execution
continues from step 191 to step 192. Step 192 determines
the number of additional client requests that could be
serviced by the indexed stream server PC. 1In step 193, this
number is compared to a threshold, which could be a
predetermined constant, such as zero, or which could be a
number designated for each movie and related to the
popularity of the movie. For example, the number could be
approximately the maximum number of requests that are likely
to be received for the RAM window of the movie in the time
that it takes to load a newly allocated RAM window.

If the number of additional client requests that can be
serviced by the indexed stream server PC is not less than or
equal to the threshold, then a RAM window of duplicate movie
data is not allocated until the indexed stream server PC
uses up more of its existing resources for servicing
additional client requests. Otherwise, execution continues
from step 193 to 194. 1In step 194, the admission control
program searches for another stream server PC having an
unallocated RAM window, and the most resources for servicing
additional client requests. If such a server PC is found
having some resources for servicing additional client
requests, as tested in step 195, then execution branches to
step 196. 1In step 196, the admission control program
initiates a task to assign the unallocated RAM window to the
movie and load the RAM window with duplicate movie data.

VI. On-line Tape Backup

Turning now to FIG. 19, there is shown a schematic
diagram illustrating the flow of data through the file
server (20 in FIG. 1) in a "network backup" operation. The
stream servers 21 serve to funnel data from clients on the
network 25 into the integrated cached disk array 23. The
Stream servers accept data at a rate on the order of,
typically, several megabits per second from each network
client (as determined by the existing network connections

io

15

20

25

30

35

WO 97/16023 PCT/US96/17156

44

and remote backup application capabilities). Each stream
server sends data to the integrated cached disk array 23 at
a rate which is the aggregate of all the streams received by
the stream server and can be on the order of about fifty to
one hundred megabits per second. The integrated cached disk
array in turn sends the backup data to the tape silo 24 at
the rate allowed by the capabilities of the tape silo --
typically on the order of 2 to 20 megabits per second, much
less than the capabilities of the integrated cached disk
array. (Disk arrays are typically faster than tape silos,
as determined by the ratio of the concurrent number of disk
read/write streams to the number of tape read/write drives.)
The integrated cached disk array serves as a speed matching
buffer and as a means for combining the data or files to be
written to a particular tape cartridge in the tape silo 24.
Backup data can be streamed, concurrently by all the stream
servers, to the ICDA 23 at an aggregate speed on the order
of 150 gigabytes per hour. The backup data are then sorted
and written to tape at a tape transport speed on the order
of 7 gigabytes per hour per device.

It is desirable to use the ICDA 23 as a buffer because
backup to tape is relatively slow. The rate at which data
are written to a single tape cartridge can be slower than
the aggregate rate at which data are transmitted by the
network clients. The robotic control of the mounting of a
selected tape on a read/write station and the control of the
tape transport at the read/write station involves additional
delays, which can be effectively avoided by the use of the
ICDA 23 as a buffer. The ICDA therefore permits better
utilization of the tape read/write stations and reduces tape
and tape transport wear. Data can be streamed to tape
continuously at tape speed from the ICDA without attempting
to match data flow from the stream servers.

Because the ICDA 23 may use a nonvolatile write buffer
and well-known RAID techniques of error correction to
recover from disk drive failures, the ICDA can acknowledge
completion of a backup operation as soon as the data are
written to the ICDA. The actual writing to tape could be
done as a background process, mainly during off-peak hours,

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

45

when the stream servers are not heavily loaded by data
transfers to and from network clients. The ICDA can provide
"instant" restore service for backup files maintained in the
ICDA. The ICDA can also provide temporary batch backup,
without writing to tape, pending success or failure of
transactions by clients that employ transactional semantics
or transaction processing.

Turning now to FIG. 20, there is shown a block diagram
illustrating the distribution of software used in the file
server (20 in FIG. 1) for the "on-line" tape backup
operations of FIG. 19. The backup software used for this
purpose can be designed and written specifically for it, or
it can be a modification of an existing backup package, as
described below. In particular, an existing implementation
of suitable backup software is adapted from the Epoch
(trademark) backup software sold by EMC Corporation, 171
South Street, Hopkinton, Massachusetts 01748. The backup
software‘includes a backup scheduler 201, a volume manager
202, and a save/restore data mover 203. The backup software
in the file server (20 in FIG. 1) is adapted from the Epoch
(trademark) Hierarchical Storage Management (HSM) software
by splitting the save/restore data mover 203 from the backup
scheduler 201 and volume manager 202 so that the data mover
203 can run in the environment of a separate computer. The
backup scheduler 201 and the volume manager 202 comprise the
"control" part of the Epoch (trademark) backup software.

The backup scheduler 201 and the volume manager 202 run in
the active controller server (28 or 29 in FIG. 2) to provide
backup scheduling, migration and catalog management.
Alternatively, the backup scheduler 201 and the volume
manager 202 could run in a separate external computer (not
shown), which could communicate with the stream servers 21
over a network different from the internal Ethernet 26. The
save/restore data mover 203 is replicated in each of the
stream servers 21, only one of which is shown in FIG. 20.
The save/restore data mover 203 is responsive to commands
transmitted by the backup scheduler 201 and volume manager
202 over the internal Ethernet link 26. The backup
scheduler 201, the volume manager 202, and the save/restore

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

46

data mover 203 are adapted to communicate via the commands
over the Ethernet link 26 instead of the procedure calls
that are used in the Epoch (trademark) backup software.

In operation, when the active controller server 28, 29
(or alternatively, the external computer executing the
"control" part of the backup software) receives a request
from a network client for backup service, the volume manager
202 keeps track of the location of a requested file or data
set (whether on disk or on tape). For this purpose, the
volume manager accesses a catalog 204 stored in the
integrated cached disk array 23. The catalog 204 stores
information identifying backed-up files or data sets. For
each backed-up file or data set, the catalog also stores
information identifying whether the backed-up file is stored
on disk in the integrated cached disk array 23 or on tape in
the tape silo 24. When the backed-up file or data set is
stored on disk in the integrated cached disk array 23, the
catalog 204 stores information identifying the tracks
containing the file or data set. Each track is identified
by a volume, cylinder and head address. When the backed-up
file or data set is stored on tape in the tape silo, the
catalog 204 stores information identifying the tape
cartridge or cartridges containing the file or data set, and
the position of the file or data set in each tape cartridge.
If a network client requests backup of a new file or data
set, the volume manager 202 allocates disk and tape storage
to the new file or data set and updates the catalog 204.

The scheduler 201 schedules the movement of data among
a network client, the integrated cached disk array 23, and
the tape silo 24. For a typical save operation, the
scheduler coordinates with the control application being
executed by the active one of the controller servers 28, 29
to select one of the stream servers to function as a data
mover. The selected stream server moves the backup data
from the network client to allocated tracks in the
integrated cached disk array. Later, this same stream
server or another selected stream server moves the backup
data from the integrated cached disk array to the tape silo.
When the backup data has been written to allocated disk or

15

20

WO 97/16023 PCT/US96/17156

47

tape storage, the catalog 204 is updated to indicate that
the data are available to be read during a restore
operation.

In a restore operation, a client on the network 25
specifies a file or data set to be restored. The volume
manager 202 reads the catalog 204 to find the location of
the specified file or data set. If the catalog 204
indicates that the specified file or data set is in the
integrated cached disk array 23, then the file or data set
is read by a selected one of the stream servers 21 from the
integrated cached disk array and transmitted to the network
client. oOtherwise, if the catalog 204 indicates that the
specified file or data set is stored in the tape silo 24,
then the file or data set is read by a selected one of the
stream servers 21 from the tape silo and transmitted to the
client on the network 25.

The integrated cache disk array 23 is used as an
intermediate buffer during the restore process. In this
case, the selected one of the stream servers 21 reads the
backup data from the tape silo 24 and temporarily stores the
backup data in the integrated cached disk array 23. Then
the same stream server, or another stream server, reads the
backup data from the integrated cached disk array 23 and
transmits the backup data to the client on the network 25.

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

48

CLAIMS:

1. A method of operating a video file server to
provide video-on-demand service to clients in a data
network, said video file server having a storage subsystem
for storing a video data set, and a plurality of stream
server computers linking the data storage subsystem to the
data network, each stream server computer having a random
access memory for storing a portion of the data set so that
the data set is replicated in the random access memory of
the stream server computers, wherein the method comprises
the steps of:

(a) maintaining each portion of the data set in the
random access memory as a sliding window into the data set
by loading new data into each portion of the data set in the
random access memory at approximately a rate at which data
are delivered to the clients for viewing; and

(b) servicing a request of a client for viewing of the
data set beginning at a specified location in the data set
by establishing a data link to the client from a selected
one of the stream server computers currently having in its
random access memory a portion of the data set including the
specified location in the data set, and transferring video
data over the data link from the random access memory of the
selected one of the stream server computers to the client.

2. The method as claimed in claim 1, wherein the new
data are fetched from the storage subsystem for the loading
of the new data into each portion of the data set in the
random access memory at approximately the rate at which data
are delivered to the clients for viewing.

3. The method as claimed in claim 1, wherein said
loading, of the new data into each portion of the data set
in random access memory, is performed by transferring the
new data between the portions of the data set in the random
access memory of the stream server computers.

4. The method as claimed in claim 1, wherein video
data for the entire data set are transferred from the random
access memory of the selected stream server computer to the
Client, without reassigning the client to another stream
server computer, and without the entire data set being

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

49

stored in the random access memory of the selected streanm
server computer.

5. The method as claimed in claim 1, wherein video
data for the entire data set are transferred from the random
access memory of each stream server computer to multiple
clients simultaneously.

6. The method as claimed in claim 1, which includes
balancing loading on each of the stream server computers by
dynamically allocating the random access memory in the
stream server computers to the client requests based on
available resources of the stream server computers.

7. The method as claimed in claim 1, wherein some
random access memory of the stream server computers is held
in reserve and is not needed for storing the entire data set
in the random access memory of the stream server computers,
and when a stream server computer becomes highly loaded by
client requests, reserve memory in another stream server
computer is allocated to store a duplicate of an original
portion of the data set in the stream server computer that
is highly loaded.

8. A method of operating a video file server to
provide video-on-demand service to clients in a data
network, said video file server having a storage subsystem
for storing a video data set, and a plurality of stream
server computers linking the data storage subsystem to the
data network, each stream server computer having a random
access memory for storing a portion of the data set so that
the data set is replicated in the random access memory of
the stream server computers, wherein the method comprises
the steps of:

(a) receiving a request from a client for streaming
data from the data set;

(b) checking whether said client is requesting data
existing in the random access memory of one of said stream
server computers having sufficient resources for streaming
the requested data from the random access memory of said one
of said stream server computers to said client, and

(i) when said client is requesting data existing
in the random access memory of one of said stream

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

50

server computers having sufficient resources for

streaming the requested data from the random access

memory of said one of said stream server computers to
said client, assigning said one of said stream server
computers to handle said request from said client by
streaming the requested data from the random access
memory of said one of said stream server computers to
said client; and

(ii) when said client is requesting data that
does not exist in the random access memory of any of
the stream server computers having sufficient resources
to handle the request, checking whether any of said
stream server computers has sufficient random access
memory to handle said request from said client by
streaming the requested data from said sufficient
random access memory to said client, and when any of
said stream server computers has sufficient random
access memory to handle said request from said client
by streaming the requested data from said sufficient
random access memory to said client, loading the
requested data into said sufficient random access
memory, and servicing the request by streaming the
requested data from said sufficient random access
memory to said client.

9. The method as claimed in claim 8, which further
includes, upon assigning said one of said stream server
computers to handle said request from said client, checking
whether said one of said stream server computers has
sufficient resources for handling at least one possible
additional client request for said data existing in the
random access memory of said one of said stream server
computers, and when said one of said stream server computers
does not have sufficient resources for handling at least one
possible additional client request for said data existing in
the random access memory of said one of said stream server
computers, loading random access memory of another one of
said stream server computers with said data existing in the
random access memory of said one of said stream computer

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

51

computers, before receiving said possible additional client
request.

10. The method as claimed in claim 8, wherein said one
of said stream server computers handles said request from
said client by maintaining a sliding window into the data
set by loading new data into the portion of the data set in
the random access memory of said one of said stream server
computers at approximately a rate at which data are
delivered to said client.

11. The method as claimed in claim 10, wherein said
one of said stream server computers handles said request
from said client by fetching new data from the storage
subsystem and loading the new data into the portion of the
data set in the random access memory of said one of said
stream server computers at approximately a rate at which
data are delivered to said client.

12. The method as claimed in claim 10, wherein the new
data are transferred between the portions of the data set in
the random access memory of the stream server computers for
the loading of the new data into the portion of the data set
in the random access memory of said one of said stream
server computers at approximately a rate at which data are
delivered to said client.

13. The method as claimed in claim 8, wherein video
data for the entire data set are transferred from the random
access memory of said one of said stream server computers to
said client, without reassigning said client to another
stream server computer, and without the entire data set
being stored in the random access memory of said one of said
stream server computers.

14. The method as claimed in claim 8, wherein video
data for the entire data set are transferred from the random
access memory of said one of said stream server computers to
multiple clients simultaneously.

15. A video file server for providing video-on-demand
service to clients in a data network, said video file server
comprising, in combination:

a storage subsystem for storing a video data set; and

10

15

20

25

30

35

WO 97/16023 PCT/US96/17156

52

a plurality of stream server computers linking the data
storage subsystem to the data network, each stream server
computer having a random access memory for storing a portion
of the data set so that the data set is replicated in the
random access memory of the stream server computers; and

a stream server controller linked to the stream server
computers and programmed for (a) maintaining each portion of
the data set in the random access memory as a sliding window
into the data set by loading new data into each portion of
the data set in the random access memory at approximately a
rate at which data are delivered to the clients for viewing;
and (b) servicing a request of a client for viewing of the
data set beginning at a specified location in the data set
by establishing a data link to the client from a selected
one of the stream server computers currently having in its
random access memory a portion of the data set including the
specified location in the data set, and transferring video
data over the data link from the random access memory of the
selected one of the stream server computers to the client.

16. The video file server as claimed in claim 15,
wherein the stream server computers are programmed for
fetching new data from the storage subsystem for the loading
of the new data into each portion of the data set in the
random access memory at approximately the rate at which data
are delivered to the clients for viewing.

17. The video file server as claimed in claim 15,
wherein the stream server computers are programmed for
transferring new data between the portions of the data set
in the random access memory of the stream server computers
for the loading of the new data into each portion of the
data set in the random access memory at approximately the
rate at which data are delivered to the clients for viewing.

18. The video file server as claimed in claim 15,
wherein the stream server computers are programmed for
transferring video data for the entire data set from the
random access memory of the selected stream server computer
to the client, without reassigning the client to another
stream server computer, and without the entire data set

10

15

20

WO 97/16023 PCT/US96/17156

53

being stored in the random access memory of the selected
stream server computer.

19. The video file server as claimed in claim 15,
wherein the stream server computers are programmed for
transferring video data for the entire data set from the
random access memory of each stream server computer to
multiple clients simultaneously.

20. The video file server as claimed in claim 15,
wherein the stream server controller is programmed for
balancing loading on each of the stream server computers by
dynamically allocating the random access memory in the
stream server computers to the client requests based on
available resources of the stream server computers.

21. The video file server as claimed in claim 15,
wherein the stream server controller is programmed for
holding some random access memory of the stream server
computers in reserve, and when a stream server computer
becomes highly loaded by client requests, allocating the
reserve memory in another stream server computer to store a
duplicate of an original portion of the data set in the
stream server computer that is highly loaded.

WO 97/16023 PCT/US96/17156

117

24
i/

23

SUBSTITUTE SHEET (RULE 26)

FIG. 1

PCT/US96/17156

WO 97/16023

217

Vs

AVHHY HSIA d3HIVI QILVHOILNI

. 12
2 914 /
HIAHIS
N# IN3I9 WY3HLS
. HOLIMS .
2# IN3IND -
L# INIMD —] YIAY3S
YHOMLIN INY3IHLS
]
9¢
0¢]
— HIAY3S
" HITI0HINOD |—
gz
— YIAY3S
HITI0HINOD
e 62~
a4vY0gAIN
2¢—] ONV AV1dSIa
HIAHIS VIaIN o 4
A

0¢

Y3Ldvay
1SS
. AHOWIW | | Avuyv
Hildvay JHIYI ASIa
1S95
Y3Ldvay
T ;
4 7
Sv 7 hg M P
OIS 3dvL
431dvav] [NoiLviS
159S | [3Lium /avay
* . AHvHEI
H3Ldvav] [NOILVLS 3dvl
1S9S | |3L14M /ava
g3ldvav] [NOILVLS
IS9S [|3L1UM /av3y ;
4 A 7
05 - N Sge

SUBSTITUTE SHEET (RULE 26)

PCT/US96/17156

WO 97/16023

3/17

€ Ol

H3Ldvav H0L193HIa 401934IaHy3Ldvay @
1S9 TINNYHO ¥sid [ysia [.@
HI1dvay H01934Ia H01934Ia 15:%21.@
1S2S JINNVH) YSIa H MsId
Lo
® ™ “ " ° ° °
® ® | | o ® ®
L] " " ° ° °
VA va_ “
H3ldvav H01934IQ mosmmalﬁz,a,\l@
1S2S TINNVHI ¥SIa [Msid @
H31dvay H0L1934IQ H01934Ia 157221@
1S2S TJINNVHI ¥SIa H MSIa
o’ evt Lov Ry, =
1] AHOW3IW JHIV) Iy J
e

€¢

SUBSTITUTE SHEET (RULE 26)

PCT/US96/17156

WO 97/16023

4117

¥ Ol

~— £9

\.lvm

29~
_
1
EIREN
IHIVO
43444
N | Avarv ysia
< — (Q3HIY9
vLva ILVHDIINI |
XHOMIIN A
TOHLNOD 01
¢z | 1T = —=r advl
W3LSAS 314 N
p9 — \
INIDY INIWIDYNYI dWINS \

S

k9
0w

SUBSTITUTE SHEET (RULE 26)

PCT/US96/17156

WO 97/16023

5/17

G O

€9

€. ¢9 9/ Ll
) /) ¢ /
/ NEET RN N\
7)))
SHINEd o, WYD | SH3IAIEQ
i AN = 1S9S 1598
Ve NHOMIIN | &
— =
2. Z
>
Dovis ¢
T W03 3HOVD H344Ng
7 6.
SWILSAS |
$1030104d =p[I¥]
\1 SS309v 31 IVIISAHd
6L
" W3ILSAS 3714 NOWINOD
vy —’
IN3DY INIWIDYNYI dININS

09 —"

SUBSTITUTE SHEET (RULE 26)

WO 97/16023 PCT/US96/17156

6/17

NETWORK CLIENTS

—_—_———

P

NFS CM }FILE ACCESS

FAP FAP |] PROTOCOLS 75
VFS 471
PHYSICAL
UFS | CMFS }FILE SYSTEMS 79
BUFFER

STORAGE im
47
80
v

i R e i R e T N R R ——

- O0C

CMFS
FIG. 6
SLACK TIME
r § A I I t'
NOW ETA ETA | ETA m
FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US96/17156

WO 97/16023

N7

. 94
L =8 NIS0Y ONNOY ALHIAM NIYWOQ JWIL-TV3Y
NIVINOG = _
IsoundveaNgD | o8 |
e mef/
R [- “
5] B G,
' . | 4
o (aN — | ﬁ . ! RN
S| e |22 [;oo
| o | oc | : | ! L
= = E | @
() | |
{ . u <
ﬂ _4, \ ! olt!lo " A._. <cl —._.v
\ SN ’ ! 13 4 1
D _ L SOV ! SYSVL
8 HIINGIHOS QVIHHL ! gg i ONINQIHIS ; i SNONOHHIOS!
. : ! f
\ — : : — /
8 — 24s| Lugl — 8
£9 —

™ SIOV4HILNI YHOMLIN el

SUBSTITUTE SHEET (RULE 26)

WO 97/16023 PCT/US96/17156

8/17
PREFETCH FETCH
‘ — 91
NETWORK
_ / |~ CLIENT #1
STREAM
DISK
E
ARRAY ICDA SERVER #1
CACHE
47
< 41
FIG. 9
PREFETCH FETCH
— 91
/ NETWORK
CLIENT #1
STREAM
SERVER #1
RAM
/ 92
NETWORK
CLIENT #2
STREAM
SERVER #2
RAM
FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 97/16023

PCT/US96/17156

PREFETCH 9/17
(TASK)
101

1S
OBJECT
A MQVIE

YES

CONTINUE)

SEGMENT FOR

FIND THE NEXT /,102
THE MOVIE

y 103 103
1S L

SEGMENT VIDEO PREFETCH
(SEGMENT, N)

VIDEO PREFETCH
(SEGMENT, SIZE)

X 106 107
END OF REDUCE
SEGMENT SEGMENT
SIZE BY N

109

TIME
FOR NEXT
PREF?ETCH

YES

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 97/16023 PCT/US96/17156

10/17
VIDEO
PREFETCH
F
IDENTIFY | 121
NEXT TRACK
IN SEGMENT
123
122 —
REMOVE CACHE
TgAgﬁE'N SLOT FROM THE HEAD
A7 OF THE REPLACEMENT
< QUEUE
| 124
STAGE TRACK
FROM DISK
TO CACHE
PUT REQUESTING
PROCESS ON THE 195
WAIT LIST FOR ~
THE TRACK
MORE 126
TRACKS TO >
PREFETCH _~VEs
?
(" ReTuRN) FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 97/16023 PCT/US96/17156

IDENTIFY
NEXT TRACK |— 131
IN SEGMENT

IS

TRACK IN

CACHE
I?

YES

TRANSFER TRACK
FROM CACHE TO
THE CHANNEL
DIRECTOR BUFFER

133

134

TRANSFER TRACK
FROM THE CHANNEL
DIRECTOR BUFFER
TO THE STREAM

SERVER 137

! —~135 INSERT THE CACHE

REMOVE PROCESS SLOT AT THE
FROM WAIT HEAD OF THE

LIST REPLACEMENT QUEUE

MOR
TRACKS TO

FETCH
?

NO
(RETURN)
FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 97/16023 PCT/US96/17156

12/17

(PREFETCH TIME)
COMPUTATION

141

142

IS NEW
REQUEST FOR
SAME MOVIE AS AN

EXISTING STREAM
?

CACHE
RESOURGES

Ta <— Tmin

NO

YES
146

FIND THE EXISTING STREAM HAVING
A FETCH OR PRE-FETCH TIME
CLOSEST TO THE FETCH TIME FOR
THE NEW REQUEST

147

IS THE
NEW REQUEST
BEHIND THE STREAM
IN THE MOVIE

. REJECT
YES REQUEST

NO 148 ~—149
COMPUTE THE TIME DIFFERENCE COMPUTE THE TIME
(Ta) BETWEEN THE FETCH TIME DIFFERENCE (T,) BETWEEN THE
FOR THE NEW REQUEST AND THE FETCH TIME OF THE EXISTING
PREFETCH TIME FOR THE STREAM AND THE FETCH TIME
EXISTING STREAM OF THE NEW REQUEST
y
A
FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 97/16023

CACHE
RESOURCES
AVAll’.?ABLE

PCT/US96/17156

RESOURCES
AVAIIT)ABLE

REJECTED
REQUEST

NO

DISK
RESOURCES R
AVAI%ABLE NO
ST OF e e
COo SCHEDULE TEMPORARY
DISK RESOURCES > »Y | PREFETCHING FOR NEW

COST OF CACHE
RESOURCES YES
(NO

A 4

J Y

REQUEST, ADVANCED BY
Tmin, TO TERMINATE AT Ty

152

153

CACHE
RESOURCES
AVAILABLE

d YES

SET PREFETCH
ADVANCE OF THE
NEW REQUEST TO Tp

O REJECT
REQUEST

IS
THE NEW
REQUEST BEHIND THE
STREAM IN THE
MO?VIE

NO

YES

158

SET PREFETCH ADVANCE
OF THE NEW REQUEST
TO Tpmin

I 159

SCHEDULE TERMINATION OF PREFETCHING
FOR EXISTING STREAM (AT T,) AND BEGIN
MORE ADVANCED (BY Tp) PREFETCHING
FOR THE EXISTING STREAM

y

ACCEPT "\,
REQUEST

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 97/16023

PREFETCH

—h—

DISK
ARRAY

47

PCT/US96/17156

NETWORK
FETCH 91 CLIENTS
—P— —

> CLIENT #1
_» CLIENT #2
T CLIENT #3
/ STREAM |~
SERVER #1 CLIENT #4
RAM
MOVIE D
|+ CLENT#5
» CLIENT #6
CLIENT #7
30%/ e,
STREAM CLIENT #8
MOVIE SERVER #2
RAM
93
30% — CLIENT #9
. . CLIENT #10
CLIENT #11
\p* STREAM < CLIENT #12
SERVER #3
RAM
94

| —
/ CLIENT #13
30% _» CLIENT #14
MOVIE ———— CLIENT #15
STREAM | s CLIENT #16

SERVER #4
RAM
FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 97/16023 PCT/US96/17156

15/17
SERVICE
NETWORK 179
4 DO OTHER)
v 17 | PROCESSES 3 3
CLIENT
REQUEST FOR
POPULAR MOVIE
2 NO
INDEX TO
A VALID PC =178
ADVANCE
e INDEX OT NEXT }« .
VALID PC

177

NEW
REQUEST FALLS

INTO WINDOW
OF INDEXED
PC ?

ALL
VALID PC'S
INSPE)CTED

179

SERVER

DOES WINDOW RAM
INDEXED PC
HAVE SUFFICENT AVAIE)ABLE
RESOURCES TO HANDLE g
THE REQUEST 181
? ASSIGN SERVER WINDOW
RAM TO REQUESTED
176 MOVIE AND LOAD THE
Vs WINDOW RAM
ASSIGN CLIENT
REQUESTTO THE | v
INDEXED PC |
ResEcT 1~ 180
REQUEST
: \ 4
FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 97/16023

! 176
v [

ASSIGN CLIENT

REQUEST TO THE
INDEXED PC

191

VER
POPULAR
MOVIE
[YES 192

DETERMINE NO. OF
ADDITIONAL CLIENT
REQUESTS THAT
COULD BE SERVICED
BY THE INDEXED PC

PCT/US96/17156

16/17

il 196
SEARCH FOR ANOTHER
SERVER PC HAVING INITIATE ATASK TO
AN UNALLOCATED RAM ASSIGN THE UNALLOCATED
WINDOW AND THE MOST RAM WINDOW TO THE MOVIE
RESOURCES FOR AND LOAD THE RAM
SERVICING ADDITIONAL WINDOW WITH DUPLICATE
CLIENT REQUESTS MOVIE DATA
195
<o 3
NO
¢‘ A\ 4

FIG. 18

SUBSTITUTE SHEET (RULE 26)

WO 97/16023

PCT/US96/17156

2-20
MBpS
= || O
TAPE INTEGRATED
CACHED
SILO DISK ARRAY
C C STREAM
2 23 SERVERS 25
FIG. 19
28,29
VOLUME |—__ 202
23 -1 MANAGER 0 25
o
/ SCHEDULER |
3
I CATALOG :: CONTROLLER
~ 204 SERVER
INTRGRATED > NETWORK
CACHED - CLIENTS
DISK ARRAY 203
N SAVE M -
/» RESTORE —_
STREAM | [\26 /
SERVER
TAPE
SILO "\ 24 . !
FIG. 20

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intes nal Applicaton No

PCT/US 96/17156

A._CLASSIFICATION OF SUBJECT MATTER
IPC 6 HO4N7/173

According to Intemational Patent Classification (IPC) or to both natonal clasaificaton and IPC

B. FIELDS SEARCHED

IPC 6 HO4N

Minimum documentation searched (classificaton system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consulted during the international search (name of data base and, where practcal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citatton of document, with indication, where appropnate, of the relevant passages

Relevant to claam No.

see figures 2-4

see column 3, line 24 - column 4, line 36
see column 4, Tine 63 - column 5, line 18
see column 6, line 4 - column 9, line 26
see column 11, line 3 - line 19

/-

X EP 0 633 694 A (DIGITAL EQUIPMENT CORP) 11 1-5
January 1995

A 6-21
see page 5, column 5, line 17 - column 6,
line 26
see page 6, column 10, line 14 - page 7,
column 12, line 53
see figure 2

X US 5 371 532 A (GELMAN ALEXANDER ET AL) 6 1-3
December 1994

A 4-21

Further documents are listed in the continuaton of box C.

Patent farruly members are listed in annex.

* Speaal categones of cited documents :

“A” document defining the general state of the art which is not
considered to be of partcuiar relevance

“E° carlier document but published on or after the internationat
filing date
‘L* document which may throw doubts on prionty claim(s) or
which is cited to establish the publication date of another
1)

citagon or other speaal r (as speaifi
‘0" document referring to an oral disclosure, use, exhibition or
other means

“P* document published pnor to the international filing date but
later than the priority date claimed

-

X

later document published after the international filing date
or prionity date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the documnent 1s taken alone
document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skiled
in the art

document member of the same patent family

Date of the actual completion of the international search

5 February 1997

Date of mailing of the international search report

21.0297

Name and mathing address of the [SA

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswik

Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authonzed officer

Van der Zaal, R

Form PCT,1SA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter >nal Applicaton No

PCT/US 96/17156

C{(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citaton of document, with indication, where appropnate, of the relevant passages

Relevant to claim No.

A

WO 93 16557 A (KOZ MARK C ;HATA MASATO
(JP)) 19 August 1993

see page 6, line 36 - page 7, line 27
see page 12, line 7 - page 13, line 21
see page 17, line 31 - page 19, line 21
see figures 1-4

WO 95 10918 A (IMAGE TELECOMMUNICATIONS
CORP) 20 April 1995

see page 15, line 9 - page 21, line 22
see page 25, line 10 - page 28, line 10
see page 33, line 7 - page 45, line 2
see figures 2-6,10-16

1-21

1-21

Form PCT/1SA/210 (continuation of second sheet) (July 1992)

page 2 of ?

INTERNATIONAL SEARCH REPORT

Inte: >»nal Application No

.nformatuon on patent family members PCT/US 96/17156
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0633694 11-01-95 US-A- 5414455 09-05-95

US-A- 5442390 15-08-95
CA-A- 2127347 08-01-95

W0-A-9316557 19-08-93 AU-A- 2313592 03-09-93
AU-A- 3271993 03-09-93
CA-A- 2128322 19-08-93
EP-A- 0634075 18-01-95
EP-A- 0626083 30-11-94
WO-A- 9316430 19-08-93
US-A- 5566301 15-10-96

W0-A-9510918 20-04-95 US-A- 5581479 03-12-96
AU-A- 7970494 04-05-95
CA-A- 2173868 20-04-95
EP-A- 0723731 31-07-96

- e e e e e e e L N R D S S N S G SR N D M G AN R A R e S R ED e R e e e e e S e e e e

Form PCT/ISA/210 (patent family annex} (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

